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Abstract

This study investigates top-of-atmosphere (TOA) radiation budget (Rt) and cloud radiative effects (CREs) over the Tibetan

Plateau (TP) and adjacent Asian monsoon regions including Eastern China (EC) and South Asia (SA) using the Coupled

Model Intercomparison Project 6 (CMIP6) simulations. Considerable simulation biases occur but specific causes differ over

these regions. Over the TP, most models underestimate the intensity of annual mean Rt and cloud radiative cooling effect,

and they are hard to capture the Rt over the TP during the cold-warm transition period with the largest model uncertainty.

The biases in surface air temperature and cloud fractions contribute to cloud-radiation biases over the western and eastern

TP, respectively. Over EC, the intensity of Rt and cloud radiative cooling effect is seriously underestimated especially in the

springtime when the model spread is large, and their biases are closely related to less low-middle cloud fractions and weaker

ascending motion. Over SA, simulation biases mainly arise from longwave radiative components associated with less high cloud

fraction and weaker convection, with the large model spread in the summertime. The annual cycles of Rt and CREs over

EC and SA can be well reproduced by most models while the summertime peak of net CRE over the TP is later than the

observation. The Rt and its simulation bias strongly depend on cloud radiative cooling effect over EC, SA, and the eastern TP.

Our results demonstrate that contemporary climate models still have obvious difficulties in representing complex and various

cloud-radiation processes in Asian monsoon regions.
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Key points:  24 

(1) Rt and cloud radiative cooling effect over the TP and EC are underestimated, but 25 

cloud radiative cooling effect is overestimated over SA. 26 

(2) The simulated cloud-radiation biases are related to less low-middle clouds and 27 

weaker ascending motion over EC, less high clouds and weaker convection over SA, 28 

and lower surface temperature over the western TP. 29 
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(3) Most models can capture the high dependence of Rt on cloud radiative cooling effect 30 

over EC and SA, but fail to reproduce this over the TP. 31 

  32 
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Abstract 33 

This study investigates top-of-atmosphere (TOA) radiation budget (Rt) and cloud 34 

radiative effects (CREs) over the Tibetan Plateau (TP) and adjacent Asian monsoon 35 

regions including Eastern China (EC) and South Asia (SA) using the Coupled Model 36 

Intercomparison Project 6 (CMIP6) simulations. Considerable simulation biases occur 37 

but specific causes differ over these regions. Over the TP, most models underestimate 38 

the intensity of annual mean Rt and cloud radiative cooling effect, and they are hard to 39 

capture the Rt over the TP during the cold-warm transition period with the largest model 40 

uncertainty. The biases in surface air temperature and cloud fractions contribute to 41 

cloud-radiation biases over the western and eastern TP, respectively. Over EC, the 42 

intensity of Rt and cloud radiative cooling effect is seriously underestimated especially 43 

in the springtime when the model spread is large, and their biases are closely related to 44 

less low-middle cloud fractions and weaker ascending motion. Over SA, simulation 45 

biases mainly arise from longwave radiative components associated with less high 46 

cloud fraction and weaker convection, with the large model spread in the summertime. 47 

The annual cycles of Rt and CREs over EC and SA can be well reproduced by most 48 

models while the summertime peak of net CRE over the TP is later than the observation. 49 

The Rt and its simulation bias strongly depend on cloud radiative cooling effect over 50 

EC, SA, and the eastern TP. Our results demonstrate that contemporary climate models 51 

still have obvious difficulties in representing complex and various cloud-radiation 52 

processes in Asian monsoon regions. 53 

Key words: Tibetan Plateau; Asian monsoon regions; cloud radiative effects; radiation 54 

budget; CMIP6 55 

  56 



4 
 

1. Introduction 57 

The Tibetan Plateau (TP), the largest and highest plateau in the world, strongly 58 

influences Asian climate and global circulation (Flohn, 1959; Li et al., 1992; Liu et al., 59 

2020; Wang et al., 2014; Wu et al., 2007, 2015; Xu et al., 2015; Ye and Gao, 1979; Yeh, 60 

1959). Eastern China (EC) and South Asia (SA), adjacent to the TP, possess significant 61 

Asian monsoon climate characterized by remarkable seasonal variation of circulation, 62 

precipitation and cloud fractions (Ding and Chan, 2005; Luo et al., 2009; Tao and Chen, 63 

1987; Webster et al., 1997; Zhao et al., 2019). These three sub-regions are integral parts 64 

of the whole Asian monsoon region, and regional surface temperature, precipitation, 65 

and cloud-radiation processes are very sensitive to current climate change (Turner and 66 

Annamalai, 2012; Wang et al., 2020; You et al., 2020; Ma et al., 2021). Understanding 67 

and predicting the Asian monsoon climate are of great scientific and societal importance 68 

owing to their large impacts on a regional large population and sustainable socio-69 

economic development. Clouds play vital roles in the earth’s energy balance and the 70 

water cycle. The cloud-radiation process is one of the major uncertainties in current 71 

climate simulations and predictions (Stephens, 2005; Boucher et al., 2013; Webb et al., 72 

2017). The reasonable projection for the TP and Asian monsoon climate therefore 73 

highly depends on an in-depth understanding of cloud-radiation processes and their 74 

improvements in climate models (Zhou et al., 2016). 75 

Complex topography, various surface types and strong land-sea contrast are 76 

distributed in the TP and adjacent Asian monsoon regions, where circulation and cloud-77 

radiation processes exhibit pronounced subregional features (Wu et al. 2007, 2015; 78 

Yang et al. 2014). The top-of-atmosphere (TOA) outgoing longwave radiation (OLR) 79 

over the TP is lower than adjacent low-elevation regions (Zhou et al. 2009). The 80 

compression effect from the TP topography significantly reduces cloud geometric 81 
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thickness and alter its vertical structure (Luo et al. 2011; Wang et al. 2011; Yan et al. 82 

2016). Frequent summer deep convective clouds occur in the eastern TP (Fu et al. 2020; 83 

Luo et al. 2011). EC to the east of the TP is a subtropical monsoon region, where large 84 

amounts of low-middle clouds with a strong cloud radiative cooling effect occur (Li et 85 

al., 2019; Wang et al., 2004; Yu et al., 2004). Considerable spring-summer rainfall is 86 

also distributed over EC (Ding et al. 2005; He et al. 2008; Wan and Wu, 2007). SA to 87 

the south of the TP is a tropical monsoon region, where high and strong convective 88 

clouds with large cloud water strongly reflect shortwave radiation and cause the large 89 

TOA cloud cooling (Rajeevan and Srinivasan, 2000; Saud et al., 2016). It is noteworthy 90 

that cloud-radiation characteristics over EC and SA exhibit remarkable differences, 91 

such as dominant cloud types and seasonal cycle of cloud and precipitation (Yu et al., 92 

2001; Li et al. 2017; Luo et al. 2009; Zhang et al. 2020). These differences in cloud-93 

radiation characteristics very likely lead to the uneven regional distribution of 94 

atmospheric radiative heating and surface-atmosphere energy over the TP and adjacent 95 

Asian monsoon regions. The uneven geographical distribution of surface-atmosphere 96 

is the basic forcing for driving atmospheric dynamics and thermal states (Trenberth et 97 

al. 2009; Webster et al. 1998). Hence, it is critical to investigate key cloud-radiation 98 

characteristics and identify their subregional differences over the TP and adjacent Asian 99 

monsoon regions for improving cloud-radiation parameterizations and reducing their 100 

uncertainties in climate models. 101 

Although present state-of-art climate models can generally capture global 102 

distribution and intensity of major cloud-radiation properties (Dolinar et al. 2014; Flato 103 

et al., 2013; Wild et al. 2012), considerable biases in cloud-radiation simulation still 104 

exit over Asian Monsoon regions (Flato et al. 2013; Lauer and Hamilton, 2013; Li et al. 105 

2009; Li et al. 2012; Wang et al. 2014). These biases contribute to current difficulties 106 
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in simulation and prediction of Asian monsoon climate to a high degree (Boo et al. 2011; 107 

Sperber et al. 2013; Wang et al. 2020; Zhou et al. 2016). In present climate models, 108 

TOA radiation budget and cloud radiative effects (CREs) are key evaluation metrics 109 

(Flato et al. 2013). Reasonable TOA radiation budget is the basic requirement for 110 

climate models to well reproduce the climate system stability and internal feedbacks 111 

and it is strongly modulated by CREs (Trenberth et al., 2009). The CREs represent bulk 112 

cloud radiative roles in the surface-atmosphere system and are composed of longwave 113 

and shortwave CREs, with radiative cooling and warming roles, respectively (Allan, 114 

2011; Ramanathan et al., 1987). Many climate models underestimated the intensity of 115 

cloud radiative cooling effect over EC (Wang et al. 2014; Zhang and Li, 2013) and this 116 

poor model reproducibility is partly attributed to parameterization difficulties in 117 

complex topography, cloud macro- and microphysical processes (Zhang et al., 2014; 118 

Zhou et al., 2019). The work by Li et al. (2019) showed that the spring cloud radiative 119 

cooling effect over EC is closely associated with regional ascending motion and water 120 

vapor convergence, indicating that simulation biases of cloud radiative effects are 121 

sensitive to regional circulation conditions. Notably, model evaluation studies of key 122 

cloud-radiation characteristics remain sparse for the TP and SA regions although 123 

observational analyses were conducted for the two regions (Saud et al. 2016; Yu et al., 124 

1999; Zhao et al. 2019). Moreover, most of the existing model studies paid little 125 

attention to comparison and identification of spatial differences in CREs and TOA 126 

radiation budget and underlying influencing factors over the TP and adjacent EC and 127 

SA.  128 

Recently, simulated data from the Coupled Model Intercomparison Project Phase 6 129 

(CMIP6) were released (Eyring et al. 2016). Compared with previous CMIP5 data, 130 

spatial resolution and physical processes are significantly improved for climate models 131 



