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Abstract

Headwater blanket-peat restoration activities, in particular revegetation and gully-blocking, are observed to deliver significant

Natural Flood Management (NFM) benefits. A recent Before-After-Control-Intervention (BACI) experiment showed that these

interventions reduce flood-peaks and increase lag-times, but the processes controlling these effects remain unclear. We seek to

identify these processes at the same BACI sites by inverting the TOPMODEL rainfall-runoff model and linking the response-

to-intervention in each catchment to model parameters through rigorous calibration. Through numerical experiments, we infer

processes most likely to be driving the BACI observations. Our findings confirm the NFM benefits of these restoration-focused

interventions. Independent of storm size/intervention, the increased lag is almost entirely due to surface roughness reducing

the floodwave speed. We conceptualise this as a ‘mobile’ surface storage. In flood-relevant storms, at least 90\% of the

peak reduction in both interventions is delivered by mobile storage. The additional increase in the mobile storage due to

gully-blocking is very significant and comparable to that of revegetation alone. The impact of interventions on ‘immobile’

storage (interception+ponding+evapotranspiration) becomes important for smaller storms, in which revegetation reduces peak

discharge by increasing evapotranspiration but the not interception storage. Gully blocking however, increases ponding but

reduces evaporation, such that there is no net gain in catchment immobile storage relative to revegetation alone. Although

interventions always increase lag-times, they can be less effective in reducing peak magnitude in long duration frontal rainfalls.

We propose two approaches to further increase catchment’s surface storage, while adhering to the restoration requirement to

keep the water tables high.
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Abstract11

Headwater blanket-peat restoration activities, in particular revegetation and gully-blocking, are observed12

to deliver significant Natural Flood Management (NFM) benefits. A recent Before-After-Control-Intervention13

(BACI) experiment showed that these interventions reduce flood-peaks and increase lag-times, but the pro-14

cesses controlling these effects remain unclear. We seek to identify these processes at the same BACI sites by15

inverting the TOPMODEL rainfall-runoff model and linking the response-to-intervention in each catchment16

to model parameters through rigorous calibration. Through numerical experiments, we infer processes most17

likely to be driving the BACI observations. Our findings confirm the NFM benefits of these restoration-focused18

interventions. Independent of storm size/intervention, the increased lag is almost entirely due to surface rough-19

ness reducing the floodwave speed. We conceptualise this as a ’mobile’ surface storage. In flood-relevant20

storms, at least 90% of the peak reduction in both interventions is delivered by mobile storage. The additional21

increase in the mobile storage due to gully-blocking is very significant and comparable to that of revegetation22

alone. The impact of interventions on ’immobile’ storage (interception+ponding+evapotranspiration) becomes23

important for smaller storms, in which revegetation reduces peak discharge by increasing evapotranspiration24

but the not interception storage. Gully blocking however, increases ponding but reduces evaporation, such25

that there is no net gain in catchment immobile storage relative to revegetation alone. Although interven-26

tions always increase lag-times, they can be less effective in reducing peak magnitude in long duration frontal27

rainfalls. We propose two approaches to further increase catchment’s surface storage, while adhering to the28

restoration requirement to keep the water tables high.29

1 Introduction30

Peatlands cover only 2.84% of the land surface of the planet, yet they provide the human population with a wide31

range of services, including more than a third of soil carbon storage, river flow regulation, and biodiversity (Xu32

et al., 2018). These sensitive systems require high precipitation or impeded drainage to develop and remain33

stable. Industrialisation, mechanisation, land-use change (e.g., agriculture or forestry) and extraction of peat for34

horticultural and energy production have all led to degradation of peatlands.35

Blanket peat, the dominant UK peat type, is unusual among peatlands in that it occurs on slopes up to36

15o (Lindsay et al., 1988). When surface vegetation is damaged, their sloping nature means that erosion can37

rapidly occur (Evans et al., 2005, 2006). Rapid and extensive peatland degradation has been going on in the38

UK uplands for at least a century due to increased atmospheric pollution, e.g., Rothwell et al. (2007), drainage,39
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grazing and wildfire damage, e.g., Evans & Warburton (2011). Peatland degradation not only poses a severe40

threat to an important ecosystem, but in some circumstances may also enhance downstream flood risk (Acreman41

& Holden, 2013). For peat to develop and persist it must be largely saturated for much of the year, thus even42

intact peatlands are often able to store little additional water during rainfall events. Blanket peatlands typically43

exhibit a flashy response to rainfall, dominated by saturation-excess overland flow and/or near surface through-44

flow with minimal base-flow contribution (Evans et al., 1999). Peatland degradation through, for instance,45

vegetation loss and gully erosion can further increase the flashiness of the runoff response and increase flood46

risk downstream by raising peak discharge and reducing lag-times (Grayson & Rose, 2010).47

In the UK, a growing recognition of the value of peatland ecosystem services has led to a proliferation of48

programmes to prevent further degradation and ultimately to restore their natural functions. In parallel, UK flood49

risk management policy and practice is increasingly interested in the potential for Natural Flood Management50

(NFM) - interventions to “reduce flood hazard, while also sustaining or enhancing other potentially significant51

co-benefits including enhanced eco-system services” (Dadson et al., 2017). Given that many river systems52

worldwide originate in upland catchments with a blanket peat cover, peatland restoration activities have the53

potential to offer significant NFM benefit. These activities often involve: drain blocking, gully blocking and54

re-profiling, bare peat stabilisation and revegetation (Parry et al., 2014). In the UK alone, over the past two55

decades, extensive peatland restoration programmes have been implemented (Evans et al., 2005, Wallage et56

al., 2006, Armstrong et al., 2010, Parry et al., 2014). Although the impact of artificial drainage on peatland57

hydrology has been studied extensively ,e.g., Holden et al. (2004), studies of the effect of restoration efforts58

have primarily focused on sediment dynamics, e.g., Shuttleworth et al. (2015), carbon release, e.g., Dixon et59

al. (2014), Holden (2005), vegetation recovery, e.g., Cole et al. (2014). In fact there is very little experimental60

evidence available on the effects of restoration activities on hydrological functions of peatlands.61

Most recently, in the first controlled catchment-scale experiment on the impact of revegetation and gully-62

blocking on hydrological functions, Shuttleworth et al. (2019) published the results of their Before After Control63

Intervention (BACI) study, showing that: lag-times increased by 106% and magnitude of flood peaks decreased64

by 27% after revegetation, and that lag-times increased by 200% and magnitude of flood peaks decreased by65

51% after a combined treatment of revegetation and gully blocking. Such BACI-type experimental data enable66

a change in discharge characteristics to be linked to an intervention in a particular catchment, while eliminating67

the noise due to ‘natural temporal variability’ resulting from inter-annual variation in synoptic hydrometeorol-68

ogy. These observations can later be assigned to a number of factors that are conceivable from a physical point69

of view (see Shuttleworth et al. (2019)).70

However, solely based on variations in measured rainfall-discharge relationship, it is difficult to identify71

which hydrological processes are driving the observed changes. For example, it is not obvious whether the72

additional interception storage volume created by revegetating the bare peat areas can be sufficient to account73

for some of the observed peak magnitude reduction, and whether the time it takes to fill such additional storage74

accounts for some of the observed peak timing delay; similarly for the additional in-channel, pond-storage75

behind the blocks. It is also not clear how important is the reduction in the response-speed (celerity) of overland76

flow, that results from flow on a surface made rougher by more vegetation cover and/or stream blocking. In77

relation to evapotranspiration, it is not known how important a role is played by increased evapotranspiration78

rates resulting from a larger vegetated catchment area, or additional direct pond evaporation in the gully-blocked79

case. More importantly, perhaps, how do various processes interact (or counteract)? In reality all of the above80

processes, at least to some degree contribute to the observed changes to the hydrograph behaviour following81

interventions. Thus, studying both the ’absolute’ and the ’relative’ (to one another) magnitude of impact of82

these processes helps better understand the underlying mechanism(s) through which each intervention primarily83

delivers NFM benefit (i.e., reduce peak magnitudes and increase lag-times). This is desirable because it would:84

(1) condition our expectations for future interventions; (2) guide future decision making and implementation.85

