
P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
49
48
/v

1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

CAPE is predictable from large-scale environmental parameters

Funing LI1 and Daniel Chavas2

1PURDUE UNIVERSITY
2Purdue University

November 30, 2022

Abstract

A recent study by Agard and Emanuel (2017) proposed a simple equation for a quantity that scales with convective available

potential energy (CAPE) that can be directly calculated from a limited number of environmental sounding parameters without

lifting a hypothetical air parcel. This scaling CAPE was applied in a specific idealized framework, but the extent to which it

can predict true CAPE in the real world has not been tested. This work uses reanalysis data over the U.S to demonstrate that

this scaling CAPE does indeed scale very closely with CAPE, following a linear relationship with a scaling factor of 0.44. We

then explain why they scale together via a step-by-step derivation of the theoretical assumptions linking scaling CAPE and

real CAPE and their manifestation in the historical data. Overall, this work demonstrates that CAPE can be predicted from

large-scale environmental parameters alone, which may be useful for a wide range of applications in weather and climate.
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Abstract12

A recent study by Agard and Emanuel (2017) proposed a simple equation for a quan-13

tity that scales with convective available potential energy (CAPE) that can be directly14

calculated from a limited number of environmental sounding parameters without lifting15

a hypothetical air parcel. This scaling CAPE was applied in a specific idealized frame-16

work, but the extent to which it can predict true CAPE in the real world has not been17

tested. This work uses reanalysis data over the U.S to demonstrate that this scaling CAPE18

does indeed scale very closely with CAPE, following a linear relationship with a scaling19

factor of 0.44. We then explain why they scale together via a step-by-step derivation of20

the theoretical assumptions linking scaling CAPE and real CAPE and their manifesta-21

tion in the historical data. Overall, this work demonstrates that CAPE can be predicted22

from large-scale environmental parameters alone, which may be useful for a wide range23

of applications in weather and climate.24

Plain Language Summary25

Convective available potential energy (CAPE) is a key parameter commonly used26

to measure the potential for thunderstorms. Its calculation requires lifting a hypothet-27

ical air parcel through a column of atmosphere. This work combines theory and reanal-28

ysis data to demonstrate that CAPE can be predicted using environmental data alone.29

This can make it easier to quickly estimate CAPE in data and to understand the pro-30

cesses that create CAPE in our atmosphere.31

1 Introduction32

Convective available potential energy (CAPE), a measure of conditional instabil-
ity of the environment, is a key thermodynamic parameter in atmospheric research. It
is proportional to the theoretical maximum vertical wind speed within the atmospheric
column, and hence serves as an indicator of the potential for triggering deep convection
(Holton, 1973). In practice, regular CAPE is estimated by the vertically-integrated buoy-
ancy of a boundary-layer parcel ascending from the level of free convection (LFC) to the
equilibrium level (EL) (Doswell III & Rasmussen, 1994), given by

CAPE =

∫ zEL

zLFC

g
Tvp − Tve

Tve
dz (1)

where g is the acceleration due to gravity, z is height above ground level, Tvp is the vir-33

tual temperature of the rising air parcel and Tve is that of the surrounding environment.34

Thus, calculating CAPE requires lifting a hypothetical parcel through a column of at-35

mosphere defined by known vertical profiles of air temperature and moisture.36

Recently, Agard and Emanuel (2017, hereafter AE17) proposed a simple equation
for a quantity that scales with CAPE, here denoted CAPEAE17, based on an idealized
two-layer model for the atmospheric column. The AE17 model includes a dry adiabatic
free troposphere overlying a cooler, moist, well-mixed boundary layer. Their proposed
quantity scales with the difference between surface moist static energy (Msfc

ve ) and free
tropospheric dry static energy (DFT

ve ) multiplied by difference in the natural logarithm
of virtual temperatures between boundary-layer top (TBLT

ve ) and tropopause (T trop
ve ):

CAPEAE17 = (Msfc
ve −DFT

ve )ln
TBLT
ve

T trop
ve

(2)

