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Abstract

We have equipped the unstructured-mesh global sea-ice and ocean model FESOM2 with a set of physical parameterizations

derived from the single-column sea-ice model Icepack. The update has substantially broadened the range of physical processes

that can be represented by the model. The new features are directly implemented on the unstructured FESOM2 mesh, and

thereby benefit from the flexibility that comes with it in terms of spatial resolution. A subset of the parameter space of three

model configurations, with increasing complexity, has been calibrated with an iterative Green’s function optimization method

to test fairly the impact of the model update on the sea-ice representation. Furthermore, to explore the sensitivity of the results

to different atmospheric forcings, each model configuration was calibrated separately for the NCEP-CFSR/CFSv2 and ERA5

forcings. The results suggest that a complex model formulation leads to a better agreement between modeled and the observed

sea-ice concentration and snow thickness, while differences are smaller for sea-ice thickness and drift speed. However, the choice

of the atmospheric forcing also impacts the agreement of FESOM2 simulations and observations, with NCEP-CFSR/CFSv2

being particularly beneficial for the simulated sea-ice concentration and ERA5 for sea-ice drift speed. In this respect, our results

indicate that the parameter calibration can better compensate for differences among atmospheric forcings in a simpler model

(i.e. sea-ice has no heat capacity) than in more energy consistent formulations with a prognostic ice thickness distribution.
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Abstract17

We have equipped the unstructured-mesh global sea-ice and ocean model FESOM2 with a18

set of physical parameterizations derived from the single-column sea-ice model Icepack. The19

update has substantially broadened the range of physical processes that can be represented20

by the model. The new features are directly implemented on the unstructured FESOM221

mesh, and thereby benefit from the flexibility that comes with it in terms of spatial res-22

olution. A subset of the parameter space of three model configurations, with increasing23

complexity, has been calibrated with an iterative Green’s function optimization method to24

test fairly the impact of the model update on the sea-ice representation. Furthermore, to25

explore the sensitivity of the results to different atmospheric forcings, each model configura-26

tion was calibrated separately for the NCEP-CFSR/CFSv2 and ERA5 forcings. The results27

suggest that a complex model formulation leads to a better agreement between modeled and28

the observed sea-ice concentration and snow thickness, while differences are smaller for sea-29

ice thickness and drift speed. However, the choice of the atmospheric forcing also impacts30

the agreement of the FESOM2 simulations and observations, with NCEP-CFSR/CFSv2 be-31

ing particularly beneficial for the simulated sea-ice concentration and ERA5 for sea-ice drift32

speed. In this respect, our results indicate that the parameter calibration can better com-33

pensate for differences among atmospheric forcings in a simpler model (i.e. sea-ice has no34

heat capacity) than in more energy consistent formulations with a prognostic ice thickness35

distribution.36
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Plain Language Summary37

The role of model complexity in determining the performance of sea-ice numerical sim-38

ulations is still not completely understood. Some studies suggest that a more sophisticated39

description of the sea-ice physics leads to simulations that agree better with sea-ice obser-40

vations. Others, however, fail to establish a link between complex model formulations and41

improved model performance. Here, we investigate this open question by analyzing a set42

of sea-ice simulations performed with a revised and improved sea-ice model that features43

substantial modularity in terms of model complexity. Ten model parameters of three dif-44

ferent model configurations are optimized to improve the agreement between model results45

and observations, allowing a fair comparison between model configurations with varying46

complexity. The model optimization is repeated for two different atmospheric forcings to47

shed light on the relationship between model complexity and other sources of uncertainty48

in the sea-ice simulations, such as those associated with the atmospheric conditions. The49

results suggest that an elaborated formulation of our model can lead to a more appropriate50

representation of sea ice concentration and snow thickness, while it is less relevant for sea-ice51

thickness and drift.52
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1 Introduction53

Sea-ice is a key component of the climate system (Dieckmann & Hellmer, 2010) and54

it plays a central role as a physical regulator of the energy exchange between atmosphere55

and ocean in polar regions (Döscher et al., 2014). Furthermore, sea-ice represents by itself a56

platform where large ecosystems thrive (Spindler, 1994), and it is a fundamental element in57

the lives of coastal human communities in the Arctic (Cooley et al., 2020). Because of the58

strong and rapid transformations that sea-ice has undergone in recent years due to global59

warming (particularly in the Arctic; Notz & Stroeve (2016)), there is an urgent need to60

better understand and being able to quantify the physical and biogeochemical mechanisms61

regulating the sea-ice system, to inform decision-makers and various stakeholders. Reliable62

dynamical sea-ice models can be fundamental tools for accurately predicting the evolution63

of sea ice at multiple timescales, from days to centuries into the future.64

In the past decades, there has been a constant development of more complex and65

physically consistent sea-ice model formulations, summarized by Hunke et al. (2010) and66

Notz (2012), and of which we give a brief overview in Sec. 2.2. At the same time, the67

resolution of sea-ice and ocean models has increased due to the growing availability of68

computational resources, and so has the resolution and quality of the atmospheric reanalyses69

used to force the models. These developments, together with the growing availability of more70

accurate sea-ice observations to constrain our models, have led to better sea-ice simulations.71

Multiple studies attribute a relevant role in improving the sea-ice model performance to more72

realistic model formulations (Vancoppenolle et al. (2009); Massonnet et al. (2011); Flocco et73

al. (2012); Roach, Horvat, et al. (2018), among others). However, in the framework of the74

Coupled Model Intercomparison Project (CMIP), the SIMIP Community (2020) (Sea Ice75

Model Intercomparison Project) shows that it is unclear to what degree differences between76

CMIP6, CMIP5, and CMIP3 sea-ice simulations are caused by better model physics versus77

other changes in the forcing. In the field of subseasonal and seasonal sea-ice forecasting,78

simple dynamical models exhibit predictive skills comparable to or even better than those79

of more complex forecast systems (Zampieri et al., 2018, 2019), suggesting that the year-80

to-year variability, the skill of the atmospheric models, and the quality of initial conditions81

dominate the variation in ensemble prediction success (Stroeve et al., 2014). In conclusion,82

to what extent the model complexity impacts the quality of sea-ice simulations remains an83

open question always evolving with our models (Blockley et al., 2020).84

–4–



manuscript submitted to Journal of Advances in Modeling Earth Systems

A key aspect to examine when assessing the relative performance of multiple model85

formulations is whether these are all appropriately tuned (Miller et al., 2006). Because of an86

interdependency of model parameters and a lack of comprehensive ice and snow observations,87

the model parameters are in general underconstrained (Urrego-Blanco et al., 2016), and their88

systematic calibration can substantially impact the quality of the simulations (J. Turner et89

al., 2013; Massonnet et al., 2014; Ungermann et al., 2017; Sumata et al., 2019a; Roach, Tett,90

et al., 2018). Furthermore, acknowledging the substantial differences between the reanalysis91

products used to force the sea-ice models in stand-alone setups (Batrak & Müller, 2019), we92

argue that the same model configuration should be also optimized separately for different93

forcing conditions. As shown by Bitz et al. (2002) and Miller et al. (2007), the behavior of94

a specific model formulation can change substantially based on the forcing used.95

Most of the relevant sea-ice parameterizations and modeling strategies developed over96

the years have been collected by the scientific community and integrated into sophisticated97

sea-ice models, the most advanced and complete of which is arguably CICE (Hunke et al.,98

2020a). The CICE model is distributed in combination with the Icepack column-physics99

package (Hunke et al., 2020b) – a collection of physical parameterizations that account100

for thermodynamic and mechanic sub-grid processes not explicitly resolved by the models.101

Because of its modularity, Icepack can be conveniently implemented in ocean and sea-ice102

models other than CICE. In this regard, this study presents a new version of the Finite-103

volumE Sea ice-Ocean Model version 2 (FESOM2; Danilov et al. (2017)) that exploits104

the capabilities of the Icepack column physics package. As we describe in Sec. 2.2, the105

development of the FESOM2 sea-ice component has been mostly focused on dynamical106

aspects, while the adopted sub-grid sea-ice parameterizations were quite simple and outdated107

if compared to those implemented in other sea-ice models. This resulted in a partially108

inconsistent physical formulation of the standard FESOM2 model, caused for example by the109

missing representation of the sea-ice internal energy. The inclusion of Icepack in FESOM2110

has substantially broadened the range of sea-ice physical processes that can be simulated111

by the FESOM2 model, making it an ideal tool for answering the scientific questions posed112

below.113

Based on the new FESOM2-Icepack implementation, we designed a set of experiments114

to assess the impact of the sea-ice model complexity on the quality of the sea-ice simula-115

tions. Ten parameters from three distinct model setups are optimized with a semi-automated116

calibration technique and compared to different types of sea-ice and snow observations. Be-117
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cause we deal with a standalone ocean and sea-ice model (i.e. no coupling to an atmospheric118

model) the calibration process is conducted separately for two different atmospheric reanal-119

ysis products used to force FESOM2. Based on the outcome of the calibration and the120

resulting model performance, we try to address the following questions:121

1. Does a more complex and physically consistent formulation of the sea-ice model lead122

to better sea-ice simulations given the resolution, coverage and uncertainty of satellite123