7 
 

participating in CMIP6 (Taylor et al. 2012; Eyring et al. 2016). The CMIP6 simulation 132 

was extended to Dec. 2014 and is close to current Clouds and the Earth’s Radiant 133 

Energy System (CERES) Energy Balanced and Filled (EBAF) satellite retrievals (Loeb 134 

et al. 2018), which is the most reliable TOA cloud-radiation satellite dataset so far. Thus, 135 

the comparison of CMIP6 data with CERES-EBAF satellite observations can provide 136 

a new opportunity to further evaluate and understand cloud-radiation processes over the 137 

above Asian monsoon climatic regions.  138 

As for cloud-radiation issues over the TP and adjacent Asian monsoon regions, of the 139 

particular interests for the climatic community are (1) how well CMIP6 models 140 

reproduce spatiotemporal features of TOA radiation budget and CREs in annual mean, 141 

seasonal and interannual scales; (2) how to identify sub-regional systematic biases in 142 

the simulated TOA radiation budget and CREs and to examine the reasons for their 143 

biases; (3) try to understand the role of CREs in TOA radiation budget. 144 

The purpose of this study is to address the abovementioned issues and provide 145 

valuable clues for understanding and improving cloud-radiation processes over the TP 146 

and adjacent Asian monsoon regions. The paper is organized as follows. Section 2 147 

describes the data and method. Section 3 presents the simulated annual mean states. 148 

Sections 4 examine simulated seasonal and interannual variation. Section 5 analyzes 149 

the possible causes of simulation biases. Section 6 gives the conclusion and discussion. 150 

2. Data and Methods 151 

2.1 CMIP6 AMIP simulations 152 

Atmospheric Model Intercomparison Project (AMIP) simulations from 27 CMIP6 153 

models are used as model results in this study and the model information is listed in 154 

Table 1. AMIP experiment is driven by observed sea surface temperature and sea ice 155 
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concentration, prescribed greenhouse gases, aerosol, solar and other forcing terms and 156 

it is designed to evaluate climate model performance and climate variability (Eyring et 157 

al. 2016). Monthly AMIP simulations range from 1979 to 2014. 9 of 27 AMIP models 158 

provide CALIPSO satellite simulator output, including total, high-, middle-, and low-159 

cloud fraction data. There are several ensembles for each AMIP model experiments and 160 

only run 1 is used in this study.  161 

2.2 Reference data 162 

2.2.1 Satellite-derived data 163 

Monthly CERES-EBAF Ed4.0 data are used to evaluate TOA radiation fluxes, CREs, 164 

and Rt (Loeb et al. 2018). These data include the TOA incident shortwave radiative flux, 165 

outgoing shortwave and longwave radiative fluxes under the clear-sky and all-sky 166 

conditions, and more details (e.g. retrieval algorithm, process methods, data 167 

uncertainties, etc.) can be referred to the CERES-EBAF website 168 

(http://ceres.larc.nasa.gov). CERES-EBAF are the most reliable dataset for TOA 169 

radiatieve fluxes and CREs to date and they are widely used as observations to measure 170 

the earth’s radiation balance, cloud roles and their climatic variability. CERES-EBAF 171 

Ed4.0 data span from March 2000 to December 2018 and have a spatial resolution of 172 

1° latitude by 1° longitude.  173 

To better understand the simulated CREs, the general circulation model- (GCM) 174 

oriented CALIPSO Cloud data (CALIPSO-GOCCP; herein GOCCP) is used for 175 

comparison with the simulated column cloud fraction in the CMIP6 AGCMs that 176 

provide CALIPSO satellite simulator output. The GOCCP data span from June 2006 to 177 

October 2019 and include the global column total, high-, middle-, and low-cloud 178 

fractions (Chepfer et al. 2010). The GOCCP data have a horizontal resolution of 2° 179 

http://ceres.larc.nasa.gov/
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latitude by 2° longitude.  180 

2.2.2 Meteorological data 181 

The meteorological variables to characterize the regional atmospheric circulation and 182 

surface air temperature (Ts) are obtained from the ERA-Interim reanalysis (spatial 183 

resolution of 1.0°) available from January 1979 to the present day (Dee et al., 2011). 184 

Monthly precipitation data, with a spatial resolution of 2.5°, are from the Global 185 

Precipitation Climatology Project (GPCP) (Adler et al., 2003). Despite some 186 

uncertainties, the ERA-Interim and GPCP data show very good performance in 187 

reproducing regional wind fields, atmospheric moisture, and precipitation over Asian 188 

monsoon and TP regions (Simmons et al. 2014; Huang et al. 2016). In this study, 189 

CERES satellite retrievals, ERA-Interim meteorological fields, GPCP precipitation and 190 

GOCCP data are used as observational data. 191 

2.3 Methods 192 

2.3.1 Definition of key concepts 193 

The TOA radiation budget (Rt) is the difference between the TOA net incident 194 

shortwave radiation (ASR) and outward longwave radiation (OLR), and it represents 195 

the net TOA energy of the surface-atmosphere system (Trenberth et al., 2009). The 196 

intensity of Rt is highly dependent on cloud radiative roles. Generally, the net cloud 197 

radiative cooling (warming) role intensifies (weakens) the Rt intensity. 198 

The CREs are defined as the difference in radiative fluxes at TOA between clear-sky 199 

and all-sky conditions (Allan, 2011; Ramanathan, 1987), and includes longwave and 200 

shortwave cloud radiative effects (herein, LWCRE and SWCRE). The net CRE (NCRE) 201 

is the arithmetic sum of LWCRE and SWCRE. These terms effectively measure the 202 

bulk role of clouds in the atmosphere–surface system and are therefore widely used in 203 
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researches on model evaluation, climatic variability, and uncertainties (Boucher et al. 204 

2013). 205 

Note that the sign of SWCRE is negative and its increase denotes the SWCRE 206 

intensity weakens. The same applies to NCRE except for high surface albedo regions. 207 

The abbreviations of the variable names used in this study are listed in Table 2. 208 

2.3.2 Evaluation metrics 209 

To evaluate the climatological states of CMIP6 simulations, statistical metrics 210 

including domain overall mean (bias), relative bias, spatial (pattern) temporal 211 

correlation, standard deviation and root-mean-square error (RMSE) are used to 212 

represent model reproducibility compared with observed states. These statistical 213 

metrics are commonly used in model assessment (Pincus et al. 2008; Taylor, 2001; 214 

Wang et al. 2014), and their use and formulas are listed in supplementary materials. To 215 

clearly and simply represent simulation skills of CMIP6 AMIP models, we used a 216 

simplified square Taylor diagram to quantitatively show simulated spatial similarity and 217 

biases, and the model spread degree. 218 

In this study, the 500-hPa vertical velocity and Ts from CMIP6 simulations are 219 

compared to ERA-Interim data to understand the effects of atmospheric convection and 220 

surface thermal state on CREs and Rt. 221 

2.3.3 Data treatment 222 

The observational and simulated data during 2001-2014 are extracted to analyze 223 

climatological annual mean, seasonal and interannual variation. GOCCP and 224 

corresponding model data during 2007-2014 are used to investigate simulated biases of 225 

cloud fractions and CREs. The run one in each model AMIP ensemble is selected. The 226 

multi-model ensemble (MME) is based on the equal-weighted average of individual 227 

models. To obtain MME and facilitate the inter-comparison among models, AMIP 228 
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simulations are regridded into a common horizontal resolution of 1.0° latitude by 1.25° 229 

longitude via bilinear interpolation.  230 

In this study, the domain of TP is specified as 27.5-37.5°N and 80-100°E, and 231 

adjacent East China (EC) and South Asia (SA) monsoon regions are set in an area of 232 

22-32°N and 102-122°E, and 15.5-25.5°N and 80-100°E, respectively (Figure 1c). 233 

 234 

3. Annual mean states 235 

3.1 Observational states 236 

3.1.1 Geographical distribution of annual mean cloud-radiation variables 237 

Figure 1 presents the global distribution of annual mean Rt. The zonal variation of 238 

Rt is small in the Southern Hemisphere but large in the Northern Hemisphere due to its 239 

larger land area and more complex topography. The large NCRE is mainly located in 240 

the Pacific and Atlantic stratus regions, mid-latitude storm track regions, EC, and South 241 

Ocean. The Rt in most parts of the TP is up to 10 W m−2 and is the strongest positive Rt 242 

in land area of the same latitude (Figure 1a). Over the TP, the OLR and Ts (not shown) 243 

are obviously lower relative to adjacent regions (Figure 2b). Subtropical EC lies in 244 

downstream of the TP, with a negative Rt from −40 to −20 W m−2 and the largest cloud 245 

radiative cooling effect up to −60 W m−2 at the same latitudes (Figures 1a-1b). Over EC 246 

and south flank of the TP, the strong negative Rt coincide with large ASR, TCF and 247 

NCRE (SWCRE) (Figures 1b, 2a, 2d, 2e, 2f), indicating that regional Rt is strongly 248 

related to cloud radiative cooling role in the two regions. South Asian regions to south 249 

of the TP are tropical monsoon regions where the obvious positive Rt and negative 250 

NCRE occur. Although there is considerable amount of TCF, the offset between 251 

LWCRE and SWCRE makes the intensity of NCRE over SA and the TP weaker than 252 
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that over EC (Figures 1b, 2d, 2e, 2f). Over SA, the TOA net incident shortwave 253 

radiation (ASR) is larger than those over EC and TP due to lower latitude (Figure 2a). 254 

These results demonstrate that pronounced sub-regional differences of cloud-radiation 255 

features over the TP and adjacent Asian monsoon regions. 256 

3.1.2 Domain-averaged values of TOA cloud-radiation variables 257 

Table 3 lists annual mean values of domain average TOA radiative fluxes and CREs. 258 

The annual mean Rt over EC, SA and the TP are −12.0, 28.8 and 7.7 W m−2, respectively. 259 

