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Abstract

The sustainable management of groundwater demands a faithful characterization of the subsurface. This, in turn, requires

information which is generally not readily available. To bridge the gap between data need and availability, numerical models are

often used to synthesize plausible scenarios not only from direct information but also additional, indirect data. Unfortunately, the

resulting system characterizations will rarely be unique. This poses a challenge for practical parameter inference: Computational

limitations often force modelers to resort to methods based on questionable assumptions of Gaussianity, which do not reproduce

important facets of ambiguity such as Pareto fronts or multi-modality. In search of a remedy, an alternative could be found

in Stein Variational Gradient Descent, a recent development in the field of statistics. This ensemble-based method iteratively

transforms a set of arbitrary particles into samples of a potentially non-Gaussian posterior, provided the latter is sufficiently

smooth. A prerequisite for this method is knowledge of the Jacobian, which is usually exceptionally expensive to evaluate. To

address this issue, we propose an ensemble-based, localized approximation of the Jacobian. We demonstrate the performance

of the resulting algorithm in two cases: a simple, bimodal synthetic scenario, and a complex numerical model based on a

real-world, pre-alpine catchment. Promising results in both cases - even when the ensemble size is smaller than the number of

parameters - suggest that Stein Variational Gradient Descent can be a valuable addition to hydrogeological parameter inference.
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Key Points: 14 

• This manuscript explores Stein Variational Gradient Descent (SVGD) for parameter 15 

inference in hydrogeological models 16 

• We introduce an ensemble-based Jacobian approximation and test the algorithm in a 17 

synthetic and a real test case 18 

• The algorithm performs well in high-dimensional and multi-modal, non-Gaussian settings 19 
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Abstract 21 

The sustainable management of groundwater demands a faithful characterization of the subsurface. This, in turn, 22 

requires information which is generally not readily available. To bridge the gap between data need and availability, 23 

numerical models are often used to synthesize plausible scenarios not only from direct information but also additional, 24 

indirect data. Unfortunately, the resulting system characterizations will rarely be unique. This poses a challenge for 25 

practical parameter inference: Computational limitations often force modelers to resort to methods based on 26 

questionable assumptions of Gaussianity, which do not reproduce important facets of ambiguity such as Pareto fronts 27 

or multi-modality. In search of a remedy, an alternative could be found in Stein Variational Gradient Descent, a recent 28 

development in the field of statistics. This ensemble-based method iteratively transforms a set of arbitrary particles 29 

into samples of a potentially non-Gaussian posterior, provided the latter is sufficiently smooth. A prerequisite for this 30 

method is knowledge of the Jacobian, which is usually exceptionally expensive to evaluate. To address this issue, we 31 

propose an ensemble-based, localized approximation of the Jacobian. We demonstrate the performance of the resulting 32 

algorithm in two cases: a simple, bimodal synthetic scenario, and a complex numerical model based on a real-world, 33 

pre-alpine catchment. Promising results in both cases – even when the ensemble size is smaller than the number of 34 

parameters – suggest that Stein Variational Gradient Descent can be a valuable addition to hydrogeological parameter 35 

inference. 36 
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1 Introduction 38 

Parameter estimation for numerical models can synthesize different types of information into a physically plausible 39 

narrative. This is of particular relevance for the discipline of hydrogeology, where informed management demands 40 

detailed knowledge of the system, but direct measurements of the relevant subsurface properties are scarce and often 41 

of limited spatial representativeness (e.g., Rubin, 2003). The process of inferring subsurface properties from dependent 42 

information such as hydraulic head, chemical concentrations, or flow is known as inverse modelling (e.g., Carrera et 43 

al., 2005). 44 

Unfortunately, as a consequence of the exceptional complexity of many hydrogeological systems (Figure 1), there 45 

usually exists more than a single plausible explanation for the observed data (Linde et al., 2015, 2017; Moeck et al., 46 

2020). Variations in aquifer depth, sediment properties, atmospheric and hydrogeological forcing, anthropogenic 47 

influences, and complex geological features interact with each other and can create similar hydraulic responses in 48 

different arrangements. The consequence of this has been summarized succinctly by Poeter & Townsend (1994): “A 49 

true evaluation of the possible subsurface configurations and their impact on the decision at hand is the only honest 50 

approach to groundwater analyses.” and hence surmised that “The era of drawing conclusions on the basis of 51 

deterministic flow and transport models has come to a close”.  52 



Where deterministic models only seek a single promising model configuration, stochastic approaches based on 53 

Bayesian statistics explore multiple alternative configurations at once. This process hopes to identify ambiguities in 54 

order to endow model predictions with reliable uncertainty estimates. Unfortunately, 25 years later, Poeter & 55 

Townsend (1994)’s prediction has yet to fully come to pass. While the need for probabilistic groundwater models has 56 

been widely acknowledged (e.g., Cirpka & Valocchi, 2016; Renard, 2007; Sanchez-Vila & Fernàndez-Garcia, 2016), 57 

the complexity of representing the hydrogeological system – and, by consequence, its uncertainties – remains an 58 

obstacle for the wide-scale adoption of Bayesian methods. 59 

In Bayesian statistics, the plausibility of different narratives – as defined by model parameterizations – is represented 60 

through probability density functions (pdf). Bayes’ theorem formalizes the synthesis of a so-called posterior from 61 

 

Figure 1. Complex and interacting aspects in a mountainous hydrogeological system. When the presence, properties, and 

extent of these aspects is not sufficiently quantified, they become sources of uncertainty for hydrogeological models. 



initial belief (the prior) and new data (the likelihood). Since it has no analytical solution in the general case, its practical 62 

use often demands approximations and simplifications. Among the most elegant is Gaussianity, which permits an 63 

analytical solution provided that the numerical model is linear, and that all pdfs involved are Gaussian. This 64 

assumption underlies the popular Ensemble Kalman Filter (EnKF: Evensen, 1994, 2003), which has proven easy to 65 

implement and highly robust to small ensemble sizes. As a consequence, it quickly gained popularity in the 66 

hydrogeological community (e.g., Gu & Oliver, 2007; Hendricks Franssen et al., 2011; Keller et al., 2018; Reichle et 67 

al., 2002). Unfortunately, the assumption of Gaussianity implies both unimodality (there exists a single most probable 68 

solution) and full support (no solution is impossible). Both assumptions are potentially problematic: the former 69 

because it cannot adequately represent the existence of distinct, equivalent solutions in the form of Pareto fronts or 70 

separate probability modes; the latter for parameters with strict physical limits. 71 

It may seem expedient, then, to turn our attention to more general approaches such as Markov Chain Monte Carlo 72 

