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Abstract

Process-scale development, evaluation and calibration of physically-based parameterizations are key to improve weather and

climate models. Cloud–radiation interactions are a central issue because of their major role in global energy balance and climate

sensitivity. In a series of papers, we propose papers a strategy for process-based calibration of climate models that uses machine

learning techniques. It relies on systematic comparisons of single-column versions of climate models with explicit simulations

of boundary-layer clouds (LES). Parts I and II apply this framework to the calibration of boundary layer parameters targeting

first boundary layer characteristics and then global radiation balance at the top of the atmosphere. This third part focuses

on the calibration of cloud geometry parameters that appear in the parameterization of radiation. The solar component of a

radiative transfer scheme (ecRad) is run in offline single-column mode on input cloud profiles synthesized from an ensemble of

LES outputs. A recent version of ecRad that includes explicit representation of the effects of cloud geometry and horizontal

transport is evaluated and calibrated by comparing radiative metrics to reference values provided by Monte Carlo 3D radiative

transfer computations. Errors on TOA, surface and absorbed fluxes estimated by ecRad are computed for an ensemble of

cumulus fields. The average root-mean-square error can be less than 5 Wm$ˆ{-2}$ provided that 3D effects are represented

and that cloud geometry parameters are well calibrated. A key result is that configurations using calibrated parameters yield

better predictions than those using parameter values diagnosed in the LES fields.
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Abstract22

Process-scale development, evaluation and calibration of physically-based param-23

eterizations are key to improve weather and climate models. Cloud–radiation interac-24

tions are a central issue because of their major role in global energy balance and climate25

sensitivity. In a series of papers, we propose papers a strategy for process-based calibra-26

tion of climate models that uses machine learning techniques. It relies on systematic com-27

parisons of single-column versions of climate models with explicit simulations of boundary-28

layer clouds (LES). Parts I and II apply this framework to the calibration of boundary29

layer parameters targeting first boundary layer characteristics and then global radiation30

balance at the top of the atmosphere. This third part focuses on the calibration of cloud31

geometry parameters that appear in the parameterization of radiation. The solar com-32

ponent of a radiative transfer scheme (ecRad) is run in offline single-column mode on33

input cloud profiles synthesized from an ensemble of LES outputs. A recent version of34

ecRad that includes explicit representation of the effects of cloud geometry and horizon-35

tal transport is evaluated and calibrated by comparing radiative metrics to reference val-36

ues provided by Monte Carlo 3D radiative transfer computations. Errors on TOA, sur-37

face and absorbed fluxes estimated by ecRad are computed for an ensemble of cumulus38

fields. The average root-mean-square error can be less than 5 Wm−2 provided that 3D39

effects are represented and that cloud geometry parameters are well calibrated. A key40

result is that configurations using calibrated parameters yield better predictions than41

those using parameter values diagnosed in the LES fields.42

1 Introduction43

Cloud–radiation interactions, through their strong impact on the Earth’s global en-44

ergy balance (Ramanathan et al., 1989), are key processes in the evolution of the Earth’s45

climate. The radiative effect of cumulus clouds is particularly important due to their per-46

manent presence in large regions of the Earth’s troposphere and their large optical thick-47

ness (Berg et al., 2011). They are also responsible for a large part of the uncertainties48

around climate sensitivity (Dufresne & Bony, 2008; Bony et al., 2015). These results mo-49

tivate the improvement of the representation of cloud–radiation interactions in large-scale50

models, who still struggle to accurately represent the radiative effects of these small short-51

lived complex clouds (Dolinar et al., 2015).52

Cloud geometry affects radiation in several ways. In particular, poor representa-53

tion of vertical overlap and horizontal heterogeneity, as well as the neglect of horizon-54

tal transport, have been identified as sources of radiative biases in large-scale models for55

decades (see e.g. McKee and Cox (1974); Várnai and Davies (1999); Barker et al. (2003)56

among many others, or Marshak and Davis (2005)). Recent developments of radiation57

parameterizations include realistic representations of these effects, for example, McICA58

(Pincus et al., 2003) or Tripleclouds (Shonk & Hogan, 2008) for the heterogeneity, the59

exponential-random model of Hogan and Illingworth (2000) for vertical overlap and SPAR-60

TACUS (Hogan & Shonk, 2013; Schäfer et al., 2016; Hogan et al., 2016, 2019) for 3D ef-61

fects. These recent propositions need more systematic evaluation before they can be rou-62

tinely used in operational models.63

Besides deriving new formulations to represent subgrid-scale physical processes, a64

crucial aspect of model development is the adjustment of the parameters to calibrate ref-65

erence configurations of climate models or operational configurations of weather forecast66

models (Schmidt et al., 2017; Bellprat et al., 2012; Duan et al., 2017; Hourdin et al., 2017).67

In this calibration process, the objective is to find a configuration consistent with tar-68

get quantities that measure different aspects of the observed climate or weather. In cli-69

mate model calibration, the targets are most often radiation observables such as the global70

solar and thermal top-of-atmosphere (TOA) fluxes, their spatial distribution or their clear71

sky and cloud radiative effect (CRE) components (Hourdin et al., 2017). Because of the72
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key role of clouds on the radiation balance, free parameters that appear in cloud related73

parameterizations are largely used in the calibration process (see e.g. Golaz et al. (2013);74

Mauritsen et al. (2012); Hourdin et al. (2017)). As highlighted by Hourdin et al. (2017),75

documentation of existing calibration techniques and propositions of new approaches is76

bound to accelerate improvement of climate models.77

In the first two papers of this series (Couvreux et al., 2020; Hourdin et al., 2020),78

a strategy to reduce cloud-related uncertainties in large-scale models is proposed. It strongly79

relies on comparisons between Single Column Model (SCM) and Large-Eddy Simulations80

(LES) to develop, evaluate and calibrate parameterizations at the process scale, in par-81

ticular those that model boundary-layer (BL) transport and clouds. Free open-source82

numerical tools are provided to the community to promote a transparent, rigorous and83

efficient procedure to calibrate models. The first paper (Couvreux et al., 2020) is focused84

on the description of High-Tune:explorer (htexplo), a tuning tool based on history match-85

ing, developped jointly by physicists in atmospheric science and statisticians in Uncer-86

tainty Quantification. Its potential is demonstrated through the calibration of BL pa-87

rameterizations of an SCM, targeting reference BL metrics computed in the LES fields.88

It thereby ensures that parameters controling the BL are calibrated to obtain the right89

BL properties. The second paper (Hourdin et al., 2020) uses the same tool to calibrate90

the 3D climate model targeting observed radiation at the TOA. In this global calibra-91

tion, the model is only allowed to explore a restricted parameter space, which is obtained92

by prior calibration of the parameterization of shallow convection using the SCM/LES93

framework. It thereby ensures that BL parameters are calibrated to obtain both the right94

BL properties and the right global radiation, i.e., the right TOA cloud radiative forc-95

ing for the right BL clouds.96

Preliminary calibration at the process-scale is a way to avoid compensation errors97

during global calibration. Indeed, a bias in cloud representation might lead to the in-98

troduction of a bias in radiation in order to get the right global cloud radiative effect.99

It is the case of the famous “too few too bright” syndrome found in numerous climate100

models (Karlsson et al., 2008; Nam et al., 2012), in which deficient representation of BL101

processes leads to an underestimation of low cloud cover, that is then compensated by102

an overestimation of cloud optical depth so that reflectance is increased. This overes-103

timation of cloud reflectivity could also come from trying to compensate for too large104

transmissivity at low sun angles due to the neglect of 3D radiative effects. This same lack105

of 3D effects could also lead to an artificial increase of cloud cover to mimic the increase106

of the “effective” cloud cover seen by the sun when it goes down.107

To prevent these compensations, this paper adds a step to the multistage calibra-108

tion procedure: the process-based calibration of an offline parameterisation — the ra-109

diation scheme. By targeting radiative metrics computed at the cloud-field scale, we en-110

sure that, given the right clouds, radiation parameters are calibrated to obtain the right111

local radiation. The set of radiation parameters that are retained at this scale can then112

be explored in interaction with the other parameterizations during the 3D global cali-113

bration exercise; the radiation scheme will not be allowed to unphysically compensate114

for cloud biases.115

For this purpose, the SCM/LES framework used for evaluation and calibration of116

BL parameterizations is adapted to the offline mode of the ecRad radiative transfer (RT)117

scheme (Hogan & Bozzo, 2018). Outputs from LES are used as reference cloud fields,118

in which 3D RT is solved by Monte Carlo (MC) to provide reference radiative metrics.119

These same cloud fields are reduced to a few vertical profiles to mimic a “perfect” SCM120

output, in the sense that it perfectly matches the reference LES cloud field statistics. This121

way, the inaccurate representation of BL processes in large-scale models cannot be blamed122

for errors on CRE estimates. With this, the errors due to the different approximations123

used in the RT scheme are quantified. Specific attention is paid to the radiative effect124

of approximate description of the subgrid clouds 3D structure in the RT scheme. As a125
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physical interpretation is associated with the parameters that appear in the description126

of cloud geometry, they can be estimated from the LES fields. Therefore, it is not ob-127

vious that the htexplo tool should be used to adjust these parameters. Yet, the results128

of the calibration process indicate that ecRad can be improved by using tuned param-129

eters instead of measured ones.130

The paper is organised as follows: Section 2 describes the ecRad RT scheme, the131