Earth Observations (EO) of the sea-ice available today?124

2. How does the impact of different atmospheric forcings on the sea-ice model perfor-125

mance relate to the impact of model complexity?126

3. Which sea-ice formulation can be calibrated more effectively?127

The remainder of this paper is organized as follows: the method section presents the128

standard (Sec. 2.1) and Icepack (Sec. 2.2) FESOM2 formulations, followed by the theoretical129

description of the Green’s function approach for the calibration of the model parameter130

space (Sec. 2.3). We then describe the experimental setups employed in the study and we131

present the practical implementation of the calibration technique (Sec. 2.4), as well as the132

observations used for constraining the parameter space and for validating the model results133

(Sec. 2.5). The results section (Sec. 3) describes the impact of the parameter optimization134

on the model performance in terms of cost function reduction. Furthermore, we explore the135

discrepancies of the various optimized model configurations by comparing the simulated sea-136

ice and snow state to different types of observations, and by linking this to differences in the137

optimized model parameters. Finally, the computational performance of three model setups138

is analyzed for assessing the sustainability of more sophisticated, and thus computationally139

more demanding, sea-ice setups for diverse modeling applications (Sec. 4.3).140

2 Methods141

2.1 Standard sea-ice formulation in FESOM2142

Danilov et al. (2015) describes in detail the numerical implementation of the Finite143

Element Sea-Ice Model (FESIM), which is the standard sea-ice component of FESOM2.144

Three alternative algorithms are available for solving the sea-ice momentum equation: a145

classical elastic-viscous-plastic (EVP) approach coded following Hunke & Dukowicz (1997)146

plus two modified versions of the EVP solver: the modified EVP (mEVP; Kimmritz et al.147
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(2015)), and the adaptive EVP (aEVP; Kimmritz et al. (2016)). Three sea-ice tracers are148

advected based on a finite element (FE) flux corrected transport (FCT) scheme (Löhner et149

al., 1987): the sea-ice area fraction ai, and the sea-ice and snow volumes per unit area, vi and150

vs. The thermodynamic evolution of sea ice is described by a simple 0-layer model (i.e. the151

sea-ice and snow layers have no heat capacity) that follows Parkinson & Washington (1979).152

The interaction between the radiation and sea ice is mediated by four constant albedo values153

(dry ice, wet (melting) ice, dry snow, and wet (melting) snow) that respond to changes in the154

atmospheric near-surface temperature, thus including an implicit description of the radiative155

effect of melt ponds during the melting season. No incoming shortwave radiation penetrates156

through the snow and sea-ice layers.157

2.2 Icepack implementation in FESOM2158

Icepack (Hunke et al., 2020b) – the column physics package of the sea-ice model CICE –159

is a collection of physical parameterizations that account for thermodynamic and mechanic160

sub-grid processes not explicitly resolved by the hosting sea-ice model. The modular im-161

plementation of Icepack allows the users to vary substantially the complexity of the sea-ice162

model, with the possibility of choosing between several schemes and a broad set of ac-163

tive and passive tracers that describe the sea-ice state. Similarly to FESIM, Icepack can164

make use of a simple 0-layer sea-ice and snow thermodynamics scheme (Semtner, 1976).165

However, two more sophisticated and energy consistent multi-layer thermodynamics formu-166

lations, taking into account the sea-ice enthalpy and salinity, are also available: the Bitz &167

Lipscomb (1999) thermodynamics (BL99 hereafter), which assumes a temporally constant168

sea-ice salinity profile, and the “mushy layer” implementation, with a prognostic sea-ice169

salinity description (A. K. Turner et al., 2013). To account for the sea-ice thickness varia-170

tions typically observed at sub-grid scales, Icepack discretizes the sea-ice cover in multiple171

classes, each representative of a sea-ice thickness range, and describes prognostically the172

evolution of the Ice Thickness Distribution (ITD) in time and space (Bitz et al., 2001). The173

processes leading to changes in the ITD are sea-ice growth and melt, snow-ice formation174

(flooding), and mechanical redistribution (i.e. sea-ice ridging and rafting due to dynamical175

deformation; Lipscomb et al. (2007)). In terms of the interaction between sea ice and ra-176

diation, Icepack includes two more sophisticated parameterizations in addition to a simple177

albedo scheme similar to that of FESIM. In the “CCSM3” formulation, the surface albedo178

depends on the sea-ice and snow thickness and temperature, and it is defined separately for179
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the visible and infrared portion of the spectrum. The main difference between this and the180

constant albedo approach is a reduction of the surface reflectivity for thin sea-ice or snow.181

The even more sophisticated “Delta-Eddington” formulation exploits the inherent optical182

properties of snow and sea ice for solving the radiation budget (Holland et al., 2012), and183

it can be combined with three explicit prognostic melt pond schemes (Holland et al., 2012;184

Flocco et al., 2010; Hunke et al., 2013). Finally, the Icepack radiation implementation al-185

lows the penetration of part of the incoming shortwave radiation through snow and sea ice,186

leading to additional energy absorption in the water column below the sea ice.187

Icepack v1.2.1 has been implemented in FESOM2 and can now be used as an alternative188

to the standard FESIM thermodynamic module. As the standard FESIM implementation,189

the Icepack column-physics subroutines run every ocean time step. All the Icepack vari-190

ables are defined directly on the FESOM2 mesh, ensuring an optimal consistency between191

the ocean and the sea-ice components of the model. The inclusion of Icepack in FESOM2 re-192

quired a revision of the calling sequence within the sea-ice model (Fig. 1), which now follows193

that of the CICE model (Hunke et al., 2020a). The coefficients mediating the momentum194

and heat exchanges between atmosphere and ice, previously constant in FESIM, have been195

updated and are now computed iteratively based on the stability of the atmospheric near-196

surface layer (Jordan et al., 1999). The solution of the momentum equation for computing197

the sea-ice velocity does not change when running in FESOM2-Icepack configuration. Two198

alternative formulations of the sea-ice strength P are available in Icepack and can be used199

in the EVP solver:200

Thermodynamics
• 0 lyr.
• BL99
• Mushy layer

Mechanical
redistribution

Tracers
advection

Dynamics 
• EVP
• mEVP
• aEVP

Radiation
• Constant
• CCSM3
• Delta-Eddington

Dynamics 
• EVP
• mEVP
• aEVP

Tracers
advection

Radiation & 0 lyr.
thermodynamics

FESOM2 - Icepack

Standard FESOM2 

Figure 1. Schematic describing the calling sequences of the Standard FESOM2 and FESOM2-

Icepack implementations.
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Hibler (1979): P = P ∗ve−C
∗(1−ai) (1)

Rothrock (1975): P = CpCf

∫ ∞
0

h2ωr(h)dh (2)

where h = v/a is the ice thickness, P ∗, C∗, and Cf are empirical parameters, Cp = ρi(ρw −201

ρi)g/(2ρw) is a combination of the gravitational acceleration and the densities of ice and202

water, and ωr(h) is a function that represents the effective sea-ice volume change for each203

thickness class due to mechanical redistribution processes. In this study, the Hibler (1979)204

approach (H79 hereafter) is adopted for all model setups instead of the Rothrock (1975)205

approach (R75 hereafter). The reasoning behind this choice will be discussed in Sec. 2.4.206

In the FESOM2 implementation of Icepack, each tracer is advected separately using207

the FE-FCT scheme by Löhner et al. (1987) as described in Kuzmin (2009). The tracer208

advection is based on the conservation equation209

∂tT +∇ · (Tv) = 0 , (3)

where T is a generic advected tracer with no dependencies and v is the sea-ice velocity that210

solves the momentum equation. If a tracer T2 depends on another tracer T1, the advected211

quantity that satisfies Eq. 3 is T = T1T2. This concept can be generalized for a tracer with212

more than one dependency. Icepack comes with a vast set of required and optional tracers.213