The ASR over EC and the TP are 228.0 and 231.6 W m−2, respectively, and their 260 

differences are not large. The TP latitude is the highest but its TOA incident shortwave 261 

radiation is the lowest among these three regions. The OLR over the TP is 220.3 W m−2 262 

and is much lower than those over EC (243.8 W m−2) and SA (253.1 W m−2). The 263 

relatively lower OLR over the TP is directly responsible for its positive Rt. The upward 264 

shortwave radiation, SWCRE and NCRE over EC are 142.3, −83.2 and −48.5 W m−2, 265 

respectively, and their intensity is much larger than the counterparts over SA and the 266 

TP. Given the close spatial pattern shown above, the significant negative Rt over EC is 267 

caused by its strong shortwave cloud radiative cooling effect to a large extent. 268 

3.2 Simulated annual mean states 269 

3.2.1 Simulated annual mean states of Rt 270 

Figure 3 shows the geographical distribution of annual mean Rt simulated from 271 

CMIP6 AMIP models. Over the TP, most models can capture the Rt distribution, 272 

especially positive Rt vaule over the central and eastern TP and negative Rt value over 273 

the south flank of the TP, but somewhat underestimate the Rt over the western TP 274 

(Figure 3bb). The regional mean biases of Rt, ASR and OLR in MME are −4.0, −10.2 275 

and −6.1 W m−2, respectively, and their pattern correlation coefficients (PCCs) are 0.48, 276 
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0.66 and 0.94, respectively (Table 4). This shows that ASR is mainly responsible for 277 

regional mean bias and spatial pattern of Rt in many models. Particularly, the seriously 278 

underestimated Rt over the western TP is directly linked to the same underestimated 279 

ASR in CanESM5, CNRM-CM6-1, CNRM-ESM2-1, FGOALS-g3, and MIROC6, and 280 

their PCCs are less than 0.2 over the TP (Figure 5h).  281 

Over EC, most models can roughly represent the spatial pattern of Rt but seriously 282 

underestimate its magnitude (Figure 3bb). The regional mean Rt in MME over EC is 283 

1.0 W m−2 and its intensity is much lower than the observational value of −12.0 W m−2 284 

(Figure 4a). As listed in Table 4, the regional mean value and RB of ASR in MME over 285 

EC are 14.8 W m−2 and 6.4%, respectively, and much larger than the counterparts (1.8 286 

W m−2 and 0.7%) of OLR. This indicates that the simulated weaker Rt is mainly 287 

attributed to the obviously underestimated ASR. Over EC, regional mean Rt in 288 

ACCESS-ESM1-5 (−14.0 W m−2), CAMS-CSM1-0 (−7.4 W m−2), GISS-E2-1-G 289 

(−16.4 W m−2), and MRI-ESM2-0 (−14.3 W m−2) are relatively close to the observation 290 

and their absolute RBs are less than 40% (Figure 4a). Meanwhile, these four models 291 

also reproduced well the regional mean ASR over EC, with absolute RBs less than 30% 292 

(Figure 4b). ACCESS-ESM1-5 (0.81), CanESM5 (0.80) and CESM2 (0.81) have 293 

higher PCCs of Rt than MME (0.76) (Figure 5a). Note that the sign of regional mean 294 

Rt over EC in CanESM5 and BCC-ESM1 is positive, suggesting that the two models 295 

actually can’t reasonably represent Rt over EC (Figure 4a). The PCCs of Rt in 296 

FGOALS-g3 and IPSL-CM6A-LR are only 0.17 and −0.02, respectively, and they even 297 

produced evident positive Rt over EC (Figures 3m and 3s), which are caused by their 298 

larger biases and poor spatial reproducibility of ASR (Figure 5b). This further 299 

demonstrates that the spatial pattern of Rt in these AMIP models is mainly related to 300 

that of the simulated ASR. 301 
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Over SA, most models can reproduce the positive Rt although the simulated Rt 302 

intensity is weaker than the observation (Figure 3bb), with regional mean Rt and RB in 303 

MME are 25.2 W m−2 and −10% (Table 4), respectively. Most models can reproduce 304 

well the spatial patterns of Rt and ASR over SA, with PCCs over 0.7 (Figure 5e). The 305 

regional mean biases of ASR and OLR in MME are 0.6 and 3.4 W m−2 (Table 4), 306 

respectively, showing the underestimated Rt over SA is mainly caused by the 307 

overestimated OLR. The PCC of OLR in MME is 0.83, which is lower than the ASR 308 

(0.95) and Rt (0.94) over SA (Table 4). The low PCCs of OLR in some models (e.g. 309 

ACCESS-ESM1-5, E3SM-1-0, HadGEM3-GC31-LL, MPI-ESM1-2-HR) are less than 310 

0.4 (Figure 5f) and their poor reproducibility may be related to their unreasonable 311 

location of the tropical strong convection over SA. 312 

Note that the PCCs of Rt and its shortwave and longwave components in MME are 313 

clearly higher than those in individual models over the above three regions (Figure 5).  314 

3.2.2 Simulated annual mean states of CREs 315 

Figure 6 shows that the geographical distribution of annual mean NCRE simulated 316 

from CMIP6 AMIP models. Over the TP, most models can reproduce the large NCRE 317 

over the eastern TP and south flank of the TP (Figure 6bb). Most models can represent 318 

well the spatial pattern of NCRE (SWCRE) (Figure 6), with the PCC of 0.87 (0.92) in 319 

MME (Figures 8g-8h), but have relatively worse reproducibility for LWCRE, with the 320 

PCC of 0.61 in MME (Figure 8i). Most models underestimate the NCRE intensity, 321 

especially over the western TP (Figure 6bb), and the regional mean NCRE in MME is 322 

−17.5 W m−2 (Figure 7g). The regional mean biases of NCRE, SWCRE and LWCRE 323 

in MME over the TP are 7.2, 11.2 and −4.0 W m−2 (Table 4), respectively, suggesting 324 

the weak simulated NCRE still arises mainly from underestimated SWCRE. By 325 
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comparison, ACCESS-CM2, HadGEM3-GC31-LL, HadGEM3-GC31-MM, and 326 

UKESM1-0-LL have better simulation skills of CREs regarding their PCCs and RMSEs. 327 

Over EC, most models can represent large negative NCRE, but obviously 328 

underestimated the NCRE intensity (Figure 6bb). The regional mean value of NCRE in 329 

MME is −37.1 W m−2 averaged over EC and much lower than the observation (−48.6 330 

W m−2) (Figure 7a). Many models fail to capture the regional center of NCRE over 331 

southeastern China (Figure 6bb), resulting in their poor PCCs of NCRE (Figure 8a), 332 

and the PCC of NCRE in MME is 0.59 (Table 4). Because the NCRE over EC is 333 

dominated by SWCRE, the spatial pattern and PCCs of simulated NCRE in models are 334 

very similar to their individual SWCRE (Figure 8a). As shown in Figures 7b-7c and 335 

Table 4, the regional mean biases of SWCRE and LWCRE in MME are 22.0 W m−2 and 336 

−10.5 W m−2 averaged over EC, respectively, and the magnitude of both SWCRE and 337 

LWCRE is obviously underestimated. This demonstrates that SWCRE dominates not 338 

only the sign of NCRE but also accounts for the bias intensity of NCRE over EC. The 339 

PCCs of SWCRE and LWCRE in MME are 0.52 and 0.31 over EC, respectively (Table 340 

4). The PCCs of NCRE in CESM2, ACCESS-ESM1-5, MRI-ESM2-0, MPI-ESM1-2-341 

HR, and NESM3 are larger than MME (Figure 8a), and these models can capture the 342 

regional center of NCRE over southeastern China (Figure 6). Compared to other models, 343 

CESM2 and MPI-ESM1-2-HR can reproduce better NCRE over EC (Figure 6), with 344 

the SPCs of 0.73 and 0.67, respectively (Figure 8a).  345 

Over SA, unlike to EC and the TP, most models overestimate the intensity of cloud 346 

radiative cooling effect (Figure 6bb), and the regional mean NCRE in MME, with a 347 

value of −18.6 W m−2, is stronger than the observation (−12.3 W m−2) (Figure 7d; Table 348 

4). The overestimated NCRE is mainly attributed to the underestimated LWCRE. As 349 

listed in Table 4, regional mean biases of SWCRE and LWCRE in MME are 2.9 and 350 
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−9.3 W m−2 averaged over SA, respectively. Most models can reproduce the spatial 351 

pattern of NCRE (LWCRE and SWCRE) over SA (Figures 8d, 8e, 8f; Table 4). The 352 

PCCs of NCRE, LWCRE and SWCRE in MME are 0.74, 0.75 and 0.77, respectively, 353 

which are very close to each other (Table 4). CESM2 and NorESM2-LM have relatively 354 

better performances in the spatial pattern and intensity of NCRE, SWCRE, and LWCRE 355 

over SA.  356 

The MME can substantially improve simulated Rt and NCRE, and their longwave 357 

and shortwave counterparts, especially for their spatial distribution. The PCCs of Rt, 358 

ASR and OLR (NCRE, SWCRE and LWCRE) of MME are higher than most individual 359 

models (Figures 5a, 5d, 5g, 8a, 8d, 8g). In Figures 5 and 8, the center RMSE is used to 360 

measure the spatial pattern biases and the spread degree of grids shows the spread 361 

degree of multi-model results. The model spreads of Rt and ASR over the TP are much 362 

larger than the counterparts over EC and SA (Figures 5a, 5d, 5g). The model spreads of 363 

NCRE and SWCRE are relatively larger over EC and SA. Notice that the spread pattern 364 

of simulated Rt (NCRE) is very close to that of ASR (SWCRE) in EC and the TP 365 

(Figures 5a-5b, 5g-5h, 8a-8b, 8g-8h), where the ASR (SWCRE) bias mainly accounts 366 

for the Rt (NCRE) bias. This similar bias distribution further indicates the dominant 367 

role of the shortwave component in the simulation biases of TOA Rt (CREs) over EC 368 

and the TP regions. Moreover, the spread degree of OLR (LWCRE) is very large over 369 

