Comparative Genomic Analysis of Halophilic and Xerophilic Microbes to Elucidate Adaptions to Chaotropic and Low Water Activity Environments

Raul Gutierrez^{1,1}, Luke Fisher^{2,2}, Bronte Shelton^{3,3}, and Doug Bartlett^{4,4}

¹California State University Dominguez Hills ²Scripps Institution of Oceanography ³University of California ⁴University of California, San Diego

November 30, 2022

Abstract

Studies on the molecular mechanisms of microbial adaptation in chaotropic and low water activity (aw) environments are poorly understood. Chaotropic environments are characterized as salt rich, MgCl2 and CaCl2, which lowers the availability of water for biological processes. PATRIC, an integrated genomic browsing tool containing vast libraries of sequenced genomes, can help us identify unique genetic markers in chaophilic and xerophilic microbes. Halophilic microbes are characterized as obligate hypersaline with the ability to tolerate exposure to chaotropic agents. Microbes with the greatest tolerance in these extreme environments must have advanced adaptive methods. Halobacterium salinarum and Haloquadratum walsbyi are chaotolerant and well adapted to low water activity. Haloquadratum walsbyi is unique among the halophilics as having the highest tolerance for chaotropes and its square shape. Performing comparative genomics using fully sequenced halophilic archaea such as Halobacterium salinarum NRC-1, a model halophile, and Haloquadratum walsbyi C23, we were able to identify genes that confer adaptation to chaotropic environments . Characterizing genes associated with chaotolerance and low aw adaptations can help elucidate the cellular functions that make these microbes unique. Chaotropic brines may be used as analogs to study the origin of life and the possibility of suitable environments hosting extremophilic microbes on other planets like the Martian brines and the icy moons of Europa; therefore, studying the microbiome of chaotropic environments are essential in the field of astrobiology.

COMPARATIVE GENOMIC ANALYSIS OF HALOPHILIC AND XEROPHILIC MICROBES TO ELUCIDATE ADAPTIONS TO CHAOTROPIC AND LOW WATER ACTIVITY ENVIRONMENTS

Results

Raul Gutierrez¹, Luke Fisher², Brontë Shelton², Doug Bartlett² ¹California State University Dominguez Hills, ²University of California, San Diego, Scripps Institution of Oceanography

Introduction

• Mechanisms of microbial adaptation in chaotropic and low water activity (a_w) environments are poorly understood.

• Chaotropes, like MgCl₂, disrupt hydrogen bonding in water molecules deteriorating hydrophobic properties of cellular membranes; causing cell death.

• Adaptations include salt-in and salt-out strategy. Salt-in strategy is the uptake of K⁺ and Cl⁻ ions across the membrane and the salt-out method is the production of compatible solutes to become isoosmotic with the cell's environment.⁶ must be able to retain water and conserve energy for biomolecule repair²

• Chaotropic sites with low a_w include the Dead Sea and MgCl₂ saturated deep-sea brine pools.³

• Water is essential for life functions and is expressed as a_w^2 . The a_w of pure water is one, sea water is 0.98, and chaotropic environments can be 0.4. Microbial life can be active at a a_w as low as 0.61most can't survive below 0.9^1

• Haloquadratum walsbyi is unique due to its extremely high MgCl₂ tolerance and its

square shape³

• We have identified several genes that may

help elucidate the

molecular mechanisms of adaptation in

• Studying chaotropic environments is essential in the field of astrobiology.

B

Figure 2.⁸ Flueorescence image of the haloarcheae square shaped Haloquadratu m walsbyi A) Front view B) Side view

Discussion

• An average nucleotide identity (ANI) reveals roughly a 66% similarity between the species. • Haloquadratum walsbyi could be square in order to maximize surface area to absorb scarce nutrients like phosphate⁷ • The most unique feature in *Haloquadratum walsbyi* is the hmu1 gene, a mammalian homologue. Like lungfish mucin found in the lungs; allows the fish to survive out of the water. It is characterized as a being negatively charged and serves as an aqueous shield that acts as a barrier to retain water⁷

• *H. walsbyi* contains the only genes specific to Mg²⁺ transport and eight times as many genes that code for Na⁺/H⁺ antiporters than *H. salinarum* suggesting much more salt pumping.

