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Abstract

Precipitation flag (precipitating or not; stratiform or convective) is a key parameter for us to make betterretrieval of precipita-

tion characteristics as well as to understand the cloud-precipitation physicalprocesses. The Global Precipitation Measurement

(GPM) Core Observatory’s Microwave Imager (GMI)and Dual-Frequency Precipitation Radar (DPR) together provide ample

information on globalprecipitation characteristics. As an active sensor in particular, DPR provides an accurate precipitation-

flag assignment, while passive sensors like GMI were traditionally believed not to be able to tell apartprecipitation types.

Using collocated precipitation flag assignment from DPR as the “truth”, this project employs machinelearning models to train

and test the predictability and accuracy of using passive GMI-only observationstogether with ancillary atmosphere informa-

tion from reanalysis. Precipitation types are classified intothe following classes: convective, stratiform, convective-stratiform

mixed, no precipitation, and otherprecipitation. Sub-sampling with different probabilities is employed to construct a balanced

trainingdataset. A variety of classification algorithms are tested, including Support Vector Machines, NaiveBayes, Random

Forests, Gradient Boosting, and Neural Networks (Multilayer Perceptron Network), andtheir results are evaluated and com-

pared. The trained model has ˜ 85% of prediction accuracy for everytype of precipitation. High-frequency channels (166 GHz

and 183 GHz channels) and 166 GHzpolarization difference are found among the most important factors that contribute to the

modelperformance, which shed light on future instrument channel selection.
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BACKGROUND

Figure 1. Details of GPM Core Observatory Scan; light-blue is GMI scan and green is DPR scan

 

NASA's Global Precipitation Measurement (GPM) mission's Core Observatory Satellite has two sensors:

Microwave Imager (GMI)
Features for training

Passive Microwave Sensor

Dual-Frequency Precipitation Radar (DPR)



Active Sensor

Precipitation Flag

Note the difference in scan-width of the two sensors. Goal of the project is to use ONLY passive microwave data to determine
precipitation type.

 

Figure 2. Convective and Stratiform Precipitation

 

 

In this project, we differentiate between 5 different types of precipitation:

No Precipitation

Convective

Stratiform

Mixture

Other



PURPOSE
Convective vs. Stratiform

More accurate precipitation measurements/forecasts

Diurnal cycles of convective and stratiform rain

Machine Learning
Understanding of complex precipitation mechanisms not required

 

Purpose of this project is to separate convective and stratiform precipitation using machine learning models trained on passive
microwave data. Previous ML solutions were based on a heavily biased training samples (since no-precipitation scenes are much
more frequent than precipitation scenes), so one aim of the project was to overcome the inherent data bias.

 

Figure 3. GPM Satellite Data Visualization



METHODS
FEATURES

Figure 4. Features (GMI-only); ** represent hand-engineered feature; gray features unused

 

Wide variety of atmospheric information given from GMI data.

Surface emissivity and brightness temperature have 13 channels (see Figure 5 below):
Each channel is its own feature in the ML model (instead of 8, ~30 features) 

Frequencies and polarization of channels shown on figure on the right

Many channels of identical frequencies have different polarizations (vertical and horizontal).

We take advantage of these polarizations by adding a hand-engineered feature: Polarization Difference.



Figure 5. Channel Frequencies and Polarization

 

 

POLARIZATION DIFFERENCES

Polarization Differences (hand-engineered feature):

Difference between brightness temperature values of vertical and horizontal polarizations:  tc[V] – tc[H]

Frequencies used: 10.65, 89.00, 166.0 GHz

 



Figure 6. Distribution of Polarization Differences by flag (89.00, 166.0 GHz)

 

 

TRAINING AND VALIDATION DATASETS

Training Dataset (2017 data):

84 days of data
7 days/month

Randomly selected days

Sub-sample daily data
Avoid bias caused by data imbalance (since ~95% of daily data is non-precipitating)

 

Validation Dataset (2017 data):

12 days of data
1 day/month



Randomly selected days

No sub-sampling
Resemble distribution of real-world data

 

Figure 7. Training and Validation Label Frequencies; all labels from DPR sensor

 

 

MACHINE LEARNING MODELS

We use train and test 6 different machine learning models:

1. Naive Bayes Classifier

2. Support Vector Machine 

3. Softmax Regression

4. Random Forest

5. Gradient Boosting Classifier

6. Neural Network

 

All of the models are created, trained, and evaluated using Scikit-learn.

 



ANALYSIS
CASE STUDY: SQUALL LINE

Figure 8. Squall line precipitation labels; DPR (given) labels on left, predictions on right

 

To better understand the project results and its significance, we examine a case study.

On the left is the DPR precipitation flag data for a squall line, which is a line of adjacent thunderstorms. Because the width of the
DPR swath is limited, we can’t see the entire squall line from the active sensor’s data.

The right figure (**Note the different x-axis scales**) shows the precipitation flag predictions made by the random forest model
for the same squall line. Since predictions are based off of GMI data, we get a wider view of the convective system with its
various precipitation flags.

 

FEATURE IMPORTANCES



Figure 9. Feature importances for random forest model

 

The figure above shows a list of the feature importances for the random forest model. 

From here, we see that the high frequency channels are the most important features for distinguishing between precipitation
types. We also see that the polarization differences that we added to the data are very helpful for classification.

 



RESULTS



CONCLUSION
Multiple successful models with good performance

~85% accuracy

>0.93 AUC score

Overcame inherent data imbalance

Demonstrated relative significance of features
Higher frequencies more important

Polarization Differences very helpful

Future instrument channel selection

Future Work
Focus on improving (or removing) “Mixed” class

Add nearby-pixel associations
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ABSTRACT
Precipitation flag (precipitating or not; stratiform or convective) is a key parameter for us to make better 
retrieval of precipitation characteristics as well as to understand the cloud-precipitation physical 
processes. The Global Precipitation Measurement (GPM) Core Observatory's Microwave Imager (GMI) 
and Dual-Frequency Precipitation Radar (DPR) together provide ample information on global 
precipitation characteristics. As an active sensor in particular, DPR provides an accurate precipitation 
flag assignment, while passive sensors like GMI were traditionally believed not to be able to tell apart 
precipitation types.

Using collocated precipitation flag assignment from DPR as the “truth”, this project employs machine 
learning models to train and test the predictability and accuracy of using passive GMI-only observations 
together with ancillary atmosphere information from reanalysis. Precipitation types are classified into 
the following classes: convective, stratiform, convective-stratiform mixed, no precipitation, and other 
precipitation. Sub-sampling with different probabilities is employed to construct a balanced training 
dataset. A variety of classification algorithms are tested, including Support Vector Machines, Naive 
Bayes, Random Forests, Gradient Boosting, and Neural Networks (Multilayer Perceptron Network), and 
their results are evaluated and compared. The trained model has ~ 85% of prediction accuracy for every 
type of precipitation. High-frequency channels (166 GHz and 183 GHz channels) and 166 GHz 
polarization difference are found among the most important factors that contribute to the model 
performance, which shed light on future instrument channel selection.