MC model, the 3D LES and the resulting 1D profiles. In Section 3, ecRad is evaluated132

against MC simulations, quantifying independently the different sources of errors, first133

on overcast single-layer homogeneous clouds to exclude errors due to geometrical effects,134

then on cumulus scenes to test different representations of cloud geometry and 3D ef-135

fects. In Section 4, the htexplo tool is briefly described before being applied to explore136

the space of possible values for cloud geometrical parameters in SPARTACUS. Four cal-137

ibrated configurations are then analysed. Calibrated configurations are found to system-138

atically improve surface and TOA fluxes but not the absorption. The main results are139

discussed in Section 5.140

2 Radiative Transfer Models and Cloudy Atmosphere Data141

An atmospheric radiative transfer parameterisation relies on a statistical repre-142

sentation of cloud fields, in the form of 1D profiles of a small number of cloud geome-143

try variables. In order to untangle and estimate the various biases that are inherent to144

such parameterisations, a 3D RT reference is built using a Monte Carlo (MC) model on145

fully resolved 3D cloud fields obtained from LES. This section presents both radiative146

models: the ecRad radiation scheme (Hogan & Bozzo, 2018) and the reference MC model147

(Villefranque et al., 2019); as well as the LES clouds and the methodology used to trans-148

late these 3D fields into the 1D profiles used as inputs to ecRad.149

2.1 Radiative transfer models150

2.1.1 ecRad: a flexible radiation scheme for large-scale atmospheric mod-151

els152

The radiation scheme ecRad (Hogan & Bozzo, 2018) is operational since 2017 in153

the Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather154

Forecasts (ECMWF). Recent efforts have led to a notable increase in flexibility as well155

as in efficiency (the authors report a 41% increase in speed for the operational config-156

uration) compared to previous schemes. Another important step was the development157

of SPARTACUS (Schäfer et al., 2016; Hogan et al., 2016, 2019), a 2-stream based solver158

that explicitly represents horizontal transport of light.159

In this work, the offline version is used, which differs from the coupled version mostly160

by how inputs and outputs are handled. Most of the configuration will remain the same161

(see Table 1), but the solver and the geometrical parameters that we intend to calibrate162

will differ from one run to another.163

As far as liquid clouds are concerned, six main sources of errors were identified. They164

are described in the following, and Section 3 quantifies the errors due to each of these165

approximations.166

1. Spectral dimension and optical properties. The RRTMG gas model used167

in ecRad and other radiation schemes uses the correlated k-distribution method168

in 14 bands in the solar and 16 bands in the thermal. Here, only solar computa-169

tions are performed, integrating fluxes on a 0.2 – 12.5 µm interval. The SOCRATES170

data that describe the liquid cloud optical properties are the coefficients of a poly-171

nomial function fitted to Mie computations performed on a finite number of wave-172
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Table 1. Configuration of ecRad in the following work.

Property Option Reference

Gas model RRTMG-IFS Iacono et al. (2008)
Aerosols None
Liquid cloud optics SOCRATES Manners et al. (2017)
Liquid water content distrib. shape Gamma
Cloud overlap scheme Exp-Ran Hogan and Illingworth (2000)
Solver Tripleclouds Shonk and Hogan (2008)

or SPARTACUS Schäfer et al. (2016); Hogan et al. (2016)
Entrapment (SPARTACUS only) Explicit Hogan et al. (2019)

lengths and effective radii, spectrally averaged over the RRTM narrow bands. De-173

tails can be found in the SOCRATES technical report (Manners et al., 2017) and174

in the Supporting Information that accompanies this paper.175

2. The two-stream approximation. RT solvers based on the two-stream approx-176

imation are often the most efficient, if not the most accurate ones. They basically177

consist in summarizing the angular distribution of diffuse fluxes into two “streams”:178

one downward flux and one upward flux, at each interface between two model lay-179

ers. This reduces the number of unkown variables in the system that couples the180

directional fluxes at each interface. The “direct” or unscattered flux is treated as181

an additional stream. This limited amount of represented directions is known to182

induce biases (see e.g. Barker et al. (2015)).183

3. Angular distribution of scattered light. Two-stream models do not use de-184

tailed angular phase functions. They instead rely on the cosine-weighted average185

of the phase function, namely the asymmetry parameter g. It appears in the com-186

putation of reflected and transmitted fluxes at each layer interface. In addition187

to this simplification, ecRad and numerous other two-stream based models use the188

delta-scaling approximation. It corrects for clouds being too reflective due to the189

incapacity of basic two-stream schemes to account for large amounts of energy scat-190

tered in a very small solid angle around the forward direction. The approxima-191

tion consists in scaling both the optical depth and the asymmetry parameter so192

as to treat some of the forward scattering as direct transport. The scaling used193

in ecRad considers a fraction f = g2 of scattered light as unscattered, as per the194

δ-Eddington model of Joseph et al. (1976).195

4. Vertical overlap of partially cloudy layers. A unique vertical profile of cloud196

fractions can be obtained from very different cloud fields, yielding quite different197

radiative effects. Indeed, the radiative effect of clouds depends on both the total198

cloud cover and the total cloud optical depth. Given a cloud fraction profile, if cloudy199

regions are maximally overlapped, then the total cloud cover will be smaller and200

the total cloud optical depth larger than if cloudy regions are more randomly over-201

lapped. Hogan and Illingworth (2000) proposed to express the cloud cover Ctrue(i, i+ 1)202

of two adjacent layers i and i+1 of cloud fractions ci and ci+1 as a weighted sum203

of the two following terms:204

• Cmax(i, i+ 1) = max(ci, ci+1) which is the “maximum” cloud cover and205

• Crand(i, i+ 1) = ci + ci+1 − cici+1 which is the “random” cloud cover.206

Then,207

Ctrue(i, i+ 1) = αi,i+1Cmax(i, i+ 1) + (1− αi,i+1)Crand(i, i+ 1) (1)

and α is called the overlap parameter, with α = 1 for maximum overlap and α = 0208

for random. In the two-stream scheme, it constrains, at the interface between each209
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pair of layers, the distribution of upward (downward) fluxes into the cloudy and210

clear regions of the layer above (below). Hogan and Illingworth (2000) observed211

from radar measurements that α could be modeled as an exponential that decreases212

with layers separation:213

αi,i+1 = exp(−∆z(i, i+ 1)

z0
) (2)

where ∆z(i, i+1) is the vertical distance that separates the center of the two lay-214

ers and z0 is a decorrelation length: the degree of overlap of two layers separated215

by half this length is around 60%, and falls down to 5% at three times this length.216

5. Horizontal heterogeneity of in-cloud liquid water. Since Beer’s exponen-217

tial law is a convex function, Jensen’s inequality applies (Jensen, 1906), resulting218

in systematic bias due to averaging of optical properties (Newman et al., 1995):219

the mean transmitted flux under a cloud of horizontally varying liquid water con-220

tent (LWC) is always larger than the transmitted flux under the equivalent ho-221

mogeneous cloud of average LWC. To represent the effect of horizontal variations222

of LWC on radiation, the Tripleclouds method has been proposed by Shonk and223

Hogan (2008). In addition to solving solving radiation independently in cloudy224

and clear regions of each layer, it further divides the cloudy region into a thin sub-225

region and a thick one. To distribute the LWC into the two sub-regions of a given226

layer and then infer their respective optical depths, a gamma-shaped distribution227

of the liquid water is assumed, characterized by a mean and a standard deviation228

σ. Tripleclouds uses the fractional standard deviation (FSD) of the distribution229

(ratio of σ to mean in-cloud LWC) to robustly characterize the horizontal vari-230

ability of LWC in each layer.231

6. Horizontal transport of light. In Tripleclouds, layers are divided into sub-regions232

and radiation is solved independently in each sub-region of the layer. Light can-233

not be transported from clear to cloudy sub-regions of the same layer. However,234

many studies have shown that horizontal transport of light significantly modifies235

the distribution of energy in the atmosphere: transport through cloud sides in-236

creases transmission at high sun and decreases it at low sun, while multiple re-237

flections combined to horizontal transport leads to entrapment of upward flux, thereby238

increasing transmission (McKee & Cox, 1974; McKee & Klehr, 1978; Várnai & Davies,239

1999; Barker et al., 2003; Hogan & Shonk, 2013; Hogan et al., 2019). SPARTA-240

CUS is the first two-stream-based solver that allows these 3D effects to be rep-241

resented in large-scale models. It explicitly represents entrapment by computing242

the mean horizontal distance traveled by reflected light. To represent transport243

through cloud sides, it uses the Tripleclouds approximation for the cloud field then244

adds exchange terms between regions. This term is proportional to the length of245

the interface between clear and cloudy regions. For a given cloud fraction, 3D ef-246

fects will be larger for a large number of small clouds than for a single large cloud.247

From the total cloud perimeter density p (perimeter length to domain horizontal248

area, of unit inverse length) and the cloud fraction of the layer c, Schäfer et al. (2016)249

define the cloud effective scale Cs as:250

Cs =
4c(1− c)

p
(3)

Given observed values for c and p, Cs is the size of the cloud that is such that when251

a virtual layer is filled randomly with instances of this cloud until the cloud frac-252

tion of the layer is c, then the total cloud perimeter in the virtual scene is p. Other253

choices of representation for p have been explored, in particular the recent work254

of Fielding et al. (2020) has led to a new parameterization for the cloud perime-255

ter in SPARTACUS.256
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2.1.2 Monte Carlo reference computations of solar 3D RT257

A MC code is used to compute solar 3D RT in 3D cloud fields, considered as the258

“truth” in comparisons to ecRad estimates. The Monte Carlo methods are widely used259

to accurately compute 3D RT in complex media (see for example Marchuk et al. (1980),260

