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Abstract

Typical seismic waveform datasets comprise from hundreds of thousands to several millions records. Compilation is performed

by time-consuming handpicking of phase arrival times, or signal processing algorithms such as cross-correlation. The latter

generally underperform compared to handpicking. However, inconsistencies across and within handpicked datasets creates

disagreement between observations and interpretation of Earth’s structure. Here, we exploit the pattern recognition capabilities

of Convolutional Neural Networks (CNN). Using a large global handpicked dataset, we train a CNN model to identify the

seismic shear phase SS. This accelerates, automates, and makes consistent data compilation. The CNN model is then employed

to identify precursors to SS generated by mantle discontinuities. The model identifies precursors in stacked and individual

seismograms, producing new measurements of the mantle transition zone with quality comparable to handpicked data. The

capability to rapidly obtain new, high-quality observations has implications for automation of future seismic tomography

inversions and body wave studies.
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Abstract16

Typical seismic waveform datasets comprise from hundreds of thousands to several mil-17

lions records. Compilation is performed by time-consuming handpicking of phase arrival18

times, or signal processing algorithms such as cross-correlation. The latter generally un-19

derperform compared to handpicking. However, inconsistencies across and within hand-20

picked datasets creates disagreement between observations and interpretation of Earth’s21

structure. Here, we exploit the pattern recognition capabilities of Convolutional Neu-22

ral Networks (CNN). Using a large global handpicked dataset, we train a CNN model23

to identify the seismic shear phase SS. This accelerates, automates, and makes consis-24

tent data compilation. The CNN model is then employed to identify precursors to SS25

generated by mantle discontinuities. The model identifies precursors in stacked and in-26

dividual seismograms, producing new measurements of the mantle transition zone with27

quality comparable to handpicked data. The capability to rapidly obtain new, high-quality28

observations has implications for automation of future seismic tomography inversions and29

body wave studies.30

1 Introduction31

Seismology is the major observational tool to map the structure and properties of32

Earth’s interior. Global studies of the Earth benefit from hundreds of thousands of seis-33

mograms to make observations. The properties of seismic wave phase arrivals within seis-34

mograms (arrival time, amplitude, coda) provide measurements of Earth’s velocity and35

attenuation structures. Although some studies use automated waveform processing to36

identify seismic phases (e.g., Earle & Shearer, 1994; Chambers et al., 2005; Houser et al.,37

2008), visual inspection of waveforms is used in many studies due to higher accuracy (e.g.,38

Flanagan & Shearer, 1998; Schmerr & Garnero, 2006; Deuss, 2009; Waszek et al., 2018).39

However, handpicking is time-consuming, and susceptible to the decisions of the scien-40

tist. Inconsistencies across and within datasets propagate errors when determining geo-41

physical models from the measurements, as evidenced by differences between global man-42

tle discontinuity topography maps from the same data types (e.g., Flanagan & Shearer,43

1998; Schmerr & Garnero, 2006; Deuss, 2009; Huang et al., 2019).44

There are two possible approaches to create an accurate system capable of iden-45

tifying the arrival of seismic phases. The ideal approach would attempt to find an ac-46

curate representation of the data by extracting useful features that describe time of the47
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phase arrival. A more straightforward method allows the computer to perform this task,48

finding the necessary patterns through representation learning (LeCun et al., 2015). The49

use of deep learning trains a system that is capable of taking data, identifying charac-50

terizing features, and producing an informed prediction based on these signatures.51

The task of picking seismic phases relies upon visual cues. Naturally, it is easier52

for the human eye to discern the correct peak associated with a particular seismic phase53

when trained to do so. This is the inspiration for the use of a Convolutional Neural Net-54

work (CNN) to perform this task. CNNs are the preferred deep learning algorithm for55

pattern recognition problems due to their ability to identify any set of objects given enough56

layers (Girshick et al., 2014; Simonyan & Zisserman, 2014; Krizhevsky et al., 2017). Within57

seismology, CNNs have proven capable of detecting and locating earthquakes (Perol et58

al., 2018), performing seismic arrival labeling (McBrearty et al., 2019), denoising data59

(Zhu et al., 2019), and picking the arrival time of compressional and shear wave phases60

(Ross et al., 2018; Zhu & Beroza, 2018).61

Here, we apply CNNs to make new observations of mantle discontinuities. The two62

major global discontinuities at 410 km and 660 km depth (“410”, “660”) bound the man-63

tle transition zone (“MTZ”). They result from mineral phase transitions in olivine as pres-64

sure and temperature increase with depth (Katsura & Ito, 1989; Ito & Takahashi, 1989).65

