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Abstract

As a consequence of a diminishing sea ice cover in the Arctic, activity is on the rise. The position of the sea ice edge, which is

generally taken to define the extent of the ice cover, changes in response to dynamic and thermodynamic processes. Forecasts

for sea ice expansion due to an advancing ice edge will provide information that can be of significance for operations in polar

regions. However, the value of this information depends on the quality of the forecasts. Here, we present methods for examining

the quality of forecasted sea ice expansion and the geographic location where the largest expansion are expected from the

forecast results. The algorithm is simple to implement, and an examination of two years of model results and accompanying

observations demonstrates the usefulness of the analysis.
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Key Points:4

• A new algorithm for quantifying the quality of model results for displacement of5

the sea ice edge is introduced6

• The algorithm has been applied comparing two years of model results for sea ice7

in the Barents Sea with observations8

• The algorithm may also be used more generally to check the quality of displace-9

ments of the perimeter of binary fields10
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Abstract11

As a consequence of a diminishing sea ice cover in the Arctic, activity is on the rise. The12

position of the sea ice edge, which is generally taken to define the extent of the ice cover,13

changes in response to dynamic and thermodynamic processes. Forecasts for sea ice ex-14

pansion due to an advancing ice edge will provide information that can be of significance15

for operations in polar regions. However, the value of this information depends on the16

quality of the forecasts. Here, we present methods for examining the quality of forecasted17

sea ice expansion and the geographic location where the largest expansion are expected18

from the forecast results. The algorithm is simple to implement, and an examination of19

two years of model results and accompanying observations demonstrates the usefulness20

of the analysis.21

Plain Language Summary22

As sea ice is retreating in the Arctic due to climate change, large areas are becom-23

ing open for commercial shipping, harvesting of resources and other activities in the high24

north. Nevertheless, sea ice will remain a challenge to such activities in decades to come.25

To this end, forecasting changes in the sea ice extent will become increasingly important.26

And, like any forecast, their use must be backed up by assessments of their quality. Here27

a new method is proposed that will provide information of the quality of forecasts for28

the motion of the sea ice edge.29

1 Introduction30

Due to climate change the sea ice extent is in decline in the Arctic (Parkinson, 2014).31

This change has led to increased activity in the region, and commercial shipping in open32

waters via Arctic sea routes will become increasingly economically viable in the 21st cen-33

tury (Aksenov et al., 2017). Thus, products for monitoring and forecasting sea ice con-34

ditions are receiving growing attention.35

The past years have seen a flurry of activity related to assessing the quality of sea36

ice products. Dukhovskoy et al. (2015) present a review and comparison of various tra-37

ditional metrics for assessments of the skill of sea ice models. Goessling et al. (2016) in-38

troduce the Integrated Ice-Edge Error (IIEE), a quantity for describing mismatching sea39

ice extents from two products, in their examination of the predictability of the sea ice40

edge. Melsom et al. (2019) took advantage of the IIEE in their examination of various41

metrics for assessment of the quality of forecasts for the sea ice edge position. Methods42

for examining the quality of probabilistic results for sea ice conditions have been intro-43

duced by Goessling and Jung (2018) and Palerme et al. (2019). Recently, Cheng et al.44

(2020) have examined the accuracy of a visually estimated ice concentrations monitor-45

ing product.46

The changing position of the sea ice edge is generally not only shifted by dynamic47

advection, but can be significantly affected by the thermodynamics as well (Bitz et al.,48