(MCMC: e.g., Foreman-Mackey et al., 2013; Smith & Marshall, 2008) or particle filters (PF: e.g., van Leeuwen, 2009; 73 

van Leeuwen et al., 2019). These methods can theoretically approximate arbitrary distributions but suffer from 74 

practical limitations of their own. Fundamentally, both methods suffer in systems with high-dimensionality, although 75 

the specific symptoms vary: MCMC methods often display large autocorrelations if the proposal distributions are not 76 

sufficiently well-tuned, which reduces the sample generation efficiency significantly. Possible remedies are found in 77 

Hamiltonian Monte Carlo (e.g., Betancourt, 2018), which exploit Jacobian information, or approaches like the affine-78 

invariant ensemble sampler for MCMC emcee (Foreman-Mackey et al., 2013), which can restrict itself to a limited 79 

subspace. The ensembles of PFs, on the other hand, tend to quickly degenerate and collapse in high-dimensional 80 

systems (e.g., Arulampalam et al., 2002; Bengtsson et al., 2008), and may require pragmatic solutions which threaten 81 

to corrupt the inference (Moradkhani et al., 2005; Ramgraber et al., 2019; Vrugt et al., 2013). As such, these 82 

computational limitations render both methods less efficient in systems with limited computational resources than 83 

comparable Gaussian-based approaches. 84 

In search of a free lunch, we would desire an inference algorithm which combines the strengths of the above: the 85 

efficiency and robustness of the EnKF in face of small ensemble sizes, and the PF’s/MCMC’s ability to explore non-86 

Gaussian distributions. Stein Variational Gradient Descent (Liu & Wang, 2016), a relatively recent development in 87 

the computational sciences, may be an interesting step in this direction. Based on Kernelized Stein Discrepancy 88 

(Chwialkowski et al., 2016; Liu et al., 2016), it yields a surprisingly simple gradient descent algorithm capable of 89 



iteratively transforming an arbitrary ensemble of particles into samples of the posterior. With a few small adjustments, 90 

we shall see that it can share the EnKF’s ability to scale the complexity of the inference problem by restricting the 91 

analysis to a parameter-subspace whose dimensionality depends on the number of available particles, while at the 92 

same time being able to approximate non-Gaussian distributions. In the following, we will re-derive the algorithm, 93 

then propose adaptations and approximations required to render it tractable in practice. Afterwards, we will 94 

demonstrate its performance in a simple, bi-modal synthetic scenario, as well as in a highly complex pre-alpine 95 

catchment. Finally, we will discuss the results and provide an outlook for future research. First, however, we will 96 

present the nomenclature used in this study. 97 

  98 



2 Theory 99 

2.1 Nomenclature 100 

In this study, we will use bold font to denote vectors or matrices and will refer to column vectors (� = ���, … , ��	⟙) 101 

unless otherwise specified. The symbol � denotes the vector of model parameters, and the variable � denotes model 102 

states. Data or observations are represented by �. Standard font (e.g., �) refers to scalar-valued variables. For 103 

functions, we shall refer to the function as an object by 
, and to its output by 
���. Functions with multiple arguments 104 

(e.g., ���, ���), for which one argument is assumed fixed, are denoted by a dot in its arguments (e.g., ��∙, ��� for fixed 105 

��). ‖�‖ refers to the norm and |�| to the absolute value of �. Superscripts in parentheses ���� refer to the �-th entry 106 

of �. Capitalized roman normal symbols refer to integer variables: � to the dimensionality of parameter space (number 107 

of model parameters), � to the dimensionality of observation space (number of state observations), and � to the 108 

number of particles (ensemble size). 109 

2.2 Stein Variational Gradient Descent 110 

In the following, we will present the Stein Variational Gradient Descent (SVGD) algorithm following the derivations 111 

outlined in Liu et al. (2016) and Liu & Wang (2016). In short, SVGD iteratively transforms samples of an arbitrary 112 

reference distribution into samples of the posterior. This process may bear superficial similarity to filter techniques, 113 

but is based on a crucial difference: instead of sequentially adding information through re-weighting steps (think 114 

treasure map: specifying the steps to the target one by one), it ‘homes in’ on the posterior distribution iteratively (think 115 

navigation system: constantly reorienting itself towards the target).  116 

The algorithm is based on an incremental particle flow which iteratively transforms an ensemble of initial samples 117 

into posterior samples: 118 

�� = ������� = ���� + ��∗������ 
1 

where the subscript   denotes the current iteration number, � is a small scalar increment, and �∗: ℝ# → ℝ# is a vector 119 

field whose pointwise evaluations �∗������ designate the flow direction for each particle. 120 

This vector field �∗ is the key ingredient of SVGD. As we shall see in the following, it can be found through a function 121 

optimization on the space of vector fields/infinitesimal transformations. We identify the infinitesimal transformation 122 

that maximally reduces the Kullback-Leibler divergence (KLD) to the target posterior. The associated vector field 123 



thus corresponds to the negative functional gradient of the KLD, and its norm defines a discrepancy measure called 124 

the Kernelized Stein Discrepancy (KSD). The resulting equation for �∗ is surprisingly simple, providing the particle 125 

flow directions for an infinitesimally small step towards the posterior distribution. However, in order to understand 126 

the derivation of the algorithm, we must introduce the concept of a Reproducing Kernel Hilbert Space (RKHS). 127 

2.2.1 Reproducing Kernel Hilbert Spaces 128 

RKHS are special, infinite-dimensional function spaces with several properties which make them interesting for 129 

functional optimization tasks – tasks, in which we want to find functions which fulfil certain requirements. There are 130 

several different ways to define a RKHS ℋ. In this study, we adopt the definition used in Liu et al. (2016). This 131 

definition is based on the spectral decomposition of a positive definite, symmetric kernel ���, ���: ℝ# × ℝ# → ℝ. An 132 

example of such a kernel is the radial basis function (RBF) kernel: 133 

���, ��� = exp *− ‖� − ��‖,
2ℎ, / 

2 

where ℎ, is the kernel’s bandwidth. Kernels can be regarded as similarity metrics between two particles � and ��: if 134 

the particles are identical, the kernel yields 1, and the more different they are, the closer the kernel’s output will be to 135 

zero. According to Mercer’s theorem, any symmetric, positive semi-definite kernel is associated with an inner product 136 

on some Hilbert space ℋ, obtained through spectral decomposition of the Hilbert-Schmidt integral operator (e.g., 137 

Schölkopf & Smola, 2001; Werner, 2018): 138 

���, ��� = 1 2343���43����
5

36�
 

3 

This expresses the kernel as an infinite series of orthonormal eigenfunctions 43 and eigenvalues 23. These 139 

eigenfunctions can be interpreted as an orthonormal basis spanning up an infinite-dimensional RKHS ℋ which 140 

comprises of linear combinations of its eigenfunctions 7��� = ∑ 7343���536�  with ∑ 73, 239536� < ∞ and an inner 141 

product 〈7, =〉ℋ = ∑ 73=3 23⁄536�  between 7��� and =��� = ∑ =343���536� . This also defines a norm ‖7‖ℋ where 142 

