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Abstract

The Gravity Recovery Object Oriented Programming System (GROOPS) is a software toolkit written in C++ that enables

the user to perform core geodetic tasks. Key features of the software include gravity field recovery from satellite and terrestrial

data, the determination of satellite orbits from global navigation satellite system (GNSS) measurements, and the computation

of GNSS constellations and ground station networks. Next to raw data processing, GROOPS is capable to operate on time

series and spatial data to directly analyze and visualize the computed data sets. Most tasks and algorithms are (optionally)

parallelized through the Message Passing Interface, thus the software enables a smooth transition from single-CPU desktop

computers to large distributed computing environments for resource intensive tasks. For an easy and intuitive setup of complex

workflows, GROOPS contains a graphical user interface to create and edit configuration files. The source code of the software

is freely available on GitHub (https://github.com/groops-devs/groops) together with documentation, a cookbook with guided

examples, and step-by-step installation instructions.
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ABSTRACT
The Gravity Recovery Object Oriented Programming System (GROOPS) is a software toolkit written
in C++ that enables the user to perform core geodetic tasks. Key features of the software include grav-
ity field recovery from satellite and terrestrial data, the determination of satellite orbits from global
navigation satellite system (GNSS) measurements, and the computation of GNSS constellations and
ground station networks. Next to raw data processing, GROOPS is capable to operate on time series
and spatial data to directly analyze and visualize the computed data sets. Most tasks and algorithms are
(optionally) parallelized through the Message Passing Interface, thus the software enables a smooth
transition from single-CPU desktop computers to large distributed computing environments for re-
source intensive tasks. For an easy and intuitive setup of complex workflows, GROOPS contains
a graphical user interface to create and edit configuration files. The source code of the software is
freely available on GitHub (https://github.com/groops-devs/groops) together with documentation, a
cookbook with guided examples, and step-by-step installation instructions.

Software availability
Software name GROOPS
Availability GitHub (https://github.com/groops-devs/groops)
Lead developer Torsten Mayer-Gürr
Program language C++
License GPL v3
Documentation Usage guide, source code documentation,

cookbookwith examples, and step-by-step installation
instructions included in the repository

1. Introduction
The determination of Earth’s geometric shape, orienta-

tion in space, and gravity field are core geodetic tasks and
provide the basis for a wide range of environmental sciences.
A stable geometric reference frame allows long-term obser-
vations of critical processes such as sea level rise, tectonic
plate motion, and post-glacial rebound (Le Cozannet et al.,
2015; Nerem et al., 2000; Blewitt et al., 2010). Earth’s static
gravity field is a key quantity for oceanographic and geologi-
cal sciences (Bingham et al., 2014; Johannessen et al., 2003;
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Ebbing et al., 2018). Temporal changes in gravitational at-
traction can be used to infer mass changes on Earth’s surface
caused by, for example, the continental water cycle, ocean
currents, or melting ice caps and glaciers (Chambers, 2006;
Velicogna, 2009; Chen et al., 2010; Tapley et al., 2019) and
provide key insights into these climate-relevant processes.

The derivation of these quantities is typically very re-
source intensive, that is, a vast number of measurements
from different observation techniques need to be combined
and processed. As a consequence, dedicated software pack-
ages, both for research and commercial purposes, have been
developed (e.g., Dach et al., 2015; Böhm et al., 2018; Bertiger
et al., 2020).

In this short communication we present the Gravity Re-
covery Object Oriented Programming System (GROOPS),
a software toolkit for performing core geodetic tasks. The
source code of GROOPS is publicly available on GitHub
(https://github.com/groops-devs/groops) together with a com-
prehensive documentation and an installation guide. GROOPS
is written in C++ and is designed to be operating system in-
dependent. It can be compiled and run on both Linux and
Microsoft Windows.

While GROOPS is intended to be a standalone software
package, some functionality depends on external libraries.
Hard dependencies are the Expat XMLparser (https://libexpat.
github.io, last accessed 25-08-2020), routines of the Inter-
national Earth Rotation andReference Systems Service Soft-
ware Collection (Petit and Luzum, 2010), the Jacchia-Bowman
2008 Empirical ThermosphericDensityModel (Bowman et al.,
2008), the horizontal windmodel (HWM14,Drob et al., 2015),
the International Geomagnetic Reference Field (IGRF, Thébault
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Figure 1: Screenshot of the GROOPS graphical user interface.

et al., 2015) and an implementation of the Linear Algebra
Package (LAPACK, Anderson et al., 1999).

