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Abstract

Seismologists have to deal with overlapping and noisy signals. Techniques such as source separation can be used to solve this

problem. Over the past few decades, signal processing techniques used for source separation have advanced significantly for

multi-station settings. But not so many options are available when it comes to single-station data. Using Machine Learning, we

demonstrate the possibility of separating sources for single-station, one-component seismic recordings. The technique that we use

for seismic signal separation is based on a dual-path recurrent neural network which is applied directly to the time domain data.

Such source separation may find applications in most tasks of seismology, including earthquake analysis, aftershocks, nuclear

verification, seismo-acoustics, and ambient-noise tomography. We train the network on seismic data from STanford EArthquake

Dataset (STEAD) and demonstrate that our approach is a) capable of denoising seismic data and b) capable of separating two

earthquake signals from one another. In this work, we show that Machine Learning is useful for earthquake-induced source

separation. We provide a reproducible research repository with the algorithms here: https://github.com/IMGW-univie/source-

separation.
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Key Points:7

• Seismic signals can be denoised via separating seismic signal from seismic noise8

• Overlapping seismic signals recorded with a single sensor can be separated using9

techniques from machine learning.10

• We provide a software package SEDENOSS for seismic signal separation and de-11

noising12
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Abstract13

Seismologists have to deal with overlapping and noisy signals. Techniques such as source14

separation can be used to solve this problem. Over the past few decades, signal process-15

ing techniques used for source separation have advanced significantly for multi-station16

settings. But not so many options are available when it comes to single-station data. Us-17

ing Machine Learning, we demonstrate the possibility of separating sources for single-18

station, one-component seismic recordings. The technique that we use for seismic sig-19

nal separation is based on a dual-path recurrent neural network which is applied directly20

to the time domain data. Such source separation may find applications in most tasks of21

seismology, including earthquake analysis, aftershocks, nuclear verification, seismo-acoustics,22

and ambient-noise tomography. We train the network on seismic data from STanford EArth-23

quake Dataset (STEAD) and demonstrate that our approach is a) capable of denoising24

seismic data and b) capable of separating two earthquake signals from one another. In25

this work, we show that Machine Learning is useful for earthquake-induced source sep-26

aration. We provide a reproducible research repository with the algorithms here: https://27

github.com/IMGW-univie/source-separation.28

Plain Language Summary29

Earthquake scientists have to deal with overlapping and noisy signals. They use30

signal processing techniques to solve this problem. Over the past few decades, these sig-31

nal processing techniques have advanced greatly for multi-station settings. But not so32

many options are available when it comes to single-station data. Using Machine Learn-33

ing, we demonstrate the possibility of separating sources for single-station, one-component34

seismic recordings. The technique that we use for seismic signal separation is based on35

a dual-path recurrent neural network which is applied directly to the time-domain data.36

1 Introduction37

Seismic recordings, such as those from earthquakes, often contain a significant amount38

of noise, which obscures the signals and complicates analysis and interpretation. The noisy39

seismic record is a mixture of both the seismic signal and the noise. When multiple sig-40

nals compose a mixture, it is often advantageous to separate the mixture back into its41

individual signals. This is called source separation.42
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Several methods of source separation have been proposed. E.g. independent-component43

analysis (ICA) (Comon, 1994). Cabras et al. (2008) showed that ICA is a suitable tech-44

nique to separate a volcanic source component from ocean microseisms background noise45

in a seismic dataset recorded at the Mt. Merapi volcano, Indonesia. Moni et al. (2012)46

used degenerate unmixing estimation technique for separation of long-period events from47

tremor, long-period events from volcano-tectonic events, and different sources of tremor48

from each other in the fields recordings obtained during the campaign on Mount Etna49

in 2008. It is also common to apply beamforming methods (Gibbons et al., 2008). E.g.50

Brooks et al. (2009) used beamforming to separate distinct dispersive waves in the am-51

bient noise recordings. Boué et al. (2013) used Double Beamforming Processing to sep-52

arate low-amplitude body waves from high-amplitude dispersive surface waves. Other53

methods of source separation, such as independent-vector analysis (Hiroe, 2006; Kim et54

al., 2006) and MUSIC (MUltiple SIgnal Classification) (Schmidt, 1986) (which later was55

extended to 3-component seismic data by Bear et al. (1999)), were also proposed in the56

field of signal processing.57

In the multi-receiver setting, those methods work well. For instance, when more58

than one seismic station is available, source separation is widely employed. For single59

receivers (e.g. individual seismic stations with one component), however, there were not60

many choices available until recently. Separation was only possible if the frequency con-61

tent of individual signals composing the mixture was different or if they didn’t overlap62

in time.63

A single-receiver source separation problem was explored in the Machine Learn-64

ing domain (a branch of artificial intelligence and computer science that focuses on the65

use of data and algorithms, see e.g. Goodfellow et al. (2016) for more details). There are66

successful applications of Machine Learning based source separation to music (Stöter et67

al., 2019), hearing aids (Nossier et al., 2019), and speech enhancements (Luo et al., 2020).68

Some of the Machine Learning source separation techniques (further referred to as69

Neural Networks or models interchangeably) operate in frequency domain (D. Wang &70