2005). Thus, the temporal displacement of the sea ice edge will be affected by freezing49

along the perimeter of the sea ice extent in winter, and melting in summer. Hence, pattern-50

recognition algorithms for displacements using maximum cross-correlation (MCC) meth-51

ods such as those introduced by Leese et al. (1971) for wind vectors, and later for ocean52

surface currents (Tokmakian et al., 1990) and sea ice vectors (Lavergne et al., 2010), are53

not ideal for tracking displacements of the sea ice edge.54

Ebert and McBride (2000) examined the position error of the contiguous rain area55

in weather forecasts. They determined the error vector from a total squared error min-56

imization method when shifting the forecasted rain region to match the corresponding57

observations. Their preference of applying an error minimization algorithm rather than58
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an MCC approach was motivated by the former having better representations of displace-59

ment of rainfall maxima. Displacement of the perimeter of the contiguous rain area was60

not addressed in their investigation.61

We begin this study by presenting a new algorithm for assessing the quality of rep-62

resentations of the sea ice edge by comparing results for two different products. This is63

described in section 2, where issues related to sea ice emerging in the vicinity of bound-64

aries are also addressed. Next, in section 3 we apply the algorithm in an examination65

of displacements of the sea ice edge in the Barents Sea in a model product, and compare66

the results to data from an observational product. Finally, we provide our concluding67

remarks in section 4.68

2 Methods69

In order to illustrate the validation metrics that are introduced in this section, some70

idealized distributions are introduced, as depicted in Figure 1. The domain is divided71

into 1000 × 500 square grid cells, and we set the length of the side of a grid cell to 1.72

Denote the line that separates regions with binary values 0 and 1 as an edge line, and73

let L(o)(t) and L(m)(t) denote observed and modeled edges, respectively, at time t. Ide-74

alized examples with edges for L(o) and L(m) at two different times, t0 and t0+∆t, are75

displayed. In the context of forecasting, L(m)(t0) may be taken to represent the model76

initialization at t0 and L(m)(t0+∆t) is then the forecast at a temporal range of ∆t. The77

other binary fields can represent observations at the same times.78

2.1 Single product metrics79

We aim at defining metrics that describe differences in maximum edge displace-80

ments between two products. In order to do so, we must first introduce a quantity that81

properly measures the maximum displacement in one product. Here a definition is pro-82

vided which is a gridded, signed, one-sided variation of the Hausdorff distance (Dukhovskoy83

et al., 2015).84

For the remainder of this investigation we will take the binary fields to be repre-85

sentations of sea ice, with values assigned to 0 and 1 for conditions of no ice and ice, re-86

spectively. We will here associate the presence of ice (value 1) with sea ice concentra-87

tion c exceeding cedge = 0.15. In a gridded representation the ice edge can then be taken88

to be constituted by the grid cells e = [i, j] that meet the condition89

c[i, j]≥cedge ∧ min
(
c[i− 1, j], c[i+ 1, j], c[i, j − 1], c[i, j + 1]

)
< cedge (1)90

where ∧ is the logical AND operator. Denoting the N grid cells that satisfy this condi-91

tion by e1, e2, . . . , eN the ice edge is then the line92

L = {e1, e2, . . . , eN} (2)93

This follows the algorithm presented in Melsom et al. (2019). Let L(1), L(2) denote the94

sea ice edges for two representations of the sea ice cover. Furthermore, let d2:1
n be the95

displacement distance between grid node e
(2)
n in L(2) and line L(1), i.e.,96

d2:1
n = smin ||e(2)

n − L(1)|| (3)97

where s is +1 or -1 when e
(2)
n is on the no ice or ice side of L(1), respectively, i.e., s is98

+1 if c[e
(2)
n ](1) < cedge and -1 if c[e

(2)
n ](1)≥cedge (c[e](1) is the sea ice concentration for99

grid cell e for the representation with an ice edge given by L(1)). Here, ||z|| is the Eu-100

clidean distance of z. We can now introduce the maximum distance as101

d2:1
max = max(d2:1

n ) (4)102
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Note that the definition of the sign s in equation 3 has been chosen so that equa-103

tion 4 will return the largest positive value among d2:1
n . If all values of d2:1

n are negative,104

the result is the distance with the lowest magnitude. The definition of s was designed105

so that d2:1
max will represent the displacement of the largest sea ice advance from L(1) to106