As for the standard FESIM, ai, vi, and vs are required tracers. However, in Icepack these214

three variables are defined separately for each ice thickness class. The skin temperature of215

the sea-ice, or in the presence of snow of the snow, Ts is also defined separately for each216

thickness class and depends on ai for the advection. If the BL99 or mushy thermodynamics217

are used, the enthalpy of sea-ice and snow layers (qi,qs), and the sea-ice salinity si become218

also required tracers and depend on vi or vs. Several more tracers are available (melt pond219

fraction and depth, sea-ice age, first-year ice fraction, level ice fraction and volume, etc.)220

depending on the chosen setup of the model. All these tracers are implemented in the221

FESOM2-Icepack model.222

2.3 Green’s function approach for the optimization of the model parameters223

The Green’s function approach is a simple, yet powerful method that, given some ob-224

servations, can be used for the calibration of the parameter space of general circulation225

models (Stammer & Wunsch, 1996; Menemenlis & Wunsch, 1997; Menemenlis et al., 2005;226

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Nguyen et al., 2011; Ungermann et al., 2017). The practical realization of one iteration227

of this method requires to compute an ensemble of n sensitivity simulations by perturbing228

separately each one of the n parameters that we choose to optimize. The Green’s functions229

of these sensitivity simulations are then combined through discrete inverse theory for con-230

structing an optimal linear solution that minimizes the difference between the model state231

and the observations, and which corresponds to a set of optimal parameter perturbations.232

Menemenlis et al. (2005) and Ungermann et al. (2017) provide an extensive mathematical233

derivation of the method. Here, we limit our description to a few important points.234

Given a vector of m observations y and their measurement uncertainties σσσ, the rela-235

tionship between the observations and a model operator G can be expressed as236

y = G(ννν) + εεε , (4)

where ννν contains a generic set of n parameter perturbations around a reference state ννν0, and237

εεε represents the discrepancy between the observations and the model results. The optimal238

set of parameters νννopt can be obtained by minimizing a quadratic cost function239

F = εεεTR εεε , (5)

where R, the covariance matrix of εεε, is assumed to be a simple diagonal matrix with ele-

ments Rij = (σi)
−2 (with i, j = 1 . . .m), meaning that observation errors are considered

independent. In this study, each element of R is further divided by the total number of

observations of its corresponding observation type. In this way, the same weight is given to

each observational type employed in the optimization. Let us assume for now that a lin-

earization of the system holds (we will discuss this aspect further in Sec. 4.2), and that the

model operator G can be represented by a matrix G, so that the misfit between observations

and the control simulation (for which ννν = 0) can be expressed as

∆y = y −G(0) = Gννν + εεε . (6)

In practice, G is an m × n matrix constructed by combining the Green’s function for240

each of the parameter perturbations ννν = (ν1 . . . νn). Specifically, gggj—the jth-column of the241

matrix G—is242
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gggj =
G(νννj)−G(0)

νj
, (7)

where G(νννj) is the sensitivity simulation where only the parameter νj is perturbed. The set243

of optimal parameters that minimizes the cost function is given by244

νννopt = ννν0 + (GTRG)−1GTR∆y . (8)

2.4 Model simulations245

All model simulations are run on a global mesh with 1.27 × 105 surface nodes and 46246

ocean vertical levels. This unstructured mesh has approximately a 1◦ resolution over most247

of the domain, but it is refined along the coastlines, in the equatorial regions, and north248

of 50◦N, where the resolution reaches ∼25km (see Fig. 4a in Sein et al. (2016) for more249

details on the mesh). The atmospheric boundary conditions used to force the FESOM2250

model are derived from two reanalysis products: the European Centre for Medium-Range251

Weather Forecasts Reanalysis 5th Generation (ERA5) global reanalysis (Hersbach et al.,252

2020) and the NCEP Climate Forecast System (NCEP hereafter; Saha et al. (2010, 2014)).253

The fields used to force the model are the 2-m air temperature and specific humidity, the254

10-m wind velocity, the downward longwave and shortwave radiation, and both liquid and255

solid precipitation. The ocean component of the FESOM2 model is initialized in 1980 from256

the PHC3 ocean climatology (Steele et al., 2001). A sea-ice thickness of 2m is set at initial257

time in regions with sea surface temperature below −1.8◦C.258

The Green’s function approach for parameter optimization is applied to three different259

model setups of increasing complexity:260

C1 Low-complexity configuration corresponding to the standard FESIM implementation261

within FESOM2, as described in Sec. 2.1.262

C2 Medium-complexity configuration based on the FESOM2-Icepack implementation de-263

scribed in Sec. 2.2. This configuration features an ITD with 5 thickness classes, the264

BL99 thermodynamics (4 sea-ice layers and 1 snow layer), and the CCSM3 radiation265

scheme.266

C3 High-complexity configuration based on the FESOM2-Icepack implementation. Like267

C2, C3 features an ITD with 5 thickness classes and the BL99 thermodynamics with268
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1980 2000 2002 2015

Model
Spin-up

Control run

Perturbed run #1

…             #2

…             #3

…             #4

…             #5

…             #6

…             #7

…             #8

…             #9

Perturbed run #10

Obs. sea-ice conc.

Obs. sea-ice thickness

Green‘s function
optimization

Obs. sea-ice drift

2020

Optimized model run

Optimized
parameters

Figure 2. Schematic of one iteration of the Green’s function approach for parameter optimization

as employed in our study for each configuration. When the second iteration is performed, the

optimized model run computed at the end of the first iteration serves as control run for the second

one.

4+1 vertical layers. The CCSM3 radiation is replaced by the Delta-Eddington scheme,269

and the melt ponds are prognostically described with the CESM parameterizations270

(Holland et al., 2012).271

The Icepack configurations C2 and C3 resemble the sea-ice formulation of the climate272

models CCSM3 (Collins et al., 2006) and CCSM4/CESM1 (Jahn et al., 2012) respectively.273

The three configurations are optimized twice, once for each atmospheric forcing employed:274

ERA5 (suffix “E” hereafter) and NCEP (suffix “N” hereafter). This leads to a total of 6275

optimal parameter sets, each one optimized by performing two iterations of the Green’s276

function method. A schematic of the Green’s function optimization procedure is displayed277
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in Fig. 2. Each configuration undergoes a 20-year spin-up (1980–1999) to guarantee a278

realistic state of the modelled upper ocean (upper 1000 m) and of the sea-ice cover in (quasi-279

)equilibrium with the chosen atmospheric forcing product and the individual parameter set.280

The model optimization window is limited to the 14-year period 2002–2015, i.e. the cost281

function is evaluated in this period. 2000 and 2001 are additional spin-up years for ensuring282

a full response to each sea-ice parameter perturbation (Fig. 2).283

The R75 formulation of the sea-ice strength is arguably more physically consistent284

than the H79 formulation, as it includes information about the ITD in each grid cell and it285

considers potential energy changes associated with the redistribution. However, Ungermann286

et al. (2017) show that the H79 approach leads to a better fit between model data and287

observations when properly tuned. In addition, the R75 sea-ice strength is much more non-288

linear then H79 one. For these reasons, and for being able to compare the C1 setup (no289

ITD; only H79 available) to the C2 and C3 setups (with ITD; both H79 and R75 available),290

all the simulations here presented employ the H79 sea-ice strength formulation.291

Because the finite availability of computational resources limits in practice the num-292

ber of parameters that can be optimized with the Green’s function approach (a separate293

sensitivity run is needed for each parameter one intends to optimize), the parameters have294

been chosen based on their ability to influence the sea-ice state of the model, as described295

in previous studies (Massonnet et al., 2014; Urrego-Blanco et al., 2016; Ungermann et al.,296

2017; Sumata et al., 2019a). In total, 10 model parameters are optimized for each of the297

three model setups (Tab. 1). The chosen parameters act on various sea-ice parameteri-298

zations: thermodynamics, dynamics, radiation, and mechanical redistribution. Some are299

common to all three configurations (αO, kS , P ∗, C∗, and cIO), while others are specific to300

the formulation of each setup. Details regarding P ∗ and C∗ are provided in Eq. 1. RI , RS ,301

and RP are tuning parameters for the albedos of ice, snow, and melt ponds in the Delta-302