Brown, 2006; Vincent et al., 2006; Comon & Jutten, 2010a; Isik et al., 2016; Z.-Q. Wang71

et al., 2018), while others operate in time-domain (Luo & Mesgarani, 2018, 2019; L. Zhang72

et al., 2020; Luo et al., 2020). A Neural Network that can process time-domain (raw)73
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data and output data in the same format is called an end-to-end network. At the time74

of writing, these methods are considered state-of-the-art.75

In seismology, machine learning has not yet reached its full potential (Kong et al.,76

2019; Jiao & Alavi, 2020; Mousavi, Zhu, et al., 2019; X. Zhang et al., 2020; Mousavi &77

Beroza, 2019; McBrearty et al., 2019; DeVries et al., 2018). From an engineering point78

of view seismic (waveform) signals are essentially equal to speech signals, and thus meth-79

ods developed in the speech separation domain can be used in seismology.80

By applying source separation techniques to seismic signals, one can achieve ad-81

vances in several seismological fields, including:82

• Earthquake analysis. Seismic signals often have a low Signal-to-Noise ratio and83

are thus difficult to analyze (Mborah & Ge, 2018). One might use denoising (sep-84

aration of a signal from the noise) to enhance the signal-to-noise ratio to analyze85

P- and S- phases of earthquakes (time of arrival of Primary and Secondary seis-86

mic waves). This capability of Machine Learning denoising was shown in van den87

Ende et al. (2021) for distributed acoustic sensing (DAS).88

• Aftershock analysis. Large earthquakes are often accompanied by many after-89

shocks (Ross et al., 2018), and their number usually decays exponentially (Baranov90

et al., 2019). Early aftershocks are especially difficult to detect due to significant91

overlap (Peng & Zhao, 2009). To investigate aftershock properties, source sepa-92

ration (aftershock from the main quake, or one aftershock from the other) might93

be useful.94

• Acoustic-to-Seismic ground coupling. Acoustic energy of various origins (e.g.95

explosions, meteorites, etc), is often coupled into the ground (Novoselov et al., 2020;96

Edwards, 2010; Schneider et al., 2018). This problem arises especially in nuclear97

verification (Hoffmann et al., 1999), where seismic data is used to estimate the lo-98

cation and the yielding mass of the potential nuclear explosion. Using a source99

separation technique, one can potentially separate both seismic and acoustic waves100

for analysis.101

• Ambient noise tomography. Ambient noise tomography provides images of the102

subsurface using ambient noise sources (Shapiro & Campillo, 2004; Shapiro et al.,103

2005; Schippkus et al., 2018). Since deterministic signals often perturb noise mea-104
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surements, the latter must be removed. Source separation may preserve the noise105

portion of the data and therefore improve such imaging.106

• Exploration seismology. Source separation can also benefit industrial appli-107

cations, where one is often interested in producing an image of the subsurface from108

reflected seismic waves, to localize fossil fuels and other resources (Behura & Snieder,109

2013). An explosive source is often used to obtain such images, and it may be im-110

portant to remove the direct signal from the explosion (or an air-gun pulse for a111

marine setting) from records when dealing with such data. Those capabilities might112

be empowered on a whole new level by source separation.113

In this work we adopt the approach by (Luo et al., 2020) using Dual-Path Recur-114

rent Neural Networks (DPRNN) for source separation and demonstrate how this Ma-115

chine Learning method can be applied to a) denoise seismic waveforms recorded with a116

single component individual seismic stations and b) separate two seismic signals, when117

they overlap in both time and frequency content. We then discuss potential issues and118

limitations of the proposed approach and draw some conclusions.119

2 Data and Methods120

2.1 Data121

In this study, we utilize seismic data derived from STanford EArthquake Dataset122

(STEAD) (Mousavi, Sheng, et al., 2019) - a comprehensive dataset of pre-processed earth-123

quakes with standardized metadata. We remove instrument response using stations meta-124

data, normalize the three components on the global (for each individual record) max-125

imum, extract vertical channels to obtain a single-channel record, and resample it to 30126

samples per second (to reduce computational costs).127

2.2 The network architecture128

For the task of separation of seismic sources, we have chosen to adopt an approach129

by (Luo et al., 2020) (which initially was proposed for speech separation) using Dual-130

Path Recurrent Neural Networks (DPRNN). The architecture of DPRNN (in machine131

learning, the architecture refers to all of the layers and the major steps taken during the132

transformation of raw data for enabling the decision making of a system, in our case to133

output waveforms of separated sources) consists of four major parts (see Fig. 1a):134
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• Encoder - which is responsible for converting a sequential input (raw waveform)135

into an N-dimensional (where N - number of channels) representation (see Fig. 1c);136

• Separator - which is responsible for the splitting of mixed signals into individ-137

ual tracks (see Fig. 1b);138

• Mask Estimation module - which is responsible for the creation of (S, N)-dimensional139

mask (where S - number of sources, set to 2 sources in the current paper), which140

is then applied to the original output of the Encoder (see Fig. 1d) and;141

• Decoder - which is responsible for converting masked N-dimensional represen-142

tation back into sequential output (waveform) (see Fig. 1e).143

In Appendix A, we explain most of the building blocks required for such a Neu-144

ral Network in detail.145

2.3 Training procedure146

To train a model, one needs to learn (determine) good values for all the param-147

eters of the Neural Network that define how the input is transformed in the layers of such148

a network. A machine-learning algorithm builds a model based on many examples and149

attempts to find a variant of this model that minimizes loss with the help of examples.150