L(2). For reference, we note that the Hausdorff distance dH between lines L(2) and L(1)
107

is108

dH = max(|d2:1
n |, |d1:2

m |) (5)109

see e.g. Dukhovskoy et al. (2015).110

So far, we have restricted the analysis to consider the maximum displacement. How-111

ever, it is of interest to examine more generally the displacement distance between L(2)
112

and L(1). In addition to a visual inspection that can be done by looking at a graphical113

presentation (see Figure 1 for examples), we can consider all values for d2:1
n and summa-114

rize the distribution in a table with a suitable definition of distance categories, or present115

the distribution as e.g. a cumulative probability distribution. A table for selected dis-116

tance categories for the idealized model results displayed in Figure 1 is given as Table S1117

in the supporting information. We find that in this case, d
m(t0+∆t):m(t0)
max = 113.2 (the118

distance between the red and light red diamonds in the figure), while d
o(t0+∆t):o(t0)
max =119

97.9 (the distance between the black and gray full circles).120

To avoid inflating the sample size when time series results are examined, one may121

consider subsampling at the spatial decorrelation length along the ice edge. For the dis-122

tribution of d2:1
n a proper decorrelation length can be computed if the edge nodes e

(2)
n123

are in sequence along L(2).124

Also, when a time series of results is examined, the distribution of d2:1
max(t) can be125

examined analogously to results for d2:1
n . We will show results for d2:1

max(t) when compar-126

ing model results and observations in the case study that is undertaken in section 3.127

2.2 Two-product metrics128

The main purpose of the work presented here is to define metrics that can contribute129

in an evaluation of the quality of model forecasts when complementary observations are130

available. Consequently, binary fields that are taken to represent observations as well as131

model results are introduced, as displayed in Figure 1.132

A useful initial evaluation of how model results for displacement and the correspond-133

ing observational data compare, is to inspect their cumulative distributions. These dis-134

tributions are displayed for the idealized example in Figure 2. We note that the shapes135

of the cumulative distributions are similar, with model displacements shifted approxi-136

mately 20 grid units higher for the entire distribution.137

From the perspective of an observer, a useful property is the quality of the fore-138

casted maximum displacement of the binary field, over the forecast period. A simple quan-139

tity that provides relevant information, is the difference in the maximum displacement140

as given by equation 4, i.e.,141

∆d2:1
max = max(dm2:m1

i )−max(do2:o1
j ) (6)142

where o1, o2 are observed ice edges at t0 and t0+∆t, respectively (black and gray lines143

in Figure 1), and m1,m2 are the corresponding model results. From the results for the144

idealized example that was introduced in section 2.1 above the model is over-estimating145

the maximum displacement, by ∆d2:1
max = 15.3 grid cell units.146

A similar quantity that provides site specific information is the local difference in147

displacement of the model binary field where the maximum value is found in the obser-148

vations. Let eo2
0 be the position in L(o2) to which the maximum edge displacement is found149

in the observations. Then, determine εm2
0 , the edge grid cell closest position of the model150
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edge at the same time. In Figure 1, the positions eo2
0 and εm2

0 are indicated by the full151

black and full red circles, respectively. Following equation 3 the corresponding local edge152

displacement in the model results is153

δm2:m1
0 = smin ||εm2

0 − L(m1)|| (7)154

where L(m1) = L(m)(t0). For the idealized example, we find that δm2:m1
0 = 83.9. The155

local difference in displacement between model and observations, with reference to the156

position eo2
0 , becomes157

∆δ2:1
max = δm2:m1

0 −max(do2:o1
n ) (8)158

so, for the idealized example we have ∆δ2:1
max = −14, i.e. a local underestimation of the159

displacement in the model results.160

One aspect which is not disclosed by the metrics introduced thus far, is to what161

degree forecasts manage to reproduce the geographical location of the observed maxi-162