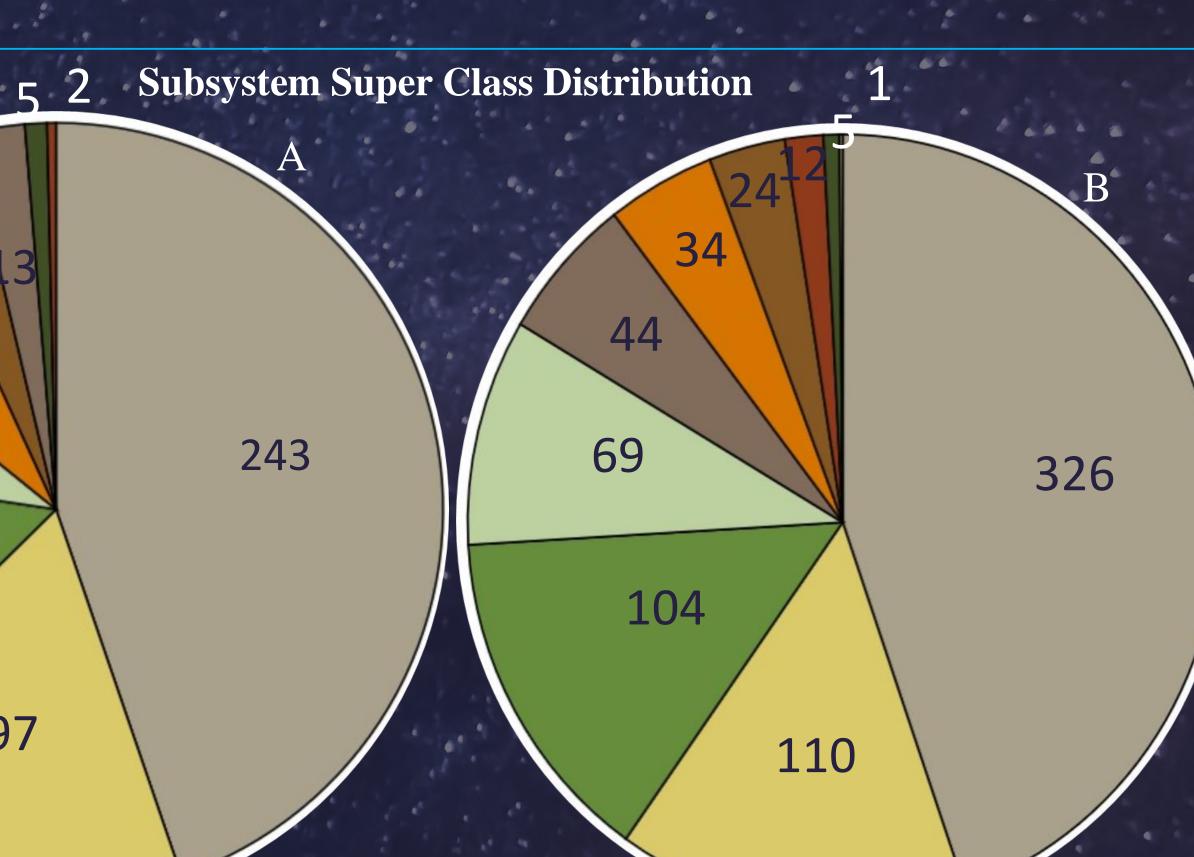
Figure 1. Pink halophile bloom. Red carotenoids produce red pigment. Turns water pink

Method

• Genomes of chao-tolerant microbes were analyzed using a comparative genomics approach to differentiate between essential and inconsequential genes to distinguish chaophilic and xerophilic (low a_w) adaptations.

Genomes of Halobacterium salinarum NRC-1 and *Haloquadratum* walsbyi C23, globally distributed halophiles have greatly different chaotolerances, and were compared using PATRIC⁹

 Metabolism Energy Protein processing Membrane Transport RNA Processing DNA Processing Stress Response Miscellaneous 	
Cellular Processes Cell Envelope 80	
Figure 3. Pie Charts of subsystem superclass's linked	9
to genomes. Here, we can look at the number of genes associated with subsystems. Pie chart A belongs	
to Haloquadratum walsbyi, and B corresp	
Proteome Compar	6