The Dve and Mve are given by Dve = cpTve +gz and Mve = cpTve +gz+Lvr, respec-37

tively, where cp and Lv are the specific heat of air and the latent heat of vaporization38

of water, and r is the water vapor mixing ratio. Note that Eq.2 is slightly different from39

the original formulation in AE17, as we use virtual temperatures rather than temper-40

atures for Dve and Mve to be consistent with definitions of CAPE in Eq.1 (detailed in41
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Section 3). The CAPEAE17 formula suggests that CAPE may to first order be determined42

by a limited number of environmental parameters within the boundary-layer and free43

troposphere. One significant benefit of this outcome is that this quantity may be calcu-44

lated strictly from environmental sounding data without the need to lift a hypothetical45

air parcel.46

Using this idealized framework, AE17 found that peak continental transient CAPE47

is expected to increase with global warming. Recent work used the AE17 framework to48

develop a simple physical model for a steady sounding for numerical simulations of se-49

vere convective storms (Chavas & Dawson, 2020). However, it remains unclear to what50

extent CAPEAE17 directly predicts true CAPE in real soundings. Moreover, AE17 did51

not present a formal derivation of the relationship between CAPEAE17 and CAPE.52

To fill this gap, this work seeks to answer the following question: How closely does53

CAPEAE17 scale with CAPE in real soundings, and why? To answer this question, we54

first directly compare CAPEAE17 with CAPE over the U.S using reanalysis data and show55

that CAPEAE17 does indeed scale closely with regular CAPE (Section 2). We then pro-56

vide a step-by-step theoretical derivation and application to sounding data to explain57

why they scale together (Section 3). We end with a summary and discussion (Section58

4).59

2 CAPE vs. CAPEAE1760

We begin with an explicit comparison of CAPE and CAPEAE17 in terms of 1) cli-61

matological extremes over the U.S, and 2) diurnal evolution during a significant tornado62

outbreak over the southern U.S.63

2.1 Data64

We use the 3-hourly surface and model-level (72 vertical levels) Modern-Era Ret-65

rospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data66

for the period 2000–2019 in this work (Gelaro et al., 2017) (data accessed in March 202067

from https://disc.gsfc.nasa.gov/datasets/M2I1NXASM 5.12.4/summary for the sur-68

face data and from https://disc.gsfc.nasa.gov/datasets/M2I3NVASM 5.12.4/summary69

for the model-level data). The horizontal grid spacing of MERRA-2 is 0.5◦×0.65◦ in lat-70

itude and longitude. MERRA-2 also provides direct estimations of atmospheric prop-71

erties at boundary-layer top and tropopause, which is especially useful for the calcula-72

tion of CAPEAE17. Our domain of analysis focuses on the contiguous U.S, as it is a ma-73

jor hot spot for severe thunderstorm environments in the world (Brooks et al., 2003).74

We generate a 20-year dataset of CAPE using Eq.1 and CAPEAE17 using Eq.2 from75

the MERRA-2 reanalysis data over the U.S. Though CAPE estimation is sensitive to the76

origin of air parcel, we select the near-surface parcel defined by 2-m temperature and mois-77

ture for simplicity, similar to past work (Riemann-Campe et al., 2009; Seeley & Romps,78

2015; Li et al., 2020).79

2.2 Results80

We first compare the representation of climatological spatial distribution of extreme
values of CAPEAE17 against CAPE, as strong thunderstorms are typically associated
with large values of CAPE. We define extreme values by the 99th percentile of the full-
period (2000–2019) time series of a given quantity at each grid point, in line with past
work (Singh et al., 2017; Tippett et al., 2016; Li et al., 2020; Taszarek et al., 2020). Re-
sults show that extreme CAPEAE17 scales very closely with extreme CAPE (Figure 1a;
r = 0.98), with linear regression given by

CAPE ≈ 0.44 (CAPEAE17 − 522) (3)

–3–
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Figure 1. (a) Extreme values of CAPE (Eq.1) vs. CAPEAE17 (Eq. 2) over the contiguous

U.S. Extreme values are defined as the 99th percentile of their respective full-period (2000–2019)

time series from the MERRA-2 reanalysis data at each grid point (gray dots). Sample size is

N=3565. Blue line denotes the linear least squares fit with linear correlation coefficient (r).

Black line denotes one-to-one fit. (b) Spatial distribution of extreme CAPE. (c) Predicted spatial

distribution of extreme CAPE using the linear regression equation shown in (a).