Loss is the penalty for a bad prediction. That is, the loss is a number indicating how bad151

the model’s prediction was on a single example. The goal of training a model is to find152

a set of parameters that have low loss, on average, across all examples.153

The training process involves drawing two samples (see Fig. 2a) from the dataset154

and summing them together to obtain a mixture (see Fig. 2b). This mixture is then pro-155

cessed through the Neural Network (see Fig. 2c-d), which in turn outputs separated sig-156

nals (see Fig. 2e). These signals are then compared with the input signals and their cor-157

respondence (loss) is calculated. This process is repeated until the model can separate158

signals with acceptable quality. Each training iteration is defined as an epoch - a term159

used in machine learning, which indicates the number of passes of the entire training dataset160

the machine learning algorithm has completed. For each sample pair in an epoch, we ran-161

domly draw samples from the dataset (in a way that each sample is used only once as162

a source 1 and only once as a source 2, and hence sample pairs are not repeated).163
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To improve ability of our model to learn from the given data and apply it to other164

situations (generalization), the following augmentations (techniques that increase data165

by adding slightly modified versions of existing data or new synthetic data made from166

existing data) were applied to each signal composing the mixture: random polarity change,167

randomly selected high-pass frequency filter (in the bounds of 0.5 - 1.5 Hz), randomly168

selected low-pass frequency filter (in the bounds of 10-14 Hz), random amplitude gain169

and peak normalization (adjusts the recording based on the highest signal level present170

in the recording). Augmentations are applied randomly each time a sample is drawn from171

the dataset.172

The training objective (loss function) was to minimize the Scale-Invariant Source173

to Distortion Ratio `SI-SDR (Le Roux et al., 2019) between original individual sources174

and waveforms predicted by the model. This metric is widely used as a source separa-175

tion performance indicator in the speech recognition domain (Fan et al., 2018, 2020; Gu176

et al., 2020).177

`SI-SDR = 10log10

(
||etarget||2
||eres||2+ε

)
etarget = ŝT s

||s||2 s

eres = ŝT s
||s||2 s− ŝ (1)

where ||etarget|| is scaled reference signal energy (double vertical bars enclosing an ob-178

ject is the norm of the object), ||eres|| is scaled residual energy, s - target signal, ŝ - sig-179

nal produced by the Neural Network, ε - a small stabilization value (10−8) added to avoid180

a division by zero.181

One of the limitations of DPRNN is that it doesn’t guarantee a proper scaling of182

the processed signal. SI-SDR is invariant to the scale of the processed signal, which is183

desirable in this particular application.184

Training the network to output several individual sources poses a problem: to cal-185

culate the loss function `SI-SDR one needs to know which estimated output corresponds186

to which target source (reference signal). To tackle this problem we use Utterance level187

Permutation Invariant Training (µPIT) (Kolbæk et al., 2017). The idea behind µPIT188

is rather simple (see Fig. 3): the loss function is computed between each pair of target189
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source and estimated source, the lowest score between corresponding pairs is selected as190

the final loss.191

Training a neural network can be accomplished using an optimizer. Optimizers change192

the attributes of a neural network, such as its weights, to minimize the loss function. In193

this study we use Ranger (Wright, 2020) - a synergistic optimizer combining RAdam (Rec-194

tified Adam) (Kingma & Ba, 2014) and Lookahead (M. Zhang et al., 2019) to speed up195

the learning process. We select the following hyperparameters (number of settings that196

affect the configuration of the model): encoder dimension=128, feature dimension=128,197

hidden dimension=64, layer=1, segment size=200, number of speakers = 2, kernel size198

= 2. The initial learning rate of 1e-3 was decaying by a factor of 0.9 every epoch. We199

selected those parameters using an empirical hyperparameter optimization approach.200

3 Results201

We train the DPRNN on seismic data from STanford EArthquake Dataset (STEAD)202

to demonstrate that our approach is a) capable of denoising seismic data and b) capa-203

ble of separating two earthquakes signals from one another.204

3.1 Denoising of the earthquake data205

Most seismic records of earthquakes have low signal-to-noise ratios, i.e. the signal206

is contaminated with various types of noise. This complicates the analysis of such records.207

To reduce noise in seismic records, denoising may be applied. Essentially, denoising is208

a source separation, in the sense that noise is separated from a signal. We train a Neu-209

ral Network (further referred to as a model) to perform a separation of signals (401795210

one-minute-long earthquake records from the STEAD dataset with Signal-to-Noise ra-211

tio higher than 20 dB) from noise (108578 one-minute-long seismic noise records from212

the STEAD dataset). We then evaluate the performance of a trained model to denoise213

seismic data on a set of data previously unseen by the model (model testing). For this,214

we use additional 1000 earthquake records and 1000 noise records from the STEAD dataset.215

Results of denoising are presented in Fig. 4 (input with a low Signal-to-Noise ra-216

tio), Fig. 5 (input with a medium Signal-to-Noise ratio) and Fig. 6 (input with a rather217

high Signal-to-Noise ratio). Signal-to-Noise ratio is defined as the standard deviation of218

signal divided by the standard deviation of noise trace (SNR =
σbefore P

σafterP
, where σbefore P219
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is the standard deviation before P arrival and σafterP is the standard deviation after P-220

arrival). Denoising helps to obtain much cleaner seismic records with more pronounced221

seismic phases. By using our model, we improve the SNR of the noisy signals significantly222

beyond what can be achieved with a simple highpass frequency filter (see Fig. 7). These223

results are better than in Zhu et al. (2019). In A06, we provide a comparison with their224