To this end, we invert the TOPMODEL rainfall-runoff model to relate the BACI observations to more spe-86

cific hydrological processes by attempting to link the response-to-intervention in each catchment to numerical87

model parameters through rigorous calibration. We then use the calibrated parameter-sets to perform a series88

of numerical experiments to see, through the lens of a numerical model, which underlying process(es) may89

be driving the observed changes. In doing so, we estimate and analyse the ’relative’ and ’absolute’ magni-90

tude of impact of each process. Finally, we discuss the implications of our findings regarding Natural Flood91
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Management at catchment scale.92

2 Study sites93

The BACI experiment of Shuttleworth et al. (2019) used rainfall and discharge data over a 5-year period for94

three micro catchments located on the Kinder Scout Plateau in the Southern Pennines, UK (see Fig. 1).95

Figure 1: Study catchment outlines overlain on satellite images (obtained in 2020) to show: bare peat cover
at the control site (CR), extensive revegetation at the intervention sites and the locations of gully blocks at the
re-vegetated and blocked site (RG). Dark brown areas are bare peat, white areas are mineral bedrock exposed
by total removal of the blanket peat

Kinder Scout is one of the most severely eroded areas of blanket peat in the UK, characterised (before96

intervention) by extensive areas of bare peat flats and networks of erosion gullies (Fig. 1). The three micro97

catchments were selected to be as close to each other as possible and have comparable geometries, erosion98

and gully characteristics prior to interventions (Table 1). Intensive monitoring began in June 2010 with a99

pre-intervention period of 15 months, followed immediately by more than 32-months of post-intervention mon-100

itoring. One catchment was retained as a control (CR) while interventions were implemented in the other two:101

revegetation alone (RV) and revegetation with gully blocking (RG). Between 2010 and 2014, revegetation led to102

76% reduction in bare peat cover, with no significant change at the control site. Gully blocking at RG involved:103

17 0.5 m high stone dams composed of loose piles of cobbles (75–200 mm diameter), across the width of the104

gully, spaced c. 6–7 m apart; and 20 timber dams in smaller tributary gullies of similar height but with a 38 mm105

deep ‘V notch’ cut into the top board. Timber dams generally retain a pond with its surface at, or close to the106

base of their v-notch. At the time of installation stone dams were permeable, but became progressively clogged107
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Table 1: BACI catchment characteristics (Shuttleworth et al., 2019). Values for gullied area and bare peat
in non-gullied area, are in percentages of the total area.

Attribute (unit) CR RV RG
Total area (m2) 7008 4468 7096
Gullied area (%) 32.9 22.9 28.5
Bare peat in non-gullied area (%) 55 52 48
Max elevation (m) 618 617 619
Min elevation (m) 612 611 611
Mean hill-slope (degrees) 6.6 6.2 6.5

with eroded peat deposits. Thus, the permeability of the cobble stone dams over our study period is not clear,108

but we will discuss the implications of this uncertainty in the discussion section.109

We chose a six-week study period starting from 22 August 2010 as the before-intervention period, and the110

same period in 2012 as the after-intervention period. These periods hereafter are referred to as ‘before’ and111

‘after’ periods. Choosing the same period for each year reduces the possibility that seasonal variations play a112

role in the hydrograph behaviour. Other factors that informed our choice of study periods are: (1) large storms,113

with return periods within the largest 10% in the past 10 years, were present in both periods; (2) temperatures114

were always above zero; and (3) runoff coefficients for storms in the study period were never greater than 1 (a115

hydrograph mass balance check to identify gross errors in rainfall or discharge measurement).116

3 Numerical Model117

TOPMODEL (Beven & Kirkby, 1979) and its variants have been widely applied in rainfall runoff modelling118

of peat catchments in many parts of the world, e.g., Lane & Milledge (2013), Stocker et al. (2014), Gao et al.119

(2015, 2016, 2017). The full set of principles and mathematics underlying TOPMODEL have been discussed120

in detail by many authors including Beven & Kirkby (1979), Keeland et al. (1997) and Kirkby (1997), and will121

not be explained here. However, the core assumptions of the model are (Kirkby, 1997): (1) phreatic surface is122

always parallel to the surface, thus the hydraulic gradient in the saturated zone can be approximated using the123

local topographic slope (tanβ); (2) transmissivity decays exponentially with water table depth (or local storage124

deficit); and (3) subsurface flow can be modelled as a series of steady-states. TOPMODEL’s assumptions fit125

well to the case of blanket peat catchments of interest, where runoff is dominated by surface or near surface126

flow and the rate of flow declines rapidly with depth in the top few centimetres of soil profile (Holden & Burt,127

2002).128

In its classic form, TOPMODEL does not distinguish between the connected and disconnected saturated129

areas, meaning that whether or not a saturated patch is connected to the drainage network, its overland flow130

is routed to the outlet. Lane et al. (2004) showed that this can lead to over-estimation of runoff generation131

and proposed a Network Index version of TOPMODEL that only routes the connected portions of saturated132

areas as overland flow. Later, Lane & Milledge (2013) coupled this Network Index version of TOPMODEL133

with spatially distributed unit hydrograph (SDUH) routing to account for the timing of delivery of water from134

different parts of the catchment to the outlet. They showed that even this simple spatially and temporally135

averaged treatment of overland flow was capable of considerably improving model performance for upland peat136

catchments. Therefore in this paper we use the Lane & Milledge (2013) model, which improves on the original137

TOPMODEL while keeping its major advantage of being very CPU-efficient for calibration purposes.138

This version of TOPMODEL has nine uncertain parameters (Table 2). We set the parameter ranges based139

on a combination of literature review and previous experience. We chose ranges that were as wide as possible140

while remaining physically meaningful.141

Overland flow celerity (c) represents the speed with which rainfall-induced perturbations in the surface142

water travel overland and downstream. It is related to, but different from velocity which is the speed of travel143

of water particles as measured by tracers. Although both terms have often been used interchangeably, Beven144
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Table 2: Uncertain model parameters and their range.

parameter (unit) range
c (m/s), overland flow celerity 1e−3 : 5e−1

Ep (m/day), potential evapotranspiration rate 1e−6 : 5e−2

Srzmax (m), maximum root-zone storage 5e−3 : 2e−2

m (m), exponential decay parameter 5e−5 : 5e−3

T0(m2/s), maximum transmissivity (at saturation) 1e−9 : 2e−5

td (hr/m), unsaturated-zone time delay 1e0 : 3e2

Q0 (m3/s), initial subsurface flux 1e−8 : 1e−3

Srz0 (m), initial root-zone storage 1e−8 : Srzmax

nc (-), number of topographic index classes (number of HRUs) 5e0 : 1e2

(2020) demonstrates their intrinsic differences and shows that celerity is the relevant property when hydrograph145

response is of interest (e.g., rainfall-runoff studies); he also shows that celetrity in downstream direction is146

always >= velocity. We will treat c as a spatially and temporally averaged celerity over the entire catchment147

area.148

Note that the study catchments are small, such that the longest travel distance for water flowing overland to149

the outlet in all three catchments is 293 m. The observational rainfall-discharge time series was recorded at 10-150

min intervals, which dictates the time-step in the model. Thus, the combination of a maximum travel distance151

and a fixed time-step, sets an upper bound on c of 0.5 m/s. Average celerities exceeding 0.5 m/s result in all152

overland flow response reaching the outlet within one time step, thus the model becomes insensitive to values153

of c greater than 0.5 m/s. We do not expected this to pose any limitation on our study because: (1) surface flows154

will be shallow for the majority the flowpaths; (2) measured velocities for such flows in peat catchments are less155

than 0.1 m/s (Holden et al., 2008); and (3) a 1-D diffusion (e.g. Manning) based estimate suggests that celerity156

is less than twice the velocity (McDonnell & Beven., 2014).157

Potential evapotranspiration is defined as the maximum possible evaporation and transpiration when the158

catchment is fully saturated and root zone storage is full. We follow Metcalfe et al. (2015) and account for annual159

and diurnal variation by assuming a linear relationship between insolation and potential evapotranspiration, and160

sinusoidal variation in insolation both over a year and between sunrise and sunset. We take this approach given161

limited available data because it captures expected temporal dynamics in potential evapotranspiration at a cost162

of only one additional parameter (Ep, representing the annual average potential evapotranspiration rate in units163

of metres per day) and has been found to provide comparable performance to more complex formulations for a164

number of UK sites (Calder et al., 1983).165

We found that modelled discharge became insensitive to number of the HRUs (or topographic index classes),166

nc, >20, therefore this value was used in all simulations. Further, we eliminated the initial subsurface flux (Q0)167

and the initial root zone storage (Srz0 ) parameters by using a ‘spin-up’ period, where the model was run using168

measured rainfall data for a period of 7-days prior to the study period (i.e., 22 August 2010/2012). The spin-up169

duration was chosen to include a large storm so that the subsurface water conditions, in particular the initial170

root zone store and the initial subsurface flux, were balanced. The six remaining uncertain parameters were:171

exponential transmissivity decay parameter m, transmissivity at saturation T0, overland flow celerity c, annual172

average potential evaporation rate Ep, unsaturated zone time delay, td , and maximum root zone storage, Srzmax .173