SA (Figures 5f and 8f), reflecting that various simulated convection intensity and 370 

distribution occur in CMIP6 AMIP models. Note that despite of the absolute 371 

contribution of LWCRE to NCRE is relatively smaller over SA (Table 4), the spread 372 

degree of simulated LWCRE is very large over EC, where current climate models 373 

probably have big differences in reproducing cloud height and cloud vertical 374 

distribution (Zhang and Jing, 2016). 375 
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It is noteworthy that ACCESS-CM2 and its coupled counterpart (ACCESS-ESM1-5) 376 

show some differences in the spatial pattern and intensity of NCRE over EC (Figures 377 

6a, 6b, 7a). These simulation differences are very likely caused by different parameters 378 

setting in physical processes. Compared with their respective high resolution versions 379 

(CNRM-CM6-1-HR and HadGEM3-GC31-MM), CNRM-CM6-1 and HadGEM3-380 

GC31-LL with lower resolution have similar performances in spatial patterns of Rt and 381 

NCRE over the above three regions. Over EC, the PCCs of Rt and NCRE in HadGEM3-382 

GC31-MM are 0.71 and 0.53, respectively, and higher than the counterparts (0.55 and 383 

0.40) in HadGEM3-GC31-LL (Figures 5a and 8a). Over the TP, the PCCs of Rt and 384 

NCRE in HadGEM3-GC31-MM are 0.90 and 0.72, respectively, and are higher than 385 

those (0.86 and 0.43) in HadGEM3-GC31-LL (Figures 5g and 8g). This demonstrates 386 

that some high resolution models have better performance with the improvement of 387 

fine-topography and relevant sub-grid cloud processes (Haarsma et al. 2016).  388 

 389 

4. Annual cycle and interannual variation 390 

4.1 Observational annual cycle 391 

Figures S1 show observational annual cycles of regional mean Rt, NCRE and their 392 

individual shortwave and longwave components averaged over three regions. The 393 

positive Rt over SA and the TP first occurs in March and over EC in April, and then the 394 

positive Rt stay until September over EC and the TP, and October over SA (Figure S1a). 395 

The Rt value over SA is larger than those over EC and the TP in most months except 396 

for July and August (Figure S1a). It is noteworthy that the sensible heating over the TP 397 

becomes positive from March onward and stays until October (Wu et al., 2007). The 398 

similar duration time between Rt and surface sensible heating also indicates surface 399 
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states are key influencing factors to regional Rt over the TP. The seasonal variation 400 

range of OLR over EC and the TP is much weaker than that over SA (Figure S1c). The 401 

intensity of NCRE and SWCRE over EC are much larger than those over SA and TP in 402 

most months, especially in December-March (Figures S1d and S1e) when large 403 

amounts of low-middle clouds occur (Pan et al. 2015; Li et al. 2017). Over SA, the 404 

maximum Rt (ASR) intensity occurs in May (April) when it is before the monsoon 405 

onset month (June), and the intensity of CREs (NCRE, SWCRE and LWCRE) peak in 406 

July when the summer monsoon erupts (Figures S1a and S1d-S1f). Compared with May, 407 

the convection intensity and cloud fractions increase quickly but the intensity of ASR 408 

and OLR decrease over SA in June and July (summer monsoon period) when 409 

convection and CREs become stronger than those before the monsoon onset (Zhang et 410 

al. 2020).  411 

4.2 Simulated annual cycle 412 

4.2.1 Simulated annual cycle of Rt 413 

Figure 9 shows the simulated annual cycles of Rt, ASR, and OLR averaged over three 414 

regions. Over the TP, most models overestimate the negative Rt from December to 415 

February but simulate well the Rt intensity from May to November (Figure 9g). Notably, 416 

most models and MME can’t reproduce the positive RT in March (Figure 9g). 417 

Nonetheless, several models including ACCESS-CM2, HadGEM3-GC31-MM, and 418 

UKESM1-0-LL can success to reproduce the positive Rt over TP in March and its 419 

annual cycle (Figure S2a), and their RMSEs of Rt annual cycle are much smaller than 420 

other models (Figure 10a). By comparison, the simulation bias and model spread of Rt 421 

over the TP mainly contributed by the ASR are larger from February to May than those 422 

over EC and SA (Figures 9g-9i and 10g-10i), indicating that the model uncertainty of 423 
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Rt is very large during the cold-warm transition period over the TP. In the meantime, 424 

the large range of ASR and OLR over the TP from May to June exhibit the large impact 425 

of summer monsoon on simulated TOA radiation (Figures 9h-9i).  426 

Over EC, most models can capture well seasonal ranges of Rt and ASR and their 427 

peaks in July (Figures 9a-9b), and their PCCs of Rt and ASR are over 0.97 (Figures 428 

10a-10b). However, most models underestimate the Rt intensity from October to 429 

February and overestimate it from April to August (Figures 9a-9b). The ASR intensity 430 

over EC is underestimated by most models in the whole year while the annual cycle of 431 

simulated OLR is very close to the observation (Figures 9b-9c). Compared to other 432 

models, GFDL-AM4 and MRI-ESM2-0 have better simulation skills in the PCC and 433 

RMSE of Rt over EC (Figures 10a-10c). Moreover, the similar spread pattern between 434 

Rt and ASR shows that the Rt bias and its model spread over EC is dominated by the 435 

ASR (Figures 9a-9b and 10a-10b).  436 

Over SA, most models simulate well annual cycles of Rt, ASR and OLR, and can 437 

capture the peak of Rt (ASR) in May (April) and the valley of OLR in July (Figures 9d-438 

9f). Most models overestimate the intensity of ASR and OLR over SA from May to 439 

September, and the model spread of ASR and OLR and their biases are very large from 440 

May to June (Figures 9e-9f and 10e-10f). Over SA, the ASR intensity is underestimated 441 

from November to April and the OLR is systematically underestimated by the models 442 

in the whole year although seasonal ranges of ASR and OLR are well captured by 443 

models (Figures 9e-9f). Based on simulation skills of PCC and RMSE, CESM2, GFDL-444 

AM4 and NorES2-LM are better at Rt over SA. 445 

4.2.2 Simulated annual cycle of CREs 446 

Figure 11 shows the simulated annual cycle of NCRE and its longwave and 447 

shortwave components. Over the TP, most models underestimate LWCRE and SWCRE 448 
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from January to July, and NCRE from February to May (Figures 11g-11i). The offset 449 

between LWCRE and SWCRE over SA makes the simulated NCRE in MME peaks in 450 

July while it is June in the observation. NorESM2-LM can capture the NCRE peak in 451 

June over the TP and it has the highest PCC (0.9734) and the smallest RMSE (Figure 452 

12g) in all models. HadGEM3-GC31-LL, HadGEM3-GC31-MM and CESM2 also 453 

have better reproducibility in the NCRE over the TP (Figure 12g). The model spread of 454 

NCRE is relatively larger in summertime (Figure 11a, 11d, 11g).  455 

Over EC, models basically simulate large NCRE from February to May, but 456 

obviously underestimate its intensity in most months (Figure 12a). The underestimation 457 

of the intensity of NCRE and Rt exist simultaneously over EC. As shown in Figures 458 

11d and 11g, the systematic underestimation of simulated LWCRE and SWCRE 459 

appears in the whole year, and the magnitude of underestimated SWCRE is larger than 460 

LWCRE expect for July and August when the NCRE in MME is relatively close to the 461 

observation. Relatively, MPI-ESM1-2-HR and NorESM2-LM perform better in the 462 

NCRE intensity from February to May and its annual cycle relative to other models 463 

(Figures 11a and 12a).  464 

Over SA, most models can capture well the peaks of NCRE, LWCRE and SWCRE 465 

in July, but underestimate the LWCRE intensity especially from May to October 466 

(Figures 11d-11f), indicating that the convection is also weaker compared to the 467 

observation. Due to the strong offset between LWCRE and SWCRE biases in the 468 

summertime, the simulated NCRE bias over SA is smaller than its longwave and 469 

shortwave components. Particularly, ACCESS-ESM1-5 simulates an opposite annual 470 

cycle of the NCRE phase relative to the observation (Figure 12e), which is mainly 471 

caused by its weaker SWCRE during November-March and summer time (not shown). 472 

Moreover, HadGEM3-GC31-LL, HadGEM3-GC31-MM, and UKESM1-0-LL also 473 
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have weaker SWCRE and NCRE in summer (Figure 12e). The model spread of 474 

simulated CREs and their biases over SA, especially for biases of NCRE and SWCRE, 475 

is very large from May to September (Figures 11d-11f).  476 

The results mentioned above show that the large model spread of the simulated 477 

NCRE and SWCRE over EC occurs during the springtime, and the counterparts over 478 

SA are during the summertime. In the same period, large amounts of dominant low-479 

middle and high clouds occur over EC and SA, respectively, and correspond to their 480 

strong NCRE and SWCRE. In addition, the intensity of simulated LWCRE and 481 

SWCRE and their ratios directly determine whether the NCRE intensity and its annual 482 

cycle over SA are reasonable in these models. Thus, current CMIP6 AMIP models still 483 

face considerable uncertainties in reproducing the intensity of TOA CREs in their peak 484 

months over the TP and adjacent monsoon regions. 485 

4.3 Interannual variation 486 

4.3.1 Simulated time series of Rt and NCRE 487 

Table 5 lists interannual variation of simulated Rt and NCRE during 2001-2014.  488 

Here, the STD is used to represent the intensity of interannual variation. There is 489 

pronounced interannual variation for Rt and NCRE over three regions. The STDs of 490 

observational Rt and NCRE over the TP are 3.64 and 4.67 W m−2, respectively, and the 491 

counterparts over SA are 4.19 and 3.72 W m−2, respectively. The STDs of observational 492 