‖7‖ℋ, = 〈7, 7〉ℋ = ∑ 73, 239536� .  143 

Equation 3 may then be interpreted as an inner product between two vectors @�∙, �� and @�∙, ��� in ℋ. Since their 144 

embedding space ℋ is infinite-dimensional, these vectors will have infinitely many entries: 145 

@��,∙� = AB2�4����, … , B2545���C⟙
 

4 



@�∙, ��� = AB2�4�����, … , B2545����C⟙
 5 

Why is this useful? In machine learning literature, particularly for classification tasks (e.g., support vector machines: 146 

Schölkopf & Smola, 2001), it is common to extract features (here: B2343���) from an input data set (here: �). The 147 

larger the amount of independent, extracted features, the easier the classification becomes. In a RKHS, the number of 148 

these features is infinite. And if the only operation on these features required is an inner product, we need not even 149 

compute them – an evaluation of the kernel would yield the desired result. We can verify that an inner product between 150 

Equation 4 and Equation 5 yields Equation 3, and retrieve one of the fundamental properties of a RKHS ℋ: 151 

���, ��� = 〈@��,∙�, @�∙, ���〉ℋ = 1 B2343���B2343����
5

36�
= 1 2343���43����

5

36�
 

6 

For the purpose of functional optimization, we are interested in the functions defined in the RKHS. ℋ contains scalar-152 

valued functions  7 mapping from the parameter space (7: ℝ# → ℝ) which are constructed through linear 153 

combinations of its basis, the eigenfunctions: 154 

7��� = 1 7343���
5

36�
 

7 

where 73 are arbitrary real scalars. These functions are uniquely defined by a vector 
�∙� in ℋ 155 


�∙� = A7�/B2�, … , 75/B25CF
 

8 

and can be retrieved by taking an inner product with Equation 5 (replacing �� with �). This defines the RKHS’s 156 

eponymous reproducing property: 157 

7��� = 〈
�∙�, @�∙, ��〉ℋ = 1 73
B23

B2343���
5

36�
= 1 7343���

5

36�
 

9 

With the fundamentals of RKHS defined, let us proceed to the derivation of the algorithm. 158 

2.2.2 Deriving the algorithm 159 

SVGD is derived from a metric called Kernelized Stein Discrepancy (KSD: Chwialkowski et al., 2016; Liu et al., 160 

2016) G�H||I� between two probability distributions H and I. This metric yields a measure of discrepancy between 161 

the two distributions, provided that we have an ensemble of samples from H and are able to evaluate the gradient of 162 

the logarithm of I at least pointwise. In our application, H will always be some intermediate distribution from which 163 

we assume our samples are drawn, and I will be the target posterior.  164 



G�H||I� = max�∈ℱ NOP�~RAtrace VW����CX,Y 
10 

In Equation 10, P�~R refers to the expectation under the assumption that the particles � are sampled from H, � is a 165 

vector field on parameter space, representing an infinitesimal transformation, and VW is a linear operator: 166 

VW���� = �����Z� log I���	⟙ + Z����� 
11 

where Z� = A^ ^����⁄ , … , ^ ^����⁄ C⟙
 denotes the partial derivative operator evaluated at �. We have provided a 167 

detailed derivation of Equation 10 in Appendix 1 (Supporting Information). The challenging part in Equation 10 is 168 

the functional optimization, specifically the need to find the vector field �∗ which maximizes the violation of Stein’s 169 

identity. Fortunately, this is where the properties of the RKHS prove advantageous. If we assume the family of 170 

functions ℱ are the functions we can define in a RKHS (Equation 8 and 9), the functional optimization in Equation 10 171 

has a closed-form solution: 172 

�∗���� = P�~R����, ���Z� log I��� + Z����, ���	 12 

We have re-derived this solution in detail in Appendix 2 (Supporting Information). The vector-valued function �∗ 173 

defines a vector field over the parameter space ℝ#, and assigns to each position a �-dimensional vector or direction 174 

which maximizes the violation of Stein’s identity. 175 

SVGD exploits this information to implement a particle flow which gradually transforms the distribution H into the 176 

distribution I, the posterior. It can be shown (Liu & Wang, 2016), that for linear invertible transformations the 177 

directions �∗���� of the vector field �∗ correspond to the steepest descent directions of the Kullback-Leibler 178 

divergence (KLD). We have re-derived this for the reader’s convenience in Appendix 3 (Supporting Information). 179 

Using the transformation in Equation 1, we establish an iterative particle flow through parameter space. The steepest 180 

descent directions �∗��� are obtained by taking an ensemble approximation of Equation 12: 181 

�∗��� = 1
� 1 �_�`, �aZ�` log I_�`a + Z�`�_�`, �a

b

c6�
 

13 

The only expensive variable to evaluate is the gradient of the logposterior at the particle positions Z�` log I_�`a. In 182 

general cases, where no analytic form for the logposterior or its derivative are available, we must resort to 183 

approximations of this gradient. We will investigate a few approaches towards this end in the following section. 184 



3 Algorithmic approximations 185 

3.1 Posterior gradient Z� def g��� 186 

While it is in principle possible to approximate Z� log I��� directly from logposterior estimates, it may not always be 187 

advantageous to do so. If the logprior is differentiable, we can limit the approximation to the gradient of the 188 

loglikelihood or even just the Jacobian matrix, thus avoiding unnecessary approximation error. Towards this end, we 189 

can reformulate Bayes’ Theorem to calculate the logposterior gradient as 190 

Z� log 7��|�� = Z� log 7��� + Z� log 7��|�� 
14 

where 7��|�� ≔ I��� is the posterior pdf, 7��� the prior pdf, and 7��|�� the likelihood. Since the logprior gradient 191 

is often available in closed form, we are left with finding the loglikelihood gradient. If we assume multivariate 192 

Gaussian likelihoods, we have: 193 

7��|�� = 1
B�2i�j det l exp *− 1

2 �� − �m�n�⟙l���� − �m�n�/ 15 

where � is the number of observations (the dimensionality of observation space), l�� is the inverse of the error 194 

covariance matrix, and � and �m�n refer to the observed and simulated states. If we first take the logarithm and then 195 

the partial derivatives, we obtain: 196 

Z� log 7��|�� = 1
2 Z��m�n⟙l���� − �m�n� 

16 

If we simulate the states with a numerical model which takes as input parameters �, i.e.: 197 

�m�n = o��� 
17 

where we simplified notation slightly by implying that the model simulates the observed states directly. In practice, 198 

the model would generate the full state space (i.e., a time series of water table fields), and we would extract only the 199 

relevant dimensions/entries – for example at the locations of observation wells at certain times. Plugging this into 200 