4 Framework174

4.1 Model calibration using GLUE175

Hydrological models in general, and TOPMODEL in particular, are well known to experience ‘equifinality’,176

where many different parameter-sets result in comparably good fits to observational data. Thus, we focus on177

parameter distributions and their changes following revegetation and gully-blocking rather than seeking a single178
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optimum parameter set that characterises each catchment under study. We apply a Generalised Likelihood Un-179

certainty Estimation (GLUE) methodology (Beven & Binley, 1979), using uniform prior distributions for each180

uncertain parameter, and running 160,000 TOPMODEL simulations with parameter-sets sampled randomly181

from these distributions. We retain only ’behavioural’ parameter-sets, for which modelled discharge is feasibly182

within error (limits of acceptability) of the observed discharge for 99 % of the observation period.183

Since the observed discharge record remains our best estimate of the true discharge (despite its associated184

uncertainties) we then weight ‘behavioural’ sets based on their agreement with the observed record using three185

metrics: Nash-Sutcliffe Efficiency (NSE), Root Mean Squared Error in magnitude of the 10 most distinct peaks186

(RMQ) and Root Mean Squared Error in timing for the same peaks (RMT). By examining and comparing the187

‘weighted’ distributions of each parameter in the ‘before’ and ‘after’ periods, we aim to identify the effects188

of interventions, and use this information to infer catchment functions through numerical experimentation. To189

calculate the likelihood weights assigned to each behavioural parameter-set, we evaluate a linear weight for190

each metric and multiply them to obtain an overall weight. Thus, for each metric M, the normalised weight is191

given by:192

wM
i =

|Mi−M0|
∑

Nb
i=1 |Mi−M0|

; i = 1 : Nb ; M ∈ { NSE, RMT, RMQ} (1)

where Nb is the number of behavioural parameter-sets and M0 is the value of the metric for the worst193

performing set. The worst performing set is given the lowest weight and the best set the highest weight, while194

sum of all weights equal to one. The overall likelihood weight, which takes into account the likelihoods from195

each metric, is calculated by multiplying weights for all metrics and normalising by the sum of values:196

Wi =
∏wM

i

∑
Nb
i=1

(
∏wM

i
) ; M ∈ { NSE, RMT, RMQ} (2)

To establish how large a sample size should be to ensure sufficiently dense sampling of the six-dimensional197

parameter space, we: 1) generate three independent random sets (S1, S2, S3) each containing 5,000 randomly198

sampled parameter sets; 2) run the model for each of S1, S2 and S3 and in each case calculate the weighted mean199

of each parameter (Eq. 2); and 3) iteratively double the sampling size in each random-set until the weighted200

means of the parameter values in all three random-sets converge. Convergence occurs at or before a sample201

size of 160,000 for all parameters, study periods, and micro-catchments (CR, shown in Figure 2). In addition,202

weighted mean parameter values remain stable even as the sample size is doubled from 80,000 to 160,000. Both203

observations suggest that 160,000 samples provide sufficient sampling in our case.204

We also performed a blind validation test, where the calibrated parameter-sets were used to predict runoff205

responses for a period (5/10-20/10/2010 and 2012) adjacent but not overlapping the calibration period (22/8-206

4/10/2010 and 2012). We found that none of the distributions of the objective functions were significantly207

different with 95% confidence, providing more confidence that our behavioural sets are representative of the208

sites being studied.209
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Figure 2: Results of the sampling convergence test for GLUE uncertainty estimation. In each panel top plot is
the ‘before’ and bottom plot is the ‘after’ period.

4.2 Obtaining limits of acceptability210

Limits of Acceptability (LOA) are upper and lower bound limits on the observational discharge within which the211

model predictions must lie to be deemed ‘behavioural’ and thus accepted. We seek to define LOA to minimise212

Type II errors, where a good model is rejected as a result of errors in validation or input data (Renard et al.,213

2010). These errors can arise both from measurement limitations/errors, and from commensurability and scaling214

issues where the time/space scale of measurements differ from those within the model. We estimate errors in:215

water level measurement, rating curve, and in the rainfall measurements that drive the model.216

Discharge from each catchment was estimated at 10-minute resolution using a 90o triangular v-notch weir217

with stage behind the weir measured using pressure transducers. Stage was converged to discharge using a218

standard rating-curve relationship of the form q̂ = aĥb, where q̂ is the observed discharge, ĥ is the observed219

stage, and a and b are empirical parameters related to geometry and discharge coefficient. Following Keeland220

et al. (1997), and making the conservative assumption that measurement accuracy was relatively low for such221

equipment, we use a stage measurement error standard deviation of σ = ±0.0075m. We then propagate this222

stage error through the rating curve using a standard frequentist inferential methodology (Petersen et al., 2005)223

to calculate an uncertainty ratio R, which is the span of the 95% confidence limit in discharge, divided by the224

observed discharge:225

R =
ˆq95

q̂
=

3.92bσ

ĥ
(3)

where σ is the measurement error standard deviation. Therefore, the contribution of stage measurement226

errors in the LOA, calculated as upper and lower bounds on the discharge is taken to be (1+R)q̂ and (1−R)q̂,227
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respectively.228

Stage was converted to discharge in the BACI experiment using theoretical rather than empirical rating-curve229

relationships, thus we propagate parameter uncertainty in theoretical rating curves through the weir equation of230

Shen (1981) relating observed discharge, q̂[LT−1] and stage, ĥ[L]:231

q̂ =Ce
8

15

√
2g tan

(
θ

2

)
ĥ

5
2 (4)

where Ce[−] is the non-dimensional coefficient of discharge, g[L2T−1] is the gravitational acceleration, θ232

is the v-notch angle. For 90o weirs, the Ce[−] value varies between 0.5 and 0.7 (Shen, 1981), therefore these233

values were used to obtain an upper and lower bound on discharge as maximum and minimum possible variation234

in discharge as a result of rating curve uncertainty.235

Since observed discharge is estimated from an instantaneous stage measurement every 10 minutes but mod-236

elled discharge is the average of the volumetric water flux from the catchment over the 10-minute timestep,237

there is a potential time-commensurability error between the two quantities. This error will be most severe238

under rapidly changing discharge but it is difficult to conceive of scenarios in which instantaneous discharge239

could differ from the 10-minute average by more than it differs from the instantaneous measurement 10 minutes240

before or after. Thus the upper bound on discharge for timestep t is set to the maximum of the upper bounds241

in timesteps t-1:t+1, unless t is a trough, when the upper bound is set to the minimum of t-1 or t+1. The lower242

bound for timestep t is set to the minimum in timesteps t-1:t+1, unless t is a peak, when the lower bound is set243

to the maximum of t-1 or t+1.244

There is no commonly accepted method of evaluating rain gauge error, and particularly how it manifests245

itself in the outlet discharge predictions when the erroneous rain gauge data is input to a numerical model to246

predict a discharge (Vrugt & Beven, 2018). Rainfall measurement errors stem from errors in the measurements247

themselves and from their inability to capture spatial and temporal variability (McMillan et al., 2012). Since248

each catchment contains only a single raingauge recording at only 10-minute frequency we cannot estimate the249

spatial and temporal variability of rainfall in our study catchments. However, the catchments are sufficiently250

small (order of 10−3 km2) relative to storm-cloud footprints (Sauvageot et al., 1999, Féral et al., 2006) and251

the recording frequency sufficiently high relative to storm durations, that we expect errors due to spatial and252

temporal variability to be small. Finally, point measurement errors can originate from different sources such253

as the time-sampling effect caused by the discrete character of the tipping bucket measurements, water flow254

instabilities in the gauge funnels, and turbulent airflow around the rain gauges caused by wind (Rodda, 1967,255