Rt and NCRE over EC, with values of 7.76 and 8.53 W m−2, respectively, are almost 493 

twice larger than the counterparts over SA and the TP (Table 5), indicating larger 494 

interannual variation over EC. Compared with the observation and individual models, 495 

the magnitude of interannual variation of Rt and NCRE weakens substantially in MME 496 

and most models are hard to capture well the interannual variations of Rt and NCRE, 497 
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only with the temporal correlation coefficients less than 0.2 in MME. By comparison, 498 

models have better interannual reproducibility over EC, with temporal correlation 499 

coefficients of 0.19 and 0.20 for Rt and NCRE in MME, respectively, but the 500 

counterparts in MME are much lower over SA and the TP (not shown).  501 

4.3.2 Interannual relationship between NCRE and Rt 502 

To examine the potential role of NCRE in Rt, Table 5 shows the temporal correlation 503 

between monthly NCRE and Rt averaged over three regions during 2001-2014. Over 504 

EC, the correlation coefficients between NCRE and Rt in the observation and MME are 505 

0.93 and 0.88, respectively, and the temporal correlation coefficients in most models 506 

are close to or over 0.85. This demonstrates the interannual variation of Rt can be well 507 

explained by the NCRE. Over SA, the observed and simulated correlation coefficients 508 

between Rt and NCRE are 0.73 and 0.71, respectively. Over the TP, although the 509 

observed correlation coefficient between Rt and NCRE is 0.75, the simulated 510 

counterpart is only 0.42. The model spread of correlation coefficients over the TP is 511 

larger than those over EC and SA, and the coefficients in CNRM-CM6-1 and CNRM-512 

ESM2-1 are even less than 0 (not shown). The interannual relationships between Rt and 513 

NCRE demonstrate that cloud radiative roles have the dominant role in the Rt variation 514 

over EC and SA, and models can well represent this relationship, especially over EC. 515 

However, the observed large contribution of cloud to Rt can’t be simulated well in most 516 

CMIP6 AMIP models. This means that other factors, such as surface states, also have 517 

certain effects on Rt over the TP. 518 

 519 

5. Possible causes for simulation biases 520 

In this section, we investigate possible causes for simulation biases of Rt and CREs 521 
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in CMIP6 models over the TP and adjacent EC and SA. The spatial distribution of 522 

simulation biases of cloud-radiation variables is analyzed first, and the relationship 523 

between simulated Rt and CREs biases is examined to highlight cloud roles in simulated 524 

Rt biases. CREs are closely related to cloud fractions being very sensitive to regional 525 

circulation conditions and surface states. We further examine the influences of 526 

simulated cloud fractions on CREs and potential associations between simulated cloud 527 

fraction and meteorological conditions. 528 

5.1 Geographical distribution of simulation biases 529 

Figure 13 shows the geographical distribution of simulated biases of Rt, NCRE, and 530 

relevant radiative fluxes in MME. Over the central TP and south flank of TP, positive 531 

Rt bias corresponds to negative biases ASR and RSUT, and positive NCRE (SWCRE) 532 

bias, suggesting an overall underestimated cloud radiative cooling effect. Over the 533 

western TP, negative Rt bias is coincident with negative biases of ASR and OLR and 534 

positive biases of RSUT (RSUTCS) and NCRE (SWCRE). The cloud-radiation biases 535 

exhibit an obvious difference between the western and eastern TP. In this case, the PCC 536 

between NCRE (SWCRE) and Rt biases is only 0.27 (0.36) over the TP (Figure S3g 537 

and S3h), indicating that cloud biases are not responsible for the Rt bias over the whole 538 

TP. The similar spatial pattern among the biases of Rt, RSUT (RSUTCS), OLR 539 

(OLRCS), and NCRE (SWCRE) suggest the surface state biases (e.g. surface 540 

temperature and albedo) may strongly contribute to cloud-radiation biases over the 541 

western TP.  542 

Over EC, clear positive Rt bias coincides with negative RSUT biases and positive 543 

biases of ASR and NCRE (SWCRE), and their maximum biases centers nearly occur 544 

over southwestern China. As mentioned above, the LWCRE intensity over EC is 545 
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underestimated (Figure 13i). The PCC between the biases of NCRE (SWCRE) and Rt 546 

is up to 0.93 (0.88) over EC, but the counterpart between LWCRE and Rt is only 0.18 547 

(Figure S3c). This demonstrates that the seriously underestimated negative Rt over EC 548 

highly depends on cloud biases in CMIP6 AMIP models, especially the underestimated 549 

cloud radiative cooling effect (SWCRE).  550 

Over SA, the LWCRE intensity is underestimated in the whole region (Figure 13i). 551 

Note that the spatial pattern of Rt bias is also similar to those of NCRE and SWCRE in 552 

the Bay of Bagel (BOB), southern India, and Indochina Peninsula (Figure 13a, 13g, 553 

13h). The PCC between Rt and NCRE biases is 0.85 (Figure S3d), and the PCC between 554 

SWCRE (LWCRE) and Rt biases is 0.63 (0.41) over SA (Figures S3e-S3f). The high 555 

spatial correlation suggests that cloud biases account for the Rt bias to a large extent. 556 

In addition, the strong CREs and their longwave and shortwave components often 557 

coexist with strong convective activities over SA (Hartmann et al., 2001; Kiehl, 1994; 558 

Li et al., 2017; Rajeevan and Srinivasan, 2000). Thus, although the underestimated 559 

domain-mean positive Rt over SA mainly arises from its underestimated cloud warming 560 

effect (LWCRE), the spatial pattern bias of Rt is sensitive to regional SWCRE biases 561 

in the BOB where strong convection happens frequently. 562 

5.2 Simulation biases of cloud fractions 563 

Figures S4 and S5 shows the geographical distribution of simulated TCF and HCF 564 

in 9 models with satellite simulator output, respectively. In the observation, large 565 

amounts of cloud fractions occur over EC (Figure S4k and 14a), especially over 566 

southeastern China, and low-middle clouds account for a large proportion of total 567 

clouds (Pan et al. 2015; Li et al. 2017). Low-middle clouds mainly consisting of liquid 568 

water can strongly reflect incident shortwave radiation and cause large SWCRE and 569 
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NCRE (Figures 15a-15b) over EC (Li et al. 2017, 2019). Lots of high clouds prevail 570 

over the eastern TP and SA (Figures S5, 14e, 14f) especially in summer, which lead to 571 

certain intensity of LWCRE and SWCRE (Figures 15b-15c). 572 

In the simulation, most models seriously underestimate annual mean TCF and high 573 

cloud fraction (HCF) over EC, SA and most parts of the TP (Figures 15a-15f). 574 

Particularly, MCF and LCF simulated by most modes are lower than the observation 575 

over EC (not shown), where TCF and HCF in the whole year are almost underestimated 576 

(Figures 14a and 14d). The underestimated TCF over EC coincides well with the 577 

identically underestimated SWCRE and NCRE (Figures 15d-15e, 15g). The PCC 578 

between NCRE (SWCRE) and TCF biases in the MME is −0.78 (−0.83) over EC 579 

(Figures S6a-S6b). This good correspondence relationship between TCF and SWCRE 580 

(NCRE) biases demonstrates that less cloud fractions directly result in the 581 

underestimated intensity of cloud radiative cooling effect over EC. The underestimated 582 

LWCRE in annual mean MME corresponds to less HCF over EC and SA (Figures 15f 583 

and 15i). The correlation coefficients between HCF and LWCRE biases in annual mean 584 

MME are 0.53 and 0.47 over EC and SA, respectively (Figures S6c and S6f), indicating 585 

that LWCRE bias highly relies on HCF biases in CMIP6 models. 586 

Over the TP, the underestimated TCF and HCF mainly appear from January to 587 

August (Figures 14c and 14f), when underestimated SWCRE and LWCRE also occur. 588 

In addition, the phenomena that late peak month (July) of NCRE in MME mainly occur 589 

in the western TP and is caused by obviously underestimated LWCRE (not shown). As 590 

shown in Figures S4 and S5, TCF and HCF are larger over the eastern TP than those 591 

over the western TP (Bao et al. 2019), and therefore clouds exert more influences on 592 

the intensity of CREs and their biases over the eastern TP. The correlation coefficients 593 

between TCF (HCF) and SWCRE (LWCRE) is −0.24 (0.39), and significantly higher 594 
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than the counterparts over the whole TP (Figures S6h and S6i).  595 

As for individual models, those models with better-simulated column CFs can better 596 

simulate CREs. For instance, CESM2 and UKESM1-0-LL well reproduce LCF over 597 

EC and HCF over the eastern TP, and they can also well capture the intensity and spatial 598 

pattern of regional SWCRE and LWCRE (not shown).  599 

5.3 Simulation biases of meteorological conditions 600 

The formation and maintenance of cloud fractions highly rely on regional 601 

meteorological conditions, especially ascending motion. Figure 16 shows observational 602 

wind fields, surface skin temperature, and their simulation biases in the aforementioned 603 

9 models. We use 500-hPa vertical velocity to represent the whole atmospheric vertical 604 

motion. The strong ascending motion occurs over maritime continents, the southern and 605 

eastern BOB, eastern TP and EC (Figure 16a). The low-level southwestern wind from 606 

the BOB reaches into EC and the eastern TP, and the southern wind east to the west 607 

Pacific anti-cycle also comes into EC from the South China Sea. Thus, considerable 608 

amounts of water vapor are transported into the eastern TP and EC (Figure 16a) and is 609 

provided as cloud water sources. In the meantime, EC is just located in the south of 610 