Mayer (2009) or Marshak and Davis (2005)). It consists in tracking a large number of261

virtual photon paths (in this work, ten million per simulation) throughout a virtual medium,262

explicitly simulating all radiative processes such as emission, absorption, scattering and263

surface reflection. The model used here is based on the High-Tune library described in264

Villefranque et al. (2019), and is freely available online 1. Whenever a path hits the ground265

or the TOA, its weight is added to a virtual sensor. Paths are terminated upon absorp-266

tion or escape in space.267

Spectral integration over the solar spectrum is performed according to the correlated-268

k model RRTMG. The k-distribution data were retrieved from ecRad to insure fair com-269

parisons. At each path, a narrow band is sampled as per the in-band ratio of incident270

solar flux. Then, a quadrature point is sampled in the band as per the quadrature weights271

provided with the k-distribution data. The gas optical properties are then set accord-272

ingly.273

Optical properties for liquid droplets (extinction coefficient, single scattering albedo,274

discretized phase function and/or asymmetry parameter) are provided as an input to the275

MC code. The droplet size distribution is assumed to be the same everywhere within the276

clouds, with a homogeneous effective radius of 10 µm (the same hypothesis is used in ecRad277

runs). Two choices of optical properties models were explored. A first dataset is a 25 nm278

discretised output of Mishchenko’s code (Mishchenko et al., 2002) based on the Lorenz-279

Mie theory (see Supporting Information for more details). A second dataset corresponds280

to the SOCRATES parameterization of optical properties used in ecRad (Manners et al.,281

2017). The underlying gamma-shaped droplet size distributions are the same in the two282

datasets.283

The representation of scattering was also explored. Mie computations output an284

angularly discretised phase function at each wavelength, which is the most realistic avail-285

able representation of the angular distribution of scattered light upon each scattering286

event. To estimate the impact of the delta-scaling approximation, a version of the Monte287

Carlo was implemented that reproduces the δ-Eddington approximation by scaling the288

scattering coefficients and using Henyey-Greenstein (HG) analytic phase function with289

appropriately scaled g, as was done in Barker et al. (2015).290

In total, four different MC configurations, combining choices of optical properties291

and phase function, are tested in Section 3.1, among which one is used as a reference in292

the rest of Section 3 and in Section 4.293

2.2 Cloudy atmosphere data294

2.2.1 3D fields from LES295

For this study, four idealized cumulus cases have been simulated using the French296

LES model Meso-NH (Lafore et al., 1997; Lac et al., 2018):297

• ARM-Cumulus (ARMCu; Brown et al. (2002)), a case of continental cumulus de-298

veloping over the Southern Great Plains, with a clear signature of the diurnal cy-299

cle of the boundary layer in the cloud characteristics. Cloud cover ranges from 0300

to 30%;301

1 https://gitlab.com/najdavlf/scart project
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• BOMEX (Siebesma et al., 2003), a case of marine shallow cumulus forced with302

constant surface fluxes through the simulation. Cloud cover ranges from 10 to 20%;303

• RICO (vanZanten et al., 2011), a second case of marine cumulus, forced with con-304

stant sea surface temperature through the simulation. Cloud cover ranges from305

15 to 25%;306

• SCMS (R. Neggers et al., 2003), a case of continental cumulus developing in Florida,307

with strong moisture advection into the domain caused by the nearby ocean. Cloud308

cover ranges from 0 to 45%.309

All simulations were performed on (6.4 km)2× 4 km domains for 12 hours, with310

isotropic spatial resolution of 25 m and temporal resolution of 1 s. The horizontal bound-311

ary conditions are periodic. The four cases are standards of the literature used in LES312

intercomparison exercises. Detailed descriptions of the setups, initial conditions and forc-313

ings can be found in the reference papers. From these four simulations, thirty-five 3D314

fields of temperature, pressure, mixing ratio of water vapor and liquid water are used315

in this study, among which eight will be used in the calibration process of Section 4 (the316

colored entries in Table 2).317

Using an object-identification tool 2 (Brient et al., 2019), individual clouds are la-318

belled in each field. A cloud is defined as an ensemble of contiguous cells where the liq-319

uid mixing ratio is greater than 10−6 kg/kg. Each scene is then described in terms of320

cloud characteristics, some of which are presented in Table 2. The cloud cover is the pro-321

portion of cloudy columns in the domain. At the very first order, it controls the trans-322

mitted and reflected solar fluxes. The number density is the total number of identified323

clouds in the scene divided by the horizontal surface of the domain. For a given cloud324

cover, a larger number density indicates a longer interface between clouds and clear sky,325

hence more 3D radiative effects. The maximum depth is the higher minus lower altitudes326

where clouds are present. When the sun is not at zenith, the “effective” cloud cover (that327

is, the cloud cover projected in the sun direction) depends on the cloud layer depth.328

2.2.2 1D profiles from 3D fields329

From each 3D cloud field output from LES runs, 1D profiles are derived to serve330

as inputs to ecRad. Temperature, pressure, vapor and liquid mixing ratios are horizon-331

tally averaged from the 3D fields on each vertical level and extended above the LES do-332

main top using the I3RC (Cahalan et al., 2005) mid-latitude summer (MLS) cumulus333

profiles provided in the ecRad package. Gases mixing ratios (other than water vapor)334

are set as in the I3RC MLS cumulus case. Cloud fraction is computed at each level as335

the fraction of cells where the liquid mixing ratio is positive in the 3D field. Effective336

radius for liquid droplets is uniformly set to 10 µm as in the Monte Carlo runs. These337

are the basic profiles needed by any RT scheme. In order to take into account the ge-338

ometry of clouds, three more parameters are to be provided to ecRad: the overlap pa-339

rameter α, the FSD of in-cloud liquid water horizontal distribution and the cloud scale340

Cs.341

The overlap parameter can be computed from a 3D cloud field between each pair342

of layers by inverting Equation (1). Vertical profiles of overlap diagnosed in the 35 LES343

scenes are illustrated in Figure 1a. Overlap is most often greater than 0.7, with an av-344

erage value (over the scenes and the vertical levels) of 0.876. It shows relatively small345

variations on the vertical as well as between the different scenes. Inverting Equation (2)346

for the average α yields an average decorrelation length z0 of around 189 meters, close347

to the values found by R. A. J. Neggers et al. (2011) in LES cumulus fields yet much smaller348

2 https://gitlab.com/tropics/object

–8–



manuscript submitted to Journal of Adavances in Modeling Earth Systems (JAMES)

Table 2. Cloud characteristics from the 35 scenes issued from four standard cumulus cases

simulated by LES. Scenes selected for the calibration process are in bold and colors.

Case Hour Cover [%] Number density [km−2] Max depth [km]

ARMCu 04 2.722 0.73 0.175
ARMCu 05 13.174 1.59 0.300
ARMCu 06 27.139 1.39 0.525
ARMCu 07 29.416 2.00 0.825
ARMCu 08 26.343 1.64 1.225
ARMCu 09 26.180 1.44 1.050
ARMCu 10 23.499 1.61 1.375
ARMCu 11 23.029 1.15 1.275
ARMCu 12 12.663 0.81 1.450

BOMEX 05 16.301 2.17 1.200
BOMEX 04 13.884 2.71 1.025
BOMEX 05 16.301 2.17 1.200
BOMEX 06 18.001 2.71 1.200
BOMEX 07 18.204 2.69 1.125
BOMEX 08 19.081 2.25 1.375
BOMEX 09 14.175 2.39 1.075
BOMEX 10 16.585 2.05 0.975
BOMEX 11 10.318 2.00 0.775
BOMEX 12 14.294 2.15 0.650

RICO 04 13.933 2.27 0.950
RICO 05 13.802 2.15 0.850
RICO 06 17.195 2.25 1.025
RICO 07 18.054 2.34 1.175
RICO 08 19.252 2.69 1.225
RICO 10 23.451 2.20 1.425
RICO 11 21.048 2.25 1.125
RICO 12 16.768 2.32 1.350

SCMS 04 44.035 4.86 1.050
SCMS 05 37.947 3.71 1.450
SCMS 06 32.010 2.78 1.400
SCMS 07 29.108 2.51 1.450
SCMS 08 20.961 2.05 1.725
SCMS 09 15.678 1.88 1.600
SCMS 10 18.272 1.81 1.200
SCMS 11 11.980 0.93 1.050
SCMS 12 1.502 0.51 0.325
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than the range reported by Hogan and Illingworth (2000) because of our smaller verti-349

cal resolution.350

The FSD, that is, the ratio of in-cloud LWC horizontal standard deviation to to-351

tal in-cloud LWC is easily diagnosed in each layer of the LES 3D fields since the LWC352

horizontal distribution is directly accessible. Computed FSD profiles are illustrated in353

Figure 1b. Again, relatively small variations are observed as both height and scenes change.354

The FSD ranges from 0.3 to 1 with an average value of 0.7, in agreement with the lit-355

erature (see e.g. Shonk et al. (2010)).356

In 3D cloud fields, the true (resolution-dependent) cloud perimeter could be diag-357

nosed in each layer. However, Schäfer et al. (2016) have shown that accounting for small-358

scale fluctuations of cloud edges leads to an overestimation of the radiatively effective359

perimeter and hence of 3D effects. They therefore advocate the use of a cloud perime-360

ter corresponding to the perimeter of an ellipse fitted to the cloud area. This is done by361

computing, for each labeled cloud in a given layer, the position of its barycenter and the362

maximum distance between the barycenter and any position in the cloud. This distance363

is taken as the length of the ellipse’s semi-major axis a. The perimeter of the ellipse is364

then deduced from a and the cloud area. Cs is computed from the sum of the ellipses365

perimeters as per Equation (3). Vertical profiles of diagnosed Cs are illustrated in Fig-366

ure 1c. Cs ranges from 50 to 600 meters with some variability both in height and be-367

tween the different cloud fields, with an average value of 249 m. They are slightly smaller368

than those found by Hogan et al. (2016) and Fielding et al. (2020) in the I3RC LES cu-369

mulus cloud field of Hinkelman et al. (2005). Their simulation is also based on the ARMCu370

case but their larger resolution of (67 m)2× 40 m explains the differences.371

3 Evaluating ecRad against reference Monte Carlo372

The objective of this section is to characterize the different sources of error in ecRad.373