Pollock et al., 2018). The BACI experiment has provided three rain gauge recordings, one for each catchment,256

which are within 400 meters of each other (PCR(t), PRV (t) and PRG(t)). We use these to estimate raingauge257

measurement errors by following Ciach (2003) in assuming that the average of rain gauge measurements is258

likely to be closer to the true value than any of the individual recordings, due to smoothing of local random259

errors. Thus, if P(t) is the mean value of the precipitations, then, for the given timestep, the error is taken to be260

the maximum deviation from the mean:261

eP(t) = max
(
|P(t)−Pi(t)|

)
i ∈ {CR,RV,RG} (5)

To include the contribution of rainfall measurement errors in the limits of acceptability, they must be trans-262

lated into discharge error. However, non-linearity in rainfall-runoff models leads to accumulation of errors in263

state variables, resulting in complex and non-traditional time series of residuals (Vrugt & Beven, 2018), and264

making simple error propagation unfeasible. Instead, we choose to propagate the P(t)± eP(t) through the nu-265

merical model and assess its magnitude of impact on discharge. Since, this must be performed prior to model266

calibration, we run 160,000 simulations by sampling parameters from the prior distributions. We repeat this267

exercise for the same parameter sets using three different rainfall inputs: (a) P− eP , (b) P and (c) P+ eP . The268

resulting discharge prediction values for each rainfall case are then averaged across all the parameter values; the269

distance between averaged discharge values of (a) and (c) compared to (b) is taken to be the upper and lower270

bound as a consequence of rainfall measurement errors.271

Finally, the limits of acceptability were calculated by adding the effects of all of the above mentioned errors,272

in the form of upper and lower bounds on the observational discharge.273
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4.3 Obtaining parameter distributions274

Figure 3 shows the step by step process that was undertaken in obtaining the parameter distributions which275

characterise each catchment-period under study. For the purpose of illustration, the potential evaporation pa-276

rameter, Ep, for the CR catchment and in the ‘before’ period is shown here, but the procedure is the same for all277

parameters, catchments and periods.278

A uniform random distribution of 160k samples is input to the model (Figure 3a), for each of which the279

model generates a discharge prediction. The parameter values associated with model predictions that sit out-280

side of the LOA are discarded (Figure 3b). Note that since discharge predictions that remain within the LOA281

throughout the entire study period are extremely rare (Beven, 2006, Freer et al., 2003) we have allowed for 1%282

of predictions to be outside the LOA (similar to Blazkova & Beven (2009), Van Straten & Keesman (1991)). In283

Figure 3c, an extra condition is imposed on model predictions to reflect field observations in UK upland blan-284

ket peatlands that discharge response to rainfall is dominated by overland flow (Holden & Burt, 2002, 2003,285

Daniels et al., 2008, Holden, 2009). Thus the Overland Flow (OF) criteria requires that >70% of predicted286

outlet discharge should be composed of overland flow (a conservative, i.e. low, value based on field observa-287

tions). Finally, after the model predictions are filtered by the LOA and OF criteria, the remaining (behavioural)288

parameter-sets are ranked according to model performance and linearly weighted (Eq. 2) such that better per-289

formers get higher weights. Using these weights, the weighted counts of the histogram bins are calculated,290

which are then normalised by dividing by the largest value of the weighted counts to obtain the Normalised291

Weighted Counts (NWC), which vary between 0 and 1. These normalised weighted distributions (Figure 3d)292

enable comparison between catchments’ distributions. All subsequent parameter distributions are normalised293

weighted distributions, their y-axis range is always 0-1, and thus is not shown.294
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Figure 3: Step by step demonstration of how parameter distributions were obtained. Example for evapotranspi-
ration parameter, Ep. NWC stands for Normalised Weighted Count of the histogram bins.

5 Results295

5.1 Parameter distributions before and after interventions296

Using the procedure described in Section 4.3, the normalised weighted distributions for all parameter-catchment-297

period combinations are generated and shown in Figure 4. The top and bottom rows of each panel contain the298

‘before’ and ‘after’ distributions respectively. Note that even at the control site, where there has been no inter-299

vention, the parameter distributions differ between the ‘before’ and ‘after’ periods. Shuttleworth et al. (2019)300

also observed changes in hydrological behavior at the control site (emphasising the need for a BACI experi-301

ment) and referred to it as ‘natural temporal variability’. Thus distributions should be interpreted relative to the302

control site in each case.303

These distributions highlight the parts of the parameter space that performed better while satisfying the LOA304

and OF criteria. In GLUE terms, these distributions can be interpreted as indicating the likelihood that particular305

parts of the parameter space represent the true values for the catchment of interest.306

Examining the shifts in parameter distributions following interventions and starting from the top left panel307

of Figure 4, distributions of overland flow response (celerity, c) in the ‘before’ period differ slightly among308

catchments, however, all three assign almost zero likelihood to c values smaller than 0.1 m/s. There is an309
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overall reduction in surface flow celerity in the ‘after’ period in all sites, but the reduction is larger in RV and310

RG than in CR, and is largest in RG.311

Root zone storage S[L], in the model, accounts for overall interception storage of vegetation, within the312

root zone or in surface ponds (whether natural or behind gully blocks). It has a maximum capacity Srzmax ; is313

emptied only by evapotranspiration at a rate Ea = Ep
S

Srzmax
; and is the only source of evapotranspirative loss in314

the model. Unless this store is full rainfall cannot contribute to either vertical infiltration or surface flow. Before315

the interventions, the distributions of potential evapotranspiration (Ep) are very similar in CR and RV, while RG316

is characterised by higher Ep. After the interventions, all sites shift towards higher Ep values, with RG larger317

than CR and RV slightly larger than RG. Before the interventions, the distributions of Srzmax are very similar in318

all sites. After interventions, all sites shift towards higher Srzmax , the increase is similar for CR and RV, while319

RG shows a clear increase relative to CR.320
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Figure 4: Before-After intervention parameter distributions for all three catchments under study. CR denotes
the control, RV denotes the revegetated and RG denotes the revegetated & gully blocked case. Top row are the
‘before’ distributions and bottom are the ‘after’. The y-axis range is 0-1 for all distributions and thus is not
shown. For description of parameters see Section 3.

The unsaturated zone time delay parameter (td) controls the vertical flux of water from the peat surface to321

the saturated zone below. The model is able to produce good fit to the observed discharge across the full range322

of unsaturated zone time delays both before and after interventions and at all sites. This indicates that the model323

is not sensitive to this parameter. This is perhaps due to the very shallow water table depth in peat catchments324

and their propensity to form saturated areas during a storm, limiting both the vertical and lateral extent of the325
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unsaturated zone.326

The parameters m and T0 control the catchment’s transmissivity-depth profile and thus the relationship be-327

tween subsurface flow and saturation deficit. T0 sets the maximum transmissivity when the peat is fully sat-328

urated, while m controls the rate of exponential decay in transmissivity as saturation deficit increases (higher329

values indicate slower decay). Before the interventions, T0 values are similar at all sites. After the interventions,330

T0 shifts towards higher values for RV, but lower values for RG, though this difference may be offset by an331

increase in m for RV and decrease for RG after interventions.332

Care is required in interpreting these parameter distributions. They show the magnitude and direction of333

individual parameter shifts in response to calibration to each catchment-period pair, but it is difficult to infer334

how significant these changes are when parameter ‘sets’ are used to predict runoff. This is because the impact of335

a parameter shift (e.g. in Ep ) is controlled by both its magnitude and the model’s sensitivity to that parameter.336

Since parameters interact this will also depend on the values of other parameters. This is clearly true for m and337

T0, which together control transmissivity but is also important for evapotranspiration, which is controlled by338

both Ep and Srzmax . For this reason, in the following sections we perform numerical experiments to investigate339

how the model’s runoff predictions change in response to varying sets of ‘parameter-sets’, each of which pertains340

to a catchment-period pair.341

5.2 Numerical experiment #1: Digital Twins342

The first numerical experiment uses the behavioural parameter-sets of Section 5.1 to examine the hydrograph343

response of each catchment in terms of peak magnitudes and timings. In order to isolate the impact of the inter-344

ventions we create catchments that are ’digital twins’. These twins have the same topography, flow pathways,345

input rainfall, and antecedent conditions and differ only in the set of behavioral parameter-sets that represent346

each intervention.347

First, we used RG’s topography, and input rainfall for the 2010 study period to drive the model. The348

model was then evaluated with four different sets of ‘behavioural’ parameter-sets: (1) pre-RV and (2) post-349