Due to their opposing Clapeyron slopes, the depths of the discontinuities respond op-66

positely to temperature. In cold regions the 410 becomes shallower and the 660 becomes67

deeper; vice versa in hot regions. Consequently, their separation acts as a first order ther-68

mometer for the MTZ.69

Mapping of mantle discontinuities globally has been achieved through measuring70

shear-wave reflections from underneath these boundaries (e.g., P. M. Shearer, 1993; Flana-71

gan & Shearer, 1998; Houser et al., 2008; Deuss, 2009; Waszek et al., 2018; Huang et al.,72

2019). SS is a seismic shear wave phase with two legs in the Earth’s mantle and one re-73

flection from Earth’s surface (Fig. 1a). Reflections from mantle discontinuities gener-74

ate precursors to SS (“SdS”, where d is discontinuity depth), which arrive prior to the75

main phase. The SdS-SS travel time difference informs regarding the discontinuity depth.76

We use a CNN to train a model capable of identifying SS in seismograms. We im-77

plement a duplication procedure on a large handpicked global dataset of 58,567 SS data78

(Waszek et al., 2018) to produce huge amounts of training data (316,262). Using the trained79
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Figure 1. a. Ray paths of SS and its precursors, S410S and S660S. The red star denotes

the location of the seismic event, and the black triangle a station to detect seismic waves. b.

An example of a high-quality seismogram showing the SS, S410, and S660S arrivals. c. Global

vespagram stack for all data and cross-section through the theoretical relative precursor time

and slowness. The precursor amplitudes have been magnified and normalized to the SS phase

amplitude; magnification factor is typically around 30.

model, a scanning algorithm quantifies the quality of a phase signal within a waveform.80

We then employ the algorithm to output the arrival times and quality of SS precursors,81

in both stacked and individual seismograms. Maps of the depths of the 410 and 660 dis-82

continuities are generated, using the predictions to evaluate model performance. The study83

provides a new method to rapidly and automatically compile large high-quality seismic84

datasets and measurements, with implications for future seismic studies particularly global85

tomography.86

2 Seismic Data and Processing87

Our study employs a large, handpicked dataset of 58,567 SS waveforms (Waszek88

et al., 2018), aligned at the maximum peak in Fig. 1b. The seismograms are corrected89

for mantle and crustal structure using S40RTS (Ritsema et al., 2011) and Crust2.0 (Bassin90

et al., 2000). A full description of processing methods is provided in Waszek et al. (2018)91

and Waszek et al. (2020).92

Precursors to SS are typically too small in amplitude to be identified on individ-93

ual seismograms. Instead, the data are stacked in regional overlapping spherical caps par-94
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titioned by common reflection points, weighted according to the signal-to-noise ratio, where95

noise is the root-mean-square amplitude in the precursor window (-400 to -100 s). Ves-96

pagrams show stacked signals as a function of travel time and slowness relative to the97

main SS arrival (Figure 1c) (Davies et al., 1971). The cross-section taken along the dot-98

ted line is the predicted time and slowness of the precursors to SS in a standard refer-99

ence model. These vespagrams are usually analyzed manually to measure the time and100

amplitude of the precursor signals. Bin radii used here are 5◦, 7.5◦, 10◦, and 15◦; these101

are selected to account for heterogenous data coverage in different regions: smaller bin102

sizes in areas of higher data density to obtain greater resolution.103

3 Model Training and Evaluation104

The SS dataset is divided into a training set of 90% of the seismograms, with the105

remaining 10% left as an unseen testing set to evaluate the model. For training, we use106

data uncorrected for crustal and mantle structure. Similar to Ross et al. (2018), a 40 s107

window of the 500 s waveform is considered for the model input, with the starting point108

being the theoretical onset time predicted by the 1D Earth model “PREM” (Dziewonski109

& Anderson, 1981). This smaller window permits for tractable computation time when110

training the network. Additionally, this enables us to augment the number of training111

records by creating variations of these segments, to obtain a more accurate model.112

For each 40 s segment, we created five additional windows with a random time shifts113

of ±5 s, increasing the training set by a factor of six. Although they are the same wave-114

form shifted, to the network they appear as independent signals. This random shift al-115

lows the model to take into account the variability between the time of the onset and116

the peak, thereby enhancing the spatial invariance of the model. For the testing set, only117

the 40 s window from the theoretical onset time was used.118

We used the augmented dataset to train a 1D CNN through the Keras library (Chollet119

et al., 2015), using the “RossNet” model architecture employed in Ross et al. (2018). The120

overall configuration of the layers is visualized in Fig. 2a. The ReLU activation function121