200-hPa westerly jet entrance, which is favorable to maintain regional low-middle 611 

ascending motion and large SWCRE (Liang and Wang, 1998; Li et al. 2019).  612 

Compared with the observations, obvious weaker ascending motion lies in maritime 613 

continents, the southern BOB and the TP, and this bias inhibits strong convection and 614 

formation of HCF (Figures 15i and 16c). Large positive Ts bias occurs over the Indian 615 

and continents east and north to the BOB, Indochina Peninsula and EC while Ts bias is 616 

very small over ocean regions (Figure 16d). Thus, the easterly (northerly) wind-induced 617 

by simulated biases in regional thermal-dynamical distribution is not conducive to the 618 
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ascending motion over the eastern BOB (Figure 16c). As a result, HCF and LWCRE 619 

are underestimated over these regions (Figures 15f and 15i). There is a large negative 620 

Ts bias (surface cooling) over the western TP and just corresponds to the underestimated 621 

OLR and underestimated RSUT (Figures 13c-13d and 15d). The simulated lower Ts 622 

over the western TP is generally related to surface state biases in models, especially 623 

overestimated surface albedo (Chen et al. 2017). There is an obvious weaker 200-hPa 624 

westerly jet between the eastern TP and EC (Figure 16c), which can suppress the 625 

ascending motion south to these regions. The simulated weaker low-middle ascending 626 

motion doesn’t benefit to the formation and maintenance of regional low-middle CFs 627 

over EC, and then causes underestimated the intensity of regional SWCRE and NCRE 628 

(Li et al., 2019, 2020). Moreover, Note that stronger ascending motion occurs in MME 629 

over western EC, where weaker SWCRE (NCRE) intensity still appears (Figures 15d-630 

15e and 16c). Over western EC and the eastern TP where the topography is very 631 

complex, sub-grid atmospheric states and diurnal cloud variation are hard to be 632 

reproduced in models (Zhang et al. 2014; Chen and Wang, 2016), and observational Ts 633 

and column cloud fraction data remain large uncertain (Chen and Frauenfeld, 2014; Fu 634 

et al. 2020; Wang and Zeng, 2012). In addition, AMIP-like model run forced by 635 

observational sea surface temperature instead of simulated counterparts probably gives 636 

rise to unreasonable regional air-sea interactions (Sperber et al., 2013), and may induce 637 

simulation biases of westerly jet or land-sea Ts contrast exist over Asian monsoon 638 

regions.  639 

Another notable issue is the simulated aerosol-radiation-cloud biases in 640 

contemporary models. Heavy aerosol loading is distributed in EC, where cloud radius 641 

and optical depth are very sensitive to aerosols (Li et al. 2016; Wu et al., 2016). Many 642 

climate models obviously underestimated the aerosol loading and optical depth over 643 
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EC (Li et al., 2014; Shindell et al., 2013). The weaker simulated aerosol optical depth 644 

can lead to weaker upward shortwave radiation at the TOA and also added large 645 

uncertainties into cloud radiative properties and lifetime. Since the outputs of CMIP6 646 

AMIP models do not include these variables associated with the cloud-aerosol 647 

interaction, detailed analysis cannot be done in this study. 648 

 649 

6. Summary and discussion 650 

This study examined TOA Rt and CREs over the TP and adjacent Asian monsoon 651 

regions in CMIP6 AMIP simulations. Our results show that specific model 652 

performances vary over the TP and adjacent EC and SA.  653 

Over the TP, most models roughly represent the distribution of Rt and NCRE but 654 

underestimate their intensity. These biases of Rt and NCRE mainly arise from their 655 

underestimated shortwave components (ASR and SWCRE). The simulated spatial 656 

reproducibility of annual mean Rt over the TP is quite lower, with a spatial correlation 657 

of 0.48 in the MME. The simulation bias and model spread of Rt over the TP are larger 658 

from February to May, indicating that the simulation uncertainty of Rt is quite large 659 

during the cold-warm transition period. Most models fail to reproduce the positive RT 660 

value over the TP in March, except for UKESM1-0-LL, ACCESS-CM2, and 661 

HadGEM3-GC31-MM. Although NorESM2-LM, HadGEM3-GC31-LL, HadGEM3-662 

GC31-MM, and CESM2 can success to capture the peak month (June) of NCRE over 663 

the TP, most models produce a late NCRE peak in July relative to the observation. This 664 

late NCRE peak month in CMIP6 simulations is more obvious in the western TP. 665 

Over EC, most models seriously underestimate the annual mean intensity of Rt and 666 

NCRE, especially over southwestern EC. The underestimated intensity of Rt is mainly 667 

caused by the overestimated ASR. Cloud radiative cooling effect dominated by 668 
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SWCRE over EC is seriously underestimated by most models from February to May 669 

when the large model spread also occurs. Only several models (e.g. ACCESS-ESM1-5, 670 

CESM2, GFDL-AM4, and MPI-ESM1-2-HR) can reasonably capture the spatial 671 

pattern and intensity of Rt (NCRE) over EC, but most models are still hard to reproduce 672 

the intensity center of NCRE (SWCRE) over southeastern EC.  673 

Over SA, most models can represent well the spatial distribution of Rt and NCRE. 674 

In contrast to EC and the TP, the biases of Rt and NCRE are mainly caused by their 675 

longwave components. The overestimated (underestimated) OLR (LWCRE) largely 676 

accounts for the underestimated (overestimated) intensity of Rt (cloud radiative cooling 677 

effect) in CMIP6 models over SA. The largest model spread of CREs occurs especially 678 

from May to September. By comparison, most models can capture well the peak months 679 

of Rt and CREs over SA.  680 

The MME in CMIP6 models can improve simulated spatial similarity and biases of 681 

Rt, NCRE, and their components over the TP and adjacent monsoon regions for annual 682 

mean and seasonal variation states. Even so, most models are hard to capture well the 683 

interannual variations of Rt and NCRE over the above three regions, with quite low 684 

monthly temporal correlations with the observations, and underestimate the intern-685 

annual intensity of NCRE and Rt over EC. Most models can reproduce well the close 686 

interannual relationship between observational NCRE and Rt over EC and SA, 687 

especially in the former, further suggesting that vital cloud radiative roles in the TOA 688 

Rt. However, the majorities of models show very low reproducibility in this interannual 689 

relationship over the TP, except for ACCESS-CM2, ACCESS-ESM1-5, MPI-ESM1-2-690 

HR, and UKESM1-0-LL. 691 

It is noteworthy that no one model has the best and most compressive simulation skill 692 

of Rt and CREs over these three sub-regions in this study. This simulation difficulty 693 
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demonstrates the complex and various cloud-radiation climatic processes in Asian 694 

monsoon regions. This study shows that the simulated Ts cold bias in CMIP6 models 695 

over the central and western TP is conducive to weaker OLR and larger surface albedo, 696 

causing larger upward shortwave radiation and weaker ASR (SWCRE). Meanwhile, 697 

considerable differences in cloud fractions, CREs, and their model performances also 698 

exist between the western and eastern TP. Further model assessment is therefore needed 699 

to well understand the simulation differences in cloud-radiation performances over the 700 

western and eastern TP. The underestimated intensity of Rt and NCRE over EC is highly 701 

correlated to underestimated low-middle cloud fractions associated with weaker 702 

regional ascending motion in current CMIP6 AMIP models. Besides, this 703 

underestimated cloud radiative cooling effect is also very likely related to large 704 

uncertainties in aerosol-cloud-radiation effects over EC where heavy aerosol loading is 705 

distributed (Gettelman and Sherwood, 2016; Li et al., 2016; Wu et al. 2016). Over SA, 706 

the underestimated HCF and OLR are related to weaker deep convection, which is 707 

probably caused by inappropriate convective parameterizations in present climate 708 

models. These biases and difficulties of cloud-radiation simulation should be further 709 

examined over the TP and adjacent monsoon regions with complex topography using 710 

more reliable reanalyzed meteorological and satellite-retrieved data. 711 
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Tables 967 

Table 1. CMIP6 AMIP models used in this study. The model with an arterisk has the 968 

satellite simulator output. 969 

Table 2. Abbreviations of variable names used in this study. 970 

Table 3. Annual mean top-of-atmosphere (TOA) radiation fluxes and cloud radiative 971 

effects (CREs) from CERES-EBAF averaged over Eastern China (EC: 22-32° N, 102-972 

122° E), South Asia (SA: 15.5-25.5° N, 80-100° E) and the Tibetan Plateau (TP: 27.5-973 

37.5° N, 80-100° E). Units: W m−2. 974 

Table 4. The regional mean TOA radiation fluxes and CREs (W m−2) from Multi-model 975 

mean (MME), their overall bias (W m−2) and relative bias (RB) relative to observations, 976 

and spatial pattern correlation coefficient (PCC) between MME and the observation 977 

over EC, SA and the TP.  978 

Table 5. The standard deviation (STD) of monthly Rt and NCRE from the observation 979 

and CMIP6 MME, respectively, and the temporal correlation coefficients between 980 

MME and the observation averaged over EC, SA and the TP during 2001-2014. 981 
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Figures 984 

Figure 1. Distribution of annual mean (a-b) top-of-atmosphere (TOA) Radiation budget 985 

(Rt; unit: W m-2) and net cloud radiative effect (NCRE; unit: W m-2) from CERES-986 

EBAF, and (c) topography (m). In (c), three black boxes denote Eastern China (EC: 22-987 

32° N, 102-122° E), South Asia (SA: 15.5-25.5° N, 80-100° E) and the Tibetan Plateau 988 

(TP: 27.5-37.5° N, 80-100° E), respectively.  989 

Figure 2. Distribution of (a-g) TOA incident solar radiation (ASR; unit: W m−2), 990 

outgoing longwave radiation (OLR; unit: W m−2), surface albedo, shortwave cloud 991 

radiative effect (SWCRE; unit: W m−2), longwave cloud radiative effect (LWCRE; unit: 992 

W m−2) from CERES-EBAF during 2001-2014 and total cloud fraction (TCF; unit: %) 993 

from GOCCP during 2007-2014. 994 

Figure 3. Distribution of annual mean Rt (W m-2) simulated by (a-bb) CMIP6 AMIP 995 

models and MME, and (cc) in the observation during 2001-2014. 996 

Figure 4. Annual mean (a, b, c) TOA Rt, ASR (W m-2) and OLR (W m-2) simulated by 997 