DeepDenoiser approach.225

3.2 Source separation of earthquake data226

After that, we try to accomplish something more difficult. Can two earthquake sig-227

nals recorded by the same sensor at the same time be separated? If noise can be sep-228

arated from the signal, then perhaps any other type of signal can be separated too. This229

might be particularly desirable in the aftershock analysis since the detection of overlap-230

ping aftershocks with the main quake or with each other is often limited.231

We train a model (following the same procedure) to perform a separation of earth-232

quake signals (595165 one-minute-long seismic records + 108578 one-minute-long seis-233

mic noise records from the STEAD dataset) from each other (e.g. earthquake 1 and earth-234

quake 2). This is accomplished by composing training pairs randomly from either [sig-235

nal + signal pairs] or [noise + signal pairs], or [noise + noise pairs]. We test the perfor-236

mance of our model on additional 1000 records of seismic signal mixtures (note, that noise237

is used only in the training step for augmentation purposes. We test the capability of238

the model to separate actual earthquake signals).239

Fig. 8 - Fig. 10 demonstrate the results of applying our DPRNN implementation240

to the separation of two earthquake signals. While it is obvious that predicted signals241

contain under-suppressed signals from each other (as shown on residual plots), they do242

correspond quite well to their target counterparts. Although separated sources might not243

be optimal for complex frequency analysis, they certainly can be used to improve phase244

picking of individual signals (either manually by a trained expert or automatically by245

using an algorithm like Mousavi et al. (2020)). This way we demonstrate how our model246

can be used in the earthquake analysis. We might also find our source separation neu-247

ral network useful in an unusual scientific case - an atmospheric entry of the Mars2020248

lander during a marsquake (Fernando et al., 2021). Additional research is being conducted249

to prove this point.250
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4 Discussion251

4.1 Why does DPRNN work?252

Seismologists are used to separating signals (and noise) if they differ in frequency253

content or time of arrival. If an array is available, signals may also be separated by their254

different apparent velocity and/or azimuth. The approach presented in this paper does255

not require that such separating features exist. It may thus seem counterintuitive that256

we are nevertheless able to extract multiple signals from single-station data. This capa-257

bility results from knowledge learned by analyzing many realizations of seismic signals258

and noise and extracting characteristics of seismic signals. Layers of the Neural Network259

are transforming data and extracting features (note, that those features are not as easy260

to interpret as frequency spectrum, but the concept is similar). In the case of DPRNN,261

separation happens in N-dimensional vector-space (where N - is the number of features262

and channels, learned by the Network). Each row in the Encoder (see Fig. 2B) is a fea-263

ture vector. The Neural Network learns to pay attention to the statistical distribution264

of the above-mentioned features during training. For example, if we train the network265

to separate two signals, it should learn the distribution of features in each signal is and266

how a mixture of such signals looks. It then attempts to find the most likely option, where267

features of a signal 1 have a distribution of features corresponding to a real signal, fea-268

tures of a signal 2 has also a distribution of the features of a real signal, and features of269

their mixture have a distribution of the features of a mixture of two real signals.270

4.2 Time representation vs Time-frequency representation271

One might ask why we choose an end-to-end approach instead of one based on STFT272

(Short-Time Fourier Transform) features? First of all, we adopted a state-of-the-art tech-273

nique (at the time of writing) that is based on end-to-end processing. Second, even though274

STFT has some benefits like reduction of the computational complexity of the signal,275

Machine Learning approaches based on STFT have several limitations. By selecting sev-276

eral parameters of the STFT manually and thus forcing precomputed representation of277

the raw signal, one limits the ability of the network to learn patterns in the raw data it-278

self. Also, the STFT outputs complex values. Neural networks are currently not ready279

to be working efficiently with complex numbers; although this is an area of current re-280

search (Dramsch et al., 2019). So far, one must take the absolute values of such an STFT281
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transform, which in turn leads to the loss of phase information, and has to be compen-282

sated by phase retrieval approaches (Pr̊uša et al., 2017a). We acknowledge that many283

of those limitations could be overcome: one way would be to apply phase retrieval (Pr̊uša284

et al., 2017b), which has been done successfully in previous works (Marafioti, Perraudin,285

et al., 2019b, 2019a; Marafioti, Holighaus, et al., 2019).286

A time-frequency representation is likely a useful representation for source sepa-287

ration (see the signal processing approach (Comon & Jutten, 2010b)). It can also be ex-288

pected that training an algorithm with time-frequency representation could be faster (Schlüter,289

2017). At the same time direct comparison between STFT and learned representation290

of the waveform shown in Heitkaemper et al. (2020), for this particular type of neural291

network suggests that at least a näıve introduction of STFT would not benefit the source292

separation.293

4.3 SI-SDR loss294

When it comes to the choice of the loss function, it is quite common to employ pop-295

ular mean-square error (MSE or L2) loss when training neural networks. However, SI-296