We then apply Eq.3 to predicted extreme CAPE from extreme CAPEAE17 (Figure 1c),81

which produces a spatial pattern that is quantitatively very similar to the observed ex-82

treme CAPE (Figure 1b).83

To further demonstrate how closely the two quantities scale, we present a case study84

comparison of their diurnal evolution during April 25, 2011, which is the first day of a85

three-day significant tornado outbreak event in the southeastern U.S (Knupp et al., 2014).86

The diurnal variation of CAPE indicates an initial generation of CAPE over southeast-87

ern Texas in the early morning (0900–1200 UTC; Figure 2a,b), followed by a strong en-88

hancement at around 1500 UTC over eastern Texas (Figure 2c) and an eastward prop-89

agation of high CAPE in the afternoon (Figure 2d–f). The high CAPE values in the afternoon–90

evening over the southeastern U.S are associated with a swath of over 50 tornado reports91

extending from eastern Texas into the mid-Mississippi Valley (reference to the SPC Storm92

Reports: https://www.spc.noaa.gov/exper/archive/event.php?date=20110425).93

Compared to CAPE, CAPEAE17 successfully reproduces the detailed spatial patterns94

and diurnal variations during the day (Figure 2g–l), with pattern correlation r ≥ 0.9095

at each UTC time, though Eq. 3 slightly overestimates CAPE in the morning (Figure96

2g,h vs. a,b) and slightly underestimates CAPE in the afternoon (Figure 2j,k vs. d,e).97

Overall, our comparisons for both climatological extremes and the diurnal varia-98

tion associated with a tornado outbreak case demonstrate a tight relationship between99

CAPEAE17 and CAPE distributions. This indicates that CAPE can be approximately100

predicted from CAPEAE17 via a simple linear equation.101

–4–



manuscript submitted to Geophysical Research Letters

Figure 2. Spatial distributions of (a–f) CAPE vs. (g–l) predicted CAPE, using the equation

in Fig 1(a), at (top–bottom) 0900, 1200, 1500, 1800, 2100, and 0000 UTC on April 25, 2011 from

the MERRA-2 reanalysis data. The r denotes pattern correlation coefficient between CAPE and

CAPEAE17 conditioned on gridpoints with CAPE ≥ 100 J kg−1.

3 Theoretical foundation102

We next provide a theoretical derivation and explanation of the intermediate steps103

and assumptions that link CAPE to CAPEAE17. We demonstrate each step both for a104

single example radiosonde sounding (Figure 3) and statistically for all U.S gridpoints in105

the full-period (2000–2019) MERRA-2 reanalysis database (Figure 4). Here the exam-106

ple sounding was observed at 0000 UTC 07 June 2011 at the SGF (Springfield, MO) sta-107

tion; we obtain it from the sounding database of the University of Wyoming (http://108

weather.uwyo.edu/upperair/sounding.html).109

–5–
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3.1 A dry static energy view of CAPE110

As CAPEAE17 is a function of an environmental static energy deficit between the111

boundary layer and free troposphere, we first derive an alternative formula for estimat-112

ing CAPE based on the parcel and environmental profiles of dry static energy rather than113

temperature.114

We begin from the environmental dry static energy relation (Dve), Dve = cpTve+
gz. The environmental moist static energy (Mve) is given by Mve = cpTve +gz+Lvr.
Heat capacities and latent heats are assumed to be constant. Counterparts for the par-
cel are given by Dvp and Mvp. Note that these static energies include the virtual tem-
perature effect to be consistent with definitions of CAPE in Eq.1 as shown below. This
virtual effect may add a small positive perturbation to regular static energies of approx-
imately 0.9% and 0.8% of near-surface dry and moist static energy, respectively, given
a surface temperature of 300 K and mixing ratio of 15 g kg−1, that will decrease with
height. We may rewrite the Dve equation for differential changes in height z as dz =
− cp

g dTve+
1
gdDve and substitute into Eq.1. Doing so yields an alternative formulation

of CAPE with limited approximations based on dry static energy profiles of the rising
air parcel and the environment (derivation in Appendix A):

CAPE ≈ Γd

Γ
D = −Γd

Γ

∫ TEL
ve

TLFC
ve

(Dvp −Dve)dlnTve (4)

where Γd = g/cp is the dry adiabatic lapse rate, Γ is the virtual temperature lapse rate115

of the environment from LFC to EL, and TLFC
ve and TEL

ve are environmental virtual tem-116

peratures at LFC and EL, respectively.117

How well does Γd

Γ D (Eq.4) compare to CAPE (Eq.1)? First, we compare Γd

Γ D against118

CAPE for our example sounding (Figure 3 inset). The two calculations yield similar val-119

ues of CAPE (3775 vs. 3945 J kg−1). Second, we compare the two quantities for all grid-120

points over the U.S in our MERRA-2 reanalysis dataset. The two quantities are indeed121

nearly identical (Figure 4a; r > 0.99) with linear regression given by CAPE= 0.98(Γd