RV representing the pre- and post-intervention conditions at the re-vegetated site; (3) pre-RG and (4) post-RG350

representing pre- and post-intervention conditions at the revegetated and gully-blocked site. We then repeated351

this process but using the RG’s 2012 rainfall. Finally, we repeated the whole process but using RV’s topography,352

and RV’s rainfall from the 2010 and 2012 study periods (i.e., all combinations of the two rainfalls and two353

topographies).354

The results are shown in Figure 5. Throughout this figure cooler colors represent pre-intervention conditions355

and hotter colors represent post-intervention. Due to the length of the records we only show the largest storms in356

the record (belonging to the 2010 ‘before’ period) in panels (a) and (b), and the most complex storm (belonging357

to the 2012 ‘after’ period) in panel (c). The middle line of each color band is the mean of all predictions and358

the width of the bands are indicative of the variation in the predictions across all behavioural parameter-sets.359

The numbers 1-8 are peak ID numbers and the smaller panels on the right of the figure are the associated360

Probability Density Function (PDF) of each peak-discharge and peak-timing prediction (left and right columns,361

respectively). In each of the small boxes, upper PDFs are for the RV case and lower (upside down) PDFs are362

for RG. These PDFs show how (in)significant the effects of interventions have been on each peak, such that the363

more overlap there is between the pre- and post-intervention PDFs, the less significant the effects have been for364

that particular peak, and vice versa.365

Post-intervention hydrographs are noticeably smoother than pre-intervention (Figure 5). This reduced am-366

plitude and increased wavelength of the discharge timeseries is likely due to reduction in the speed of surface367

flow response (celerity) associated with increased surface roughness following revegetation and gully-blocking.368

Interventions almost always reduce peak discharge and delay the timing of the peaks. This attenuation is present369

in both large and small peaks (e.g. peaks 1 and 2) though it appears less marked in some peaks (e.g. peak 3)370

than others. Reduced attenuation of peak 3 is also clearly illustrated by the lack of separation between its pre-371

and post-intervention PDFs, particularly for peak magnitude and partially for timing (Figure 5).372

To investigate whether there is a systematic relationship between storm size and peak-discharge/lag-time373

change, we examined the 40 most prominent peaks in the record (10 from each period-topography combina-374

tion, Figure 6a-b). For each peak, we used the weights from Eq. 2 to calculate the weighted-average of the375
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Figure 5: Digital Twins experiment: predicted discharge under four different model parameterisations (panels a
to c). Numbers 1-8 are peak ID numbers. Right of the figure are Probability Density Functions (PDFs) of each
peak.

behavioural model predictions pre- and post-intervention (Qpre and Qpost , respectively). The post-intervention376

change in peak discharge is then calculated as a percentage of the Qpre using: % = (Qpost −Qpre)/Qpre ∗100,377

which is the y-axis of Figure 6a. For peak timings, the same procedure is followed but without normalisation.378

Thus absolute changes in timing are shown on the y-axis of Figure 6b.379

Note that in obtaining Figure 6 sometimes precise identification of the timing of the hydrograph peaks was380

not possible. Delays and attenuations in the predicted hydrographs cause some peaks to interfere or merge381

making it difficult or impossible to identify corresponding peaks in ‘pre’ and ‘post’ model evaluations. This382

difficulty is demonstrated by the peak-timing PDF of peak 8 (Figure 5), where PDFs of RG show considerable383

‘decrease’ in lag-time following revegetation and gully-blocking which is inconsistent with the hydrographs384

for peak 8 (Figure 5c). Peak magnitude change is not affected by this issue, because in this case it is only the385

magnitude of the peaks that matter and thus peaks do not necessarily need to correspond exactly. However, this386

introduces considerable uncertainty in estimates of timing change. To minimise these uncertainties we manually387

identify ‘complex’ multi-modal peaks (such as peak 8), remove them from peak timing analysis (Figure 6b) and388

flag them in our peak magnitude analysis (as circles rather than squares in Figure 6a).389

Both interventions resulted in significant (95% CI) reduction in peak discharge for all storms independent390

of storm size (Figure 6a). Even peaks 3 and 8, which show least reduction are significant at 95% confidence.391

Mean discharge reduction was 48% for RV and 58% for RG suggesting that gully-blocking results in further392
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reductions in peak discharge (above those from revegetation alone). These mean values aggregate considerable393

inter-storm variability with 90% reduction in peak discharge possible in some of the smaller storms but less394

than 20% reduction in four storms for RV and two for RG. The 2010 study period includes the two largest395

storms (peaks 2 and 4 in Figure 5). These storms have rainfall intensity-duration properties that suggest an396

approximately annual return period (Jones et al., 2010) and peak discharges within the largest 10% over 10397

years of observations at the control site. These two storms have modelled discharge reductions of 30-40% for398

RV and 40-55% for RG.399

For the non-complex storms for which timing analysis was possible, interventions always increased lag-400

times (Figure 6b). The lag-time increase was always greater than 10 minutes for revegetation alone and greater401

than 30 minutes for revegetation and gully blocking, with overall mean (across 40 peaks in 2 periods for 2402

topographies) of 0.47 hr (28 min or 148%) in RV and 0.83 hr (50 min or 265%) in RG. For the two largest403

storms, the lag increase in RV was roughly 0.5 hr (30 min or 159%) and in RG was around 0.9 hr (55 min or404

280%).405

5.3 Numerical experiment #2: Parameter Switch406

The Digital Twins experiment estimated the impact of interventions when all parameters are changed from pre-407

to post-intervention values and Figure 4 indicates the magnitude and direction of parameter changes. However,408

the relative importance of each parameter in driving the intervention impacts remains unclear. The second409

numerical experiment aims to identify the parameters (and therefore processes) driving the observed effects of410

a particular intervention.411

The experimental design is similar to the ‘Digital Twins’ experiment, holding rainfall and topography con-412

stant and varying only the input parameter-sets (the ‘behavioural’ parameter-sets for each intervention). How-413

ever, here we perform a one-at-a-time parameter switch, where a single parameter (or pair of parameters) is414

switched to its post-intervention values while all others are kept at their pre-intervention values. Changes in the415

predicted peak magnitude and timing can then be assigned to the switched parameter. We calculate the asso-416

ciated discharge change as a percentage of the post-intervention discharge where ’all’ parameters are switched417

to their ’post’ values. To do this we calculate the weighted-average (Eq. 2) of all post-intervention discharge418

predictions for the case where only one parameter p is switched and all other are kept at ’pre’ values (Qpost.p).419

We then weighted-average the discharge predictions for the case where ’all’ parameters are switched to their420

’post’ values (Qpost.all). The percentage change is then given by: %= (Qpost.p−Qpost.all)/Qpost.all ∗100 (Figure421

6 c&e). For peak timing a similar procedure is followed except that the results are not converted to percentage422

but shown as absolute differences (Figure 6 d&f). Note that it is possible for the discharge/timing change due to423

a single parameter switch to be larger than that when all parameters are at the post-intervention values, because424

by switching parameters one-at-a-time we ignore parameter interactions, which might be counteracting one an-425

other. Thus the y-axis in Figure 6c-f cannot be interpreted as the share of intervention impact in absolute terms,426

rather as a relative indicator of that parameter’s importance.427

Lateral hydraulic conductivity related parameters (m and T0) when switched in together (because they jointly428

represent transmissivity) were found to have no significant share (with 95% CI) in delaying the flow or reducing429

the peak discharge, indicating that transmissivity is not altered two years after interventions; similarly for the430

vertical trasmissivity parameter (td). Therefore, we assume the remaining parameters c, Srzmax and Ep are re-431

sponsible for the total impact of each intervention and show only these parameters in Figure 6c-f. Additionally,432

since Srzmax and Ep are closely linked through their influence on Ea (see section 5.1), we study the overall effect433

of rootzone storage using the paired parameters Srzmax +Ep.434

In both treatments, and for the larger (>0.01 m3/s) peaks, discharge reduction is predominantly controlled435

by celerity, although the impact of Ep+Srzmax is still significant (>10% of celerity’s impact). For smaller peaks436