mum displacements. In order examine such a relation, we first compute the decorrela-163

tion length of displacements given by equation 3. If we denote this grid distance by ∆n,164

we restrict the analysis of grid cells and corresponding displacements to165

{. . . , εm2
0−2∆n, ε

m2
0−∆n, εm2

0+∆n, ε
m2
0+2∆n, . . .}, (9)166

{. . . , δm2:m1
0−2∆n, δ

m2:m1
0−∆n , δm2:m1

0+∆n , δ
m2:m1
0+2∆n, . . .} (10)167

168

respectively, limited by the first and last nodes along the line L(m2). Next, we construct169

bins analogously to the method used for producing rank histograms (Talagrand diagrams)170

for ensemble forecasts (Hamill, 2001): First, distances listed in equation 10 are sorted171

by increasing values, and then bins are introduced for values smaller than the minimum172

distance, the intervals between the sorted distances, and for values larger than the max-173

imum distance. The bin placement of δm2:m1
0 then gives the rank of this displacement.174

In the present idealized example we find that ∆n = 42, and the rank of δm2:m1
0175

in the 24 resulting bins is 9. When multiple forecasts are examined, the decorrelation176

length will generally change, as will the length of the edges. Thus, in order to derive a177

meaningful statistic quantity we subsample a fixed sized random set of grid cells from178

equation 10, and an analysis of the ranks of displacement distances can be performed.179

For the idealized example, a set of nine randomly subsampled edge positions from180

those given by equation 9 for the model results at t = t0+∆t is displayed by open cir-181

cles in Figure 1. For this particular case, in the range from 1 to 10 the rank of the dis-182

placement δm2:m1
0 is 3.183

2.3 Open boundaries and coasts184

Sea ice products may be regional, having one or more boundaries along which the185

domain is connected to the surrounding area along open ocean boundaries. In that case,186

sea ice may be advected into the product domain across an open boundary, and the al-187

gorithm as given in section 2.1 should be modified in order to avoid misinterpretations188

of results for displacement distances that may arise. An illustrative case will be discussed189

in section 3.190

First, set the open boundary grid lines as191

LOB = {e1OB
, e2OB

, . . . , eNOB
} (11)192

where enOB
is any ocean grid cell along the boundary of the domain. Then L(1) can be193

replaced by194

L̃(1) = L(1) ∪ LOB (12)195
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and for the corresponding distances we introduce the notation d̃, so e.g. Equation 3 is196

written197

d̃i
2:1

= jmin ||e(2)
i − L̃

(1)|| (13)198

It must be noted that if the ice is imported into the domain, the distances d̃ as-199

sociated with such a displacement will be underestimated, since the real position of the200

ice edge outside of the analysis domain at t0 is unknown.201

Similarly, there can be cases where freezing of ice occurs along the coastline, e.g.202

due to colder air in the vicinity of continents, or less salty water masses close to the coast-203

line. This is another case where the algorithm above can yield grossly exaggerated dis-204

placement distances. Again, the problem can be overcome by including additional grid205

lines.206

Set the coastal grid lines as207

LC = {e1C
, e2C

, . . . , eNC
} (14)208

where enC
is any ocean grid cell along the coastline. Then L(1) can be replaced by209

L
(1)

= L(1) ∪ LC (15)210

For a regional model, the typical situation is that there are both open boundaries211

and coastlines. In that case, we may combine the above modifications of the algorithm212

by adopting213

L̃
(1)

= L(1) ∪ LOB ∪ LC (16)214

3 A case study215

To illustrate the methodology introduced in section 2, we examine model results216

from a coupled ocean – sea ice model, and compare with relevant observational data. The217

model results are taken from the SVIM hindcast archive (SVIM, 2015). For the present218

illustrative purpose we limit the analysis to the two year period 2000-01-01 – 2001-12-219