CMIP6 AMIP models and MME, and in the observation averaged over EC (Figures 5a, 998 

d, g), SA (Figures 5b, e, h) and the TP (Figures 5c, f, i). Here, red and blue lines denote 999 

the observation and MME, respectively. 1000 

Figure 5. Pattern correlation coefficient and standard center RMSE between annual 1001 

mean CMIP6 AMIP model and observational counterparts for TOA Rt, ASR and OLR 1002 

over EC (Figures 6a, b, c), SA (Figures 6d, e, f) and the TP (Figures 6g, h, i). The center 1003 

RMSE from a specific model is divided by the STD of observational counterpart. 1004 

Figure 6. Distribution of annual mean NCRE (W m-2) simulated by (a-bb) CMIP6 1005 

AMIP models and MME, and (cc) in the observation during 2001-2014. 1006 



39 
 

Figure 7. Annual mean (a, b, c) NCRE, SWCRE and LWCRE simulated by CMIP6 1007 

AMIP models and MME (unit: W m−2), and in the observation averaged over EC 1008 

(Figures 7a, d, g), SA (Figures 7b, e, h) and the TP (Figures 7c, f, i). Here, red and blue 1009 

lines denote the observation and MME, respectively. 1010 

Figure 8. Pattern correlation coefficient and standard center RMSE between annual 1011 

mean CMIP6 AMIP model and observational counterparts for NCRE, SWCRE and 1012 

LWCRE over EC (Figures 8a, b, c), SA (Figures 8d, e, f) and the TP (Figures 8g, h, i). 1013 

Figure 9. Seasonal cycles of simulated monthly and regional mean (a, d, and g) Rt, (b, 1014 

e, and h) ASR, and (c, f, and i) OLR (unit: W m−2) averaged over EC (Figures 9a–9c), 1015 

SA (Figures 9d–9f), and the TP (Figures 9g–9i). The red and black solid lines denote 1016 

the observation and MME, respectively. The black box indicates the standard deviation 1017 

among the models. Here, the period is 2001-2014. The number at x axis is the month 1018 

number. 1019 

Figure 10. Pattern correlation coefficient and standard RMSE between annual cycles 1020 

of CMIP6 AMIP model and observational counterparts for TOA Rt, ASR and OLR over 1021 

EC (Figures 11a-11c), SA (Figures 11d-11f) and the TP (Figures 11g-11i) during 2001-1022 

2014. The center RMSE from a specific model is divided by the STD of observational 1023 

counterpart. 1024 

Figure 11. Seasonal cycles of simulated monthly and regional mean (a, d, and g) NCRE, 1025 

(b, e, and h) SWCRE, and (c, f, and i) LWCRE (unit: W m−2) averaged over EC (Figures 1026 

10a–10c), SA (Figures 10d–10f), and the TP (Figures 10g–10i). The red and black solid 1027 

lines denote the observation and MME, respectively. The black box indicates the 1028 

standard deviation among the models. The number at x axis is the month number. 1029 

Figure 12. Pattern correlation coefficient and standard RMSE between annual cycles 1030 
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of CMIP6 AMIP model and observational counterparts for NCRE, SWCRE and 1031 

LWCRE over EC (Figures 12a-12c), SA (Figures 12d-12f) and the TP (Figures 12g-12i) 1032 

during 2001-2014. The center RMSE from a specific model is divided by the STD of 1033 

observational counterpart. 1034 

Figure 13. Distribution of annual mean biases of (a-i) Rt, ASR, OLR, RSUT, RSUTCS, 1035 

OLRC, NCRE, SWCRE and LWCRE (unit: W m−2) during 2001-2014 simulated from 1036 

CMIP6 AMIP MME. 1037 

Figure 14. Seasonal cycles of monthly and regional mean (a, b, and c) TCF and (d, e, 1038 

and f) HCF (unit: %) averaged over EC (Figures 14a, 14d), SA (Figures 14b, 14e), and 1039 

the TP (Figures 14c, 14f) simulated by 9 CMIP6 models with satellite simulator output 1040 

during 2007-2014. The red and black solid lines denote the observation and MME, 1041 

respectively. The black box indicates the standard deviation among the models. The 1042 

number at x axis is the month number. 1043 

Figure 15. Distribution of (a-c) NCRE, SWCRE and LWCRE (W m−2) in CMIP6 AMIP 1044 

MME with satellite simulator output, and differences in (a-f) TCF, LCF, HCF (%), 1045 

NCRE, SWCRE and LWCRE (W m−2) between CMIP6 AMIP MME with satellite 1046 

simulator output and GOCCP during 2007-2014. 1047 

Figure 16. Distribution of (a-b) observational circulation condition and surface 1048 

temperature (K), and (c-d) their differences between CMIP6 AMIP MME with satellite 1049 

simulator output and the counterparts from ERA-Interim reanalysis during 2007-2014. 1050 

In (a) and (c), black contours represent 200-hPa zonal wind speed (m s−1) or its 1051 

simulated biases relative to ERA-Interim analysis; arrows represent the 850-hPa wind 1052 

field, with the graphic at top right showing an arrow corresponding to 5 (2) m s–1; the 1053 

black counter represents the TP topography (>3000m). 1054 
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 1055 

Table 1. CMIP6 AMIP models used in this study. The model with an arterisk has the satellite 1056 

simulator output. 1057 

 1058 

Model ID Model name Spatial resolution (Lat×Lon: degree) 

1 ACCESS-CM2 1.25×1.875 

2 ACCESS-ESM1-5 1.25×1.875 

3 BCC-CSM2-MR 1.12×1.125 

4 BCC-ESM1 2.79×2.8125 

5 CanESM5 2.79×2.8125 

6 CAMS-CSM1-0 1.12×1.125 

7 CESM2* 0.9424×1.25 

8 CNRM-CM6-1 1.40×1.40625 

9 CNRM-CM6-1-HR 0.50×0.50 

10 CNRM-ESM2-1* 1.40×1.40625 

11 E3SM-1-0* 1.0×1.0 

12 FGOALS-f3-L 1.0×1.25 

13 FGOALS-g3 2.0×2.025 

14 GFDL-AM4 1.0×1.25 

15 GISS-E2-1 1.0×2.5 

16 HadGEM3-GC31-LL 1.25×1.875 

17 HadGEM3-GC31-MM* 0.56×0.83 

18 INM-CM5-0 2.0×1.5 

19 IPSL-CM6A-LR* 1.2676×2.5 

20 KACE-1-0-G 1.25×1.875 

21 MIROC6* 1.4007×1.40625 

22 MRI-ESM2-0* 1.1214×1.125 

23 MPI-ESM1-2-HR 0.935×0.9375 

24 NESM3 1.865×1.875 

25 NorESM2-LM* 1.8947×2.5 

26 SAM0-UNICON 0.9424×1.25 

27 UKESM1-0-LL* 1.25×1.875 

 1059 

  1060 
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 1061 

Table 2. Abbreviations of variable names used in this study. 1062 

 1063 

Variable name Physical meaning Unit Sign 

TOA Top of atmosphere None None 

LWCRE Longwave cloud radiation effect W m−2 + 

SWCRE Shortwave cloud radiation effect W m−2 − 

NCRE Net cloud radiation effect W m−2 
Generally, 

minus 

ASR TOA net incident shortwave radiation W m−2 + 

OLR 
Outgoing longwave radiation flux at the TOA under 

all-sky condition 
W m−2 + 

OLRCS 
Outgoing longwave radiation flux at the TOA under 

clear-sky condition 
W m−2 + 

RSDT Incident solar radiation at the TOA W m−2 + 

RSUT 
Outgoing shortwave radiation fluxe at the TOA 

under all-sky condition 
W m−2 + 

RSUTCS 
Outgoing shortwave radiation fluxe at the TOA 

under clear-sky condition 
W m−2 + 

Rt 
Radiation budget (equal to net radiation flux) at the 

TOA 
W m−2 

Regional 

dependency 

W500 500-hPa vertical velocity hPa d−1 − 

TCF Total cloud fraction % + 

HCF High cloud fraction % + 

MCF Middle cloud fraction % + 

LCF Low cloud fraction % + 

PCC Pattern correlation coefficient None None 

RB Relative bias None None 

RMSE Root-mean-square-error None None 

STD Standard deviation None None 

BOB the Bay of Bagel None None 

EC Eastern China None None 

SA South Asia None None 

TP Tibetan Plateau None None 

GPCP Global Precipitation Climatology Project None None 

AMIP Atmospheric Model Intercomparison Project None None 

MME Multi-model mean None None 

 1064 

  1065 
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 1066 

Table 3. Annual mean top-of-atmosphere (TOA) radiation fluxes and cloud radiative 1067 

effects (CREs) from CERES-EBAF averaged over Eastern China (EC: 22-32° N, 102-1068 

122° E), South Asia (SA: 15.5-25.5° N, 80-100° E) and the Tibetan Plateau (TP: 27.5-1069 

37.5° N, 80-100° E). Units: W m−2. 1070 

 1071 

 EC SA TP 

RSDT 374.1 391.1 356.4 

ASR 231.8 281.9 228.0 

RSUT 142.3 109.3 128.4 

OLR 243.8 253.1 220.3 

Rt -12.0 28.8 7.7 

LWCRE 34.8 37.8 28.3 

SWCRE -83.2 -50.1 -53.0 

NCRE -48.5 -12.3 -24.7 

 1072 

  1073 
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 1074 

Table 4. The regional mean TOA radiation fluxes and CREs (W m−2) from Multi-model 1075 

mean (MME), their overall bias (W m−2) and relative bias (RB) relative to observations, 1076 

and spatial pattern correlation coefficient (PCC) between MME and the observation 1077 

over EC, SA and the TP. 1078 

 1079 

MME Metrics EC SA TP 

Rt Mean/Bias 1.0/13.0 26.0/-2.8 3.7/-4.0 
 RB -108.6% -9.6% -52.5% 
 PCC 0.76 0.94 0.48 