SDR loss is more favorable, since minimizing the MSE may not guarantee the highest297

signal quality. It was demonstrated in Kolbæk et al. (2020), that source separation net-298

works trained with loss function based on SI-SDR achieve superior performance.299

It was also shown in Heitkaemper et al. (2020) that the SI-SDR loss function is di-300

rectly related to the logarithmic MSE (minimum square error) loss function that is used301

in source separation based on time-frequency domain data and in fact can be re-written302

as:303

SI-SDR = LOG-L2 = 10 ∗ 1

K

∑
k

log10
∑
t

|yt,k − ˆyt,k|2 (2)

where K and k are the numbers of sources, t is the sample index.304

SI-SDR is invariant to the scale of the processed signal, which is desirable in ap-305

plications, where the signal processing algorithm does not guarantee a proper scaling of306

the processed signal, such as DPRNN. But at the same time, this is the greatest limi-307

tation of our approach. Information about the absolute amplitude is lost, when the sig-308
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nal is processed through the Neural Network, although relative (to each individual sig-309

nal) amplitudes are preserved.310

4.4 Modification of original DPRNN.311

To achieve a reasonable separation quality we needed to make some changes to the312

original DPRNN architecture (see Luo and Mesgarani (2020) for details). First, we re-313

placed all activation functions (such functions define how the weighted sum of the in-314

put is transformed into an output from a layer of the network) with Mish activation, as315

it reducing problems of small gradients inside the network (refer to A01 and Hochreiter316

et al. (2001) for more details). In addition, we replaced the last activation in the Mask317

Estimation module with a Softmax activation. Softmax operation (defined as Softmax(xi) =318

exp(xi)∑
exp(xj)

) is used to rescale all elements of the input so that the elements of the n-dimensional319

output tensor lie in the range [0,1] and sum to 1. As a result of Softmax being applied,320

values correspond to a ”masking strength” (where values close to 0 indicate omitting the321

input in the encoded representation input completely, and 1 indicates to keep this part322

of the encoded input as it is). This way, sources are masked from the mixture.323

The number of sources to separate was set to 2 in the current paper, however, the324

neural network is not limited to only 2 sources. As was shown in (Luo & Mesgarani, 2018),325

the number of sources could be 3 and higher. With more sources to separate, the qual-326

ity of the prediction declines.327

4.5 Ways to improve328

It may be possible to enhance the network’s capability to perform source separa-329

tion. One can accomplish this by either increasing the complexity of the encoder and see-330

ing whether this improves results, or by replacing the training objective with one requir-331

ing better task construction. One may also utilize the attention mechanism (Vaswani et332

al., 2017). Recently attention mechanisms gained a lot of recognition in Machine Learn-333

ing research (Y. Wang et al., 2020) and in source separation particularly (Fan et al., 2020).334

We tried to utilize Simple Self Attention (Cheng et al., 2016) at different layers in the335

network but we didn’t achieve any advances with this approach. Another set of poten-336

tial solutions is to use unconstrained number of sources in the mixture, perhaps com-337

bined with the source counting (Luo & Mesgarani, 2020), additional meta-information-338
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learning (Ephrat et al., 2018; Zeghidour & Grangier, 2020), source classification before339

separation (Ji et al., 2020; Kinoshita et al., 2020; Mun et al., 2020; Tjandra et al., 2020)340

and leverage of a Transformer architecture (Vaswani et al., 2017; Karita et al., 2019; Mousavi341

et al., 2020).342

5 Conclusions343

We have adopted an approach of signal separation called Dual Path Reccurent Neu-344

ral Network (DPRNN) from Luo et al. (2020). We trained this Neural Network with seis-345

mic data from the STEAD dataset. We have focused on applying source separation first346

to denoise seismic data, and then to separate two earthquake signals. We demonstrate347

that our network is capable of denoising and separating these signals.348

It is expected that Dual-Path Residual Neural Network can be widely applied in349

most tasks of seismology. E.g., it can be applied in aftershock analysis and seismoacous-350

tics, where different waves need to be distinguished. Besides that, signal-noise separa-351

tion is an important problem in the domain of earthquake analysis (e.g. for better defin-352

ing earthquake phases (Mborah & Ge, 2018)), and ambient noise tomography. Poten-353

tially Machine Learning can demonstrate the effectiveness in e.g. an especially noisy en-354

vironment; collection and characterization of anthropogenic noise data with low-cost seis-355

mometers; distinguishing between different types of vehicle noise, such as bus and train;356

and tracking changes in human activity over time with seismic sensors.357

This work proves the concept and steers the direction for further research of earthquake-358

induced source separation. We provide a reproducible research repository with the al-359

gorithms, software (which we called SEDENOSS), and datasets. The successful appli-360

cation of seismic denoising and separation suggests that the source separation approach361

works not only with speech data but also with earthquake data and perhaps can even362

be used beyond that to any waveform data in general.363
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sions on earthquake wave propagation and properties, Nicki Holighaus for discussions367

–13–



manuscript submitted to JGR: Solid Earth

on different data representations. Andrew Delorey helped to understand how a neural368

network might be able to perform separation and reviewed the text.369

We gratefully acknowledge funding by the Austrian Science Fund FWF through370

project numbers P30707, Y551-N13, and I 3067–N30. Artemii Novoselov was funded via371

the Emerging Field Project ”ThunderSeis” of the Faculty of Geosciences, Geography, and372