(<=0.01 m3/s) discharge reduction is controlled primarily by Ep+Srzmax . In terms of the relative role of Ep and437

Srzmax , in RV, Ep dominates, while in RG, both are important. Unlike peak discharge plots, peak timings in438

panels (d) and (f) are more consistently controlled by celerity as the primary delaying mechanism independent439

of storm size or intervention. The effect of celerity is more pronounced in RG than RV (double on average).440
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Figure 6: Digital Twins experiment: ’absolute’ magnitude of intervention impacts for different storm sizes
and in terms of: (a) peak magnitude reduction relative to pre, (b) peak timing delay relative to pre. Parameter
Switch experiment: ’relative’ (to one another) impact of restoration intervention for different parameters and
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RG. Estimates of interventions’ impacts: (g) and (i) magnitude reduction and lag increase, respectively, for
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5.4 Estimating the NFM-potential of the restoration interventions441

In their analysis BACI analysis Shuttleworth et al. (2019) noted significant variability in catchments’ behaviour.442

Two important sources of uncertainty are: (1) differences between catchments in topography and material prop-443

erties of surface and subsurface flow pathways; and (2) differences between rainfall characteristics in the pre-444

and post- intervention period. By assessing deviations from the control site, and examining a large sample of445

storms Shuttleworth et al. (2019) were able to detect the impact of restorations despite this variability. However,446

it is not clear how much of the observed effects were due to differences between catchments or in rainfall char-447

acteristics. Fixing topography and rainfall within the Digital Twins experiment will reduce, but not eliminate448

these uncertainties because the parameter-sets were calibrated to the observed rainfall-discharge time series.449

Unlike the Digital Twins experiment, the magnitude of the changes predicted using Parameter Switch are450

not absolute. To estimate the absolute impact of each parameter (≈ process) on peak discharge and lag-times451

we combine the ’absolute’ impact-magnitude of interventions predicted by the Digital Twins, with the ’relative’452

impact-magnitude of parameters predicted by the Parameter Switch. Since m, T0 and td had negligible effects,453

we exclude them from this analysis. Due to the coupled nature of Ep and Srzmax we treat them as a pair. Thus,454

we assume that the total absolute magnitude of interventions predicted by the Digital Twins, is shared between455

the speed of overland flow response c, and the parameter pair Ep+Srzmax .456

To obtain an estimate for the absolute impact-magnitude of each intervention that can be assigned to c and457

Ep+Srzmax : (i) for each of the 40 peaks, and each parameter, we calculate a weight by dividing that parameter’s458

share (from Parameter Switch) by sum of shares of both parameters, such that weights add to one; (ii) for each459

peak and each parameter, we multiply this weight by the absolute impact magnitude of the intervention (from460

the Digital Twins); (iii) for each parameter, we calculate mean values for peaks <0.01 m3/s, peaks >0.01 m3/s,461

and for the full sample of storm sizes. We then compare these to the case where all three parameters c, Ep, and462

Srzmax are switched to their post-intervention values (a full parameter-switch), and to the observed values (Figure463

6g-j).464

In Figure 6g-j, dots are the mean and the error bars represent the range (min-max). Panels g&i show that,465

celerity, c, alone is almost entirely responsible for lag-time increase, regardless of storm size or intervention.466

Peak reduction is dominated by c in large storms regardless of intervention. In RV and in smaller storms467

Ep+Srzmax have slightly more impact in reducing the peak magnitude than does c. But in RG, and even for468

smaller storms, c reduction due to surface roughness is the dominant process reducing peak magnitudes.469

Figure 6h&j show the mean of impact-magnitudes across all storm sizes, for c and Ep+Srzmax individually,470

and for their combination. When comparing the impact of c+Ep+Srzmax to the observed mean from the BACI471

experiment, there is considerable overlap in the predicted and observed range of peak discharge and lag-times.472

This agreement between the two alternative (mechanistic and statistical) analyses is encouraging. Note that,473

using only 2012 as the ‘after’ intervention period (modelled here), the observed reduction in peak discharge is474

smaller at RG than RV. This is unexpected given the additional gully blocking undertaken in RG and is not con-475

sistent with other years (2013 and 2014, see (Shuttleworth et al., 2019)) where the reduction in peak discharge476

was significantly larger at RG than RV. However, the mean of modelled peak magnitude reductions in RV is 10%477

and in RG is 30% more than the observed mean, which is more consistent both with our expectations (that gully478

blocking should provide additional NFM benefit) and with results from the succeeding years. This suggests a479

possible underestimation of the impacts by the BACI experiment due to experimental limitations/noise.480

6 Discussion481

6.1 Process representation: immobile vs. mobile surface storage482

Shuttleworth et al. (2019) showed that water tables at treatment sites rose following both revegetation and gully-483

blocking, which resulted in a reduction in catchment subsurface storage, leading to an enhanced production of484

saturation-excess surface flow. Despite the increase in surface flow production, lag-times increased and peak-485

discharges decreased, suggesting that: (1) the additional surface flow is stored in some form of ‘surface’ storage,486

(2) this increase in total surface storage more than offsets the effect of reduced subsurface storage due to water-487

table rise. Here we distinguish between two different types of surface storage, ’immobile’ and ’mobile’ surface488
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storage.489

6.1.1 Immobile surface storage490

We define ’immobile’ surface storage as the portion of surface water that is intercepted (and immobilised) by491

vegetation and in-channel gully-blocks, and is only emptied through evapotranspiration. During a rainfall event,492

immobile storage can intercept some of the rainfall and reduce hydrograph peaks. It may also delay the peaks493

by a lag proportional to the time it takes to fill the store. This storage is represented by the root zone storage494

variable, S[L], in the model, with a maximum capacity Srzmax and emptying rate Ea = Ep
S

Srzmax
. Together, the495

paired parameters Srzmax +Ep capture the overall behaviour of immobile storage; individually they provide useful496

information on the interplay of storage capacity and evapotranspiration in the immobile storage unit. Note that497

due to its immobility, immobile storage also represents the portion of rainfall that does not contribute to runoff.498

Therefore, increasing immobile storage can reduce runoff coefficients (ratio of total catchment discharge to499

total storm rainfall). In connection to this, Shuttleworth et al. (2019) found no statistically significant change in500

runoff coefficients following either revegetation or gully-blocking, suggesting that the change in the immobile501

surface storage post-treatments was not the primary driver of observed peak reduction and lag increase in these502

sites.503

6.1.2 Mobile surface storage504

We define ’mobile’ surface storage as the amount of surface water in motion, that is not yet delivered to the505

outlet, at any given point in time. Contrary to immobile storage, water in mobile storage will all eventually506

leave the catchment as discharge, thus will not alter runoff coefficients. In TOPMODEL, mobile surface storage507

is not explicitly represented by a parameter, but it is inversely proportional to the speed of surface flow response,508

i.e., flow celerity parameter (c). Speed of response in this context is the the time it takes for perturbations in509

the mobile surface storage unit, which travel overland, to arrive at the catchment outlet. Thus, during rainfall,510

rougher surfaces (for example due to re-vegetation or stream blocking) reduce celerities, retain water within the511

catchment for longer, and lead to accumulation of water in the mobile surface storage. Here, for a given rainfall512

event, the rougher the surface, the larger the mobile surface storage volume that the catchment can hold.513

6.2 Surface storage post-interventions: role of storm size514

6.2.1 Immobile surface storage515

We first investigate the overall immobile surface storage effect, through the coupled parameters Srzmax +Ep.516