ASR Mean/Bias 246.6/14.8 282.5/0.6 217.9/-10.2 
 RB 6.4% 0.2% -4.5% 
 PCC 0.89 0.95 0.66 

OLR Mean/Bias 245.6/1.8 256.5/3.4 214.2/-6.1 
 RB 0.7% 1.3% -2.8% 
 PCC 0.94 0.83 0.94 

OLRC Mean/Bias 269.8/-8.7 285.0/-5.9 238.5/-10.1 
 RB -3.1% -2.0% -4.1% 
 PCC 0.97 0.96 0.92 

RSUT Mean/Bias 127.5/-14.8 108.8/-0.5 138.6/10.2 
 RB -10.4% 0.5% 8.0% 
 PCC 0.83 0.89 0.50 

RSUTC Mean/Bias 53.2/7.2 61.6/2.4 96.8/21.4 
 RB 12.2% 4.1% 28.3% 
 PCC 0.86 0.95 0.68 

NCRE Mean/Bias -37.0/11.5 -18.6/-6.4 -17.5/7.2 
 RB -23.8% 51.8% -29.2% 
 PCC 0.59 0.74 0.87 

SWCRE Mean/Bias -61.2/22.0 -47.2/2.9 -41.8/11.2 
 RB -26.4% -5.9% -21.1% 
 PCC 0.52 0.77 0.92 

LWCRE Mean/Bias 24.3/-10.5 28.5/-9.3 24.4/-4.0 
 RB -30.1% -24.6% -14.0% 
 PCC 0.31 0.75 0.61 

 1080 

  1081 
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 1082 

Table 5. The standard deviation (STD) of monthly Rt and NCRE from the observation 1083 

and CMIP6 MME, respectively, and the temporal correlation coefficients between 1084 

MME and the observation averaged over EC, SA and the TP during 2001-2014. 1085 

 1086 

 
Rt STD 

(W m−2) 

NCRE STD 

(W m−2) 

Correlation between Rt 

and NCRE 

 OBS MME OBS MME OBS MME 

EC 7.76 2.14 8.53 2.43 0.93 0.85 

SA 4.19 2.19 3.72 1.58 0.73 0.67 

TP 3.64 1.19 4.67 1.04 0.75 0.42 

 1087 

  1088 
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 1089 

 1090 

 1091 

Figure 1. Distribution of annual mean (a-b) top-of-atmosphere (TOA) Radiation budget 1092 

(Rt; unit: W m-2) and net cloud radiative effect (NCRE; unit: W m-2) from CERES-1093 

EBAF, and (c) topography (m). In (c), three black boxes denote Eastern China (EC: 22-1094 

32° N, 102-122° E), South Asia (SA: 15.5-25.5° N, 80-100° E) and the Tibetan Plateau 1095 

(TP: 27.5-37.5° N, 80-100° E), respectively.  1096 

 1097 

  1098 

(a)

(b)

(c)
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 1099 

 1100 

 1101 

Figure 2. Distribution of (a-g) TOA incident solar radiation (ASR; unit: W m−2), 1102 

outgoing longwave radiation (OLR; unit: W m−2), surface albedo, shortwave cloud 1103 

radiative effect (SWCRE; unit: W m−2), longwave cloud radiative effect (LWCRE; unit: 1104 

W m−2) from CERES-EBAF during 2001-2014 and total cloud fraction (TCF; unit: %) 1105 

from GOCCP during 2007-2014. 1106 

 1107 

  1108 

(a)

(d) (e)

(b) (c)

(f)
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 1109 

 1110 
 1111 

Figure 3. Distribution of annual mean Rt (W m-2) simulated by (a-bb) CMIP6 AMIP 1112 

models and MME, and (cc) in the observation during 2001-2014. 1113 

 1114 

  1115 
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 1116 

 1117 

 1118 

Figure 4. Annual mean (a, b, c) TOA Rt, ASR (W m-2) and OLR (W m-2) simulated by 1119 

CMIP6 AMIP models and MME, and in the observation averaged over EC (Figures 5a, 1120 

d, g), SA (Figures 5b, e, h) and the TP (Figures 5c, f, i). Here, red and blue lines denote 1121 

the observation and MME, respectively. 1122 
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 1125 

 1126 

 1127 

Figure 5. Pattern correlation coefficient and standard center RMSE between annual 1128 

mean CMIP6 AMIP model and observational counterparts for TOA Rt, ASR and OLR 1129 

over EC (Figures 6a, b, c), SA (Figures 6d, e, f) and the TP (Figures 6g, h, i). The center 1130 

RMSE from a specific model is divided by the STD of observational counterpart. 1131 
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 1133 

 1134 
 1135 

Figure 6. Distribution of annual mean NCRE (W m-2) simulated by (a-bb) CMIP6 1136 

AMIP models and MME, and (cc) in the observation during 2001-2014. 1137 

 1138 

  1139 
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 1140 

 1141 

 1142 

Figure 7. Annual mean (a, b, c) NCRE, SWCRE and LWCRE simulated by CMIP6 1143 

AMIP models and MME (unit: W m−2), and in the observation averaged over EC 1144 

(Figures 7a, d, g), SA (Figures 7b, e, h) and the TP (Figures 7c, f, i). Here, red and blue 1145 

lines denote the observation and MME, respectively. 1146 
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 1149 

 1150 

 1151 

Figure 8. Pattern correlation coefficient and standard center RMSE between annual 1152 

mean CMIP6 AMIP model and observational counterparts for NCRE, SWCRE and 1153 

LWCRE over EC (Figures 8a, b, c), SA (Figures 8d, e, f) and the TP (Figures 8g, h, i). 1154 

 1155 

  1156 
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 1157 

 1158 

 1159 

Figure 9. Seasonal cycles of simulated monthly and regional mean (a, d, and g) Rt, (b, 1160 

e, and h) ASR, and (c, f, and i) OLR (unit: W m−2) averaged over EC (Figures 9a–9c), 1161 

SA (Figures 9d–9f), and the TP (Figures 9g–9i). The red and black solid lines denote 1162 

the observation and MME, respectively. The black box indicates the standard deviation 1163 

among the models. Here, the period is 2001-2014. The number at x axis is the month 1164 

number. 1165 

 1166 

  1167 
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 1168 

 1169 

 1170 

Figure 10. Pattern correlation coefficient and standard RMSE between annual cycles 1171 

of CMIP6 AMIP model and observational counterparts for TOA Rt, ASR and OLR over 1172 

EC (Figures 11a-11c), SA (Figures 11d-11f) and the TP (Figures 11g-11i) during 2001-1173 

2014. The center RMSE from a specific model is divided by the STD of observational 1174 

counterpart. 1175 
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 1177 

 1178 
 1179 

Figure 11. Seasonal cycles of simulated monthly and regional mean (a, d, and g) NCRE, 1180 

(b, e, and h) SWCRE, and (c, f, and i) LWCRE (unit: W m−2) averaged over EC (Figures 1181 

10a–10c), SA (Figures 10d–10f), and the TP (Figures 10g–10i). The red and black solid 1182 

lines denote the observation and MME, respectively. The black box indicates the 1183 

standard deviation among the models. The number at x axis is the month number. 1184 

 1185 
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 1187 

 1188 

 1189 

Figure 12. Pattern correlation coefficient and standard RMSE between annual cycles 1190 

of CMIP6 AMIP model and observational counterparts for NCRE, SWCRE and 1191 

LWCRE over EC (Figures 12a-12c), SA (Figures 12d-12f) and the TP (Figures 12g-12i) 1192 

during 2001-2014. The center RMSE from a specific model is divided by the STD of 1193 

observational counterpart. 1194 
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 1199 

 1200 

 1201 

Figure 13. Distribution of annual mean biases of (a-i) Rt, ASR, OLR, RSUT, RSUTCS, 1202 

OLRC, NCRE, SWCRE and LWCRE (unit: W m−2) during 2001-2014 simulated from 1203 

CMIP6 AMIP MME. 1204 

 1205 

  1206 
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 1207 

 1208 

 1209 

Figure 14. Seasonal cycles of monthly and regional mean (a, b, and c) TCF and (d, e, 1210 

and f) HCF (unit: %) averaged over EC (Figures 14a, 14d), SA (Figures 14b, 14e), and 1211 

the TP (Figures 14c, 14f) simulated by 9 CMIP6 models with satellite simulator output 1212 

during 2007-2014. The red and black solid lines denote the observation and MME, 1213 

respectively. The black box indicates the standard deviation among the models. The 1214 

number at x axis is the month number. 1215 
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 1218 

 1219 

 1220 

Figure 15. Distribution of (a-c) NCRE, SWCRE and LWCRE (W m−2) in CMIP6 AMIP 1221 

MME with satellite simulator output, and differences in (d-f) NCRE, SWCRE, LWCRE 1222 

(W m−2), TCF, LCF and HCF (%) between CMIP6 AMIP MME with satellite simulator 1223 

output and GOCCP during 2007-2014. 1224 

 1225 

  1226 
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 1227 

 1228 
 1229 

Figure 16. Distribution of (a-b) observational circulation condition and surface 1230 

temperature (K), and (c-d) their differences between CMIP6 AMIP MME with satellite 1231 

simulator output and the counterparts from ERA-Interim reanalysis during 2007-2014. 1232 

In (a) and (c), black contours represent 200-hPa zonal wind speed (m s−1) or its 1233 

simulated biases relative to ERA-Interim analysis; arrows represent the 850-hPa wind 1234 

field, with the graphic at top right showing an arrow corresponding to 5 (2) m s–1; the 1235 

black counter represents the TP topography (>3000m). 1236 

 1237 