Equation 16 and defining the Jacobian p��� = Z�o���⟙, we obtain: 201 

Z� log 7��|�� = 1
2 p���⟙l��_�qrm − o���a 

18 

As such, we can obtain the logposterior gradient with local approximations of the Jacobian matrix. 202 



3.2 Jacobian matrix Z�o��� 203 

The computational bottleneck for the solution of Equation 18, and by extension Equation 13, is the Jacobian p���, an 204 

� × � matrix, which is not generally available in closed form. Some recent developments like automatic 205 

differentiation (e.g., Margossian, 2019) hold promise for future applications, but are model-intrusive and not yet 206 

widely supported. 207 

Instead, we can explore non-intrusive approximations of the Jacobian. The standard numerical approach consists of 208 

perturbing the parameter vector � by a small increment along each dimension, then filling the Jacobian matrix with 209 

the resulting two-point (or three-point) finite difference derivatives (e.g., Wendt et al., 2009). While this numerical 210 

differentiation can yield very precise approximations, it quickly becomes computationally unfeasible for models with 211 

many parameters: To obtain the set of local Jacobians, we would have to run the model ��� + 1� times (or ��2� + 1� 212 

times for three-point derivatives) in each iteration. For complex, computationally demanding models, we generally 213 

cannot afford more than � model evaluations. 214 

As such, we may wish to estimate the Jacobian directly from the ensemble, using only the � model evaluations o���. 215 

One such approach has been used by Chen & Oliver (2013) and White (2018), approximating the Jacobian based on 216 

prior and model error information, and each ensemble member’s deviation from the mean. This approach can be useful 217 

in many applications, but is unfortunately based on the assumption of Gaussianity, and thus squanders the non-218 

Gaussian properties which motivated our exploration of SVGD in the first place. Pulido et al. (2019) suggest an 219 

alternative approach which defines the observation operator (analogous to our model o) in a RKHS, then shifts the 220 

derivative operator to the kernel: 221 

p��� = 1 o��s�Z����, �s�
b

t6�
 

19 

This approach can also be interpreted as the derivative of a radial basis function approximation with vector-valued 222 

coefficients o��s�. A similar expression can also be obtained by replacing the o��s� with a vector of coefficients 223 

determined to ensure the RBF interpolation reproduces the model output surface exactly at the particles. This approach 224 

can be very useful, but has a few potential caveats: 225 

First and foremost, RBF approximations taper off towards zero when moving away from the ensemble 226 

( lim�→5 ���, �s� = 0), which is undesirable for variables with non-zero limits. This can be addressed by pre-treating the 227 



data with a deterministic, differentiable routine such as multilinear regression, then interpolating only the residuals. A 228 

second issue is that a particle’s local derivatives are informed exclusively by its neighbors, since the kernel derivative 229 

evaluated at its own center is zero (Z����, �� = 0). This can be problematic for remote or isolated particles. Similarly, 230 

the indirect nature of an RBF interpolation’s derivatives does not exploit gradient information between the particles. 231 

The result depends critically on the chosen bandwidth (e.g., Mongillo, 2011) which can render the approach less robust 232 

than desired. 233 

Consequently, we propose a different ensemble-based approximation, endeavoring to retain the localization of Pulido 234 

et al. (2019)’s approach while exploiting relative differences between the particles: 235 

pw��t� = x
� 1 o��n� − o��t�

‖o��n� − o��t�‖ ∙ ‖o��n� − o��t�‖
‖�n − �t‖ ∙ �n⟙ − �t⟙

‖�n − �t‖
b

n6�
 

20 

where x is the expected rank of the Jacobian (usually either the � or � − 1, whichever is smaller). The sum’s first 236 

fraction is the normalized vector from particle �t to particle �n in observation space, the second fraction the scalar 237 

gradient between observation- and parameter space, and the third fraction the normalized vector in parameter space. 238 

We can simplify this to: 239 

pw��t� = x
� 1 _o��n� − o��t�a ∙ ��n − �t�⟙

‖�n − �t‖,
b

n6�
 

21 

The factor x �⁄  is composed of the arithmetic average’s normalization constant (1 �⁄ ) and a correction factor for the 240 

fact that each vector contributes at most one rank to the Jacobian (x). In linear systems, equation above should 241 

converge against the correct Jacobian for � → ∞ and an isotropic particle arrangement. In nonlinear systems, we 242 

further need the assumption that ‖�n − �t‖ is infinitesimally small, or a localization term which restricts the 243 

contributions of far-away particles (yn → 0 7z{ ‖�n − �t‖ → ∞): 244 

pw��t� = x 1 yn
_o��n� − o��t�a ∙ ��n − �t�⟙

‖�n − �t‖,
b

n6�
 

22 

yn = ��|��t, �n� 1 ��|��t, �3�3}t9  23 

where yn is some normalized, distance-based weight, for example obtained through a kernel ��|. In practice, these 245 

assumptions will not generally be met. Possible consequences are that the Jacobian matrix may be biased if the 246 

parameter space vectors are not directionally isotropic, and the magnitude of the derivatives may be erroneous if the 247 



system is nonlinear and the particles are spaced too far apart. However, comparing this approach to a RBF 248 

interpolation, we found that it performed more robustly with regards to different bandwidth sizes and non-smooth 249 

conditions for the synthetic test case presented in Section 4. A small code example comparing both approaches is 250 

provided in Supporting Information (Appendix S6). Pseudo-code for the Jacobian approximation is provided in Figure 251 

2. 252 

Step 1: Create empty Jacobian ~��t� = �4{z��� × �� 

For particle � from 1 to �, if � ≠ �: 

Step 2: Create difference vectors �n = o��n� − o��t� �n = �n − �t 

Step 3: Create their normalized variants ��n = �n ‖�n‖⁄  ��n = �n ‖�n‖⁄  

Step 4: Calculate the scalar gradient =n = ‖�n‖ ‖�n‖⁄  

Step 5: Determine gradient matrix  

pwn = ��n=n��n⟙  
Step 6: Find individual kernel bandwidth 

Set ℎ of ��s to �-th median distance to other particles 

Step 7: Calculate kernel weight y = ��|��t, �n� ∑ ��|��t, �3�3}t⁄  (see Equation 23) 

Step 8: Add contribution to Jacobian 

p��t� =  p��t� + ypwn 

Figure 2. Pseudo-code for the Jacobian approximation used in this study. Without additional 

model runs, evaluations of the Jacobian are only possible at the particle positions. 