Investigation of Figure 6g suggests that in both RV and RG, changes to immobile storage (i.e. Srzmax +Ep) are517

the primary cause of peak reduction in smaller storms (<=0.01 m3/s), although closely followed by celerity518

c. In larger storms (> 0.01m3/s) immobile storage is much less important for reducing the peaks, but is never519

negligible (it is at least 10% of the effect of celerity on average). Figure 6i shows that in both sites and in smaller520

storms, the role immobile storage in delaying the flow is small but not negligible. Also immobile storage in RG521

delays the flow more than RV in smaller storms. In larger storms however, regardless of treatment, the impact522

of immobile storage on peak timing delay is negligible.523

Regarding the relative roles of Srzmax and Ep following each treatment, their coupling in TOPMODEL (see524

section 5.3) means that: (1) if Ep is small relative to the input rainfall intensity, regardless of Srzmax , evapotran-525

spirative losses are small ’during’ a storm. If Srzmax is also small, there are limited additional evapotranspirative526

losses between storms because there is little stored water to lose. But if Srzmax is large, these losses will extend527

to the inter-storm period, making more rootzone storage available at the onset of the next storm. In this case528

the significance of this additional immobile storage depends on the storm sequencing pattern. (2) if Ep rate is529

comparable to the input rainfall intensity, regardless of Srzmax , evapotranspirative losses ’during’ the storm will530

also be considerable. If Srzmax is small, again these losses primarily occur during the rainfall event but this time531

they are considerable. If Srzmax is also large however, the evapotranspirative losses will extend to the inter-storm532

period and at higher rates, leading to even more rootzone storage available at the onset of the succeeding storm533

which must be filled before surface runoff can be generated (i.e., more peak reduction and delay).534
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In this context, Figure 6c shows that the increase in Srzmax due to revegetation has only a small impact on peak535

discharge independent of storm size. This suggests that revegetation changes immobile surface storage primarily536

by raising Ep rates emptying the store more rapidly rather than by increasing interception storage capacity. This537

in turn suggests that the mechanism through which revegetation increases the catchment immobile surface538

storage is the evapotranspiration occurring ’during’ the storm. Further comparing RV and RG in panel (g)539

shows that independent of storm size, on average the net effect of Srzmax +Ep in peak reduction is not significantly540

different. On the other hand, Figure 6e shows that gully blocking increases not only Ep (as it did for RV) but541

also Srzmax . Together these two observations suggest that, gully-blocking has increased Srzmax , but has reduced542

Ep rates such that blocks have no net effect on immobile surface storage when compared to the revegetation-543

only case. This in turn suggests that the Ep rates of a unit vegetated surface area are higher than that of a pond544

behind the blocks.545

Higher Ep rates of a unit vegetated surface area than that of a pond predicted by our model is surprising, but546

is consistent with findings from a range of other studies which examine the ratio of actual evapotranspiration Ea547

to open water evaporation Ew for wetland ecosystems in a range of climates (e.g., (Dolan et al., 1984, Campbell548

& Williamson, 1997, Drexler et al., 2004)). These studies suggest significant variability in the ratio, both above549

and below 1 that is strongly sensitive to biophysical factors linked to vegetation type and water supply. In550

particular, when canopy resistance to evaporation is low (<100 s/m) wetland vegetation increases Ea relative551

to open water (Mohamed et al., 2012); similarly, evaporation from wet leaves may exceed that of open water552

because the vegetation is able to withdraw more energy from the atmospheric boundary layer by reducing its553

aerodynamic resistance to evaporation (Savenije, 2004).554

In terms of peak timing, Figure 6i suggests that in large storms and independent of treatment, the delay555

caused by the process of filling the immobile surface storage is negligible. In smaller storm this delay is more556

significant and is on average 5 mins in RV and 10 mins in RG. These suggest that the additional immobile557

surface storage added by revegetation can slightly delay the flow but only in smaller storms; it also suggest558

that gully-blocking further increases this delay in smaller storms, but it is still not significant in large storms.559

Additional inference can be made by comparing panels (d) and (f) in Figure 6, which suggest that the underlying560

mechanisms through which these treatments delay the flow are different; in RV these lag-times are primarily561

delivered through increased Ep rates whereas in RG primarily through increased Srzmax . Again, this suggests562

increased immobile storage capacity as a result of gully blocking but reduced Ep relative to revegetation.563

6.2.2 Mobile surface storage564

For both RV and RG, averaged across all storm sizes, celerity is the most important parameter contributing to565

both peak discharge reduction and lag-time increase (Figure 6h&j). Similar to the findings of Shuttleworth et566

al. (2019), the fraction of the hydrograph change that can be accomplished by changing celerity alone at RG is567

almost double that at RV, both in peak-discharge reduction and lag increase. Note that being semi-distributed,568

TOPMODEL only treats the hillslopes, channels and blocks in a bulk sense and therefore the celerity in the569

model is also a bulk celerity averaged over the catchment area. Thus, although it will not represent the true570

celerity of different parts of the hillslope, channel or individual blocks, it does represent the average response-571

speed of surface flow necessary to reproduce the observed hydrograph for the studied rainfall-catchment com-572

binations. Therefore, the significant reduction in celerity predicted by the model following these interventions573

has three important implications. First, the additional mobile surface storage due to both interventions (RV and574

RG) is consistently the dominant process for both peak reduction and lag increase. This is important because it575

suggests that hydrograph attenuation (magnitude reduction and delay due to changes in hydrograph shape rather576

than volume) resulting from interventions is not limited to smaller storms. Second, the mobile surface storage577

associated with gully-blocks is much more important than their immobile storage. Third, in terms of mobile578

surface storage the additional impact of gully-blocking is as large as that of revegetation (see Figure 6g-j).579

Although it is intuitive that gully blocking should significantly reduce mean particle velocities of surface580

flow (as measured by tracers), it is far less clear how gully blocking reduces celerity (see section 5.4). For581

example, celerity estimates based on the St. Venant equation relate c to both flow depth and velocity (c =582

v±
√
(gy), v[LT−1]: velocity, g[LT−2]: gravitational constant, y[L] flow depth) (McDonnell & Beven., 2014). It583

is easier to imagine how celerity might be reduced in the case of permeable blocks due to their nonlinear storage584
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discharge relationship (Milledge et al., 2015, Metcalfe et al., 2017). For an impermeable block such as a timber585

dam, the situation is more complex. Flow depth changes discontinuously along the channel length: due to gully586

bed slope, flow depth gradually increases towards its maximum at the block, but then rapidly decreases to the587

thickness of the sheet of water flowing over the top of the block. Therefore, compared to a non-blocked case,588

mean particle velocity is much lower behind the block, while the
√
(gy) term in celerity is much higher due589

to deeper flow. However, in the thin flow over the block the
√
(gy) term suddenly and significantly decreases,590

while at the same time mass continuity forces a rapid increase in mean particle velocity (increasing the v term).591

In reality water then flows into the subsequent blocks, with block interactions (block spacing, configuration,592

etc.) introducing additional complexity.593

In our study site (RG) gullies were blocked with 20 impermeable timber dams and 17 cobble dams that594

were initially permeable but that tend to clog with sediments reducing their permeability over time. Our model595

results suggest considerable celerity reduction due to gully blocking, but the mechanism for such a reduction596

as well as the extent to which it can be attributed to permeable or impermeable blocks cannot be untangled in597

this modelling framework. Explicit surface flow routing and block permeability representation could feasibly598

address this uncertainty and would be valuable for informing future block design.599

6.3 Role of storm duration600

In the post-intervention period, despite significantly delaying the flow, peak 3 in Figure 5b exhibits very little601

reduction in peak discharge when compared with other peaks, and particularly with peak 1, which is very similar602

in magnitude and overall hyetograph shape. This can also be seen in the peak discharge PDFs of peak 3 where603

there is no separation between ‘pre’ and ‘post’ PDFs for either treatment, meaning that the magnitude of change604

in discharge was not significantly different (with 95% confidence) between these periods.605

The main observed difference between rainfall-runoff behaviours of peaks 1 and 3 is in their duration of606

peak rainfall intensity (see Figure 7). The storm responsible for Peak 3 has a hyetograph that features a wide607

peak, such that the maximum intensity is almost constant for a span of 70 minutes. The hyetograph associated608

with Peak 1 has a much narrower peak, spanning only around 10 minutes. On the other hand, the estimated609

post-restoration mean lag-times for RV and RG were 28 and 50 minutes, respectively. Thus, the duration of the610

peak rainfall intensity in peak 1 is shorter than the mean lag-times provided by both sites, whereas for peak 3611

duration of peak intensity rainfall exceeds their lag-times.612
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Figure 7: Comparing duration of peak rainfall intensity and its impact on peak magnitude reduction.