Eddington radiation scheme (Briegleb & Light, 2007). Note that δP , the constant ratio303

between the melt pond depth and melt pond fraction in the CESM melt pond parameter-304

ization, has been classified as radiation parameter (Tab. 1a) because the scheme describes305

only the radiation effects of melt ponds (Holland et al., 2012). The lead closing parameter306

H0 determines the thickness of newly formed ice(Hibler, 1979). µ is a tuning parameter that307

acts on the empirical e-folding scale of ridges, whose ITD is well approximated by a negative308

exponential (Lipscomb et al., 2007; Hunke, 2010; Uotila et al., 2012). The ice-atmosphere309

drag coefficient cIA has not been optimized following the results of Massonnet et al. (2014),310
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which show that optimizing the atmospheric drag is not necessary if P ∗ and cIO are already311

optimized.312

2.5 Observational products313

The Green’s function optimization method is based on three types of monthly averaged314

satellite observations and their uncertainties: sea-ice concentration, thickness, and drift315

(Fig. 2). We employ the OSI SAF Global Sea Ice Concentration Climate Data Record316

v2.0 (EUMETSAT Ocean and Sea Ice Satellite Application Facility, 2017) for the period317

2002–2015. The retrieval of this product is based on passive microwave data from the SSM/I318

(Special Sensor Microwave/Imager) and SSMIS (Special Sensor Microwave Imager/Sounder)319

sensors (Lavergne et al., 2019). The data are distributed on a polar stereographic 25km320

resolution grid, which is approximately the same resolution as our model in the Arctic.321

Two complementary sea-ice thickness datasets are considered during the freezing sea-322

son (October to April): the monthly northern hemisphere sea-ice thickness from Envisat323

(2002–2010; Hendricks et al. (2018b)) and from CryoSat-2 (2011–2015; Hendricks et al.324

(2018a)). The merged CryoSat-2/SMOS sea-ice thickness product has not been considered325

for the parameter optimization because we decided to prioritize the optimization of thick326

sea-ice regions over the marginal ice zone. The evolution of the thin ice cover is implicitly327

constrained by the parallel employment of sea-ice concentration observations during the328

optimization, which compensates, at least to some extent, for the exclusion of the SMOS329

observations from the optimization.330

Following Sumata et al. (2019a), sea-ice drift data covering the whole seasonal cycle331

are obtained by combining three different pan-Arctic low-resolution products: the OSI-332

405 (Lavergne et al., 2010), the sea-ice motion estimate by Kimura et al. (2013), and the333

Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 2 (NSIDC Drift334

hereafter; Tschudi et al. (2010); Fowler et al. (2013)). OSI-405 is the drift product with the335

smallest observational uncertainties (Sumata et al., 2014) and therefore, when possible, it is336

preferred to the others. The estimates by Kimura et al. (2013) are used in summer because337

the OSI-405 temporal coverage is limited to the winter months. The NSIDC Drift data are338

used to cover a gap left by the other two products during part of 2011 and 2012.339

Additionally, the model simulations are compared to other types of sea-ice observations340

than those employed for the Green’s function optimization. As for the northern hemisphere,341
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(a) Optimized parameters in C1

Ocean albedo αO Therm. conductivity snow kS

Dry sea-ice albedo αId H79 ice strength const. P ∗

Wet sea-ice albedo αIw H79 ice strength const. C∗

Dry snow albedo αSd Ice-ocean drag cIO

Wet snow albedo αSw Lead closing param. H0

(b) Optimized parameters in C2

Ocean albedo αO Therm. conductivity snow kS

Visible sea-ice albedo αIv H79 ice strength const. P ∗

Infrared sea-ice albedo αIi H79 ice strength const. C∗

Visible snow albedo αSv Ice-ocean drag cIO

Infrared snow albedo αSi Redistribution ridged ice µ

(c) Optimized parameters in C3

Ocean albedo αO Therm. conductivity snow kS

Sigma coeff. for ice albedo RI H79 ice strength const. P ∗

Sigma coeff. for snow albedo RS H79 ice strength const. C∗

Sigma coeff. for pond albedo RP Ice-ocean drag cIO

Melt pond shape δP Redistribution ridged ice µ

Parameter types

Radiation Sea-ice thermodynamics

Sea-ice thickness / ITD Sea-ice dynamics

Table 1. Model parameters optimized for each of the three model configurations C1, C2, and

C3. The division of the model parameters in four groups reflects the sea-ice model aspect regulated

by the parameters. These groups are defined and color-coded as follows: radiation=blue, sea-ice

thickness / ITD = gray, sea-ice thermodynamics=green, and sea-ice dynamics=red.
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the southern hemisphere sea-ice concentration is taken from the OSI SAF Global Sea Ice342

Concentration Climate Data Record v2.0. Starting from 2016, we use the operational ex-343

tension of the OSI-450, denominated OSI-430-b, for both hemispheres (EUMETSAT Ocean344

and Sea Ice Satellite Application Facility, 2019). The retrieval of snow depth on top of the345

sea ice is based on an empirical algorithm that uses passive microwave satellite observations346

from the AMSR-E (Advanced Microwave Scanning Radiometer; Rostosky et al. (2019b))347

and AMSR-2 (Rostosky et al., 2019a) sensors, as described by Rostosky et al. (2018).348

2.6 Cost Function349

The optimization of the model parameter space leads to modifications of the sea-ice350

state and, consequently, to a variation of the cost function measuring the mismatch between351

model results and observations. Studying the cost function represents therefore a useful352

approach to assess changes in model performance taking the observational uncertainties353

into account. Before presenting the main findings of our study, we clarify some aspects354

related to the cost function formulation and interpretation. From a mathematical view-355

point, the cost function F (Eq. 9) employed in the assessment of the model performance is356

the same quadratic cost function that is minimized during the Green’s function parameter357

optimization (Eq. 5):358

F =
1

No

No∑
i=1

(yi − xi)2

σ2
i

, (9)

where yi is a single observation with standard deviation σi, xi is the corresponding359

model value, and No the total number of observations. In the context of model performance360

evaluation, F is computed separately for each observation type at different stages of the361

parameter optimization procedure (before optimization, after one iteration, and lastly after362

the second iteration). Assuming that the observations represent accurately the “true” state363

of the sea-ice cover, a change in cost function (∆F ) can indicate an improvement (∆F < 0)364

or degradation (∆F > 0) of the model performance. Note that, due to the quadratic nature365

of the cost function, F= 4 indicates that, on average, the mismatch between model results366

and observations is equal to 2 (=
√

4) standard deviations of the observations.367

Although the initial parameter values of different model setups before the optimization368

has been made as homogeneous as possible, the pre-optimization cost function values differ369

inevitably for each model configuration (Fig. 3). This behavior depends on multiple factors:370

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems

1. The intrinsic ability of a specific model formulation to reproduce the observed state.371

2. The quality of the employed atmospheric forcing and its compatibility with each372

model formulation.373

3. The “distance” of each pre-optimization parameter set from the optimized one (i.e.374

how well the model parameters are manually tuned already).375

The relative contribution of these factors is difficult to quantify and can change substantially376

depending on the variable of interest (e.g. sea-ice concentration, thickness, etc.). An obvious377

consequence of point 3 is that a configuration far from its optimal state can be optimized378

more effectively than a configuration closer to it. For being able to evaluate more reasonably379

a property that we call the model “flexibility”—the extent to which a model configuration380

can be optimized for a variable—we propose a normalized version of ∆F for each of the381

model variables and observations considered:382

‖∆F ‖ =

√
Ff −

√
Fi√

Fi

·

√
min{FC1-E

i , . . . , FC3-N
i }

Fi
, (10)

where Fi and Ff are the cost function values respectively before and after the Green’s func-383

tion parameter optimization. The square-roots in Eq. 10 are introduced as compensation384

for the quadratic nature of the cost function. In practice, the normalized formulation ‖∆F ‖385

(Fig. 3; gray percentages) has the effect of reducing the cost function change in those config-386

urations that start further away from the optimal state before the optimization, providing387

a suitable metric for assessing the flexibility of the model configurations.388

3 Results389

3.1 Sea-ice concentration and position of the ice edge390

The Green’s function parameter optimization improves the model representation of391

the sea-ice concentration for each of the six configurations considered (Fig. 3; top-left).392