3.3 Gradient Descent algorithm 253 

For an efficient inference with SVGD, we do not only require the descent directions �∗��� (Equation 13), but also an 254 

adaptive scheme to adjust the step-size �. If the step-size is too small, the algorithm may require too many iterations 255 

to be useful. If the step-size is too large, the algorithm may overshoot, start oscillating, and fail to locate a high-256 

probability region at all. As such, we would like to adjust the step-size dynamically. 257 

Many such algorithms exist. Methods like adaptive moment estimation (ADAM: Kingma & Ba, 2015) or adaptive 258 

subgradient methods (AdaGrad: Duchi et al., 2011) have proven successful for optimization in machine learning 259 

algorithms, being capable of dynamically adjusting the gradient descent to improve efficiency. Unfortunately, they 260 



often employ individual step-sizes for each parameter space dimension or otherwise alter the gradient vectors at each 261 

position through momentum. Since the theory derived above assumes a scalar, uniform � at each iteration, we construct 262 

an alternative descent algorithm for this study which abides by these restrictions: 263 

��,t = �*〈 ��∗_��,|a
���∗_��,|a�, ����∗ _����,|a

�����∗ _����,|a�〉��/ min *1, �����∗ _����,ta�
���∗_��,ta� / 

24 

�� = ����
1
� 1 ��,t

b

t6�
 

25 

This step-size update algorithm does not affect the gradient direction but may require some explanation to become 264 

intuitive. It requires two hyperparameters: an acceleration rate � > 1, and a similarity cutoff 0 ≤ � < 1. At each 265 

iteration, the previous step-size ���� is rescaled by a factor (Equation 25) corresponding to the ensemble mean of all 266 

acceleration proposals ��,t (Equation 24). These acceleration proposals are composed of two terms: the first term 267 

compares the directions of two subsequent descent vectors, proposing acceleration if the directions are sufficiently 268 

similar and deceleration if they are not; the second term compares the norm of two subsequent descent vectors, 269 

proposing deceleration if the norm (and thus velocity) of the vector increases. 270 

For the first part, we exponentiate � by the inner product between the normalized current descent direction 271 

��∗_��,ta ���∗_��,ta�9  and the normalized previous descent direction ����∗ _����,ta �����∗ _����,ta�9 . This compares 272 

the similarity of both vectors and accelerates or slows the descent accordingly. Since a naïve inner product would only 273 

stop accelerating for turns sharper than 90° – and we may want to stop accelerating long before that – the second 274 

hyperparameter � is subtracted from the inner product. A cutoff of � = 0.75, for example, restricts acceleration to a 275 

cone of about 40° around the previous vector. For the second part, if the norm of the descent algorithm is increasing 276 

(�����∗ _����,ta� < ���∗_��,ta�), the step-size should be reduced proportionally to reduce the risk of shooting past the 277 

optimum if the descent direction remains the same. 278 

3.4 Pseudocode 279 

To summarize the algorithmic approximations used in this study, pseudo-code for the algorithm is provided in Figure 280 

3.  281 

  282 



Initialization 

• Draw � particles from the prior 7��� 

• Generate (or draw) the initial states �� 

• Define initial stepsize ��, acceleration rate �, and cutoff � 

• Set iteration counter  = 0 and iteration Boolean  �4{��4 = �{�4 

While  �4{��4 = �{�4:  →  + 1  

Step 1: Numerical simulation 

For particle � from 1 to �: 

1. Use pre-processors to calculate auxiliary variables (if applicable) 

2. Simulate and extract observed variables �t = o��t, ��, … � 

Step 2: Determine Gram matrix and kernel derivatives 

For each particle index pair ��, �� ∈ �1, . . . , �� × �1, . . . , ��: 

1. Evaluate the kernel ���t, �n� 

2. Evaluate the kernel gradient Z�|���t, �n� 

Step 3: Approximate ensemble-based Jacobian 

For particle � from 1 to �: 

1. Calculate Z�|o��t� (see Section 3.2) 

Step 4: Determine gradient descent direction 

For particle � from 1 to �: 

1. Calculate direction ��∗��t� (see Equation 13) 

2. Normalize it to obtain ��∗��t����������� 

Step 5: Identify gradient similarity 

If  > 1: 

For particle � from 1 to �: 

1. Calculate acceleration proposal ��,t (see Equation 24) 

Step 6: Adjust gradient descent step size  

1. Average acceleration proposals to get ���  

2. Adjust step size �� = �������  (see Equation 25) 

Step 7: Apply gradient descent 

For particle � from 1 to �: 

1. Check for limits of ��,t + ����∗��t�, adjust ��∗��t� if required 

2. Update particles ����,t = ��,t + ����∗��t� (see Equation 1) 

Step 8: Check for convergence 

If convergence criterium fulfilled: 

Set  �4{��4 = �� �4 

Figure 3. Pseudo-code of the SVGD algorithm used in this study. Step 3 can be replaced if other 

methods for obtaining the Jacobian are available, Steps 4.2 to Step 6 may be replaced if a 

different Gradient Descent method is used. 



4 Synthetic test case 283 

4.1 Setup 284 

 
Figure 4. Conceptual render (a), conceptual sketch (b), true hydraulic conductivity field (c), and 

resulting true hydraulic head field (d) of the simple synthetic test case. 

To illustrate the practical capabilities of SVGD, we first consider a simple synthetic test case. Towards this end, we 285 

construct a numerical hydrogeological model with a single parameter informing the uncertain path of a high-286 

conductive paleo-channel in a two-dimensional, unconfined setting. This setup is illustrated in Figure 4. The system 287 

is defined as steady-state. Flow is driven by uniform recharge of 10�¡ m/s over the model domain and drains to the 288 

southern fixed-head border. All other borders are assumed no-flow. Hydraulic conductivities of the background and 289 

paleo-channel are defined as 10�¢ m/s and 10�£ m/s, respectively. Specific yield was set to ¤¥ = 0.15, and the top 290 

and bottom elevation of the aquifer were set to 10 m and −10 m. The model parameter 0 < � < 1 defines the start- 291 

and endpoint of a spline tracing the paleo-channel. The true solution is assumed to be � = 0.15, and the prior is defined 292 

as a beta distribution with parameters �, � = 2. Observations are collected in three wells along the central north-south 293 



axis with an observation standard deviation of ¦ = 0.025 m. The model is implemented in MODFLOW 6 (Langevin 294 

et al., 2017) using the Python interface FloPy (Bakker et al., 2016). 295 

We would like to draw attention to the fact that the setup of this scenario is symmetric with respect to the central 296 

north-south axis. As such, we would expect that there are two functionally indistinguishable solutions to the inference 297 

problem: � = 0.15 and � = 0.85. We test the algorithm with an ensemble of � = 100 particles, 100 iterations, an 298 

initial step-size of ��,� = 10�¨, an acceleration rate of � = 1.5, and a similarity cutoff of � = 0.75. The kernel 299 

bandwidth was set to the mean distance to the � = 25th nearest neighbor during each iteration. 300 