During peak 3 the duration of peak rainfall intensity exceeded the time to equilibrium for the catchment (the613

time for the floodwave to propagate from the furthest point in the catchment). As a result the discharge peak614

is delayed but not reduced in magnitude (with the catchment in an almost ‘steady-state’). This phenomenon is615

independent of the magnitude of the rainfall and is driven by duration, which makes it possible for a prolonged616

storm event to fill the entire catchment ‘immobile’ and ‘mobile’ surface storage, whilst experiencing no reduc-617
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tion in its magnitude, and thus removing the peak discharge reduction effect of NFM interventions (although618

not their delaying effect).619

Note that peak 3 has a peak discharge less than half that of the largest storm in the study period, and is only620

used here to draw attention to the possible impact of such long-duration storms, irrespective of their probability621

of occurrence. In reality, it may be that the highest intensity storms rarely, or never assume such broad hyeto-622

graph shapes. Constraining this would require an Intensity-Duration-Frequency (IDF) study. Nonetheless, our623

findings and those of Gao et al. (2018), suggest that hyetograph characteristics can play an important role in624

modifying the effectiveness of NFM interventions.625

6.4 NFM implications at catchment scale626

Revegetation and gully blocking activities in our study catchments were motivated by, and designed for moor-627

land restoration rather than for Natural Flood Management (NFM). It is unlikely that a flood management focus628

would have substantially changed the revegetation treatment; however, it likely would have changed the gully629

block designs/configurations, which were introduced to elevate water tables, trap sediment and prevent further630

gully erosion, rather than to attenuate flow. Given the difference in focus, it is perhaps surprising how successful631

the interventions have been in reducing and delaying peak discharge.632

Further, our results show that the percentage reduction in peak discharge from a micro-catchment can vary633

widely (5%-90% in Figure 6a), and that this may be due to rainfall characteristics (Section 6.3). If so, the634

interventions studied here will be least effective in reducing micro-catchment peak discharge for long duration,635

’frontal’ rainfall, and more effective for shorter ’convectional’ rainfall, such as that responsible for the floods in636

nearby Glossop (August 2002) and Sheffield (June 2007).637

It is also important to note that regardless of the duration of peak rainfall intensity, lag-times are always638

considerably increased following these interventions (minimum 10 minutes in RV and 30 minutes in RG). Con-639

sequently, even in the longest frontal rainstorms, these increased lag-times for upland headwater subcatchments640

can be utilised to attenuate the downstream flood wave, as the delayed delivery of water will allow flood peaks641

from other downstream subcatchments to pass first, before delivering water to catchments draining to commu-642

nities at risk (Pattison et al., 2014). This, however, comes with the caveat that when alterations are primarily643

to flood wave timing rather than magnitude, it is possible that interventions synchronise sub-catchments rather644

than bringing them out-of-synch. To avoid such situations, catchment-scale models (such as Metcalfe et al.645

(2018)) can be useful in testing different spatial patterns of NFM interventions and their impact on flood risk646

throughout a river network.647

Nonetheless, possible susceptibility of these interventions to long duration, frontal rainfall suggests that:648

revegetation and gully-blocking of the design examined here, may not provide full protection against flooding649

in some cases. If so, this would be because the catchment’s total surface storage (immobile and mobile) was650

not sufficiently increased by these interventions to reduce peak magnitude even in longest duration events.651

Note that the restoration interventions’ main objective is to raise the water tables, which translates into reduced652

available subsurface storage. Therefore, to extend these interventions’ effectiveness to long frontal rainstorms653

while remaining within the restoration objectives, the catchment’s total ’surface’ storage needs to be increased.654

We propose two approaches.655

First, trade off immobile surface storage for more mobile surface storage, because in flood relevant storms,656

total immobile surface storage was insufficient to significantly reduce peak magnitude or increase lag-times.657

Instead, celerity reduction had a far greater effect. Thus making the blocks ’optimally’ permeable could further658

increase surface roughness and reduce celerity. This would better utilise the mobile storage effect, which might659

not currently be maximally exploited. This can be done, for instance, by inserting pipes, or cutting holes into660

otherwise impermeable gully blocks (e.g. Milledge et al. (2015), Metcalfe et al. (2017)), such that surface flow661

is partitioned into storage during times of peak flow. Here, for a given storm, optimal design would result in662

blocks that: fill to capacity, do so only at peak flow, and never overtop.663

Second, increase the total immobile surface storage by creating more shallow open-water pools in other664

parts of the catchment as well as in channels and gullies, such that its volume is comparable to the large water665

volumes associated with flood relevant storms. Note that this may also increase the mobile surface storage by666
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further reducing surface flow celerities, but comes with the caveat that since total storm-water volumes scale667

with catchment area, full catchment-scale implementation may be costly/unfeasible.668

7 Summary and conclusions669

We have shown that a rainfall-runoff model can be inverted to corroborate findings and expand process under-670

standing associated with BACI observations. The extent to which such inversion provides useful information671

is critically dependent on uncertainties introduced by both observations (rainfall and discharge data) and the672

model parameters, as well as by model structure. We have sought to account for observational and parameter673

uncertainties within a limits of acceptability framework. However, model structural uncertainty remains and is674

difficult to quantify. For example, we have not accounted for the known depth-dependence of surface flow ve-675

locity (Holden et al., 2008) and celerity (McDonnell & Beven., 2014), which could result in under-estimation of676

the mobile surface storage in some parts of the catchment, and over-estimation in others; depending on whether677

the depth-averaged celerity is more or less than the true depth-dependent celerity in those parts. When calcu-678

lating the bulk mobile surface storage (as was the case in this study), it is conceivable that some of the errors679

associated with depth-averaging the celerity would cancel out due to smoothing that occurs by averaging over-680

and under-estimated values across different parts of the catchment. Additionally, our simple model structure681

cannot explicitly account for differences in gully block permeability between wooden and cobble blocks. Thus,682

the extent to which such model structural uncertainties could potentially have impacted our findings is not clear683

without further study.684

However, confidence in our results comes from: (i) a large number of behavioural parameter-sets (>600)685

at all site-intervention combinations; (ii) good agreement between predicted and observed discharge for be-686

havioural models both in terms of overall fit (NSE) and peak characteristics (magnitude and timing); (iii) agree-687

ment between predicted and observed discharge that is retained with little degradation in performance metrics688

for a test period held back during calibration; and (iv) agreement with findings from the BACI experiment in689

terms of the distribution of changes in magnitude and timing of peak discharge.690

In summary, we find that revegetation and gully blocking activities motivated by, and designed for moor-691

land restoration also provide significant additional catchment surface storage (immobile and mobile), which692

reduces peak discharge and increases lag-times, independent of storm size. Revegetation increases immobile693

surface storage through more evapotranspiration almost exclusively ’during’ storms, and not through increased694

rainfall interception. Gully blocking extends the evapotranspirative losses to the inter-storm period through in-695

creasing the immobile storage capacity, but also reduces catchment average evapotranspiration rates. These two696

effects approximately offset one another, such that the overall impact of blocking on immobile surface storage697

is negligible when compared to revegetation alone. Importantly though, for flood relevant storms, the immobile698

storage plays only a secondary role to ’mobile’ surface storage. In these storms, independent of intervention699

type, the key catchment change responsible for reducing peak discharge and delaying lag-times is increased700

surface roughness through its impact on surface flow celerity.701

The dominant role of roughness on discharge attenuation means that hyetograph shape can strongly influence702

the interventions’ effectiveness in reducing peak discharge. Long, broad, rainfall intensity peaks can lead to near703

steady-state discharge responses from these small catchments; in which case, reduced surface flow celerities still704

increase lag-times but they no longer reduce peak discharge. Although both are important, the latter has a more705

reliable impact on downstream discharge because lag-time increase in headwater catchments generally attenuate706

downstream discharge but can amplify it by synchronising subcatchment hydrographs. This highlights the707

importance of catchment-scale modelling to test the impact of intervention scenarios before implementation.708

Our pre- and post-intervention parameter-sets may provide useful constraints on efforts to parameterise such709

models.710

Interventions focused more sharply on NFM could both reduce peak discharge and delay peak timing by711

increasing total catchment ’surface’ storage. We propose two approaches: (1) trade-off ’immobile’ surface712

storage for more ’mobile’ surface storage by making the blocks ‘optimally’ permeable; (2) increase the total713

immobile surface storage by creating more shallow open-water pools in other parts of the catchment as well as714

in channels and gullies.715
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