Additional libraries extend the feature set of GROOPS
and can be optionally enabled at compile time. At the mo-
ment, these includeNetCDF (https://unidata.ucar.edu/software/
netcdf, last accessed 25-08-2020) for reading and writing
NetCDF files, zlib (https://zlib.net, last accessed 25-08-
2020) for reading and writing compressed files, and the Es-
sential Routines for Fundamental Astronomy (https://github.
com/liberfa/erfa, last accessed 25-08-2020) for high-precision
Earth rotation. Another optional dependency is an imple-
mentation of the Message Passing Interface (MPI) standard.
Resource intensive tasks and algorithms are designed and
implemented to be optionally run in parallel on distributed
systems. If an MPI implementation is available, GROOPS
can be compiled as an MPI executable and either run on a
local desktop machine with multiple processes or on a large
high-performance computing cluster.

To enable an intuitive interactionwith the software, GROOPS
includes a graphical user interface (GUI). The GUI is also
written in C++ and depends on the Qt toolkit (https://qt.
io, last accessed 25-08-2020).

2. GROOPS overview
2.1. Software usage

User interaction with GROOPS is based on XML con-
figuration files typically generated in the GUI. A configu-
ration file represents a sequence of smaller tasks, dubbed
"programs", which comprise a work flow. Programs vary in
complexity, but mostly represent atomic operations on data,
for example, removing trends or resampling a time series.
These elementary building blocks allow the user to create
flexible processing chains where individual processing steps
can be added, removed, or adapted. This modular approach
allows programs to be used in different contexts and applica-
tions. For example, data preprocessing and outlier removal
is usually very similar for different satellite missions and also
shares common steps with GNSS processing.

Figure 1 shows an example of a configuration file as de-

picted in the GUI. This example covers a typical workflow
for data analysis. In a first step, post-fit residuals of inter-
satellite ranging measurements are numerically differenti-
ated by applying a corresponding digital filter to the time
series in the program InstrumentFilter. Then, values be-
low 0.5 nm s−2 are removed through InstrumentRemoveEp-
ochsByCriteria, to only show large outliers in the data. To
see if any geophysical signals are present in the remaining
residuals, we want to analyze the time series in space rather
than in time domain. To this end, we compute the satel-
lite ground tracks on Earth’s surface from the satellite or-
bit and co-locate the corresponding residual epochs in Or-
bit2Groundtracks. Finally, the now georeferenced residuals
are visualized on a global map through PlotMap. The result
of this work flow is shown in Figure 4.

Interaction between programs is file-based, that is, a pro-
gram reads one or more input files, performs its designed
task and generates one or more output files which can then be
processed by a following program. To make batch process-
ing of large data sets easier, configuration files also support
control flow statements such as loops and conditions. Loops
can be used to iterate over points in time or file lists and can
involve multiple programs. Each loop type sets a number of
variables which are updated in each iteration. These vari-
ables are resolved at run time and can be used to process, for
example, file names with varying time stamps. With con-
ditional execution, missing input data files or different pro-
cessing requirements can be accounted for.
2.2. Extensibility

Themodular structure of theGROOPS configuration files
is also reflected in the source code, in that it is object oriented
and designed to be easily extendable. The source code can
be categorized into two parts. Low-level functionality is pro-
vided by classes in the core library, which includes, for ex-
ample, matrix multiplication, file input/output, and polyno-
mial interpolation. The second part are the programs, which
combine different functionalities from the core library. They
can be thought of as plugins or add-ons and are the interface
between the software and user. The source code repository
includes a program template which can be used as a start-
ing point for tasks that cannot be realized with the included
programs.

3. Methods and results
The feature set of GROOPS can be categorized into four

parts:
• gravity field recovery from satellite and terrestrial ob-

servations
• processing of GNSS constellations and ground station

networks to determine GNSS products
• orbit determination of low-Earth-orbiting (LEO) satel-

lites
• statistical analysis of time series and spatial data sets
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The methods implemented in the software are documented
to a high degree in peer-reviewed articles (e.g., Pock et al.,
2014; Zehentner and Mayer-Gürr, 2016; Kvas and Mayer-
Gürr, 2019; Strasser et al., 2019; Ellmer and Mayer-Gürr,
2017) and theses (Ellmer, 2018; Kvas, 2020). Data sets,
which are themain output of GROOPS, have been usedwithin
the scientific community (e.g., Gouweleeuw et al., 2018; Humphrey
and Gudmundsson, 2019; Eicker et al., 2020; Göttl et al.,
2019; Jäggi et al., 2020). This means that they have under-
gone not only an internal pre-publication evaluation but also
independent external evaluations.
3.1. Gravity field recovery

Gravity field recovery within GROOPS is based on the
short-arc approach introduced byMayer-Gürr (2006) and solves
Newton’s equation of motion through variational equations
(Montenbruck and Gill, 2000). A detailed overview of the
algorithms used on the example of the Gravity Recovery
and Climate Experiment (GRACE) satellite mission can be
found in Ellmer (2018, section 5).