4.2 Results 301 

Results of the inference process are illustrated in Figure 5. The posterior parameter field (Figure 5a, b) reveals that the 302 

expect bimodal uncertainty structure was successfully recovered by the algorithm: roughly half the ensemble places 303 

the channel at � = 0.15, the other half at � = 0.85. If this were a real scenario, this ambiguity could be resolved with 304 

additional geological information, or a new observation well located to the left or right of the mirror axis. 305 

To test if the algorithm truly converged against the posterior, we compare the posterior ensemble against results 306 

obtained from a emcee (Foreman-Mackey et al., 2013) chain (Figure 5g, background). The emcee chain was obtained 307 

with 100 walkers and 445 jumps each, after removing the burn-in. Figure 5f verifies that SVGD seems to not only 308 

identified the correct posterior location, but also its spread. 309 



 310 
Figure 5. Results for the SVGD algorithm applied to the simple model: the left column shows the mean and standard 311 
deviation of hydraulic conductivity (a, b) and simulated head (c, d) at the end of the inference process. The right column 312 
illustrates the prior ensemble (e), the particle trajectories through the iterative process (f), and the resulting posterior 313 
ensemble (g). 314 



5 Case study 315 

5.1 Site description 316 

For the real test case, we focus on the Kempt valley in Switzerland, a small pre-alpine catchment located about 10 km 317 

east of the city of Zurich. Within the valley lies the city of Fehraltorf, surrounded by pastures. The valley is 318 

characterized as follows: 319 

• Geology: The aquifer layout is highly heterogeneous, shaped by alpine geology and postglacial sedimentology. 320 

Multiple electric resistivity tomography campaigns failed to delineate the aquifer bottom, and the prevailing 321 

gravelly sediments preclude direct push coring past a depth of approximately 7 m. Geological maps and indirect 322 

information suggest north-eastern and south-western plateaus or banks or impermeable material (Figure 6a). 323 

• Hydro(geo)logy: The groundwater table is generally shallow, sometimes ponding during spring or after large 324 

precipitation events. Consequently, large swathes of the valley are artificially dewatered with tile drainages. The 325 

central Kempt stream is only perennial past the city of Fehraltorf, where it is sustained by a local wastewater 326 

treatment plant (WWTP), drainage channels, and multiple culverted creeks (Vögeli, 2018). Upstream of 327 

Fehraltorf, the creek is called Luppmen and controlled almost exclusively by groundwater. The groundwater table 328 

in the catchment is highly seasonally variable, particularly during the simulated drought year of 2018. 329 

• Infrastructure: Due to the shallow groundwater table, the urban drainage network beneath Fehraltorf (Figure 6c) 330 

is partially submerged and substantial groundwater infiltration is known to occur. We further know the extraction 331 

rates for two municipal pumping stations near the southern edge of the city (Figure 6e). The agricultural estates 332 

in the catchment and an industrial greenhouse vegetable farm have concessions for ground- and river water 333 

extraction, but unfortunately no quantitative rates were available for either. Consequently, we neglected these 334 

potential sinks in the model.. 335 



 
Figure 6. Approximate aquifer topology (a), tile drainage, open and culverted streams (b), extent of 

urban drainage network (c) and urban area (d), location of pumping and observation wells (e), and 

upslope contributing areas (f). 



• Boundary conditions: Located in a headwater catchment, we expect that the valley receives significant inflow 336 

from the surrounding hillslopes (Figure 6f). We did not explicitly simulate these hillslopes, instead delineating 337 

six upslope catchments based on topographic information. These upslope catchments form the basis of conceptual 338 

models with uncertain extent and temporal dynamics which define the time-variable inflow into the central model. 339 

Vertical recharge is applied without delay and estimated from the difference between precipitation measurements 340 

within Fehraltorf and spatially averaged measurements of actual evapotranspiration in surrounding stations. 341 

We simulate the drought year of 2018 (Bader et al., 2018), during which groundwater extraction and use had to be 342 

restricted due to an exceedingly low water table. We initialize the model with a seven-month spin-up period starting 343 

June 1st 2017, following a steady-state simulation with average meteorological conditions. We assimilate hydraulic 344 

head data from a number of observation wells (Figure 6e) as well as estimates of sewer infiltration rates, i.e. 345 

groundwater entering the sewers through deteriorated pipes and joints, obtained by a flow component separation 346 

(Becker et al., 2012) of distributed in-sewer flow rate measurements (Blumensaat et al., 2020a). 347 

5.2 Model setup 348 

We implement the numerical model in MODFLOW 6 (MF6: Langevin et al., 2017) using FloPy (Bakker et al., 2016). 349 

This framework permits a Newton-Raphson formulation for unstructured grids, which is more resilient to the drying 350 

of model cells. Furthermore, its modular structure and mover package permit the representation of the complex 351 

interactions of the stream, canalization, drainage system, and groundwater. Capitalized three-letter acronyms in the 352 

following paragraph refer to the respective MF6 packages. 353 

We tessellated the model domain with a single layer of 4079 hexagonal prisms. The depth of the aquifer bottom is 354 

defined by four parameters which specify the elevation of four masks: the northwest-to-southeast gradient, the north-355 

eastern plateau, and the south-western plateau (Figure 6a). Hydraulic conductivity is extrapolated through inverse 356 

distance weighting (Shepard, 1968) from 30 nodes. Tile drainages, the culverted creeks, and the urban drainage 357 

network are implemented as drainage elements (DRN), whose flows are diverted to their respective outflow points in 358 

the Luppmen through the mover (MVR) package. The conductance of the sewer pipes (hydraulic conductivity × cross-359 

sectional area ÷ thickness) is extrapolated from ten nodes, and implemented as a ‘pre-conductance’ (hydraulic 360 

conductivity ÷ thickness), to be multiplied by the sewer pipes’ surface area in order to yield the element’s conductance. 361 

Where streams (Figure 6b) are open, their bed elevation has been measured, where they are culverted, their elevation  362 



has been extrapolated. The tile drainages were assumed to be located 0.75 m below the surface. The two non-culverted 363 

streams, Luppmen (main stream from SE to NW, Figure 6b) and Wildbach (northernmost stream, from NE into 364 

Luppmen, Figure 6b) are represented with the surface flow routing (SFR) module, which permits exchange with 365 

groundwater in both directions. The riverbeds’ hydraulic conductivity was set to 10�¢ m/s, the riverbed thickness to 366 

30 cm, and its width to 3 m (Luppmen) or 1.5 m (Wildbach). Their Manning’s coefficients are adaptable parameters. 367 

Direct runoff due to surface sealing in the urban areas is represented through a 35% flat recharge reduction. Infiltration 368 

into the sewer pipe network is consider in two ways: infiltration into storm sewers, and infiltration into the combined 369 

sewer system. The former is routed directly into adjacent surface waters (small creeks and the river Luppmen). The 370 

latter is used for inference against an estimated fraction of the total wastewater treatment plant (WWTP) inflow. The 371 

total WWTP outflow (in terms of volume balancing essentially the same as the WWTP inflow) – simulated 372 

groundwater infiltration plus domestic wastewater component – is routed into the Luppmen. 373 