Astronomy of the University of Vienna.373

Data processing and analysis was done using Python 3.6.9 (van Rossum, 1997), NumPy374

1.18.5 (Harris et al., 2020), SciPy 1.4.1 (Virtanen & et al., 2020), ObsPy 1.2.0 (Beyreuther375

et al., 2010). PyTorch 1.5.1 (Paszke et al., 2019) and Sklearn 0.22.2 (Pedregosa et al.,376

2011) were used as frameworks for model building and training, based on the DPRNN377

implementation by Shi Ziqiang et al. (2020) (Ziqiang, n.d.). Figures were produced with378

Plotly 4.4.1 (Plotly, 2015), Matplotlib 3.2.2 (Hunter, 2007) and https://draw.io.379

All codes (software SEDENOSS) to reproduce the results of this work, pre-processing380

of the dataset as well as pre-trained models, are available at https://github.com/IMGW381

-univie/source-separation and https://doi.org/10.5281/zenodo.5464483 (Novoselov,382

2021).383

References384

Baranov, S., Gvishiani, A., Narteau, C., & Shebalin, P. (2019). Epidemic type after-385

shock sequence exponential productivity. Russian Journal of Earth Sciences,386

19 (6).387

Bear, L. K., Pavlis, G. L., & Bokelmann, G. H. (1999). Multi-wavelet analysis of388

three-component seismic arrays: Application to measure effective anisotropy at389

pinon flats, california. Bulletin of the Seismological Society of America, 89 (3),390

693–705.391

Behura, J., & Snieder, R. (2013). Virtual real source: Source signature estimation392

using seismic interferometry. Geophysics, 78 (5), Q57–Q68.393

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with394

gradient descent is difficult. IEEE transactions on neural networks, 5 (2), 157–395

166.396

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J.397

(2010). Obspy: A python toolbox for seismology. Seismological Research398

–14–



manuscript submitted to JGR: Solid Earth

Letters, 81 (3), 530–533.399

Bisong, E. (2019). Google colaboratory. In Building machine learning and deep400

learning models on google cloud platform (pp. 59–64). Springer.401
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Figure 1. A) Architecture of Dual-Path Recurrent Neural Network (Luo et al., 2020) with

modifications. B) Separator module. C) Encoder module. D) Mask estimation module. E) De-

coder module.

Conv1D and Conv2D - 1D and 2D convolution operations, correspondingly; Mish, Tanh and Sig-

moid - activation functions; Linear - Fully-Connected layer; GroupNorm - Group Normalization,

Row and Column BiLSTM - row-wise and column-wise bidirectional Long-Short-Term-Memory

Cells; Separation, Merging, Overlap and Add - array manipulations. Arrows indicate an order of

operations applied to the input. + is element-wise summation; x is element-wise multiplication.

Cin - input channels, Cout - output channels, K - kernel size. In Appendix A, we explain most of

the building blocks required for such a Neural Network in details.
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Figure 2. A) An input source 1 (e.g. earthquake 1 - S1) and an input source 2 (e.g. earth-

quake 2 - S2). B) An input mixture that consists of two sources (S1 + S2). C) An output of the

Encoder module of the Neural Network. On the vertical axis, 128 channels (the result of Conv1d

operation) are shown. Note that encoder color values are clipped for visibility. D) We further

show Estimated Masks, obtained as the result of the processing through the Neural Network

(Separation and Mask Estimation modules). We can observe that mask for source 2 is effectively

opposite of the mask for source 1, which means multiplying the encoded representation by any of

these masks would not lead to the introduction of extra information into the separated sources.

E) Source 1 and Source 2 are separated by the Neural Network from the mixture (Encoded repre-

sentation is multiplied with corresponding masks and then results of this operation are processed

with the Decoder module).
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NN

Source 1 Source 2

Estimated source Estimated source

Source 1 Source 2

Pairwise SI-SDR
Error assignment 1

Error assignment 2

Error assignment 1

Error assignment 2

Minimum Error Minimum Error

Figure 3. Permutation-invariant training. Target sources are summed together to obtain a

mixture. This mixture is fed to the separation network and two estimated sources are obtained.

Loss function SI-SDR is then computed for each pair correspondingly. Pairwise metrics are com-

pared, and those with the smallest error are the output of such a training scheme.
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Figure 4. Results (waveforms and spectrograms) of the denoising model, performing denois-

ing in noisy conditions (Signal-to-Noise ratio of a mixture, defined as the standard deviation

of signal divided by the standard deviation of noise trace, equals to 1.69). Original signals are

colored in green, predicted signals are colored in red, and residual is colored in blue. Top panel -

input mixture, middle panel - separated signal, bottom panel - separated noise. L2 misfits (Mean

Squared Error MSE = L2 = 1
n

∑
(xi − yi)

2, where xi - input signal, yi - predicted signal, n -

number of signal pairs) are provided for each residual. SNR of denoised signal = 9.09.
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Figure 5. Results of the denoising model for moderately noisy conditions (otherwise as in

Fig. 4). Signal-to-Noise ratio is 1.9. SNR of denoised signal = 7.01.
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Figure 6. Results of the denoising model for weakly noisy conditions (otherwise as in Fig. 4).