A typical workflow starts with converting data files as
well as metadata and auxiliary data into internal file for-
mats. This has the advantage that multiple satellite missions,
where data file formats in general vary drastically, can be in-
gested in the same fashion by the same programs. Then, the
input data is quality controlled and checked for outliers. This
can be done with criteria based on metadata, thresholds or
robust sample statistics. In the next step, the least squares
adjustment, which we use to solve for the unknown gravity
field, is set up. Here, we can also determine the noise char-
acteristics of the input data using variance component esti-
mation. The result of this processing step is either the least
squares solution of the gravity field or additionally the sys-
tem of normal equations which can be stored as a file for
further processing. Finally, post-processing steps such as
restoring backgroundmodels can be performed and the solu-
tion is converted from the internal file format to a standard-
ized file format for publication and exchange. Optionally, the
result can be visualized and evaluated through, for example,
intercomparison with other solutions. Figure 2a shows an
example of such an intercomparison of GRACE Follow-On
(GRACE-FO) solutions in terms of degree amplitudes. Al-
ternatively, the obtained solution can also be visualized in
space domain (see Figure 2b).

GROOPS is capable of dealing with different observa-
tion types, such as orbit positions derived from raw GNSS
measurements, highly-accurate intersatellite ranging obser-
vations as realized within the GRACE mission and its suc-
cessor GRACE Follow-On (GRACE-FO), and gradiometer
observations of the Gravity field and steady-state Ocean Cir-
culation Explorer (GOCE). Additionally, gravity field recov-
ery from terrestrial data is also possible and has been suc-
cessfully performed for the geoid of Austria (Pock et al.,
2014).

Published gravity field solutions computedwithGROOPS
include the ITSG-Grace time series (Kvas et al., 2019a), GOCO06s
(Kvas et al., 2019b, 2020), a static gravity field model based

Figure 2: a) Comparison of GRACE Follow-On solutions from
the official science data systems (SDS) and solutions computed
with GROOPS (ITSG op., New PM) in spectral domain. b)
Estimated gravity field solution in space domain expressed as
equivalent water height.

on 1.2 billion observations from 19 satellites, and a lunar
gravity field model (Wirnsberger et al., 2019). These data
sets have been widely used within the geodetic and geophys-
ical community and have undergone extensive internal and
external evaluation (Bonin and Save, 2020; Göttl et al., 2019;
Meyer et al., 2019; Ghobadi-Far et al., 2020). From this we
can conclude that GROOPS is capable of producing state-
of-the-art gravity field data products.
3.2. GNSS processing

GROOPS uses the raw observation approach (Strasser
et al., 2019) to process data from multiple GNSS including
the Global Positioning System (GPS), the Russian Global
Navigation Satellite System (GLONASS), and the European
system Galileo. Many geodetic, geophysical, and environ-
mental applications require high-precision GNSS products

Mayer-Gürr et al.: Preprint submitted to Elsevier Page 3 of 7
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Figure 3: a) Differences of station coordinates derived by
GROOPS to IGS combination for 2019-08-01 in terms of hori-
zontal and vertical displacements. b) Root mean square (RMS)
of daily GPS satellite orbit differences between GROOPS-
derived and IGS combined solutions for August 2019.

such as satellite orbits, satellite clocks, or station positions.
They are the prerequisite for high-quality satellite orbits of
many remote sensing satellites, form the basis for local and
regional surveys (Harpham et al., 2016), and enable new
measurement techniques (Cooper et al., 2019). Different anal-
ysis centers routinely generate such data sets by processing
observations from a global GNSS station network under the
umbrella of the International GNSS Service (IGS, Johnston
et al., 2017).