Recharge is estimated from the difference of average precipitation measurements around Fehraltorf (Blumensaat et 374 

al., 2020b) and a spatially averaged evaporation estimate from Meteoswiss (2020). Since the groundwater table is 375 

shallow and the time steps are coarse – set to three hours each –, we assumed instantaneous recharge within the valley. 376 

Recharge on the hillslopes is routed into the valley through time-variable inflow boundaries (Figure 6f) according to 377 

a simple, conceptual forcing model (Figure 7). This forcing model multiplies each timestep’s raw recharge estimate 378 

with each boundary’s upslope area (delineated based on topography) and a recharge multiplier. The latter is intended 379 

to compensate for potential deviations of the unknown groundwater catchment from the topographic catchment, bias 380 

in the recharge estimate, as well as unknown sinks or sources along the hillslopes. The resulting volumetric flux is 381 

then distributed among the subsequent timesteps according to an exponential distribution, whose extent is defined by 382 

a second parameter, the recharge delay. This parameter is intended to represent unresolved surface- and groundwater 383 

flow processes along the hillslope and controls the flashiness of the inflow. The temporally distributed volumetric flux 384 

components are then added to a new volumetric flux time series, and the process is repeated for the next time step. 385 

Once the new time series is assembled, the volumetric fluxes are distributed spatially across the respective boundary’s 386 

inflow cells (Figure 6f). 387 

In total, the numerical model features � = 61 parameters, some of which (hydraulic conductivity nodes, aquifer 388 

bottom elevation nodes, and forcing model parameters) are first converted into grid parameters using deterministic 389 

pre-processors. The priors of the parameters are illustrated in Table 1. 390 



5.3 Algorithmic setup 391 

We test the SVGD algorithm with two different ensemble 392 

sizes: an ensemble size of � = 30 and an ensemble size of 393 

� = 100. Considering the parameter space dimensionality 394 

of � = 61, the former scenario is restricted to exploring a 395 

subspace, while the latter scenario should have access to full 396 

parameter space. Consequently, we will focus on the � =397 

100 in the discussion of the results, as this scenario avoids 398 

the risk of misinterpreting optimization results. In both 399 

scenarios, we iterated 100 times. The required simulation 400 

time was about 30 hours for the � = 30 scenario, and about 401 

102 hours for the � = 100 scenario. 402 

  403 

 
Figure 7. Illustration of the forcing model. For each 

time step and boundary, recharge estimates are 

multiplied by its area and a multiplier. The resulting 

volumetric flux is then distributed to subsequent 

timesteps according to an exponential distribution 

scaled by a recharge delay parameter. Finally, the 

distributed fluxes of each time are added up to yield 

the volumetric boundary inflow, distributed across its 

inflow model cells. 



Table 1. Model parameters, priors and limits. Capitalized letters in the note column correspond to boundaries, LP refers to Luppmen, WB refers to Wildbach. Colored 

regions in map 1 and map 3 illustrate influence areas of different nodes. The ring above the north-eastern plateau in map 2 marks the mean of its slope orientation. 



5.4 Results 404 

The simulated states at the observation wells and the urban drainage network for the posterior ensemble of the � =405 

100 scenario are illustrated in Figure 8, for the prior ensemble and the scenario � = 30 in Figure S1 and Figure S2 406 

(supporting information). Improvements to the simulated hydraulic heads are significant, reducing the root mean 407 

square error (RMSE) from a prior average of 312 cm down to a posterior average of 30 cm (Figure 9) for the scenario 408 

� = 100, and from 322 cm down to 39 cm for the scenario � = 30 (Figure S2). Proportionally, bias is reduced even 409 

further, from a prior mean of 207 cm down to a posterior mean of only 4 cm in the case of � = 100, and from 201 cm 410 

to 2 cm for � = 30. The slightly elevated RMSE contrasted by very low bias suggests that the residual error is rooted 411 

in model structural deficiencies. 412 

We expect a significant impact from such model deficiencies since we only employed a single prescribed head 413 

boundary at the outflow. Consequently, all hydraulic head fluctuations within the model domain must be created by 414 

the model itself, instead of being partially inherited from the dynamics of a hypothetical upslope prescribed head 415 

boundary. The simulated and observed hydraulic heads seem to support this interpretation (Figure 8). The model 416 

successfully recreated the yearly dynamics in most wells, but we can observe varying patterns between them, often 417 

with errors which may have a plausible model-structural explanation: 418 

Observations at wells C2 and P08 (Figure 8a and d), for example, barely fluctuate over the year and retain a relatively 419 

steady water level. This suggests that both wells are subjected to some form of stabilizing influence, likely a perennial 420 

drainage effect. Both wells are located adjacent to the river Luppmen and the urban drainage network, and their similar 421 

elevation – matching the observed water tables – makes either feature a plausible stabilizing influence. 422 



 

Figure 8. Posterior simulated (greyscale) and observed (red) hydraulic heads (a-m) and canalization groundwater infiltration (n) with model error at the end of simulation 

period for « = ¬­­. Prior results are illustrated in Figure S3. 



The inference favored increasing the canalization’s leakiness near both wells (Figure 10g), possibly because the 423 

Luppmen’s riverbed conductance was assumed spatially uniform and hence did not allow for local adjustments. 424 

However, groundwater infiltration into the sewer network (Figure 8n) is consistently overestimated – compared to 425 

estimations based on in-sewer flow observations –, which could suggest that the river has a larger role to plays in the 426 

stabilization of P08 and C2. 427 

Wells F4, P02, P09, and P28 to P31 (Figure 8b, c, e, j-m) feature similar yearly trends, recovered to varying degrees 428 

of fidelity: A steady water table decrease by up to 3 m from January to September, followed by a steep rebound in late 429 

autumn. While the water table drop is reproduced faithfully, its rebound is underestimated in all wells. A possible 430 

explanation is the omission of agricultural water extraction. The rebound in autumn is likely a composite effect of 431 

direct recharge and the deactivation of irrigation systems, the latter of which is unrepresented in the model. This 432 

suggests the model compensated for the omission of agricultural extraction during the main vegetation period through 433 

other means. 434 

 
Figure 9. Posterior overall root-mean square error (o) and bias (p) for the hydraulic heads, the mean norm of the 

Kullback-Leibler divergence gradient (q) and the log-likelihood (r) across the algorithm’s iterations. For better 

visualization, the y-axis scale is reset every 20 iterations for the scenario « = ¬­­.  