The two-stream, δ-Eddington and approximate optical properties errors are briefly an-374

alyzed in Section 3.1. Section 3.2 focuses on the errors due to the approximate repre-375

sentation of cloud geometry and 3D effects.376

3.1 ecRad errors in homogeneous plane parallel clouds377

Overcast plane parallel homogeneous clouds are very idealized media that are not378

representative of a true atmospheric situation. However, they are useful when studying379

pure radiative transfer, without geometrical or 3D effects.380

Nine fields consisting of a single-layer infinite homogeneous cloud of uniform ge-381

ometrical depth are synthetized with cloud optical depths of 0.1, 0.25, 0.5, 1, 2.5, 5, 25,382

50 and 100 (computed at wavelength 800 nm for a 10 µm droplet effective radius). The383

background atmosphere (temperature, pressure and water vapor) depends on the alti-384

tude only and corresponds to the I3RC cumulus case, whose 1D profiles are provided in385

the ecRad package.386

MC SOCRATES and MC δ-Eddington are compared to MC “exact” to quantify387

independently the errors from approximate optical properties and from approximate rep-388

resentation of scattering. The two-stream error is also estimated by comparing ecRad389

to MC “as ecRad”.390

Barker et al. (2015) have documented these same errors as a function of optical depth391

and solar angle. We find similar results (not shown). Here, we only give values averaged392

over the fields and solar angles, that quantify the mean relative errors on the CREs at393

TOA and at the surface, and on cloud absorption. First, relative errors are computed394

only where the reference CRE is more than 2 Wm−2 to avoid dividing by very small val-395

ues such as the CRE on absorption for low sun angles, or the CRE of very thin clouds.396
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Figure 1. Vertical profiles of the three geometric parameters, scaled on the cloud layer depth

(height 0 is bottom of cloud layer, height 1 is top of cloud layer). Gray and colored curves are for

individual cloud scenes (colored curves are the fields used for calibration) and dashed black line is

the average value over all cloud scenes and heights.
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Once RMSEs and mean biases are computed for each solar angle, they are weighted by397

the cosine of the solar angle so that small relative errors on metrics involving large amounts398

of energy count more than large relative errors on metrics involving small amounts of399

energy. They are given in Table 3. Unweighted RMSEs and biases are given for two so-400

lar angles (0 and 77) in Supporting Information.401

Small relative errors on TOA and surface CREs lead to large relative errors on the402

absorption, but errors on absorption CREs only represent small amounts of energy. The403

absorption errors due to the different components are of similar magnitude. The largest404

source of error on surface and TOA CREs is the approximate representation of scatter-405

ing, and more generally the representation of transport, while approximate optical prop-406

erties have small effect. Errors due to transport and optical properties are quasi addi-407

tive, while sums of errors due to approximate scattering and two-stream formulation are408

larger than the global transport error because of non-linear effects.409

These numbers are given in order to provide some perspective to the rest of the study,410

where similar errors are computed in cumulus cloud fields for various configurations of411

ecRad (also given in Table 3, although description of the experiments are later in the text).412

3.2 Errors due to cloud geometry and 3D effects413

To account for fractional clouds, the Tripleclouds method separates each model layer414

into cloudy and clear regions, and solves fluxes transmission and reflection independently415

in each region. This is similar to the Independent Column Approximation (ICA) since416

fluxes do not travel from one region to its horizontal neighbour. The transmitted (re-417

flected) fluxes from one region are distributed into the regions of the layer below (above)418

according to the vertical overlap of cloudy regions. In what follows, maximum overlap419

is used as a “worst case scenario” to estimate the error on fluxes before introducing re-420

alistic overlap. In this worst case scenario, each cloudy region is homogeneous and the421

ICA is maintained.422

In Figure 2, differences between ecRad and MC SOCRATES (the choice of MC SOCRATES423

as a reference to measure ecRad errors is discussed in Section 4.1.2) for different met-424

rics are illustrated for three configurations of ecRad: with maximum overlap, horizon-425

tal homogeneity and without 3D effects (PPH max ovp); with realistic overlap and het-426

erogeneity and without 3D effects (Tripleclouds); with realistic overlap and heterogene-427

ity and with 3D effects (SPARTACUS). Profiles of FSD, α and Cs diagnosed in the LES428

fields are used to constrain the cloud geometry parameters in Tripleclouds and SPAR-429

TACUS. Histograms of absolute differences between ecRad and MC estimates of upward430

TOA, absorbed and downward surface fluxes are plotted for each configuration. The RMS431

absolute errors are given in the legend of Figure 2 for each metric and configuration, while432

the weighted averages of biases and RMS relative errors are given in Table 3.433

The configuration that corresponds to the basic two-stream scheme with no param-434

eterization of cloud geometry or 3D effects leads to the largest absolute means and largest435

RMSEs for all the metrics: clouds transmit too much energy to the surface, resulting in436

a lack of reflectivity and absorption. Introducing realistic overlap and horizontal hetero-437

geneity systematically reduces the mean bias and changes the sign of the tail of the dis-438

tribution. Realistic overlap increases the total cloud cover, which decreases transmissiv-439

ity. On the contrary, introducing heterogeneities increases it. The fact that the mean bi-440

ases in transmissivity and reflectivity changes sign means that the overlap effect dom-441

inates the heterogeneity effect: the cloud cover controls radiative transfer at the first or-442

der. Introducing 3D effects globally decreases both the distributions width and RMSEs.443

The strongest biases associated with Tripleclouds estimates of the transmissivity and re-444

flectivity are removed when switching to SPARTACUS, suggesting that these extreme445

errors are due to the neglect of 3D effects. The biases on absorption are slightly shifted446

to more positive values: 3D effects increase absorption.447
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Table 3. Relative errors [%] for different experiments presented throughout the paper.

(i) Experiment (ii) Reference (iii) Model (iv) TOA up (v) Absorbed (vi) Surf. down
RMS bias RMS bias RMS bias

(a) In slabs (Section 3.1)

(1) SOCRATES MC exact MC SOCRATES 1.1 0.8 10.8 -10.5 1.9 -1.5
(2) δ-Eddington MC exact MC δ-Eddington 11.1 4.6 13.1 4.5 11.8 4.6
(3) two-stream MC as ecRad ecRad two-stream 5.4 0.3 15.0 -9.1 4.3 -2.2
Transport (2+3) MC SOCRATES ecRad two-stream 8.3 3.2 15.2 -4.4 7.0 1.0
Total (1+2+3) MC exact ecRad two-stream 8.6 4.1 17.8 -14.5 5.8 -0.7

(b) In cumulus, MC vs ecRad 1D and 3D solvers, parameters λ = (α,FSD, Cs) (Section 3.2)

PPH max ovp
MC SOCRATES

1D, λ = (1, 0,∞) 23.4 -20.9 54.2 -53.5 28.6 -27.0
Tripleclouds (1D) 1D, λ(z, case) LES 29.3 23.0 23.8 -18.9 23.7 15.1
SPARTACUS (3D) 3D, λ(z, case) LES 22.7 20.0 20.0 -10.4 18.3 14.4

(c) In cumulus, ecRad SPARTACUS, with LES profiles vs averaged parameters (Section 3.3)

z-averaged λ(z, case) LES λ(case) LES 1.4 -0.1 1.6 -0.4 1.4 -0.1

case-z-averaged λ(z, case) LES λ LES 3.7 0.6 3.5 -0.4 3.6 0.4

(d) In cumulus, MC vs ecRad SPARTACUS with calibrated parameters (Section 4)

Best global

MC SOCRATES
λ from htexplo

8.3 -2.7 29.1 -28.1 10.2 -7.2
Best TOA up 11.3 -8.5 33.3 -32.6 14.4 -12.8
Best absorption (see Table 4) 17.9 12.0 22.1 -18.8 14.9 6.3
Best surface down 9.2 -0.4 28.0 -26.8 9.6 -5.1

For each pair of reference computation (ii) / test approximation (iii), errors on the cloud radiative
effects on TOA upward (iv), absorbed (v), and surface downward (vi) fluxes are quantified. For each
column, the RMS and mean bias are first computed independently for each solar angle over the different
cases, then RMS and mean bias are weighted by the cosine of the solar angle, and averaged over the 8
SZAs. Only data points where reference CRE > 2 Wm−2 are used to avoid division by zero. Only
solar angles where at least 9 data points were available are used in the cosine-weighted average. The
table subsections concern: (a) errors related to non-geometrical effects of clouds, (b) ecRad errors
for different solvers, with increasing complexity in the representation of geometrical effects, (c)
errors related to the neglect of parameters variations with height and cloud field, (d) ecRad errors
for different choices of cloud-geometry parameters, output from the calibration exercise of Section 4.