GNSS solutions produced with GROOPS have been in-
corporated into the third reprocessing campaign of the IGS
(repro3, Rebischung et al., 2019), which constitutes theGNSS
contribution to the next International Terrestrial Reference
Frame (ITRF2020, Altamimi et al., 2018). Evaluationswithin
the reprocessing campaign show that GROOPS-derived sta-
tion coordinates and satellite orbits are state of the art (Vil-
liger and Dach, 2020). In Figure 3 we show the difference
of GROOPS-derived station coordinates and satellite orbits
with respect to the IGS combination. As can be seen, GROOPS-
derived GNSS products fit well to the IGS combination, with
differences for both stations and satellite orbits on the mil-

Figure 4: Derivation filtered range-rate residuals of the GRACE
Follow-On laser ranging interferometer, co-located with the
satellite ground track.

limeter to low centimeter level, which is on par with solu-
tions from other IGS analysis centers.

Next to the determination of large-scale global station
networks, GROOPS also supports precise point positioning
(PPP) of single receivers. PPP can be applied to a receiver
on Earth’s surface or on an artificial satellite in space (Ze-
hentner and Mayer-Gürr, 2016). With GROOPS, kinematic
orbits of 16 satellite missions have been computed. These
data sets have been primarily used as input data for grav-
ity field recovery (da Encarnação et al., 2020; Kvas et al.,
2019b) or atmospheric research (Vielberg et al., 2018).
3.3. Data preprocessing and analysis

GROOPS has the capability to analyze and visualize both
input data and computed results. This includes Fourier and
wavelet transforms of time series data, filtering, computation
of sample distributions through histograms, and statistical
analysis of spatial and time series data.

One application of such an analysis are post-fit residuals
(Goswami et al., 2018; Behzadpour et al., 2019). The exam-
ple in Figure 4 shows range-rate residuals of the GRACE-
FO laser ranging interferometer (LRI) to which we applied a
derivation filter. For more clarity we excluded all residuals
with a magnitude below 1 nm s−2. Range-rate observations
are originally given as a time series, however, GROOPS of-
fers the possibility to represent the data in different domains.
This allows the user to easily identify correlations or artifacts
caused by different phenomena. In Figure 4 the residuals
are co-located with the satellite position along the ground
track at the time the corresponding measurement was taken.
In this domain, we can clearly identify geophysical features
such as the magnetic equator or the Argentine gyre.

Next to the analysis of observations or residuals, GROOPS
also offers the possibility to visualize and analyze geophys-
ical signals from computed gravity field solutions. One ap-
plication of such an analysis are temporal water storage vari-
ations in river basins. In Figure 5 we show daily basin aver-
ages of the Danube derived from GRACE satellite data and
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Figure 5: Time series of Danube basin averages from daily
GRACE solutions and discharge data recorded at the river
mouth.

compare them with in-situ discharge data which is kindly
provided by the Global Runoff Data Centre (GRDC, Global
Runoff Data Centre, 2007). GROOPS can not only be used
to study individual river basins but also supports the analysis
of global data sets. Different applications of global statis-
tics computed and visualized with GROOPS can be found in
Eicker et al. (2020).

Data visualization is realized through the Generic Map-
ping Tools (GMT,Wessel et al., 2019). GMT is not included
in the source code, rather GROOPS generates shell or batch
scripts which can be passed to the GMT executable. The in-
formation content in the different figure types is organized
into layers which can be easily created and rearranged in the
GUI. Next to data layers, which include line and bar graphs,
scatter plots, error bars, and pseudocolor grids, additional
annotations such as coast lines or text can be added as lay-
ers in the different plotting programs. This enables a flexible
composition of publication-quality figures.

4. Summary
Data sets that describe Earth’s geometric shape, orienta-

tion in space, and gravity field provide the basis for a broad
range of applications in Earth and environmental sciences.
In this short communication we presented GROOPS, a soft-
ware toolkit which is capable of computing these quantities
with state-of-the-art methods. The software features include
gravity field recovery, GNSS constellation and ground sta-
tion processing, the determination of LEO satellite orbits,
and analysis of time series and spatial data sets. The source
code, documentation, guided examples, and installation in-
structions are publicly available on GitHub (https://github.
com/groops-devs/groops). An included graphical user inter-
face allows an easy setup of complex work flows for core
geodetic tasks and the analysis of geophysical data sets.

GROOPS offers the possibility to compute geodetic data
sets from scratch and thus enables researchers to set up pro-
cessing chains from raw measurement data to the scientific
analysis, with full control over each step. Additionally, the
publicly available software source code in conjunction with
traditionally published documentation provides a compre-

hensive description of data sets computed with GROOPS.
This makes the data generation process transparent and al-
lows users to build upon or adapt existing processing chains
to their specific needs. These two aspects make GROOPS a
valuable tool for a range of potential users in different Earth
and environmental science disciplines.
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