Figure 10. Posterior parameters and hydraulic head at the final iteration for « = ¬­­. The two rows illustrate mean (a, c, e, g) and standard deviations (b, d, f, h) of 

hydraulic head in the initial steady-state simulation period (c, d), hydraulic conductivity (e, f), aquifer bottom elevation (g, h), and canalization conductance (i, j). Recharge 

parameters are illustrated in Figure S5, and the corresponding prior fields are illustrated in Figure S6 and Figure S7. Results for the scenario « = ®­ are shown in Figure S8 

to S11. 



 

The patterns in the remaining wells are somewhere between the two sets discussed above. P13 (Figure 8f) is located 435 

in an agricultural area with tile drainages and diverges from the observed water tables only from May onwards. The 436 

remaining wells (P25-P27, Figure 8g-i) are located in the urban area of Fehraltorf and feature fluctuations which the 437 

model cannot seem to fully recreate.  438 

Overall, it seems our prior parameter assumptions resulted in an initial overestimation of water tables, which SVGD 439 

corrected by reducing hydraulic conductivities (Figure 10c) relative to the prior, particularly near the centre of the 440 

catchment. Individual changes to parameter uncertainty for the scenarios � = 100 and � = 30 are illustrated in 441 

Figure S12 and Figure S13 (supporting information). The model simulates groundwater ponding in the initial steady-442 

state spin-up period near the southern and western edges of the valley (Figure 10a). This may not be unrealistic, as 443 

both areas feature tile drainages, which indicate historical issues with ponding groundwater. Particularly in the 444 

southern region we have some evidence for ponding: a naturally marshy, extensively drained forest, and a small 445 

airfield whose runway is often closed during spring due to swampy grassland conditions. 446 

6 Discussion 447 

In summary, the inference results of SVGD were promising, returning the true posterior in the synthetic test case, and 448 

yielding substantial improvements in terms of predictive error for the application to a truly complex case study. In the 449 

latter scenario, the observed states did not always remain within the error bounds, which suggests both structural 450 

model inadequacy and an underestimation of the model error. We identified some potential sources of this error – the 451 

omission of agricultural irrigation, and imperfect representation of canalization and riverbed drainage –, which could 452 

be revised in a future iteration of the conceptual model. The standard deviation of the model error is a parameter which 453 

could also be inferred, although we note that this would complicate the derivative of the loglikelihood gradient 454 

(Equation 18). A further interesting addition would be the consideration of temporal correlation in the model error 455 

covariance matrix, which may prevent the strong tapering of the posterior in the real test case. 456 

As far as the inference itself is concerned, SVGD successfully recovered the synthetic bimodal posterior – a nigh-457 

impossible task for non-localized methods based on the assumption of Gaussianity. In the real test case, no exhaustive 458 

reference solution was available. Results for the subspace-limited � = 30 scenario were promising. While we 459 

acknowledge that it is undesirable and potentially dangerous to restrict parameter inference to a subspace, 460 



computational limitations often demand working within such restrictions. This ability to recover at least simplified 461 

uncertainty estimates in settings with inevitably insufficient computational resources constitutes, in our opinion, one 462 

of the main advantages of the EnKF and is shared by our implementation of SVGD. 463 

Despite the promising optimization performance, this algorithm comes at a computational price: the necessity to iterate 464 

requires re-simulating the full observation history for each particle during every iteration, whereas filter methods like 465 

the EnKF must only simulate the model history once for each particle (albeit separated into distinct assimilation time 466 

steps). However, it may not be necessary to iterate for as long as we did in our test cases – towards the end of the 467 

iteration period, improvements were only minor. We remain confident that performance can be improved further with 468 

adjustments to the gradient descent algorithm. 469 

7 Conclusions 470 

In this study, we employed the Stein Variational Gradient Descent algorithm of Liu & Wang (2016) and proposed 471 

adaptations for its practical application to non-Gaussian parameter inference in hydrogeological models. Towards this 472 

end, we proposed a computationally inexpensive, localized, ensemble-based approximation of the Jacobian. This 473 

matrix is used for the calculation of the logposterior gradient, and possibly the greatest computational obstacle to the 474 

implementation of SVGD. We also proposed a simple gradient descent algorithm which optimizes the algorithm’s 475 

computational efficiency by adapting the descent step size dynamically. 476 

We then proceeded to illustrate the performance of the algorithm in two test cases: a simple synthetic model with an 477 

intuitive solution, and a complex model based on a real field site with non-trivial, nonlinear parameter interactions. 478 

Results in both cases were promising. Our application in the synthetic test case successfully converged against the 479 

bimodal reference solution obtained by MCMC, iteratively evolving a unimodal prior into a bimodal posterior. While 480 

no reference solution was available for the real test case, inference results seem promising as well. Despite the model’s 481 

complexity, the inference significantly reduced simulation error and bias, with the residual error likely being based on 482 

model structural inadequacy. Throughout, the algorithm retained uncertainty without the need for artificial variance 483 

inflation, a challenge for particle filters (e.g., Ramgraber et al., 2019, 2020) or the EnKF (Anderson, 2007). We tested 484 

the algorithm’s performance (and the fidelity of our approximations) for two ensemble sizes: � = 30, restricted to an 485 

at most 29-dimensional parameter-subspace, and � = 100, with theoretical access to all parameter space dimensions. 486 



Substantial improvements were obtained in both scenarios, although the larger ensemble size yielded slightly better 487 

optimization results.  488 

A limitation of this algorithm is its restriction to smooth probability distributions with at least convex support, a 489 

weakness shared with other gradient descent algorithms and the EnKF. For the inference of structural uncertainty of 490 

geological facies, it may be necessary to employ an auxiliary parameterization which permits a smooth or convex 491 

supported pdf first (e.g., Hu et al., 2013; Ramgraber et al., 2019). A further possible source of error may be found in 492 

our ensemble-based Jacobian approximation. While our synthetic example converged successfully and optimization 493 

results were promising in both test cases, we cannot guarantee that this approximation proves adequate in all cases. 494 

For future research, we are optimistic that the experimentation with other gradient descent algorithms could improve 495 

the efficiency of the SVGD algorithm even further. Alternative Jacobian approximations, particularly those obtained 496 

with automatic differentiation, seem a promising way to improve the fidelity of practical applications of SVGD and 497 

constitute an important avenue for future research. Alternatively, using the unnormalized logposterior estimates at the 498 

particles to approximate the logposterior gradient directly could also be an interesting research direction. Other 499 

fascinating research directions could be found in the related field of transport maps (e.g., Marzouk et al., 2017; El 500 

Moselhy & Marzouk, 2012; Spantini et al., 2018) which construct the transformation functions explicitly. In 501 

conclusion, we believe that SVGD is a highly promising and relatively easy-to-use (although not necessarily easy-to-502 

derive) tool for non-Gaussian parameter inference in hydrogeological systems, and that a strong case could be made 503 

for its use in complex models with weak claim to Gaussianity. 504 
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