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Abstract

The NOAA Physical Sciences Laboratory produces the Global Ensemble Forecasting System (GEFS) which comprises 11

ensemble members (1 control and 10 perturbation runs) for over a 36-year period (December 1984 to present), with forecasts

initialized every day for the next 16 days (first 8-day forecasts obtained from a high-resolution grid and the next 8-day forecasts

from a low-resolution grid). The system provides 36 variables related to a wide range of hydrometeorological processes. In

this study, we assess the predictability of precipitation within the context of statistical downscaling using a minimum set

of predictor variables (precipitation and temperature). We use feedforward backpropagation neural networks with a suite of

training algorithms to determine which variables (features) are of most relevance at different forecast lead times. The outcome

of this study will significantly benefit short-term flood forecasting using GEFS data.
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OVERVIEW
In this study, we carried out the statistical downscaling of GEFS forecasts.

The forecasts skill was assessed across a wide range of lead times.

The point-scale rain gauge measurements were used as the targets to match.

Figure 1: Framework
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STUDY AREA AND DATA
Study Area:

Catchment: Elkhorn river basin 

Sub-catchments: Upper Elkhorn, North Fork Elkhorn, Logan, and Lower Elkhorn. 

Location: Northeast and north-central Nebraska

Area of catchment: 17,871 km

Length of Elkhorn river: 466.71 km

Figure 2: Elkhorn river basin

Data Collection:

2
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1. Climatological Data:

For ground-Based Station: National Water Information System: USGS Water Resources (NWIS, 2020)

Figure 3: Meteorological stations in Elkhorn river basin

For Ensemble Data: Earth System Research Laboratories (ESRL): Global Ensemble Forecast System (GEFS-Reforecast-V2) (GEFS,2020)
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METHODOLOGY
Statistical Downscaling:

Figure 4: Statistical Downscaling Technique:

Artificial Neural Network:

Figure 5: Neural Network diagram
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The feedforward backpropagation network was developed with precipitation, minimum 
temperature, and maximum temperature as input variables, which was trained using the 
Levenberg-Marquardt algorithm.

To capture the spatial variability, precipitation values from nine adjacent grid cells, with the gauge station located in the middle cell, were used as
inputs.

Output variable: observed precipitation from ground-based stations.

The sigmoid transfer function was used between the input and hidden layers, whereas the linear transfer function was used between the hidden and
output layers.

Number of iterations: 500; number of neurons: 11; number of hidden layer: 1.

In the calibration data set of 2009 to 2016, the training was carried out with 70%, validation with 15%, and testing with 15% of the data, and the
performance was further validated with the validation data set of 2017 to 2019.
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PRELIMINARY RESULTS
Result 1:

Figure 6: Station 1: Correlation coefficient between the ground-based precipitation target variable and GEFS precipitation and temperature input variables for all leads
(Day 0 to 15) 

Table 1: Range of correlation  for all ensembles, forecasts, and stations
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Discussion:

Input variables from GEFS are correlated with the ground-based stations.

All the correlation is within the mean range of [0.4, 0.6].

The range of minimum and maximum correlation vary highly for each day forecast.

The analysis also suggests that input variables derived from the low-resolution grid (Day +8 to +15) is poorly correlated in comparison with a high-
resolution grid (Day 0 to +7).

Result 2:

Figure 7: Station 1: Performance of calibrated and validated results of the trained neural network
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Discussion:

The correlation coefficient was obtained from the statistical analysis of the output of the neural network by comparing predictors and predictands. 

For any given forecast day 0 to +3 showed a better correlation coefficient in comparison to the later forecast days.

The model performance is dependent on the correlation between input variables and the output variables. 
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OBJECTIVE & RESEARCH QUESTION
Objective:

Statistical downscaling using Artificial Neural Network technique of precipitation of various ensembles from GEFS forecasts.

Research question:

How does the predictability change with lead times while downscaling the ensemble precipitation forecasts from the GEFS system? 
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CONCLUSION
Statistical downscaling technique using artificial neural network showed good performance for the first few days forecast.

Further analysis of optimum network architecture needs to be carried out.

Results of the correlation plot could be used to study how predictability varies along with the forecast lead time. More in-depth analysis is needed to
better understand predictability change.

This is a preliminary assessment. Additional variables can be included to test if the performance can be improved. 
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DISCLOSURES
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ABSTRACT
The NOAA Physical Sciences Laboratory produces the Global Ensemble Forecasting System (GEFS) which comprises 11
ensemble members (1 control and 10 perturbation runs) for over a 36-year period (December 1984 to present), with forecasts
initialized every day for the next 16 days (first 8-day forecasts obtained from a high-resolution grid and the next 8-day
forecasts from a low-resolution grid). The system provides 36 variables related to a wide range of hydrometeorological
processes. In this study, we assess the predictability of precipitation within the context of statistical downscaling using a
minimum set of predictor variables (precipitation and temperature). We use feedforward backpropagation neural networks
with a suite of training algorithms to determine which variables (features) are of most relevance at different forecast lead
times. The outcome of this study will significantly benefit short-term flood forecasting using GEFS data.
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