Proteome Comparison	Gene Tabl	les	lalobacterium sa	linarum
100 99.9 99.8 99.5 99 98 95 90 80 70 60 50 40 30 20 10	Gene	Product	Purpose	Genes
100 99.9 99.8 99.5 99 98 95 90 80 70 60 50 40 30 20 10	znTa, yvgX, cpx		Osmotic stress	3
Inside	caa, cat3	Cation transport	Osmotic stress	5
	cbiN, cbiO2	Co transporter	Osmotic stress	4
	che1, cheD	Chemotaxis receptor	Motility	5
-0.6	ndhG2, ndhG3	Na+/H+ antiporter	Osmotic stress	2
	kdpC,B,A,	K+ uptake	Osmotic stress	10
	Bop hop	Bacteriorhodo psin Halorodopsin	Pigments/ ion pump	1 1
	dinF, dip1,2, ppe, mutS3,2,1	DNA cleavage,	General DNA repair	13
	gspE3	Flagella proteins	Flagella synthesis	9
	pstB1,2, pstA1,2	Phosphate utilization	Phosphate uptake/metblsm	33

List of tracks, from outside to in I. Halobacterium sp. NRC-1 2. Halobacterium salinarum strain 91-R6 3. Halobacterium salinarum R1 4. Haloquadratum walsbyi C23 5. Haloquadratum sp. J07HQX50 6. Hailoquadratum walsbyi J07HQW1

Figure 4. PATRIC tool used to visually compare protein sequence-based genomes. Reference genome is representative H. salinarum R1.

- Future Directions

• Chaotropic brines can serve as analogs to extraterrestrial locations, such as Martian brines and the subsurface oceans of several moons in our solar system4. Further Study may elucidate the possibility of life in extraterrestrial brines found on Mars and Europa thereby extending the limit of life on Earth and the and the universe.

onds to Halobacterium salinarum

• Adaptive laboratory evolution to identify genes associated with magnesium tolerance • Genome surveys of chaotropic environments to characterize other chaophilic and xerophilic microbes; likewise, further study of pathways that allow for chao/xerotolerance • characterize the role of the *hmu* gene in aw or chaotropic adaptation

Summary Unique adaptation in H. walsbyi is the ability to produce an aqueous shield, halomucin, and Mg⁺ pumps. H. walsbyi also has eight times as many ion antiporters. H. walsbyi has anion transporters, while *H*. salinarum has cation transporters. Unique to *H.salinarum* is motility and twice as many K⁺ uptake pumps and bacteriorhodopsin.

Haloquadratum walsbyi						
Gene	Product	Purpose	#			
copA,	Cu	Osmotic •	2			
cadA	transporter	stress	· •			
mgtE1,	Mg/Co/Ni	Osmotic	2 -			
mgtE2	transporter	stress				
arsA1,	Anion	Osmotic	3			
arsA2	transporter	stress				
Csp1,	Cold shock	Stress	3			
<i>csp2</i>	protein	response				
grpE,	Heat shock	Stress	3			
htpX	protein	response				
trkA6,	K+ uptake	Osmotic	5			
trkH		stress	۰.			
phaC,	Na+/H+	Osmotic	16			
phaD3	antiporter	stress				
amtb	Ammonia	Osmotic	1			
	transporter	stress				
bop1	Bacteriorh	Pigment/i	1			
	odopsin	on pump				
<i>mutL1,2,</i>	repair	General	10			
	proteins	DNA				
	्यः द्व	repair				
ptsl	Phosphate	Phosphate	24			
	utilization	uptake/me				
9		tabolism				
hmu	Halomucin	Water	1			
		retention				
Table 1.	Gene tables	of genes	unique			
to each organism are displayed with						
the number of genes associated with						
a subsystem						
References ¹ Lever, Mark A. (2016). Frontiers In Microbiology. 6:1505 ² W.D. Grant (2004). The Powel Society, 350: 1240, 1267						

W.D. Grant (2004). The Royal Society. 359: 1249-1267 Boetius and Joye (2009). Science. 324: 1523-1525. Antunes, et al. (2011). Astrobiology: Current, Evolving and Emerging Perspectives Oren, Aharon. (1998). Instruments, Methods, and Missions for

⁹ Brettin, et al. (2015). Sci Rep. 5:8365

⁶Merlino, et al. (2018). FEMS Microbiology Ecology. 94:7 Bolhuis, et al. (2006). GMC Genomics. 7: 169 Zenke, et al. (2015). Frontiers In Microbiology. 6:244.

cknowledgements project was with funding from the 2020 Scripps idation, Research Experiences for Undergraduates ranes, Kelli Mullane, Ivan Moreno, Bronte elton, my mentor Luke Fisher and Doug Bartlet