CRE = total sky - clear sky. Relative error r = 100×(model-ref)/ref. RMS =
√
〈r2〉fields. bias=〈r〉fields

MC exact: detailed Mie optical properties and phase function.
MC SOCRATES: parameterized optical properties and detailed Mie phase function.
MC δ-Eddington: detailed Mie optical properties and HG δ-Eddington phase function.
MC as ecRad: parameterized optical properties and HG δ-Eddington phase function.
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 (b) Absorbed flux in the atmosphere
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(c) Downward flux at surface
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Distribution of errors (ecRad - MC) [Wm 2]

Figure 2. Histograms representing the distributions of differences between ecRad and MC es-

timates for the three metrics: (a) upward flux at TOA, (b) absorbed flux in the atmosphere and

(c) downward flux at the ground. Each histogram represents the distribution of 280 data points:

35 scenes × 8 solar zenith angles (from 0 to 77 with step 11 degrees). Each color corresponds to

a different configuration of ecRad. PPH max ovp corresponds to homogeneous clouds with maxi-

mum overlap and no 3D effects. Tripleclouds corresponds to heterogeneous clouds with FSD and

α as diagnosed in the 3D LES field, without 3D effects. SPARTACUS is as Tripleclouds but with

3D effects, with Cs as diagnosed in the 3D LES fields. The mean error is represented by colored

triangles. The RMSEs are given in the legends.
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3.3 Errors due to parameter variations with height and cloud scene448

By introducing cloud geometry effects and horizontal transport, the parameteri-449

zation of radiative transfer is globally improved. However, the distance to reference for450

this new parameterization depends on the choice of values for the newly introduced pa-451

rameters. In Section 3.2, the parameters were set to the profiles diagnosed in each 3D452

cloud field.453

To evaluate the impact of prescribing a vertically uniform value for each param-454

eter instead of a varying one, ecRad simulations are performed using for each cloud scene455

the vertically averaged value of the diagnosed parameters. It results in a small change456

in CRE when compared to the ecRad simulations using the full profiles (see Table 3).457

This result shows that for a cumulus cloud scene, vertical variations of overlap, relative458

heterogeneity or cloud size within the cloud layer are not of crucial importance and can459

be neglected.460

In a third step, ecRad is run using the mean value of each parameter, obtained by461

averaging over height and the 35 cloud scenes, to estimate the impact of inter-scene pa-462

rameter variability. It results that the impact of inter-scene variability is larger than the463

effect of inter-layer variability (around 3%, see Table 3), but still inferior to the impact464

of representing horizontal transport (around 7%).465

3.4 Remaining errors466

Some discrepancies remain between SPARTACUS and MC SOCRATES. They are467

in part due to the δ-Eddington and two-stream approximations. Other sources of errors468

reside in the modeling choices for the treatment of geometry. For example, the overlap469

model only constrains how pairs of layers interact, but does not provide a vertically-integrated470

constraint. This leads to a systematic overestimation of the total cloud cover, a quan-471

tity that is key to the first order estimation of total transmission and reflexion. The treat-472

ment of in-cloud heterogeneity is also idealized in Tripleclouds: it is assumed that two473

cloudy regions are enough to represent the radiative effect of horizontal heterogeneity,474

and the distribution of the LWC into these two regions is based on hypothesis such as475

the LWC distribution shape and the percentile that should be used to partition the con-476

densate into the thin and thick regions. Other modeling assumptions and parameters477

that have not been discussed here also contribute to the remaining errors, such as free478

parameters specific to the representation of entrapment, or the degree of vertical over-479

lap of heterogeneities.480

Another candidate to explain these remaining errors is of course the choice of the481

three geometrical parameter values. It was shown that their inter-scene and inter-height482

variabilities have moderate impacts on the fluxes estimate. Yet, it was all along taken483

for granted that the best possible choice for these parameter values was to set them to484

“observed” values, that is, the values deduced from the 3D cloud fields according to their485

physical interpretation. However, these parameters are used in ecRad as effective prop-486

erties, and since radiative transfer is highly nonlinear with respect to cloud geometry,487

there is no fundamental reason for which the mean parameters that are diagnosed in the488

LES should be the best choice to effectively describe cloud geometry to the radiative trans-489

fer parameterization. In the next section, we question this choice by exploring the be-490

haviour of SPARTACUS for different sets of parameter values, randomly sampled in the491

three-dimensional parameter space.492
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4 Exploring ecRad behaviour in the cloud geometry parameter space493

4.1 The High-Tune:explorer tool494

High-Tune:explorer (htexplo) is a statistical tool that helps to efficiently explore495

the behaviour of a model throughout an arbitrarily large parameter space. It is based496

on history matching and implements iterative refocusing to reduce the initially submit-497

ted parameter space to the set of parameter values (the model configurations) that are498

“acceptable” in view of a set of predetermined reference targets. The method is thor-499

oughly described and illustrated in a recently published two-part paper (Couvreux et al.,500

2020; Hourdin et al., 2020).501

4.1.1 Overview502

The different steps to explore the behaviour of a parameterization are briefly sum-503

marized here. Details on the specific ingredients that were used to explore ecRad are pro-504

vided in the following subsections. For one parameterization or model, one should:505

1. Select the target metrics that will serve to evaluate the model, and determine the506

uncertainty associated with the references.507

2. Select the n parameters to calibrate. A default value and a range to explore must508

be provided for each parameter. The n-dimensional hypercube formed by the carte-509

sian product of parameter ranges is the original parameter space P.510

3. Build the “experimental design” by sampling a small number of points (around511

ten times n) in the parameter space. In htexplo, a maximin Latin Hypercube sam-512

pling method is used to ensure the space is efficiently explored, by maximizing the513

minimum distance between samples (Williamson, 2015). The model is run for the514

sampled configurations.515

4. Compute metrics from the model outputs and use them as a learning basis to build516

one emulator per metric. In htexplo, each emulator is based on a Gaussian Pro-517

cess. It is a fast surrogate model that provides an estimate (the expectation of the518

process) for the metric value at any point of the parameter space, along with its519

statistical uncertainty (the standard deviation of the process).520

5. Compute a distance to the reference target for each metric f (fk is the kth met-521

ric) and parameter vector λ̌, using the emulators. In htexplo, this distance, called522

the implausibility If (λ̌), is the absolute difference between the emulator estimate523

E[f(λ̌)] and the target rf , divided by the root square of the quadratic sum of three524

uncertainties:525

If (λ̌) =
|rf −E[f(λ̌)]|√

σ2
r,f + σ2

d,f + σf (λ̌)2
(4)

where σr,f is the uncertainty associated with the reference (or observational er-526

ror) whose value was set at the first step, σd,f is the model intrinsic error, whose527

value is unknown (see section 4.1.4), and σf (λ̌) is the statistical uncertainty as-528

sociated with the emulator estimate, directly provided by the emulator itself.529

The points where the implausibility is larger than a threshold for at least one of530

the Nmet metrics are removed from the parameter space. This means that points531

are kept in the parameter space if all the metrics are close enough to their target,532

or if the local uncertainties are too large to ensure that the configuration is un-533

acceptable. The new parameter space is called the Not-Ruled-Out-Yet (NROY)534

space.535

6. The NROY space is sampled to build a new experimental design and steps 3 to536

5 are repeated until the NROY space converges. With each iteration, called “wave”,537

the uncertainties associated with the emulators decrease until convergence, since538

the sampling of model configurations that serve to build the emulators is denser539

(the parameter space is smaller and the number of sampled points is unchanged).540
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Figure 3. Monte Carlo rendering of the eight selected scenes using htrdr, with nadir view, sun

at zenith and a black surface.

4.1.2 Metrics and references to calibrate ecRad541

Three metric types were used in the calibration of ecRad, all based on solar fluxes542

horizontally averaged over the LES domain: the reflected flux at the TOA F ↑t ; the to-543

tal absorbed flux in the atmosphere Fabs and the atmospheric radiative effect measured544

at the surface which is the difference between downward flux at TOA and downward flux545

at the surface, F ↓t − F ↓s . These three metrics are not independent since the incoming546

flux at the TOA is entirely distributed into reflected, absorbed by the atmosphere and547

absorbed by the ground fluxes:548

F ↓t = F ↑t + Fabs + (1− a)F ↓s (5)

where a is the surface albedo. Considering the three metrics instead of two still adds a549

constraint through their respective uncertainties: each metric’s uncertainty is smaller than550

the sum of the uncertainties associated with the other two metrics. For each of these fluxes,551

three solar angles are used, at 0, 44 and 77 degrees from zenith.552

Each of these nine metrics (three fluxes × three solar angles) are computed in dif-553

ferent cloud fields. Eight scenes were selected among the 35 available cumulus fields de-554

scribed in Table 2. These eight scenes were chosen for their contrasted characteristics555

to explore the distribution of available cumulus fields. They are represented in Figure 3556

where the htrdr MC path-tracing tool (?, ?) was applied to render nadir views of the dif-557

ferent scenes, with the sun at zenith. Image rendering is useful to better visualize the558

variety of combinations of cloud covers, number of clouds and cloud optical depths of559

the scenes that will enter the calibration process. The images also show strong similar-560

ities, highlighting the relative narrowness of the cloud fields distribution inside the cu-561

mulus regime.562

The reference values used as targets for these 72 metrics are the MC estimates of563

the fluxes. The observational error is taken as the standard deviation of the MC esti-564

mate, typically smaller than 0.1%. In Section 2.1.2, various options for the MC compu-565

tations were exposed. Here, we use the SOCRATES data for the optical properties of566
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cloud droplets, and the detailed Mie phase function to sample the next direction after567

scattering. By using the same low-spectral-resolution optical properties as in ecRad, the568

radiative effects of cloud geometry are prevented from compensating for errors that could569

come from mismatched optical properties. On the other hand, the representation of the570

phase function is deeply entangled with the two-stream formulation of transport. It might571

not be the role of geometrical effects to compensate for errors that come from the δ-Eddington572

approximation, but since these effects were modeled and formulated in direct interac-573

tion with the two-stream scheme, they are seen as intrinsic to the parameterization of574

transport. By targeting fluxes obtained from simulations using detailed Mie phase func-575

tion, we allow internal compensation errors between cloud geometry and transport as576

long as at least one geometrical configuration exists that lets the parameterization han-577

dle contrasted situations reasonably well.578

4.1.3 Parameters to calibrate579

The parameters that enter the calibration process are the three geometrical param-580

eters described in Section 2.1.1: the vertical decorrelation length z0 from the formula-581

tion of the overlap parameter; the fractional standard deviation of the horizontal distri-582

bution of in-cloud liquid water FSD; and the cloud scale Cs. Since we have shown be-583

fore that the ecRad estimates were moderately sensitive to the vertical details of the pa-584

rameter profiles, and to the inter-scene variability, we configure ecRad with a unique value585

per parameter; the same parameter value is used for all the cloudy layers and all the scenes.586