31. Results are available as daily means on the model configuration’s native 4 km stere-220

ographic grid projection (Lien et al., 2013).221

The ocean module of the coupled model used for the regional simulation is the Re-222

gional Ocean Modeling System (ROMS), described in Haidvogel et al. (2008) and ref-223

erences therein. The sea ice module was developed by Budgell (2005). The ice model dy-224

namics are based on the elastic-viscous-plastic (EVP) rheology after Hunke and Dukow-225

icz (1997) and Hunke (2001), and the ice thermodynamics are based on Mellor and Kan-226

tha (1989) and Häkkinen and Mellor (1992).227

The model results for sea ice concentration are somewhat noisy on the grid cell scale,228

owing to the dispersiveness of the numerical scheme. In some regions, the grid cells that229

constitute the ice edge as defined by equation 1 can then appear as a mesh-like collec-230

tion of cells. In order to reduce the impact of this issue, we applied the second order checker-231

board suppression algorithm (Li et al., 2001) to the model results before conducting the232

present analysis.233

We compare model results with observations from the Arctic Ocean Sea Ice Con-234

centration Charts Svalbard which is a multi-sensor product that uses data from Synthetic235

Aperture Radar (SAR) instruments as its primary source of information (WMO, 2017).236

This product covers the northern Nordic Seas, the Barents Sea and adjacent ocean re-237

gions. It is available on a stereographic grid projection with a resolution of 1 km. The238

product will be referred to as the ice chart data hereafter. Data availability is restricted239

to working days. During a regular week, we then have four days with 24 h displacement240
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results. The data set is also slightly reduced due to holidays, and a total of 354 days with241

24 h ice edge displacement results were available from the present two year period.242

The present study will be restricted to results and data for the Barents Sea. The243

SVIM simulation domain is displayed in Figure S1 (supporting information), where the244

Barents Sea analysis region is highlighted. Ice chart results are integrated onto the SVIM245

domain, and all grid cells inside the Barents Sea region that become dry in either prod-246

uct are masked prior to the analysis. The analysis region is then constituted by 80.399 wet247

grid cells, which represent an area of 1.29 · 106 km2.248

We first examine the distribution of daily maximum ice edge displacements. The249

results are summarized in Table 1, where results from the 354 days with 24 h displace-250

ments from both products have been included. We note that about 2/3 of the displace-251

ments in model results are in the range 10 – 30 km. The corresponding distribution of252

results from the ice chart data has two maxima, one for the range 20 – 40 km which ac-253

counts for nearly half of the cases, and a secondary maximum for short (0 – 10 km) dis-254

placements. The averages of the daily maximum displacement distances are 25 km and255

36 km for the SVIM results and the ice chart data, respectively.256

The category distributions in Table 1 change only moderately when the algorithm257

for computing displacements are modified as described in section 2.3. However, in a few258

cases the results from the general algorithm given in section 2.1 do not properly describe259

true displacements. To illustrate this, we have selected a case where the two approaches260

give diverging results: the change in the ice edge position from 2001-10-23 to 2001-10-261

24, as displayed in Figure S2 in the supporting information.262

This is a case where sea ice is displaced into the analysis region across the north-263

ern boundary. The example demonstrates that in such cases, the general algorithm in264

section 2.1 gives unreasonable results: The maximum displacement of 285 km that emerges265

from the algorithm is indicated by a black line. The maximum distance using the mod-266

ified algorithm in section 2.3 is 79 km (red line).267

For the examination of the degree to which SVIM results reproduce the geograph-268

ical location of the observed maximum displacement, nine values were chosen randomly269

from each set of 24 h results emanating from equation 10. Moreover, the requirement of270

at least nine additional ice edge positions separated by the decorrelation length scale re-271

stricts the cases that can be considered in this analysis. Thus, from the full set of 354272

cases with 24 h displacement results, 235 cases were kept in the analysis of ranked dis-273

placements.274

The resulting frequency distribution for each of the ten ranks is displayed as gray275

vertical bars in Figure 3, with rank values from 0 to 9. The highest rank (9) results when276

the model displacement close to the site with maximum displacement in the observations277