Signal-to-Noise ratio is 3.91. SNR of denoised signal = 7.58.
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Figure 7. Kernel density estimate plot (histogram) of signal-to-noise ratios for raw data from

the test set (in dashed red line) and denoised data (in green). We also compare our denoising

capabilities with simple highpass filters for 1 Hz (blue) and 5 Hz (black). We observe that the

Dual-Path Recurrent Neural Network (DPRNN) performs better (the higher the values - the

better the result) than simple frequency filtering.
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Figure 8. Results (waveforms and spectrograms) of source separation, applying proposed

network. Original signals are colored in green, predicted signals are colored in red and residual

signals are colored in blue. Misfits are provided as L2 value (L2 = 1
n

∑
(xi − yi)

2) for each resid-

ual. This example demonstrates an example where sources in the mixture are distinguishable.
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Figure 9. Results of source separation, for an example where sources in the mixture are

overlapping in time, but have different frequency content (shown as in Fig. 8).
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Figure 10. Results of source separation for an example where sources in the mixture are

overlapping in both time and frequency content (shown as in Fig. 8).
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Appendix A Components of the Neural Network672

A01 Activation functions673

Activation functions are widely used in neural networks as they equip neural net-674

works with the ability to learn and map the non-linearity in the data and hence give neu-675

ral networks their representational capacity. Because of this, in part, deep networks can676

approximate nearly everything (Csáji et al., 2001; Zhou, 2020). Following activation func-677

tions (applied element-wise) are used in the source separation network (see Fig. A1).678

We use the Mish activation function, as it was shown to achieve better accuracy679

due to more stable gradients (Misra, 2019). Mish can be defined as y = x∗tanh(ln(1+680

ex)).681

Besides Mish we use such activations as Tanh and Sigmoid. The Hyperbolic tan-682

gent function (Tanh) is defined as y = exp(x)−exp(−x)
exp(x)+exp(−x) and the Sigmoid function is de-683

fined as y = 1
1+exp(−x) . Those activations are known to cause vanishing gradient prob-684

lems (which can be mitigated by the means of e.g. skip-connections see (He et al., 2016))685

and therefore are used with caution only in the Mask Estimation block (see Fig. 1) as686

a part of a gated-convolution operation (Oord et al., 2016).687

A02 Normalization688

In our network we use Group Normalization (Wu & He, 2018). It is applied over

a batch of inputs as follows:

y =
x− E[x]√
Var[x] + ε

∗ γ + β (A1)

where x is the input data, E[x] is the mean of the input data, Var[x] is the standard de-689

viation, ε - is a small number (typically 10−8) to ensure the absence of zeros in the de-690

nominator, γ and β are learnable (via back-propagation during the network training) per-691

channel parameter vectors.692

A03 Recurrent Neural Networks693

Convolutional Neural Networks (CNN) operate on the input data applying con-694

volutions and various types of non-linear operations but are limited by their receptive695

fields (how much information is processed at each convolution, e.g. (Oord et al., 2016)).696

Instead, we use Recurrent Neural Networks (RNN) (Rumelhart et al., 1986) as build-697
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ing blocks inside the bigger network. RNNs allow sequential passage of information into698

the network (see Fig. A2), thus accumulating information at each time step and captur-699

ing temporal dependencies of the data presented to them. (Bengio et al., 1994) showed700

that networks trained with back-propagation algorithms achieve sub-optimal solutions701

taking into account only short-term dependencies without even looking at the long-term702

ones.703

A04 Long Short Term Memory Cell704

Since this long-term context is needed to achieve good performance of source sep-705

aration we turn to a sub-class of RNN, which are specifically designed to overcome the706

long-term context loss problem - the Long Short Term Memory Cells (LSTM) (Hochreiter707

& Schmidhuber, 1997). Instead of a single simple layer (such as Tanh activation), they708

use a more complex structure consisting of 4 gates (see Fig. A3).709

One of the obstacles that LSTM is facing is that by the time the sequence is passed710

through the cell, some information from the beginning looks less relevant to the network.711

To overcome this problem two LSTM Cells can be stacked together forming a Bi-Directional712

LSTM Cell (Schuster & Paliwal, 1997). The first LSTM would receive an input sequence713

x and the second LSTM would receive a reversed sequence x̂ (see Fig. A4). Such con-714

figuration allows equal attention to the beginning and the end of the signal, resulting in715

a better quality of the model output.716

In the context of DPRNN, since the actual separation operation is happening not717

with the input sequential signal, but rather an N-dimensional output of the encoder, it718

is important to learn ”temporal” patterns not only in the ”time” direction but also in719

the depth direction. For this purpose, we apply row- and column-wise BiLSTM Cells (see720

Fig. A5).721

A05 Additional array manipulations722

Fig. A6 demonstrates additional array manipulations necessary to operate the net-723

work. We utilize a Segmentation operation to unwrap sequential input of size (N, L) to724

a three-dimensional input of size (K, N, S). where N - is the number of channels, L - length725

of the sequence, S - length of the segment, and K - number of segments. We then ap-726
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ply an Overlay and Add operation which is essentially a reverse operation of Segmen-727

tation.728

A06 Comparison with other methods729

We compare our approach with another denoising method based on deep neural730

networks (see Zhu et al. (2019)). For this, we select 1000 previously unseen earthquake731

signals and 1000 previously unseen noise signals from the STEAD dataset. It is impor-732

tant to note that fair comparison is impossible in this particular case, since DeepDenoiser733

is trained on 30 s long samples with a frequency bandwidth of 100 Hz, and our model734

is trained with 60 s long samples with 30 Hz bandwidth. One needs to have identical data735

to perform a valid comparison. We try to mitigate this, by resampling 30 Hz data to 100736