Other parameters of ecRad could have entered the process but our work focuses on the587

modeling of cloud geometry, and these three parameters are of first importance in the588

representation of geometrical effects. The mean values diagnosed in the LES (given in589

Figure 1) are taken as default values:590

• z0 ranges in [50, 500] with default value 189 m591

• FSD ranges in [0.1, 2] with default value 0.704592

• Cs ranges in [50, 1000] with default value 249 m593

4.1.4 Tolerance to error594

The structural error of the parameterization in Equation (4) stems from inevitable595

modeling and numerical approximations. It is most often unknown. In a sense, it is the596

error that would remain after the parameters are well calibrated. However, its charac-597

terisation is a prerequisite to the calibration process, as it prevents the tool from reject-598

ing configurations that predict metric values within the structural error around the ref-599

erence target. Since the structural error is unknown, we rather use a “tolerance to er-600

ror”: an acceptable distance between the parameterization estimate and the reference601

target, arbitrarily set by the modeler. Here, it is inferred from the relative errors between602

MC and SPARTACUS runs using the mean LES parameter values, for each type of met-603

ric and solar angle. The tolerances to error are set as the third quartile of these distri-604

butions:605

• for the atmospheric radiative effect at the surface (F↓t - F↓s), the relative tolerances606

to error are 3% for SZAs 0 and 44, and 4% for SZA 77607

• for the absorbed flux in the atmosphere, the relative tolerances to error are 1%,608

2% and 4% respectively for SZAs 0, 44 and 77609

• for the reflected fluxes at SZAs 0, 44 and 77, the relative tolerances to error are610

set to 6%, 3% and 4% respectively.611
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Figure 4. Downward flux at surface for various ecRad runs, as a function of three parameter

values: (a,d) fractional standard deviation FSD, (b,e) overlap decorrelation length z0, (c,f) cloud

scale Cs, and of solar zenith angle: (a-c) 0◦ and (d-f) 77◦. Full black horizontal lines represent

the Monte Carlo reference value, dashed horizontal lines represent the tolerances to error. Full

vertical lines represent the mean parameter value diagnosed in the LES. Different colors represent

parameter sets sampled at different waves.

4.2 Exploring ecRad configurations612

In this section, htexplo is used to explore the cloud-geometry parameter space and613

analyze the behaviour of ecRad. Thirteen iterations were applied, with reduction of the614

NROY space from 11.7% of the original space after the first wave, to 8.4% after the thir-615

teenth wave.616

4.2.1 Surface downward flux as a function of parameters617

Figure 4 illustrates the dependence of two of the 72 metrics to the geometry pa-618

rameters. ecRad estimations of the downward flux at the surface under the ARMCu 8th619

hour clouds at SZA 0◦ and 77◦ are represented for the many ecRad configurations ex-620

plored during the thirteen waves of history matching.621

Figure 4a shows that large surface fluxes at high sun are only obtained when clouds622

are sufficiently heterogeneous (when FSD is large enough), while the effect of heterogene-623

ity in grazing sun conditions is less obvious (Figure 4d).624

Figure 4b shows that the transmitted flux at 0◦ is strongly related to the decor-625

relation length, but the transmitted flux at 77◦ does not seem driven by this parame-626

ter (Figure 4e). Indeed, when the decorrelation length increases, the overlap gets closer627

to maximum (and further away from random) and the total cloud cover decreases. This628
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leads to more energy reaching the surface, in particular for high sun. As the sun gets closer629

to the horizon, it is not the total cloud cover that matters but the effective cloud cover,630

projected in direction of the sun, to which cloud sides contribute largely.631

In SPARTACUS, 3D effects are inversly proportional to cloud size Cs. At high sun,632

Figure 4c shows that 3D effects lead to an increase in surface flux, a signature of escape633

of light from cloud sides and entrapment. At low sun, Figure 4f shows that they lead to634

a decrease in surface flux, explained by the interception of light by cloud sides. In multi-635

layered cloud scenes, the entrapment effect would be stronger and the balance between636

positive and negative 3D effects as a function of SZA could be affected (entrapment leads637

to an increase of surface flux at all solar angles; Hogan et al. (2019)).638

4.2.2 Reduction of NROY space and parameters interdependency639

Metrics computed at different iterations in the calibration process are represented640

in different colors in Figure 4, which evidences that part of the parameter ranges are no641

longer sampled after a given wave. For instance, after the first wave (red points), decor-642

relation length values smaller than ∼180 m have been excluded from the parameter space,643

independently of the values of the other two parameters. This is because for this sub-644

range of decorrelation length values (in which the cloud cover is large) the 0◦ surface flux645

emulator predicts values that are too small compared to the MC estimate.646

The implausibility matrix presented in Figure 5 reveals the structure of the NROY
space obtained after the thirteenth wave. It is constructed at each wave as follows: with
each point of the original space parameter of dimension n (here, n = 3), is associated
the largest metric implausibility computed at the current wave

∀λ̌ ∈ P, I(λ̌) = max
1≤k≤Nmet

{
Ifk(λ̌)

}
The three subplots that form the upper triangle of the matrix show the fraction647

of points that are still in the NROY space, i.e. that verify I(λ̌) ≤ 3. Each projection648

shows the density of points in the NROY space in the dimension that remains once two649

parameters are fixed (for each subplot, the horizontal and vertical axes are given by the650

parameters on the diagonal).651

The three lower subplots show the minimum implausibility of the points in the di-652

mension that remains once two parameter values are fixed, as in the three subplots of653

the upper triangle. These subplots have the same axes as their symmetric in the matrix654

(hence, axes are not directly given by the diagonals).655

The upper triangle gives the quantity of acceptable configurations, while the lower656

triangle informs on the quality of “best” configurations.657

The gray (red) zones in the upper (lower) triangle subplots represent the regions658

of the parameter space where no configuration is acceptable given the two parameter val-659

ues that correspond to the pixel, whatever the value of the third parameter. For instance,660

the upper-left and lower-right subplots show that small values of the decorrelation length661

have been rejected, independently of the values of the other two parameters. This was662

already illustrated in Figure 4. Here, the plots additionally show that the set of param-663

eters diagnosed from the 3D cloud fields do not belong to the NROY space of the thir-664

teenth wave, in particular due to too small value of the FSD and/or of z0.665

On the upper-right subplot, we see that many (FSD, Cs) pairs have been rejected.666

The pairs that lead to acceptable configurations of the parameterization are cleary iden-667

tified: small values of Cs are paired with large values of FSD and conversely (although668

very large values of Cs were all rejected). This means that an increase in heterogeneity669

can be compensated by a decrease in cloud size (more intense 3D effects), and that the670
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Figure 5. Visualisation of the NROY space density (upper triangle) and of the implausibility

hypercube (lower triangle) at wave 13. The implausibility is computed as the maximum over the

metrics, and the minimum over the third dimension. Axes of the upper-triangle subplots corre-

spond to the parameters on the diagonal (each x-axis varies as the parameter of the same column

and y-axis varies as the parameter of the same line) while the axes of the lower-triangle subplots

are the same as the axes of their symmetric subplot in the upper triangle.
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Table 4. Parameter values for the best configurations of ecRad

Parameters FSD z0 [m] Cs [m]

From LES 0.705 187 247
Best Global 1.079 436 155
Best TOA 1.646 493 119
Best absorbed 0.102 294 821
Best surface 1.469 374 113

uncertainties associated with the target metrics do not allow to determine which mode671

should be favored between small heterogenous or large homogeneous clouds.672

The quantitative information displayed in the lower triangle is strongly dependent673

on the chosen tolerance to error (since it is in the expression of implausibility, see Equa-674

tion 4). The variations of implausibility in the parameter space reveal more of the pa-675

rameterization behaviour than the implausibility absolute values. However, the subplots676

of the lower triangle show that the implausibility in the parameter space is never less than677

1.5. It means that for any configuration, there is always at least one metric that is far-678

ther away from its target than 1.5 times the root square sum of its uncertainties, which679

is dominated by the tolerance to error at wave thirteen. It also shows that the “best”680

configuration has large decorrelation lengths associated with small heterogeneous clouds,681

rather than large homogeneous ones.682

4.2.3 Global improvement of fluxes using tuned configuration683

The various configurations that were sampled to construct emulators from true ecRad684

runs are evaluated using scores associated with each metric and configuration. It is the685

error between ecRad and the reference MC divided by the tolerance to error. For each686

simulation of waves three to thirteen, the RMS scores are computed over all metrics, and687

over reflected fluxes, absorbed fluxes and surface fluxes separately. Then, the configu-688

rations with smallest RMS scores of each category are selected as “best” configurations.689