The C3 setup performs better than C1 and C2 both under ERA5 and NCEP atmospheric393

forcing, suggesting that a more complex formulation of the sea-ice model is beneficial for394

simulating this appropriately variable. In the Icepack setups C2 and C3, the employment of395

the NCEP forcing leads to better results than ERA5 in terms of the absolute values of the396

cost function. In contrast, the cost function values of the optimized C1 configurations are397

comparable under ERA5 and NCEP forcing. Overall, the C1 setup shows higher flexibility,398

and it is capable of compensating more effectively for differences in boundary conditions.399
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Simulating correctly the sea-ice edge position is a requirement for every modern sea-ice400

model. Because the definition of the ice edge position is based on the sea-ice concentration,401

one might expect the parameter calibration technique based on sea-ice concentration obser-402

vations to also improve the representation of this feature. This assumption is reasonable,403

with one caveat: the observational uncertainties of the sea-ice concentration are largest in404

the vicinity of the ice edge, slightly reducing the weight of these key regions on the total405

cost function and prioritizing the optimization of pack ice locations, where however the406

agreement between model and observations is generally already good. Here we analyze the407

correctness of the sea-ice edge position based on two metrics, the Integrated Ice Edge Error408

(IIEE), and the Absolute Extent Error (AEE; Goessling et al. (2016)), a component of the409

IIEE (Fig. 4). The AEE is defined as the absolute difference in sea-ice extent between model410

and observations. However, two different configurations of the sea-ice edge can lead to the411

same sea-ice extent, hence to an AEE = 0. The IIEE is designed to overcome this issue and412

penalizes situations where sea ice is misplaced in the model simulations compared to the413

observations.414

In terms of IIEE and AEE, the ranking of the six optimized model configurations for the415

Arctic (Fig. 4; top row) confirms what emerges from the analysis of the sea-ice concentration416

cost function: the C3-N configuration performs best while the C2-E configuration performs417

worst, exhibiting an error peak in summer for both the IIEE and AEE. This error is caused418

by a strong sea-ice underestimation. Overall, the NCEP forcing leads to a better sea-ice419

edge representation than ERA5. In all the configurations, both the error magnitude and420

its variability are largest in late spring and in early summer, while lowest during the winter421

months. This might suggest a better representation in the model of the physical processes422

regulating the sea-ice freeze-up compared to those regulating its melting. Furthermore,423

the 2 m temperature transition across the sea-ice edge in the atmospheric forcing is much424

sharper during the freezing season than during the melting season, allowing little freedom to425

the sea-ice model where to place the sea-ice edge and leading to better winter performance.426

These features are also evident in Fig. 5, which draws a comparison between the sea-ice427

concentration of C3-N, the best configuration for this variable, and of the observations at428

different stages of the seasonal cycle. The results confirm the very good performance of C3-429

N, with just small deviations from the observations in terms of both the sea-ice concentration430

and sea-ice edge position, particularly evident in June in melting locations. However, the431

presence of melt ponds causes an underestimation of the observed sea-ice concentration432
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(Kern et al., 2016) and this could explain the excessive sea-ice concentration in the model433

along the coasts and in the marginal ice zone for the month of June.434

The ice-edge position analysis has been repeated for the Southern Ocean (Fig. 4; bottom435

row), whose sea-ice observations have not been considered in the parameter optimization.436

The results evidence some similarities with the Arctic: the IIEE and AEE are largest during437

the melting season and lowest in winter when the sea-ice extent reaches its maximum.438

As for the Arctic, the six configurations exhibit a larger error spread during the summer439

months. The ranking of the model setups in terms of IIEE and AEE changes substantially440

in the hemispheres. In Antarctica, the C2 setup, which had the worst performance in the441

Arctic, exhibits the lowest IIEE and AEE from February to June, followed by the C3 and442

C1 setups. The situation is inverted from July to January when the differences among the443

model configurations are however much smaller. Overall, in the Southern Ocean, the Icepack444

setups C2 and C3 perform comparably or better (depending on the season considered) than445

the standard FESOM2 formulation C1.446

3.2 Sea-ice thickness447

The analysis of the sea-ice thickness cost function reveals similar performance of dif-448

ferent model configurations (Fig. 3; bottom-left plot). The cost function values around 1449

indicate that, on average, the mismatch between model results and observations is of the450

same magnitude as the observations uncertainties. After optimization, the model setup C1451

exhibits slightly better performance than the C2 and C3 for both atmospheric forcings. Co-452

incidentally, C1 is also the model setup that benefits more from the parameter optimization,453

with the C1-E and C1-N configurations showing respectively a ∼ −17% and ∼ −20% nor-454

malized cost function change. In contrast, the C3-N configuration, which ranks first before455

optimization, is negatively affected by the optimization and exhibits a ∼ 6% normalized456

cost function increase.457

The model simulations have been compared to three distinct sea-ice thickness obser-458

vational products (Fig. 6): the Envisat and CryoSat-2 products, which target the thicker459

sea-ice (>1m) for different periods, and the merged CryoSat-2/SMOS product, which com-460

bines the capability of the SMOS sensor to detect thin sea-ice with the CryoSat-2 measure-461

ments in thicker regions. When compared to the observations, the performance of the model462

configurations changes slightly depending on the choice of the observational product. The463
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Envisat and CryoSat-2 comparison reveal a general underestimation of the average sea-ice464

thickness by all the model configurations (Fig. 6; upper and middle plot). To a certain465

extent, this underestimation is a consequence of the absence of essentially all thin sea-ice466

from these observational products, while the thin ice is still present in the model simula-467

tions and can be included in the average thickness computation if the spatial distribution468

of the sea-ice thickness is different in model simulations and observations. In contrast, the469

CryoSat-2/SMOS measurements provide a more complete picture of the sea-ice thickness470

up to the ice edge. It is therefore more compatible with the model results and allows a more471

robust comparison. Consequently, the agreement between this observational product and472

the model results is better (Fig. 6; bottom plot).473

Overall, the sea-ice thickness discrepancies among the optimized model configurations474

are moderate: on average 25cm, and up to 60cm (Fig. 6). The average sea-ice thickness of475

different configurations tends to converge towards the end of the freezing season, while the476

spread is slightly larger at its beginning. The results evidence wider discrepancies in terms of477

model setups than in terms of the atmospheric forcing employed, with C1 having on average478

a thicker sea-ice cover than C3 and C2. All the model configurations represent fairly well479

the observed inter-annual variability and the seasonal cycle. For example, both the model480

simulations and the observations coherently indicate a relatively low sea-ice thickness over481

the periods 2012–2013 and 2016–2018, and relatively thick sea-ice in 2014–2015. Overall, the482

model performance in terms of sea-ice thickness is generally better than that of most of the483

global ocean–sea ice reanalyses from the Ocean Reanalyses Intercomparison Project (ORA-484

IP) analyzed by Uotila et al. (2019) and Chevallier et al. (2017). Note that most of the485

models analyzed in ORA-IP assimilate sea-ice concentration and/or sea-surface temperature,486

in addition to other non sea-ice variables.487

3.3 Sea-ice drift488

The sea-ice drift is the model variable for which the parameter optimization procedure489

is least successful, with a normalized cost function change of on average ∼ −1%, and for490

which the cost function values of different model configurations are most similar (Fig. 3;491

upper-right plot). This behavior can be explained by the fact that the formulation of the492

dynamic solver has an effect on the simulated sea-ice velocity at least as large (if not more)493

as the employment of different atmospheric boundary conditions, of sea-ice rheology, and of494

ice-ocean dynamical interactions (Losch et al., 2010). In this respect, all the model configura-495
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tions considered here share the same EVP solver for the sea-ice momentum equation, which496

constrains substantially the model behavior, and which cannot be calibrated through the497

optimization of model parameters. The remaining variability of model performance in terms498

of sea-ice drift appears to be linked to the choice of the atmospheric forcing. The sea-ice499

drift optimization is effective only for configurations running under the ERA5 atmospheric500

forcing, which features a cost function reduction. In contrast, the optimization impact on501

the configurations running under the NCEP forcing is very small. The poor sea-ice drift502

performance of C2-E is caused by the summer biases affecting the sea-ice concentration and503

thickness described in the previous sections.504

The simulated sea-ice drift represents well the observed spatial features of the sea-505

ice circulation in the Arctic, as evidenced by the case study in Fig. 7. Here, we limit506

our analysis to a single month (April 2015) because averaging the sea-ice drift over multiple507

months and/or years could lead to the cancellation of compensating errors. The anticyclonic508

circulation in the Beaufort Sea is well represented, as well as the meandering transpolar509

drift, and the sea-ice export through Fram Strait and the Baffin Bay. The model drift510

fields are overall smoother and less detailed than the observed drift field. This is caused511

partially by the finite resolution of the atmospheric forcing and partially by shortcomings512

of the numerical implementations of the sea-ice model. A clear aspect that emerges from513

all the simulations is that the sea-ice in the model is generally slower than the observations,514

particularly where the drift is faster (e.g. coast of Alaska, Baffin Bay, and Kara Sea). This515

feature is also evident in Fig. 8, which is largely dominated by a positive bias. However,516

the ERA5 configurations tend to overestimate the speed of slow sea-ice (vice <∼ 5 cm s−1),517

which results in a too strong sea-ice recirculation from the transpolar drift into the Beaufort518

gyre (Fig. 7). Such a feature is better captured by the NCEP configurations, whose levels519

of performance remain nevertheless worse than ERA5 over most of the Arctic domain.520