(the reference displacement, δm2:m1
0 ) is larger than all displacements from the nine sub-278

sampled ice edge positions. The next rank (8) corresponds to cases where one and only279

one of the subsampled positions have a larger displacement than the reference displace-280

ment, and so on. In other words, high ranks indicate situations in which the position of281

the maximum displacement is described with a relatively high quality.282

The expected average rank from a model with no quality in reproducing the po-283

sition of the maximum ice edge displacement is 4.5, with half of the cases with a rank284

in the range 0 – 4, and the other half in the range 5 – 9. In the analysis of the results285

from the SVIM archive, we find that 35% of the cases have rankings in the range 0 – 4,286

while 65% have rankings in the range 5 – 9.287

Furthermore, the average rank in the present analysis is 5.5. For a random distri-288

bution of 235 integer numbers in the range 0 –9 the 0.005th and 0.995th percentiles are289

4.015 and 4.985, respectively. Thus, the analysis reveals that while the model results are290
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far from perfect, the average ranking of 5.5 is significantly higher than results from ran-291

dom spatial distributions of ice edge displacements.292

4 Concluding remarks293

We present a simple algorithm for examination of the displacement of the edge (or294

the front) of a binary field. This forms the basis for a subsequent analysis of statistical295

properties for such displacements. Furthermore, additional methods have been introduced296

for the purpose of comparing two different products that are available as descriptions297

of the same situation.298

The present study has been framed in the context of results for displacements of299

the sea ice edge. Thus, the case study which was investigated in section 3 was based on300

data for the sea ice edge from satellite observations, and simulation results from a cou-301

pled ocean – sea ice model. However, the algorithm that was introduced in section 2 can302

be applied to the displacement of the perimeter of any property that can be represented303

by a continuous binary field. Stratiform precipitation is an example of another property304

for which the present methods are relevant.305

Note that we have used the term displacement rather than advection. The reason306

for this is that displacements need not be purely of an advective nature. In the case of307

sea ice, the displacement of the initial edge will generally be affected by freezing or melt-308

ing along the perimeter of the sea ice extent. Analogously, displacement of the area af-309

fected by stratiform precipitation can be affected by new condensation or partial deple-310

tion of the cloud.311

As demonstrated in the example depicted in Figure S2 (supporting information),312

the original algorithm described in section 2.1 and 2.2 may yield results that represent313

other aspects than true displacements. Here, we have amended situations in which the314

sea ice enters a limited area domain across an open model domain boundary, and sit-315

uations where freezing takes place next to a physical boundary (the coast). The corre-316

sponding simple modifications of the algorithm that was introduced in section 2.3 elim-317

inates such issues, as revealed from the sample situation in Figure S2.318

However, there may be other issues that can distort results that are produced by319

the present analysis. One example is cases where features are seen to arise seemingly spon-320

taneous from one time of analysis to another: The algorithm in section 2 can e.g., if ap-321

plied to precipitation data, give rise to unrealistic results for displacements when con-322

vective precipitation cells become established.323

Results from the algorithms that are introduced in the present study give valuable324

information regarding the changing extent of sea ice, and how well the displacement of325

the observed and modeled sea ice edge agree. These algorithms have proven to provide326

simple, yet robust and informative assessments for the quality of ice edge forecasts both327

with respect to the largest displacements from one time to another as well as with re-328

spect to the reproduction of the geographical position where the largest displacement329

occurs.330
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Figure 1. Binary fields with values of 1 (ice) and 0 (no ice/ocean) are displayed by white and

blue color shading, respectively. Light shades of blue indicate regions with a non-overlapping ice

cover, as indicated by the inset color legend. The derived modeled and observed ice edges L(m)