They are presented in Table 4. Configurations that lead to best upward TOA and best690

downward surface fluxes are relatively similar, favoring small heterogeneous clouds. The691

configuration that leads to the better estimates of absorbed fluxes favors the other di-692

rection (large homogeneous clouds). The configuration that leads to best global RMS693

is in between these two modes, but still selects smaller more heterogeneous clouds than694

in the LES. The overlap decorrelation length parameter is always greater than the one695

diagnosed in the 3D cloud fields, yielding smaller cloud covers.696

These four new configurations, obtained from a calibration process using only eight697

cloud fields and three solar angles, were tested on the 35 cloud fields and 11 solar zenith698

angles of Section 3. The distributions of errors are represented in Figure 6. As in Fig-699

ure 2, the RMSEs are given in the legends for each configuration. These numbers are of700

different nature from the configuration scores as they are not divided by the tolerance701

to error. The mean relative errors on surface, TOA and absorbed CREs are given for each702

configuration in Table 3.703

The fluxes at TOA and surface are systematically improved compared to the con-704

figuration using the parameter values diagnosed in the LES, but all tuned configurations705

are slightly worse for the absorption. The configuration corresponding to the best sur-706

face score leads to the smallest global RMSE; it is the configuration with smallest and707

most heterogeneous clouds. With this configuration, as well as for the two configurations708

corresponding to best TOA score and best global score, the absorption bias is always neg-709

ative: the absorption is underestimated by ecRad for all scenes and all SZAs when clouds710
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(c) Downward flux at surface
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Best global, 5.26
Best TOA up, 7.20
Best absorption, 7.41
Best surface down, 4.77

Distribution of errors (ecRad - MC) [Wm 2]

Figure 6. Histograms representing the distributions of differences between ecRad and Monte

Carlo estimates for the three metrics: (a) upward flux at TOA, (b) absorbed flux in the atmo-

sphere and (c) downward flux at the ground. Errors for all 35 cumulus scenes and 8 solar angles

(from 0 to 77 with step 11 degrees) are distributed together. Each color corresponds to a differ-

ent configuration of ecRad. The parameters values for each configuration are given in Table 4.

Color triangles represent the mean error. The root mean square distances (RMSE) are given in

the legends.
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are small and heterogeneous. It appears that most of the flux that should have been ab-711

sorbed reaches the surface, inducing a positive mean bias in the transmitted fluxes.712

4.3 Calibration fails to reduce errors on the absorption713

To understand what in the “best Surf” configuration leads to wrong estimates of714

the absorption, the CRE on absorption computed in the SCMS 5th hour cloud field is715

represented in Figure 7 as a function of SZA and for various sensitivity tests. The “best716

Surf” is used as the reference ecRad configuration, and one parameter is modified in each717

of three sensitivity tests: 3D effects are removed by using Tripleclouds instead of SPAR-718

TACUS; FSD is set to 0; z0 is set to 294 m, which leads to a larger cloud cover diagnosed719

by ecRad (34% instead of 30%; the true cloud cover in the 3D cloud field is 38%).720

The reference configuration with intense 3D effects and important heterogeneity721

accurately reproduces the absorption dependency to solar angle but with a negative shift722

of 2 to 4 Wm−2, probably due to two-stream errors as hinted by the results of Section 3.1.723

Homogeneity and 1D radiation both induce errors that are larger than the “best Surf”724

configuration, but they are of opposit signs. Because increasing 3D effects decreases ab-725

sorption at low suns, the configuration with small clouds lead to even larger errors for726

the 77◦ metric. On the other hand, using error compensations from the two other pa-727

rameters leads to improvement for the three solar angles, even if the shape of the func-728

tion is wrong.729

This highlights the importance of choosing relevant metrics for the calibration pro-730

cess. In particular, here, additional metrics might need to be introduced to constrain the731

shape of the fluxes dependency to solar angle, instead of using punctual values only. This732

is actually an option in htexplo, where functions are decomposed onto a basis of empir-733

ical orthogonal functions (EOFs) and the coefficients of the linear combination are tuned734

(Salter et al., 2019). Further work on exploring ecRad should include tuning functions735

of solar angles and determine if the absorption metric then agrees that small heteroge-736

neous clouds are more appropriate than large homogeneous ones to effectively describe737

cumulus geometry to the radiation scheme.738

5 Discussions and outlooks739

A fundamental aspect of the tuning strategy advocated in this series of papers is740

that a first calibration step should be done at the process scale, using either offline pa-741

rameterizations on well-mastered cases or the LES/SCM framework. With this approach,742

the calibration of the 3D climate model that involves all parameterizations is restricted743

to regions of the parameter space that were judged acceptable on the basis of process-744

based metrics. This strategy accelerates 3D calibration and prevents errors associated745

with different parameterizations from compensating each other, for example compensat-746

ing wrong boundary layer cloud radiative effects by tuning sensitive high clouds param-747

eters. In this third paper, the gap between process-scale tuning of cloud properties and748

global tuning of radiation was further reduced by providing reference radiative metrics749

computed at the cloud-field scale. This prevents other possible sources of compensation750

errors such as compensating the lack of 3D effects by an increase in cloud cover.751

A key result of this study is that the parameters diagnosed in the LES fields do not752

belong to the final NROY space. This result strikes us as important because it questions753

the conceptual constraints that surround parameterization development and tuning. The754

main goal of parameterization development should be to derive functional forms that are755

able to provide accurate source terms for the explicitly resolved variables of the model756

over a wide range of atmospheric regimes. To achieve this, it is essential to base our de-757

velopments on our understanding of physical processes. However, we argue that some758

flexibility should be allowed in the choice of parameter values. Results reported by Bastidas759
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Figure 7. Absorption CRE in the fifth hour of the SCMS case. Subplot (a) shows the abso-

lute values of CRE for various ecRad configurations and the Monte Carlo reference, as a function

of solar zenith angle. Subplot (b) shows differences between the ecRad and the MC estimates for

each ecRad configuration. The “Ref ecRad” is the configuration that corresponds to the “best

Surf” of the previous section, that is: FSD=1.469, z0=374 m and Cs=113 m

et al. (2006) and Hogue et al. (2006) also support this idea. They show that free param-760

eters should be set to different values through different land surface models even though761

they are supposed to have the same physical meaning. Their conclusions were limited762

to so-called “functional” parameters that cannot be associated with physical measure-763

ments. We argue that observational constraints on “physical” parameters should also764

be alleviated. Indeed, it is most often an “effective” value of the parameters rather than765

a mean observed value that is needed in the models. These can be quite different when766

parameters impact the metrics in non linear ways. In the context of cloud–radiation in-767

teractions, it means that the effective cloud characteristics that are appropriate to de-768

rive the average radiative effect of a complex cloud field have no reason to be the detailed769

characteristics averaged over the cloud population. More generally, since parameteriza-770

tions are a simplification of reality, there is no fundamental reason to prefer observed pa-771

rameter values. They should serve as first guesses, but the final retained values should772

be the result of some model calibration. Nonetheless, a tuned value laying too far from773

observations could indicate that the physical images that supported the parameteriza-774

tion development are wrong or that important processes are missing.775

Another result is that improvement of ecRad was obtained by calibrating a mean776

parameter, thereby neglecting parameter variations with height and between cloud scenes.777

This was probably only possible because all cloud fields used here represent cumulus clouds,778

with relative resemblance between the cases, although both marine and continental clouds779

were represented. An interesting follow-up would be to repeat this exercise with other780

cloud types, starting with other boundary-layer clouds such as stratocumulus and tran-781

sition scenes involving both cloud types. A possible diagnosis of htexplo might then be782

that a single parameter is not able to represent different clouds. This would mean that783

a sub-parameterization should be developed to make this parameter depend on atmo-784

spheric conditions. Such parameterizations exist for example to predict cloud perime-785

ter length in Fielding et al. (2020), or the degree of overlap in e.g. Sulak et al. (2020).786

Other parameters appear in these formulations, which can in turn be calibrated using787

the same procedure as described in this work.788

–25–



manuscript submitted to Journal of Adavances in Modeling Earth Systems (JAMES)

A third result is that our different metrics disagree on the configuration to use. If789

this disagreement had resulted in an empty NROY space for the predetermined toler-790

ance, it would mean that the parameterization is deficient in parts of its expected op-791

erating regime. Here, the final NROY space is not empty. However, the fact that cal-792

ibration of cloud-geometry parameters fails to significantly reduce the absorption errors793

suggests that either other parameters control the absorption and might deserve better794

calibration, or that the formulation of radiative transfer intrisic to the parameterization795

should be revisited.796
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Introduction This document details our choices in the
production of liquid droplet optical properties. We use
Mishchenko’s code (Mishchenko et al., 2002) to com-
pute the Mie optical properties that were used to design
the SOCRATES (Manners et al., 2017) parameterisation.
The routines are available on gitlab (https://gitlab.com/
najdavlf/mie-mdv). Two figures illustrate the optical prop-
erties and solar energy incoming in each spectral band. On
another topic, two tables are provided that are as Table 3
from the main text but the errors are given separately for
two solar zenith angles (SZAs) instead of being averaged
over various SZAs.