3.4 Snow thickness521

Although winter snow thickness observations have not been employed in the Green’s522

function optimization procedure, the analysis of its cost function gives an interesting insight523

into the performance of the analyzed model configurations concerning this variable. Fig. 3524

(bottom right plot) shows two distinct behaviors for the Icepack setups C2 and C3, and525

for the standard FESOM2 setup C1. The performance of the latter is worse than that of526

C2 and C3, before and after the parameter optimization procedure, and regardless of the527
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employed atmospheric forcing. At the same time, C1 is the only setup on which the Green’s528

function optimization has a positive impact, suggesting again greater flexibility of this setup529

compared to the other two. The C1 snow thickness improvements are likely linked to a530

better-simulated sea-ice concentration, which presence is mandatory for the accumulation531

of the precipitated snow.532

Discrepancies in snow precipitation between different atmospheric reanalysis can be533

due to the different atmospheric models, data assimilation techniques, and observations534

used for the production of the reanalysis. Barrett et al. (2020) show that this is also the535

case in the Arctic, where the snow precipitation is higher in the NCEP products compared536

to ERA5. In this respect, our results are in good agreement with the previous studies: the537

snow over sea ice in the ERA5 configurations is thinner than that in the NCEP configuration538

(Fig. 9; bottom row). Furthermore, the snow in the C1 setup is overall thicker than that539

in C2 and C3 for both forcing products (Fig. 9; right column). This is likely due to the540

ridging parameterization adopted in Icepack, which assumes that a fraction of the snow541

that participates in the ridging (50% in our setups) is lost in the ocean, where it melts542

eventually. A comparable snow sink is missing in the standard FESIM formulation, hence543

the thicker snow layer. The observed snow thickness lies in between the NCEP and ERA5544

configurations of the C2 and C3 setups. These exhibit comparable cost function values,545

attributable however to model biases of opposite sign, positive for NCEP and negative for546

ERA5.547

3.5 Optimized parameters548

Fig. 10 compares five optimized parameters for the six model configurations analyzed549

here. Overall, differences in model formulation appear to have a larger impact on optimized550

parameter values than differences in atmospheric forcings. Some of the parameters vary551

more coherently than others. For example, the optimized ice-ocean drag cIO values are552

systematically larger than in the control run, for all the setups. In this respect, our results553

are in good agreement with Sumata et al. (2019b), which finds an optimized cIO value of554

0.00847 for the NAOSIM model, but they differ from the optimal estimates of Ungermann et555

al. (2017) (0.00664 for the MITgcm model) and Massonnet et al. (2014) ([0.00294, 0.00378]556

for the NEMO-LIM3 model, also associated to a much lower value of P ∗ compared to our557

simulations). All the previously mentioned models run with the NCEP atmospheric forcing.558
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The calibration of P ∗ leads to minor parameter changes for the setups C1 and C3. In559

contrast, P ∗ is reduced in both configurations of the C2 setup. This parameter reduction is560

likely a consequence of the negative thickness and concentration biases of this setup, which561

is mitigated in part by reducing the sea-ice strength. A less stiff sea-ice cover leads to more562

ridging in winter and, in turn, to an increase of the sea-ice volume and extent. A similar563

consideration can be made for the relatively high values of C∗ for the C2 configurations,564

which also concur with a reduction of the sea-ice strength. Only the C1-E configuration565

shows a pronounced reduction of C∗, which implies an increase of the sea ice strength in566

summer.567

The ocean albedo exhibits two different types of behavior: αO =∼ 0.085 for the Icepack568

setups while αO =∼ 0.042 for the standard FESOM2 setup, a factor-two difference. Note569

that the treatment of the ocean albedo is equally simplistic in all the model setups considered570

(no dependency on the incident angle of solar radiation). Therefore, differences in model571

formulations with respect to this parameter cannot explain the dual behavior observed.572

Such a feature might be likely linked to different assumptions in the model implementation573

of the processes regulating the melting of sea ice, which is impacted by the ocean surface574

temperature and thus influenced by αO. In particular, the presence of an ITD in C2 and575

C3 favors the complete sea-ice melting in thin ice categories, thus decreasing the sea-ice576

concentration. A higher αO can limit an excessive melting and the consequent decrease577

in sea-ice concentration. Additionally, the Icepack configurations include a thermodynamic578

parameterization for lateral melting of ice floes that is also modulated indirectly by αO sim-579

ilarly to the ITD. The effect of lateral melting on αO is, however, smaller compared to that580

of the ITD. Note that αO is the only parameter chosen for the calibration with a substantial581

impact on the global ocean rather than only on the polar regions. Although both values582

fall inside the admissible observational range (Jin et al., 2004), a choice in one or the other583

direction could impact and possibly degrade the model performance concerning the ocean584

temperatures outside the Arctic. Such a parameter should therefore be manipulated with585

extreme care, and it could be optimized much more effectively by constraining the opti-586

mization procedure with sea-surface temperature observations. Nevertheless, in uncoupled587

setups varying αO has a limited effect on the simulated sea surface temperature because this588

variable is also constrained by the near surface temperature from the atmospheric forcing.589

Such an assumption does not hold in fully coupled setups, where a correct ocean albedo590

formulation becomes crucial.591
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Urrego-Blanco et al. (2016) describe the prime role of the snow thermal conductivity kS592

in regulating the winter growth of sea-ice in the CICE model. A large kS allows more heat593

transfer from the ocean to the atmosphere during winter, enhancing the bottom growth of594

sea ice and leading to a thicker sea-ice cover. The opposite is true for a low kS . Apparently,595

the Green’s function parameter optimization effectively exploits this mechanism to reduce596

the sea-ice thickness biases in the model configurations (Fig. 3; bottom-left plot): the Icepack597

C2-E, C3-E, and C2-N configurations—negatively biased before the optimization—see an598

increase of kS . The C1-E and C1-N configurations, both positively biased in snow and599

sea-ice thickness before the optimization, experience a reduction of kS . C3-N, which before600

the optimization exhibits the best sea-ice thickness correspondence between model results601

and observations, is the configuration with the least kS change.602

4 Discussion603

4.1 Considerations on the Green’s function optimization method604

In Sec. 2.3, we argued that the linearization of the system in the Green’s function opti-605

mization is overall an appropriate approximation, even though the physics of the ocean/sea-606

ice system presents well-known nonlinearities. The validity of this assumption is non-trivial607

to prove mathematically. However, the fact that the application of the Green’s function608

approach leads to a cost function reduction, and that this reduction is generally less in a609

second iteration of the method, provides evidence that the optimization method works as610

expected, including the linearization assumption. Despite this, the fact that the Green’s611

function approach is a robust method for tuning the model effectively does not guarantee612

that the estimated optimal parameters lead to a model state that corresponds to a global613

minimum of the cost function, particularly when the cost function is not a “well-behaved”614

function as in the case of sea-ice. In this respect, the results by Sumata et al. (2013) show615

that a stochastic optimization method is more appropriate for finding a global minimum of616

the cost function than gradient descent methods as the Green’s function approach (Figs.617

4 and 5 of Sumata et al. (2013) reveal the heterogeneity of the sea-ice concentration cost618

function). In the context of this study, where the model optimization is performed for619

three model configurations each forced with two sets of atmospheric boundary conditions,620

the Green’s function approach has been chosen because it provides a balance between the621

effectiveness of the method, simplicity of implementation, and associated computational622

costs.623
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4.2 Shortcomings of the parameter optimization624