Γ D+122

18). The Γd

Γ D formulation performs equally well in reproducing the detailed spatial dis-123

tribution of extreme CAPE over the U.S (Figure S1b vs. S1a).124

3.2 Scaling of CAPE with CAPEAE17125

To obtain the CAPEAE17 formula from Eq.4, we must assume that Dvp = Msfc
ve ,126

which yields127

Γd

Γ
DAE17 =

Γd

Γ
(Msfc

ve −Dve)ln
TLFC
ve

TEL
ve

(5)

where Dve =

∫ TEL
ve

TLFC
ve

(Dve)dlnTve∫ TEL
ve

TLFC
ve

dlnTve

is the log-temperature-weighted average dry static en-128

ergy of environment between LFC and EL. Physically, this assumption implies that the129

lifted air parcel immediately releases all latent heat at LFC. Hence, the parcel will ex-130

perience a sudden jump in dry static energy Dvp (to be equal to Mvp) at the LFC, and131

above the LFC this quantity is conserved. Additionally, we must assume that the moist132

static energy of the surface parcel is assumed to be conserved up to the LFC. Note that133

static energy is not perfectly conserved during adiabatic ascent because buoyancy acts134

as an enthalpy sink (Romps, 2015). Taken together, the assumption results in Dvp =135

Mvp = Msfc
ve .136

We use our example sounding (Figure 3) to help understand this assumption con-137

ceptually. As noted above, the above assumption implies that all latent heat within an138

air parcel is immediately converted to sensible heat at the LFC. Thus, the parcel is im-139

–6–
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Figure 3. The SGF (Springfield, MO) radiosonde observed virtual temperature (in red line)

and dew-point temperature (in green line) profiles at 0000 UTC 07 June 2011 in a Skew-T dia-

gram. Solid black line represents the virtual temperature profile of a surface air parcel ascending

adiabatically. Dashed black line represents the modified virtual temperature profile of the parcel

ascending assuming that it releases all latent heat immediately at LFC. The EL, LFC, trop,

and BLT are denoted by brown lines. Inset table lists: CAPE (Eq.1; grey shading); Γd
Γ
D (Eq.4);

Γd
Γ
DAE17 (Eq.5; hatched); Γd

ΓFT CAPEAE17 is the same as Γd
Γ
DAE17 but using virtual temper-

atures at BLT and trop, with CAPEAE17 calculated from Eq.2. The inset table lists direct

calculation of each quantity (black text) and prediction of true CAPE (blue text) using the rel-

evant linear regression equation. The Python MetPy (May et al., 2008–2020) package is used to

generate the parcel temperature profiles.

mediately warmed dramatically at the LFC and then subsequently rises dry adiabati-140

cally from the LFC to the EL. In this way, then, Γd

Γ DAE17 is considered a “scaling” CAPE141

because it represents a theoretical upper bound on how quickly a parcel can be warmed142

along its path (and hence on its integrated buoyancy). In the real atmosphere, latent heat143

is released gradually along the parcel path in accordance with the Clausius-Clapeyron144

relation that defines the moist adiabatic lapse rate. In a Skew-T diagram, this difference145

shows up as an expanded, angular region of positive buoyancy maximized above the LFC146

in Γd

Γ DAE17. Thus, Γd

Γ DAE17 is substantially larger than CAPE (Γd

Γ DAE17 =11874 J147

kg−1 vs. CAPE = 3775 J kg−1 in Figure 3 inset). Though different in magnitude, Γd

Γ DAE17148

is still highly correlated with CAPE (r=0.92) in the full reanalysis dataset over the U.S149

(Figure 4b), with linear regression given by150

CAPE ≈ 0.32(
Γd

Γ
DAE17 − 2188) (6)

For the example sounding, Eq.6 predicts a CAPE value (3100 J kg−1) that is reasonably151

close to the true CAPE (3775 J kg−1) (Figure 3 inset). Eq.6 also performs very well in152

reproducing the spatial distribution of extreme CAPE over the U.S (Figure S1c vs. S1a).153