Text S1. Droplet size distribution parameters.
Let n(r) be the density number of droplets which radius

is in dr, an infinitesimal range around r. The effective ra-
dius is defined as the ratio of moments of order 3 and 2 of
the droplet size distribution:

reff =

∫∞
0

dr n(r)r3∫∞
0

dr n(r)r2
(1)

The effective variance reprensent a mean quadratic devi-
ation from the effective radius:

veff =
1

r2
eff

∫∞
0

dr n(r)(r − reff)2r2∫∞
0

dr n(r)r2
(2)

Copyright 2020 by the American Geophysical Union.

Text S2. Gamma distribution.

n(r) = N0r
1−3b

b exp(− r

ab
) (3)

One can show that:

reff = a (4)

and that:

veff = b (5)

Expected parameters in Mishchenko’s code are AA = a
et BB = b, hence directly the effective radius and variance.
The modal radius of the distribution (not used here), is:

rm = (1− 3veff)reff (6)

and the shape parameter:

α =
1− 3veff

veff
(7)

These parameters also appear in the Generalised Gamma
distribution.

Text S3. Numerical integration on size distribution.
Mishchenko’s code numerically integrates monodisperse

optical properties on the selected size distribution. The user
must choose an integration interval [rmin, rmax]. We set the
bounds in order to let:∫ rmin

0

drn(r) ∼ ε (8)

and ∫ 1000

rmax

drn(r) ∼ ε (9)

That is, the size distribution integral on [rmin, rmax] is 1−2ε.
We set ε = 10−4.

Text S4. From cross section to massic cross section.

1
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Mishchenko’s code outputs cross sections in m−1. We
convert them into massic cross sections, in m2.kg−1. To do
so, we need the effective mass corresponding to the droplets
distribution:

Meff =

∫ rmax

rmin

drn(r) ρw
4

3
πr3 (10)

again numerically integrated.

Text S5. Phase functions.
Phase functions are computed on 2k angles. They are

then cumulated by numerical integration using the trape-
zoidal rule on the phase function and sinus of the scattering
angle. The inverse cumulated is tabulated on 4k points, by
linearly interpolating the cumulated.

Text S6. SOCRATES.
To reproduce the data that served as reference to de-

sign the SOCRATES parameterisation, four computations
were performed using four Gamma distributions for an ef-
fective radius of 10 µm, of varying effective variance: 0.01,
0.1, 0.175, 0.25. The spectrum is discretized from 200 nm to
14 µm with one point every 25 nm. The Mie data integrated

over these four size distributions were then averaged. The
resulting data is plotted in Figure S1. In the Monte Carlo
algorithm, a spectral band is sampled according to the in-
coming sun flux distribution plotted in Figure S2. Then a
wavelength is sampled uniformly in the band and the cloud
optical properties are interpolated linearly from the 25 nm
discretized Mie table.
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Figure S1. Optical properties for liquid water, following
Mie theory (in blue) and the SOCRATES parameterisa-
tion (in black). The bottom row is a zoom of the same
data on the 0-2.5 µm spectral interval.
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Figure S2. Incoming solar flux at TOA, integrated
in each spectral band of the RRTMG parameterisation.
This data is used in ecRad and also in our Monte Carlo
computations.
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Table S1. Same as Table 3. but relative errors [%] are computed at solar zenith angle 0◦ instead of averaged

(i) Experiment (ii) Reference (iii) Model (iv) TOA up (v) Absorbed (vi) Surf. down
RMS bias RMS bias RMS bias

(a) In slabs (Section 3.1)

(1) SOCRATES MC exact MC SOCRATES 1.2 0.9 12.0 -11.4 2.8 -2.1
(2) δ-Eddington MC exact MC δ-Eddington 14.9 10.3 22.2 14.8 16.3 11.2
(3) two-stream MC as ecRad ecRad two-stream 6.3 -4.6 8.4 -3.2 6.9 -4.6
Transport (2+3) MC SOCRATES ecRad two-stream 5.6 3.1 17.0 13.4 7.8 5.1
Total (1+2+3) MC exact ecRad two-stream 6.0 4.1 7.8 0.3 5.3 2.9

(b) In cumulus, MC vs ecRad 1D and 3D solvers, parameters λ = (α,FSD, Cs) (Section 3.2)

PPH max ovp
MC SOCRATES

1D, λ = (1, 0,∞) 16.5 -4.2 64.6 -28.7 15.4 -12.3
Tripleclouds (1D) 1D, λ(z, case) LES 39.6 36.2 51.4 12.3 30.8 28.3
SPARTACUS (3D) 3D, λ(z, case) LES 25.5 21.8 51.5 14.5 20.5 17.6

(c) In cumulus, ecRad SPARTACUS, with LES profiles vs averaged parameters (Section 3.3)

z-averaged λ(z, case) LES λ(case) LES 1.5 -0.5 1.9 -0.8 1.6 -0.6

case-z-averaged λ(z, case) LES λ LES 3.4 1.1 3.3 -0.3 3.3 0.8

(d) In cumulus, MC vs ecRad SPARTACUS with calibrated parameters (Section 4)

Best global

MC SOCRATES
λ from htexplo

13.2 -5.8 51.7 -12.2 12.1 -9.7
Best TOA up 18.4 -14.5 53.2 -20.5 19.4 -18.2
Best absorption (see Table 4.) 24.8 20.4 53.0 7.0 17.4 14.7
Best surface down 13.2 -6.3 50.8 -12.5 12.5 -10.1

For each pair of reference computation (ii) / test approximation (iii), errors on the cloud radiative
effects on TOA upward (iv), absorbed (v), and surface downward (vi) fluxes are quantified. For each
column, the RMS and mean bias are presented for SZA=0◦. The table subsections concern: (a)
errors related to non-geometrical effects of clouds, (b) ecRad errors for different solvers, with
increasing complexity in the representation of geometrical effects, (c) errors related to the neglect of
parameters variations with height and cloud field, (d) ecRad errors for different choices of
cloud-geometry parameters, output from the calibration exercise of Section 4.

CRE = total sky - clear sky. Relative error r = 100×(model-ref)/ref. RMS =
√
〈r2〉fields. bias=〈r〉fields

MC exact: detailed Mie optical properties and phase function.
MC SOCRATES: parameterized optical properties and detailed Mie phase function.
MC δ-Eddington: detailed Mie optical properties and HG δ-Eddington phase function.
MC as ecRad: parameterized optical properties and HG δ-Eddington phase function.
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Table S2. Same as Table 3. but relative errors [%] are computed at solar zenith angle 77◦ instead of averaged

(i) Experiment (ii) Reference (iii) Model (iv) TOA up (v) Absorbed (vi) Surf. down
RMS bias RMS bias RMS bias

(a) In slabs (Section 3.1)

(1) SOCRATES MC exact MC SOCRATES 0.7 0.6 84.3 -32.6 0.7 -0.6
(2) δ-Eddington MC exact MC δ-Eddington 15.1 -10.8 32.2 -23.1 16.1 -11.5
(3) two-stream MC as ecRad ecRad two-stream 6.4 3.4 1841.1 507.0 2.5 -1.0
Transport (2+3) MC SOCRATES ecRad two-stream 11.8 -9.1 696.3 179.1 17.2 -13.2
Total (1+2+3) MC exact ecRad two-stream 11.6 -8.6 292.6 -113.3 17.7 -13.7

(b) In cumulus, MC vs ecRad 1D and 3D solvers, parameters λ = (α,FSD, Cs) (Section 3.2)

PPH max ovp
MC SOCRATES

1D, λ = (1, 0,∞) 67.6 -66.9 213.3 -115.9 69.2 -68.6
Tripleclouds (1D) 1D, λ(z, case) LES 37.4 -36.8 338.7 -127.2 41.7 -41.1
SPARTACUS (3D) 3D, λ(z, case) LES 10.6 -7.0 481.0 -140.7 16.8 -14.8

(c) In cumulus, ecRad SPARTACUS, with LES profiles vs averaged parameters (Section 3.3)

z-averaged λ(z, case) LES λ(case) LES 2.1 1.7 5.1 3.9 2.0 1.5

case-z-averaged λ(z, case) LES λ LES 5.9 -1.1 11.8 -2.1 5.6 -1.0

(d) In cumulus, MC vs ecRad SPARTACUS with calibrated parameters (Section 4)

Best global

MC SOCRATES
λ from htexplo

15.5 -11.9 462.5 -139.4 20.8 -18.4
Best TOA up 15.2 -11.8 436.3 -135.1 20.3 -17.8
Best absorption (see Table 4.) 28.6 -27.5 410.4 -134.9 33.5 -32.5
Best surface down 12.0 -6.0 492.4 -144.9 16.5 -12.9

For each pair of reference computation (ii) / test approximation (iii), errors on the cloud radiative
effects on TOA upward (iv), absorbed (v), and surface downward (vi) fluxes are quantified. For each
column, the RMS and mean bias are presented for SZA=77◦. The table subsections concern: (a)
errors related to non-geometrical effects of clouds, (b) ecRad errors for different solvers, with
increasing complexity in the representation of geometrical effects, (c) errors related to the neglect of
parameters variations with height and cloud field, (d) ecRad errors for different choices of
cloud-geometry parameters, output from the calibration exercise of Section 4.

CRE = total sky - clear sky. Relative error r = 100×(model-ref)/ref. RMS =
√
〈r2〉fields. bias=〈r〉fields

MC exact: detailed Mie optical properties and phase function.
MC SOCRATES: parameterized optical properties and detailed Mie phase function.
MC δ-Eddington: detailed Mie optical properties and HG δ-Eddington phase function.
MC as ecRad: parameterized optical properties and HG δ-Eddington phase function.