The first unsatisfactory outcome of the parameter optimizations regards the very weak625

sea-ice drift performance improvement (Sec. 3.3) compared to that of sea-ice concentration626

and thickness. We attempt to understand this behavior by performing an additional round627

of Green’s function optimization to C3-N, the best performing configuration presented in628

this study. The additional iteration features the ice-atmosphere drag coefficient cIA among629

the optimized parameters, together with αO, RI , RS , RP , δP , kS , P ∗, C∗, and cIO. The630

new optimization is performed in two flavors: a standard optimization that accounts for631

sea-ice concentration, thickness, and drift speed with equal weights (called C3-N-a), and632

a more dynamically oriented optimization where the only observations considered is the633

sea-ice drift (called C3-N-b). In both cases, the optimal parameter perturbations resulting634

from the Green’s function optimization are small and do not bring substantial improvements635

to the sea-ice drift performance, which remains comparable to the control simulation (C3-636

N-control; Fig. 11). In this respect, our results agree with Massonnet et al. (2014), who637

indicate that the optimization of P ∗ and cIO is sufficient for constraining the sea-ice drift.638

In our study, the optimization of cIA in addition to P ∗ and cIO does not improve the model639

performance compared to the optimization of P ∗ and cIO alone. This evidence suggests that640

the sea-ice drift optimization reached a limit with respect to our model setup, optimization641

method, and observations and forcing employed. As a consequence of a slower sea-ice drift642

in our simulations, an over-optimization of thermodynamic and radiative processes (e.g.643

enhanced formation of new sea-ice or reduced melting) might have occurred to compensate644

for the reduced sea-ice transport outside the Arctic. Nonetheless, the reader should note645

that the sea-ice drift performance of our model configurations are overall good and in line646

with those of other sea-ice and ocean models with data assimilation (e.g. Massonnet et al.647

(2014); Chevallier et al. (2017)).648

A second aspect that deserves some discussion concerns the overall poor performance of649

the C2 model setup, and particularly of C2-E. This configuration exhibits a strong negative650

bias in sea-ice concentration and thickness during summer, which consequently impacts the651

model performance also in terms of sea-ice drift and snow thickness. This bias likely results652

from a misrepresentation of the sea-ice radiative processes in the model and, once more, it653

might be due to an unwise choice concerning the parameters for the optimization. The C2654

setup employs the CCSM3 radiation scheme, in which, as described in Sec. 2.2, the sea-ice655

and snow albedo values are split into a visible and an infrared component with a thickness656
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and temperature dependence. These four albedo values have been optimized in the present657

study (Tab. 1). However, the model parameters that regulate the thickness and temperature658

dependence of the albedo have not been optimized, leading to a poor representation of the659

melting processes. We observe that both the simpler radiation scheme employed in C1 and660

the complex delta-Eddington radiation formulation used in C3 respond to the parameter661

optimization better than the CCSM3 scheme, but for different reasons. On one hand, the662

radiation scheme in C1, in principle similar to that in C2 but less sophisticated, can be663

likely tuned more effectively because dependent on fewer model parameters. On the other664

hand, the radiation scheme in C3, which is more sophisticated than C2, responds better to665

the model tuning because the non-optimized parameters are already better constrained and666

more physically based.667

4.3 Computational costs668

The increased complexity of the FESOM2 extended sea-ice model comes with a non-669

negligible price in terms of computational costs. Fig. 12 shows that the sea-ice computations670

of the Icepack setups C2 and C3 are approximately four times slower than C1, the simpler671

standard FESOM2 setup. This behavior was expected and caused partially by the more672

detailed formulation of Icepack thermodynamics, but primarily by the growing number of673

tracers needed to describe the sea-ice state. These tracers need to be advected separately by674

the FE-FCT scheme, which translates into a linear increase of the cost for each additional675

tracer. Furthermore, a set of tests has been implemented to guarantee the conservation676

of enthalpy, freshwater, and salinity during the advection process, which further increases677

the computational requirements. An incremental remapping scheme for the advection of678

sea-ice tracers similar to that implemented in CICE (Lipscomb & Hunke, 2004), which679

is conservative and becomes very efficient when the number of tracers is large, will be680

considered in the future for further reducing the computational cost of the FESOM2-Icepack.681

Nevertheless, running FESOM2 with Icepack remains feasible, and represents a viable682

option for future modeling studies with a focus on polar regions. The mesh employed for683

this study is designed with most of the surface nodes in sea-ice active regions, causing684

the sea-ice computations to account for a substantial part of the model budget, and thus685

constituting a rather extreme case if compared to CMIP-type applications. The relative cost686

of the Icepack computations will be lower in meshes with most of the nodes in non-sea-ice687

regions. Furthermore, in high-resolution simulations (1km to 4km), the contribution of the688

–26–



manuscript submitted to Journal of Advances in Modeling Earth Systems

EVP solver is expected to become predominant over the advection of tracers, due to the689

increasing number of sub-cycles needed for reaching a converging solution of the momentum690

equation. An in-depth investigation of the computing performance of the FESOM2-Icepack691

model for a broader range of scenarios will be the topic of a future study.692

4.4 Future prospects for the sea-ice representation in FESOM2693

As described in Sec. 2.2, the options offered by Icepack in terms of sea-ice physics go694

beyond those explored in this study. In particular, future work will focus on the impact695

of a highly resolved ITD on the simulated sea-ice thickness and drift (also at high spatial696

resolution using the metrics developed by Hutter et al. (2019)), on the exploration of the697

floe-size distribution parameterizations, and on the investigation of the sophisticated ”mushy698

layer“ thermodynamics (A. K. Turner et al., 2013), which has not been considered in this699

study. Future FESOM2-Icepack model simulations could also serve as boundary conditions700

for detailed single-column studies with Icepack in a Lagrangian framework (e.g. Krumpen701

et al. (2020)), allowing to retain a high physical consistency between the driving model and702

the single-column model.703

Most of the model configurations here analyzed show a minimum in AEE in July (Fig. 4;704

top right), suggesting that the IIEE is mostly caused by sea-ice misplacement rather than705

by a wrong representation of the sea-ice extent. This behavior could in part reflect the fact706

that our model cannot simulate the processes leading to land-fast sea-ice formation, both707

in its standard formulation and with Icepack. The absence of this persistent sea-ice type708

impacts the detachment location of the pack ice from the Arctic coastline and in turn the709

correctness of the sea-ice edge position for this month. Model formulations that enable, to710

a certain extent, the simulation of land-fast sea ice in shallow seas already exist (Lemieux711

et al., 2015, 2016) and proved to be effective in the CICE and MITgcm models. Therefore,712

they will be considered for future versions of the FESOM2 model.713

The FESOM sea-ice and ocean model plays a central role in the climate modeling and714

forecasting activities at the Alfred Wegener Institute (AWI), and is included in different715

versions of the CMIP6 AWI Climate Model (AWI-CM; Sidorenko et al. (2015); Rackow716

et al. (2016); Sidorenko et al. (2019); Semmler et al. (2020)). In this respect, we plan to717

couple the new FESOM2-Icepack setup to the latest climate model configuration under718

development at AWI, which uses the open-source version of the Integrated Forecast System719
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(OpenIFS) as the atmospheric model. The availability of a more detailed sea-ice description720

in a fully coupled setup will enable a better understanding of the interactions between a721

warming atmosphere and sea ice. At the same time, the new coupled configuration will722

allow us to perform sea ice-oriented climate modeling studies (e.g. Zampieri & Goessling723

(2019)) under more physically consistent assumptions. Finally, FESOM2-Icepack will be724

integrated in the Seamless Sea Ice Prediction System (SSIPS; Mu et al. (2020)) and thus725

equipped with the Parallel Data Assimilation Framework (PDAF; (Nerger & Hiller, 2013))726

for assimilating ocean and sea-ice observations with an Ensemble Kalman Filter.727