Hz for DeepDenoiser inference, but this is perhaps not sufficient. The other potential prob-737

lem is that DeepDenoiser uses un-normalized counts, whether we use normalized displace-738

ment as an input. Results of the comparison are presented in Fig. A7, where we com-739

pare a particular sample denoised by both our method and DeepDenoiser and Fig. A8,740

where we compare the distribution of SI-SDR, SDR, and SNR for input mixture, denoised741

by DPRNN and denoised by DeepDenoiser.742

Figure A1. Activation functions used for model building. From left to right: Mish, Tanh and

Sigmoid.
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Figure A2. Recurrent Neural Network. Input data x at the time step t is fed to the network

A (e.g. Tanh activation of concatenation xt and previous output of the network), which outputs

some value of h for the same time step and also passes this output information to the network A

for the next time step.
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Figure A3. Long Short Term Memory Cell. Input data x at the time step t, previous cell

state Ct−1 and previous hidden state ht−1 are fed to the LSTM Cell. Cell outputs values of cur-

rent cell state Ct and a value of current hidden state ht. This process happens recurrently for

each value of x. Red boxes depict network trainable layers, white shapes - point-wise operations

(x - for multiplication, + for summation and tanh for hyperbolic tangents).
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Figure A4. Bi-Directional Long Short Term Memory Cell. Two LSTM layers are stacked

side-by-side. First receives an input sequence going from past to future, second LSTM recieves an

input going in the reversed direction - from future to the past. Then cell states and hidden states

of both cells are combined together (e.g. summation or concatenation).
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Figure A5. a) Row-wise BiLSTM. Each row of segmented output is processed through the

Bi-directional LSTM cell. b) Column-wise BiLSTM. Each column of segmented output is pro-

cessed through the Bi-directional LSTM cell.
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Figure A6. a) Segmentation. Sequential input of shape (N,L) is split into overlapping seg-

ments, which are then concatenated into 3D tensor of shape (K,N,S). b) Overlap and add. 3D

tensor of shape (K,N,S) is split into segments. These signals are concatenated back into the

sequence of shape (N,L). Overlapping parts of signals are added to each other.

–36–



manuscript submitted to JGR: Solid Earth

No
rm

al
ize

d
am

pl
itu

de

Separation with DPRNN

Input mixture

2.5
5.0
7.5

10.0
12.5
15.0

Fr
eq

ue
nc

y,
 H

z
No

rm
al

ize
d

am
pl

itu
de

Denoised signal. SI-SDR = -4.59

2.5
5.0
7.5

10.0
12.5
15.0

Fr
eq

ue
nc

y,
 H

z
No

rm
al

ize
d

am
pl

itu
de

Separated noise. SI-SDR = -30.17

0 5 10 15 20 25 30 35 40 45 50 55 60
Time, s

2.5
5.0
7.5

10.0
12.5
15.0

Fr
eq

ue
nc

y,
 H

z

No
rm

al
ize

d
am

pl
itu

de

Separation with Deep Denoiser

Input mixture

2.5
5.0
7.5

10.0
12.5
15.0

Fr
eq

ue
nc

y,
 H

z
No

rm
al

ize
d

am
pl

itu
de

Denoised signal. SI-SDR = 8.25

2.5
5.0
7.5

10.0
12.5
15.0

Fr
eq

ue
nc

y,
 H

z
No

rm
al

ize
d

am
pl

itu
de

Separated noise. SI-SDR = -25.68

0 5 10 15 20 25 30 35 40 45 50 55 60
Time, s

2.5
5.0
7.5

10.0
12.5
15.0

Fr
eq

ue
nc

y,
 H

z

Figure A7. On left panels results of DPRNN denoising are presented. On right panels results

of DeepDenoiser (Zhu et al., 2019) are presented. Top panels - input mixture, Middle panels -

separated signal, Bottom panels - separated noise.
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Figure A8. We compare denoising for DPRNN and DeepDenoiser in terms of SI-SDR, SDR

and SNR. One can observe that DPRNN is able to achieve higher scores for both SI-SDR, SDR

(the lower the value - the better the separated signal matches the original one) and SNR (the

higher the values - the better).
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Acronyms743

BiLSTM Bidirectional LSTM744

DPRNN Dual-Path Recurrent Neural Networks745

ICA Independent-Component Analysis746

LSTM Long-Short Term Memory747

MSE Mean-Square Error748

MUSIC MUltiple SIgnal Classification749

RAdam Rectified Adam750

RNN Recurrent Neural Network751

SEDENOSS SEparating and DENOising Seismic Signals752

SI-SDR Scale-Invariant Source to Distortion Ratio753

SNR Signal-to-Noise ratio754

STEAD STanford EArthquake Dataset755

STFT Short-Time Fourier Transform756

Tanh Hyperbolic Tangent757

VSC Vienna Scientific Cluster758

µPIT Utterance level Permutation Invariant Training759
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