(Nair & Hinton, 2010) was used in both the convolutional and fully-connected layers. Model122

cost was evaluated with the Huber loss function (Huber, 1964), and the Adam algorithm123

was used for layer weight optimization (Kingma & Ba, 2014). In order to account for vari-124

ations in model convergence due to random initialization of weights, we trained five dif-125
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a

b

c

Figure 2. a. Diagram of the “RossNet” architecture used, from Ross et al. (2018). b. Average

loss of five models from the architecture used across epochs during the training stage (blue line)

and testing stage (red line). These represent the error in fit of each model to the data. The error

bars correspond to one standard deviation of the average loss of the models on the unseen testing

set. The instance that results in the lowest overall loss is the set of used weights. c. Histogram of

prediction error (left) and cumulative histogram of absolute error (right) for the testing set, the

red dashed line represents the 95th percentile of the data.

ferent models for 40 epochs. The models were trained on two NVIDIA Tesla P100 graph-126

ics processing units (GPUs); each epoch took approximately three minutes to train.127

Figure 2b shows the average and standard deviation of the loss over the models and128

epochs; this corresponds to the error in fit of the models to the data. Results are shown129

for the training and test datasets. Despite the variability of the errors in the testing dataset,130

likely due to its relatively small size compared to the training set, there is an overall trend131

of decreasing loss as with increasing epoch. We use the best performing set of weights132
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across all 200 instances for the remaining analysis. Summary statistics show an average133

prediction error on par with the sampling rate of the seismograms (0.1 s, Fig. 2c). The134

cumulative histogram confirms that 95% of the model’s prediction for the test dataset135

are within 0.25 seconds of the picked arrival. This size of error is insignificant, since the136

picks are subsequently aligned to the maximum amplitude.137

4 Phase Waveform Quality138

We desire not only the maximum arrival time of each waveform, but also the qual-139

ity of the phase. Quality of the waveform during handpicking is normally judged visu-140

ally in a qualitative manner. Here we propose a scheme to assign a quantitative descrip-141

tion of the quality using the trained model.142

The CNN model was constrained to accept only 40 s of the original 500 s seismo-143

gram as its input. As such, we create a scanning algorithm that iteratively moves along144

the entire seismogram in 40 s windows to define the prediction quality through a statis-145

tical definition. The top three plots in Figure 3 provide an illustrative example of the146

scan algorithm. A 40 s window of data from time t to t+40 seconds is chosen and pro-147

vided as input to the model to find the best matching shape to the ideal SS signal, giv-148

ing an arrival time prediction for this window. The window from t+∆t to t+∆t+40149

is then analyzed; this process repeats for the entire seismogram. The sliding window moves150

in steps of the seismograms’ sampling rate, i.e. ∆t = 0.1 s. As the scanning iterates,151

the arrival time will be consistently identified if it is enclosed in the windows. In some152

cases the model can identify the onset of phases outside of the window (Supplementary153

Movie 1). If no recognizable features are present, the best prediction varies considerably154

as the scan iterates.155

The obtained prediction times for a particular signal are not precisely the same through-156

out the scan. Due to slight differences in information within each window, the predicted157

time will vary by a value close to the sampling time of the data. We employ the DBSCAN158

algorithm (Ester et al., 1996) implementation in the Python scikit-learn library (Pedregosa159

et al., 2011) to perform density-based clustering of the predicted times. This way, a large160

amount of predictions that are close to each other form a tight cluster. Each prediction161

in a cluster is an approximate measure of a time < t > of the signal, with a standard de-162

viation corresponding to the error on the prediction ǫ.163
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We use the quantity of predictions to define a quality measure for each signal. Let164

T be the window size used in the model, and ∆t the sampling time of the seismogram.165

An ideal arrival will therefore appear T/∆t = 400 times during the scanning process. The166

quality of a prediction qpick is thus calculated:167

qpick =
Npred∆t

T
(1)

with Npred the number of predictions within a cluster. We retain the prediction with the168

highest prediction frequency, or quality, as the SS “pick” for a particular seismogram.169

Correct identifications of SS result in higher quality of the main arrival compared to other170

features within the waveform (Fig. 3a).171

This scheme of defining a quality also allows us to determine the correct polarity172

of the SS signal. Since the model is only trained on seismograms with positive polarity173

SS signals, running the scanning window on a seismogram with a negative polarity SS174

peak results in inconsistent predictions with lower quality around the time of the SS ar-175

rival (Supplementary Movie 2). In order to determine the polarity of an unknown seis-176

mogram, we employ the scanning algorithm on both the waveform and its inverse. For177

seismograms with an identifiable SS signal, the version with a positive polarity SS phase178

has the highest quality pick.179

5 Prediction of SS Precursors in Stacked Data180

Precursors (“SdS”) may be approximated as lower amplitude versions of the main181

arrival with a similar shape. Thus, a model trained on the main arrival should be able182

to identify precursory signals in stacked waveforms due to their similarity, exploiting the183

pattern recognition capabilities of CNNs. We find that our scanning algorithm can in-184

deed identify precursors as the highest quality predictions prior to the SS arrival (Fig.185