5 Summary and conclusions728

This study presented a new formulation of the sea-ice component of the unstructured-729

mesh FESOM2 model. The update, which exploits the state-of-the-art capabilities of the730

sea-ice single-column model Icepack, improves the physical description of numerous sea-ice731

sub-grid processes while retaining a modular structure that enables the user to adapt the732

sophistication of the sea-ice model formulation to the requirements of a specific investiga-733

tion. Because of this modularity, the new FESOM2 formulation enables investigation of the734

impact of the sea-ice model complexity on the performance of the sea-ice simulations under735

two different atmospheric forcings.736

Our findings indicate that the sophisticated C3 setup performs systematically better737

than C2 and C1 concerning the Arctic sea-ice concentration and snow thickness, supporting738

the hypothesis that an elaborated model formulation leads to a more appropriate represen-739

tation of the sea ice. However, the results also indicate that the setup ranking that emerges740

for the sea-ice concentration in the Arctic does not hold in the Southern Ocean, which has741

not been included in the optimization; here the C2 setups perform best. The current gener-742

ation of atmospheric forcings and sea-ice/ocean models is therefore still not fully balanced743

and fails to guarantee an adequate representation of the sea ice in both hemispheres simul-744

taneously. For other variables, model complexity appears to play only a marginal role in745

defining the quality of sea-ice simulations. This is the case for sea-ice thickness and drift, for746

which the differences between the various FESOM2 configurations are small and indepen-747

dent of model sophistication. We argue that the motivations behind this are different for the748

two variables. On one hand, sea-ice thickness is the integrated result of multiple dynamic749

and thermodynamic model processes, including possible compensating effects. Therefore,750

the complexity of the sea-ice sub-grid processes is less relevant and the Green’s function751
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approach is only effective for first-order processes that affect the thickness, such as changes752

in snow conductivity. The lack of response of the sea-ice drift, on the other hand, can be753

due to the fact that the EVP implementation introduces, to a certain extent, a stochastic754

behavior into the model, with the end result that the sea-ice dynamics is almost entirely755

constrained by the atmosphere and ocean forcings, except for some deceleration where the756

sea-ice strength is high. Sub-grid processes with varying sophistication do not influence the757

drift particularly because, in the model configuration here investigated, the solver of the758

momentum equation is not aware of the sea-ice sub-grid state (all the configurations employ759

the H79 strength formulation). Finally, we find that the simple C1 setup responds better760

to the optimization procedure, showing larger improvements compared to C2 and C3, and761

thus suggesting that a less complex model can be tuned more effectively.762

In addition to the model formulation, the choice of the atmospheric forcing product763

substantially influences the sea-ice simulations. Concerning the sea-ice concentration, the764

Icepack setups C1 and C2 perform much better when forced with the NCEP product com-765

pared to ERA5, both in the Arctic and in the Antarctic. The C1 setup exhibits similar766

results for NCEP and ERA5 in the Arctic, while the NCEP forcing outperforms ERA5 in767

the Antarctic. The opposite is true for the sea-ice drift and the snow thickness variables,768

which benefit from the employment of the ERA5 product instead of NCEP. In summary,769

both the atmospheric forcing products here analyzed have strengths and weaknesses that770

should be considered when employing them to force sea-ice and ocean simulations.771

The results of this study are valid for sea-ice/ocean only simulations, where the atmo-772

spheric conditions are prescribed from reanalysis products. Some of the findings might not773

hold in a fully coupled framework, where the atmosphere responds both thermodynamically774

and dynamically to sea-ice and ocean changes. A similar study could be implemented in a775

fully coupled configuration by optimizing the climatological sea-ice state of the model using776

the observational climatology as constraint. We plan to perform such a study for our mod-777

eling framework once the FESOM2-Icepack setup is coupled to the OpenIFS atmospheric778

model.779

We conclude by underlining, once more, the importance of the semiautomatic parameter780

calibration for this study. Without the two cycles of Green’s function optimization, our781

results would have conveyed a rather different message, erroneously indicating that the782

Icepack configurations perform systematically better than the standard FESOM2 model for783
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most of the variables considered (Fig. 3; large circles). The systematic optimization of the784

sea-ice parameters is certainly a time-consuming operation that requires a non-negligible785

amount of computing resources. Nevertheless, we recommend this approach, in some form,786

in future studies that aim to assess advances in the field of sea-ice modeling to guarantee a787

fair evaluation of sea-ice models.788

6 Data availability statement789

All the observational and forcing datasets used to force, validate, and optimize our790

model simulations are freely available. The exact address and the publisher associated to791

each dataset are referenced in Sec. 2.5 and 2.4. The simulation results and computational792

mesh are stored on Zenodo (Zampieri et al., 2020) and are publicly available. The Icepack793

source code, including instructions for compiling and running the model, can be downloaded794

from Zenodo (Hunke et al., 2020b).795
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Figure 3. Cost function values for the period 2002–2015 at the three stages of the Green’s func-

tion parameter optimization (x-axis). The cost function measures the average mismatch between

the state of six model configurations (y-axis) and four observational products in the Arctic region:

sea-ice concentration, drift, thickness, and snow thickness (only the first three observation types are

used in the Green’s function optimization). The suffixes “-E” and “-N” indicate the employment

of the ERA5 and NCEP atmospheric reanalysis used to force the three model setups C1, C2, and

C3, respectively. The percentages in black font indicate the cost function change ∆F induced by

the optimization. The percentages in gray font refer to ‖∆F ‖, the normalized formulation of the

cost function change.
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Figure 4. Seasonal variation of the northern hemisphere (top) and southern hemisphere (bot-

tom) Integrated Ice Edge Error (IIEE) and Absolute Extent Error (AEE) for six optimized model

configurations (C1-E to C3-N) averaged over the period 2002–2015. The IIEE and AEE are com-

puted based on the monthly median ice edge, which is defined as the 15% contour line of the sea-ice

concentration. The shading indicates the ∼95% confidence intervals, based on standard errors

obtained from the fourteen individual monthly values.

–45–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Modeled sea-ice edge
Observed sea-ice edge

C3-N  – Obs. C3-N  – Obs.

C3-N  – Obs.C3-N  – Obs.

Figure 5. 2002–2015 average sea-ice concentration anomaly (C3-N – Obs.) for the months of

March, June, September, and December. The modelled and observed sea-ice edges, corresponding

to the 15% sea-ice concentration contour, are represented respectively by the dashed and solid black

lines.
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Figure 6. November to April average sea-ice thickness for six model configurations (C1-E to

C3-N) and for the Envisat (top plot), CryoSat-2 (middle plot), and CryoSat-2/SMOS (bottom

plot) satellite observations. The ∼95% confidence intervals of the observations are indicated by the

gray shading (not visible for CryoSat-2 and CryoSat-2/SMOS), based on 2 standard deviations of

the average sea-ice thickness computed through error propagation assuming spatially uncorrelated

uncertainties (which is not necessarily the case). The monthly averaged model results have been

restricted to the locations within the satellites’ orbits (< 81.45◦N for Envisat and < 87◦N for

CryoSat-2) by the application of a large-scale spatial mask where monthly observations and model

data are available simultaneously.
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Figure 7. April 2015 monthly averaged sea-ice drift speed of six model configurations (C1-N to

C3-E) and of the OSI-405 observations.
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Figure 8. April 2015 sea-ice drift speed bias (observation – model; y-axis) for six model configu-

rations (C1-N to C3-E) as function of the of the observed OSI-405 sea-ice drift speed (x-axis). The

plot is constructed by dividing the observed sea-ice drift speed in equally spaced intervals of width

1 cm s−1, for which the corresponding bias values are grouped and averaged. We do not consider

observed sea-ice speeds vice > 15 cm s−1 because of the low number of observational points and of

the consequent low significance of the results.
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Figure 9. April snow thickness and snow thickness anomalies averaged over the period 2002–

2015 for four configurations: C1-N, C1-E, C3-N, and C3-E. The C2 setup has not been displayed

because its results in terms of snow thickness are very similar to the C3 setup. The April snow

thickness observations averaged over the same period are mapped in the bottom-right corner of the

panel.
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Figure 10. Model parameters (x-axis) at three stages of the Green’s function parameter opti-

mization. The control values of the parameters are indicated in gray. For each setup, the numerical

value of the optimized parameters is reported in black below each point. Only the parameters

common to the C1, C2, and C3 model setups are shown. The suffixes “-E” and “-N” indicate

respectively the ERA5 and NCEP atmospheric reanalysis used to force the three model setups.
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Figure 11. April 2015 monthly averaged sea-ice drift speed of C3-N-control, C3-N-a, C3-N-b,

and of the OSI-405 observations.
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Figure 12. Relative computational cost of the sea-ice component of three FESOM2 setups (C1,

C2, and C3). The values are normalized by the C1 wall time. All the simulations run on the same

machine, with the same computational mesh, and under the ERA5 forcing. The bars indicate the

maximum and minimum values registered among the computing CPUs. The number of tracers

advected in each setup is also reported.
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