and L(o) at t=t0+∆t are drawn as red and black lines, respectively. The corresponding ice edges

that are taken to represent the situation at t0 are drawn as light red and gray curves. The full

black circle indicates the position on the observed ice edge at t0+∆t which has the largest dis-

tance to the ice edge at t0, shown by the full gray circle. The largest displacement of the model

ice edge is marked by full diamonds. The full red circle is the position along the model ice edge

at t=t0+∆t closest to the full black circle, while the full light red circle is the position of the

observed ice edge at t0 closest to the full red circle. Open circles indicate a random selection of

displacement positions for the model results, see the text for details.
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Figure 2. Cumulative distributions of the separation (ice edge displacement) distances from

t0 to t0 + ∆t, for model results (red line) and observations (black line). Shown here are results

for the idealized example, as displayed in Figure 1, with distances subsampled at intervals of the

decorrelation lengths, which are 42 and 38 grid cells along the ice edge for the model results and

observations, respectively. The mean separation distance difference is the integral of the area

between the curves, here displayed by gray shading. In this case, the mean difference is 20.9 in

grid cell units, with larger displacement values in model results than from observations.
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Figure 3. Rank histogram for model results for the local ice edge displacement corresponding

to the position of the maximum observed displacement. Sets of nine alternative model displace-

ments were derived for each of 235 days with 24 h displacements results. The nine displacement

values were ordered from lowest to highest, and the local displacement was given a rank from

the slot in which this value belongs, see the text for details. The black curve shows the average

local model displacement distances for results belonging to each of the ranks, with negative num-

bers corresponding to local sea ice retreat in the model results. The average maximum observed

displacement is 32 km.
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Table 1. Category distribution for ice edge displacement distances. Leftmost column gives

the displacement distance range for each category, in km. Results from SVIM model simulation

and ice chart data are presented separately. Fractions in columns “General” are computed from

equation (3), while fractions in columns “OB & C” also take displacements from open boundaries

and coasts into account, by replacing L(1) with L̃
(1)

as defined by equation (16). Results from

354 days of 24h edge displacements have been analyzed, see the text for further details.

Distance Fraction of displacements

SVIM results ice chart data

General OB & C General OB & C

< 0 0 0 0 0
0 – 10 0.06 0.06 0.12 0.12

10 – 20 0.28 0.29 0.06 0.08
20 – 30 0.38 0.38 0.24 0.27
30 – 40 0.17 0.16 0.22 0.21
40 – 50 0.06 0.06 0.15 0.14
50 – 60 0.02 0.02 0.06 0.04
60 – 70 0.01 0.00 0.04 0.04
> 70 0.02 0.02 0.11 0.08
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Figure S1. Map of the full SVIM simulation domain. The Barents Sea analysis region

in the present study is displayed as a highlighted region where a sample sea ice concentration

distribution is displayed. The shading of ice concentration values is given in the label bar,

where c is in the sea ice concentration fraction. This sample shows the model results results for

2000-04-15, with the horizontal resolution from the SVIM experiment.
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Figure S2. Sample scene displaying the changes in model sea ice extent from 2001-10-23

(day 1) to 2001-10-24 (day 2). The black line indicates the maximum displacement distance

(d2:1max, given by equation 4) with the original algorithm, while the red line shows the result when

grid nodes along the open boundaries and coastlines are included (L̃
(1)

from equation 16). The

color coding is given by the label bar, and note that only the northern part of the Barents Sea

analysis region is displayed.
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Table S1. Category distribution of displacement distances computed from equation 4, with

L(2) = L(m,o)(t0 + ∆t) and L(1) = L(m,o)(t0) as displayed in Figure 1, respectively.

Distance Fraction of grid cells
range model results observations
0 - 20 0 0.08

20 - 40 0.05 0.14
40 - 60 0.15 0.15
60 - 80 0.13 0.43
80 -100 0.51 0.20

100 -120 0.17 0
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