–7–
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Figure 4. Joint frequency fraction multiplied by 1000 (filled color) of (a) CAPE vs. Γd
Γ
D,

(b) CAPE vs. Γd
Γ
DAE17, (c) CAPE vs. Γd

ΓFT CAPEAE17, and (d) CAPE vs. CAPEAE17 (inset:
Γd

ΓFT vs. CAPE) for cases with CAPE ≥ 100 J kg−1 over all U.S gridpoints during 2000–2019

from the MERRA-2 reanalysis dataset (sample size N=41281199). Black line denotes one-to-one

line. Gray lines denote median (solid), interquartile range (dashed), and 5–95% range (dotted) of

CAPE. Blue line denotes the linear regression with the correlation coefficient of r.

Physically, the factor 0.32 is a manifestation of the rate at which saturation vapor pres-154

sure decreases with temperature, as defined by the Clausius-Clapeyron relation, that is155

fundamental to our real atmosphere.156

Finally, to produce a prediction with the original AE17 formulation (CAPEAE17),157

we must additionally assume that the temperatures of the EL and LFC may be replaced158

with that of the tropopause (trop) and boundary-layer top (BLT ), respectively. This re-159

places Γd

Γ DAE17 of Eq.5 with Γd

ΓFT CAPEAE17, where ΓFT is defined by the lapse rate of160

virtual temperature of the free troposphere between the BLT and trop. These approx-161

imations are more quantitatively reasonable for higher-CAPE cases supportive of deep162

convection, as in the example sounding (Figure 3). This final approximation ( Γd

ΓFT CAPEAE17)163

is estimated solely by environmental parameters without lifting a hypothetical air par-164

cel. We use the reanalysis dataset to examine its relationship to CAPE (Figure 4c), which165

–8–
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indicates a close correlation (r=0.86) with a linear regression given by:166

CAPE ≈ 0.30(
Γd

ΓFT
CAPEAE17 − 1608) (7)

Hence the scaling factor is similar to that for Γd

Γ DAE17 above. For our example sound-167

ing, Eq.7 predicts a CAPE value (3233 J kg−1) again reasonably close to the true CAPE168

(3775 J kg−1) (Figure 3 insert). Eq.7 also quantitatively reproduces the spatial pattern169

of extreme CAPE over the U.S (Figure S1d vs. S1a).170

Ultimately, then, Eq.7 offers a scaling of CAPE that depends only on a limited num-171

ber of boundary-layer and free tropospheric variables. It differs from CAPEAE17 itself172

in the inclusion of the coefficient Γd

ΓFT . This factor does not appear in the idealized model173

of AE17 because their model assumes a dry adiabatic free troposphere (i.e., ΓFT = Γd),174

which yields Γd

ΓFT = 1.175

Given that CAPE was found to be predictable from CAPEAE17 alone in Section176

2 (Eq.3), this result implies that the free tropospheric lapse rate (ΓFT ) of the modern177

atmosphere does not vary too strongly and thus the factor Γd

ΓFT remains relatively con-178

stant. We use our reanalysis dataset to calculate the statistics of Γd

ΓFT as a function of179

CAPE (Figure 4d inset). The result is indeed a mean (± one standard deviation) value180

of 1.47±0.06, with variance decreasing as CAPE increases. The resulting mean free tro-181

pospheric lapse rate (ΓFT ) is roughly 6.7 K km−1, which is close to that of the U.S Stan-182

dard Atmosphere (COESA, 1976). As a result, we are able to directly scale CAPE with183

CAPEAE17 by assuming that Γd

ΓFT is constant. We note that this behavior may differ in184

an alternate climate state. As a final test, we compare CAPEAE17 with CAPE for cases185

with CAPE ≥ 100 J kg−1 for the entire MERRA-2 database over the U.S and find a strong186

linear correlation between them as well (r = 0.88; Figure 4d), with a linear regression187

of188

CAPE ≈ 0.44(CAPEAE17 − 1104). (8)

This outcome is quite similar to the linear regression model we get from extreme cases189

alone in Eq.3. This is also close to the results of simply substituting Γd

ΓFT =1.47±0.06 into190

Eq.7, which yields a scaling factor of 0.44±0.02 and an offset of −1095±50. Using Eq.8191

also successfully predicts the approximate CAPE for the example sounding (3490 vs. 3775192

J kg−1; Figure 3 inset).193

4 Conclusions194

CAPE is a key thermodynamic parameter commonly calculated to evaluate the po-195

tential for deep convection within a given environment. AE17 proposed a simple formula196

for a quantity (CAPEAE17) that scales with CAPE that depends only on a limited num-197

ber of environmental variables and does not require lifting a hypothetical parcel.198

This work used a 20-year reanalysis dataset over the U.S to examine the extent to199

which this CAPE-like quantity can be used to predict true CAPE for real soundings, an-200

alyzing both the spatial distribution of climatological extremes and the diurnal varia-201

tion associated with a historical tornado outbreak case study. Results show a close scal-202

ing relationship between CAPEAE17 and CAPE, yielding a simple linear equation for203

predicting CAPE from environmental data. To understand the physics underlying this204

relationship, we provided a step-by-step derivation linking the two quantities, which may205

be summarized as:206

CAPE
a1
≈ Γd

Γ
D a2∼ Γd

Γ
DAE17

a3∼ Γd

ΓFT
CAPEAE17

a4∼ CAPEAE17 (9)

where (a1–a4) represent the assumptions: (a1) constant environmental virtual temper-207

ature lapse rate from LFC to EL; (a2) the rising parcel immediately releases all latent208

–9–
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heat at LFC; (a3) temperatures at the EL and LFC scale with the tropopause and boundary-209

layer top, respectively; (a4) free tropospheric lapse rate of the present atmosphere does210

not vary strongly in space or time in environments with non-negligible CAPE.211

The principal end result of this work is a simple linear equation based on the 20-212

year reanalysis dataset over the U.S (Eq.8) to predict CAPE from CAPEAE17, which may213

be calculated strictly from environmental data without the need to lift a hypothetical214

parcel. This has significant practical benefits for the simple estimation of CAPE and for215

understanding how CAPE is generated within the climate system.216

Appendix A Derivation of Eq.4217

The equation for differential changes in environmental dry static energy may be218

written as dz = − cp
g dTve + 1

gdDve and substituting into Eq.1 yields219

CAPE =

∫ zEL

zLFC

g
Tvp − Tve

Tve
(−cp

g
dTve +

1

g
dDve) = D + T (A1)

This formulation decomposes CAPE into two terms. The first is given by

D = −
∫ zEL

zLFC

(
Tvp − Tve

Tve
)d(cpTve) = −

∫ zEL

zLFC

(Dvp −Dve)dlnTve (A2)

and represents differences in dry static energy integrated over changes in temperature.
The second is given by

T =

∫ zEL

zLFC

(
Tvp − Tve

Tve
)dDve (A3)

and represents integrated differences in temperature over changes in dry static energy.220

To further simplify Eq.A1, we can relate T and D by calculating their ratio. Using the221

definition of buoyancy, b =
Tvp−Tve

Tve
, we may write this ratio as222

T
D

=

∫ zEL

zLFC
(b) dDve

−
∫ zEL

zLFC
(b) d(cpTve)

= −(1 +
g

cp

∫ zEL

zLFC
(b) dz∫ zEL

zLFC
(b) dTve

)

= −(1 +
g

cp

b1

∫ zEL

zLFC
dz

b2

∫ zEL

zLFC
dTve

)

=
b1

b2

Γd

Γ
− 1 (A4)

where b1 =

∫ zEL
zLFC

(b) dz∫ zEL
zLFC

dz
and b2 =

∫ zEL
zLFC

(b) dTve∫ zEL
zLFC

dTve
represent the mean value of b between223

the LFC and EL weighted by height (z) and environmental virtual temperature (Tve),224

respectively. Γd = g/cp is the dry adiabatic lapse rate and Γ = −
∫ zEL
zLFC

dTve∫ zEL
zLFC

dz
= −TEL

ve −TLFC
ve

zEL−zLFC
225

represents the average environmental virtual temperature lapse rate from LFC to EL.226

If we take Γ to be constant between the LFC and EL, then b1 = b2, which yields

T
D

=
Γd

Γ
− 1 (A5)

Substituting this result into Eq.A1 yields

CAPE ≈ Γd

Γ
D = −Γd

Γ

∫ zEL

zLFC

(Dvp −Dve)dlnTve (A6)

This equation is shown to closely match the true CAPE in the main manuscript.227
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