3b; Supplementary Movie 3).186

The handpicking quality criteria requires clear S410S and S660S signals in both the187

vespagrams and cross-sections, with no interfering phases or significant noise in the ves-188

pagram. The vespagrams are assigned qualities from ”a” to ”d”. The ”a” vespagrams189

have no noise and clear precursors with waveforms very similar to SS, while ”d” bins have190

much noise and the precursor shape is dissimilar to SS, and are not retained for anal-191

ysis of any precursors other than S410S and S660S (see Waszek et al. (2018) for a full192

description of methodology). Here, we use the CNN to obtain predictions of the S410S193

–8–



manuscript submitted to Geophysical Research Letters

a

c d

b

SSS410SS660SS875S

−165 −160 −155 −150

Time before SS (s)

Figure 3. a. Example of iterative prediction for a seismogram, at 0, 15 s, and 30 s, with the

histogram of prediction rate. The portion of the waveform within the shaded area is used as

input for the model. The red line is the predicted arrival for the given input. The signal is pre-

dicted consistently when enclosed by the window, and the true SS arrival is at the time of highest

prediction rate. b. Prediction of arrival times in a stacked cross-section and histogram. The four

highest prediction times are marked on the cross-section. c. S410S precursor arrival times for 5◦

bin stacked data picked using the deep learning model. The minimum prediction quality of picks

retained is 60%. d. Corresponding S410S arrival times measured using handpicking and visual

quality checks.

and S660S times for all of the stacks from the bins (corrected for 3D mantle and crustal194

structure). We retain picks with quality 0.6 or higher; following visual inspection, this195

is the lowest quality for which precursors could be identified (Fig. S1). The resulting maps196

of S410S arrival times for 5◦ bins show good agreement in the measurements from the197

CNN (Figure 3c) and handpicking (Fig. 3d), with a correlation coefficient of 0.999. This198

indicates that, where both methods retain a bin, they measure the same relative arrival199

time for the precursor. This is true for both S410S and S660S picks in all bin sizes (Fig.200

S2).201
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The CNN picks retain significantly more precursor picks, which were removed by202

the handpicking quality procedure. The higher retention rates for the CNN is found for203

S410S and S660S measurements in all bin sizes (Fig. S3-S10). This suggests that stricter204

visual quality procedures may remove useful information, i.e. that the CNN can iden-205

tify seismic signals in noisy data whereas handpicking cannot. Furthermore, the CNN206

model provides numerical measures of quality that the handpicking does not. Average207

quality of handpicked versus autopicked bins confirms that the bins removed by the CNN208

are indeed of lower quality than those retained by handpicking (Table S1). Furthermore,209

the average CNN quality also corresponds well to the handpicked quality, i.e. ”a” qual-210

ity bins have the highest CNN quality (Table S2). In order for the CNN method to re-211

tain the same number of bins as the handpicking, the minimum pick quality must be in-212

creased to as much as 0.86 for S660S in 5◦ bins (Table S3). This value drops as bin size213

increases, to 0.6125 for S410S in 15◦, as the stacked signals become less similar to SS due214

to averaging over increasingly larger regions.215

6 Prediction of SS Precursors in Individual Seismograms216

Following the success of the CNN model for identifying precursors in the stacked217

data, we next apply it to precursors in individual seismograms. Normally, these can only218

be visually identified in the highest-quality waveforms due to their small amplitudes (e.g.219

Fig. 1b). We scan the corrected data set, and consider the top 10 predictions before the220

main arrival (Supplementary Movie 4). Predictions with a quality below 0.6 are discarded,221

retaining a total of 38,985 measurements. This corresponds to multiple picks in some seis-222

mograms, and none in others. Examining the predictions as a function of epicentral dis-223

tance (Figure 4a) reveals clusters corresponding to the 410 and 660, in addition to regional-224

scale discontinuities at 300-km and 520-km depth. The gaps with different slowness to225

the precursors (particularly between 100 – 120◦ distance) are interfering phases that the226

model does not pick, namely SdiffS660S which has a negative polarity, highlighting its227

success to discard non-SdS signals.228

The linear trends for both global discontinuities are calculated using the DBSCAN229

algorithm for density-based clustering, to determine statistically the predictions most230

likely to correspond to S410S and S660S. We select arrival time bounds of -185 to -135 s231

before the main arrival for S410S, and -250 to -200 s for S660S. These are selected to fully232

enclose the observed data trends, while excluding theoretical arrival times for other dis-233
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continuities, to ensure that the most dense cluster corresponds to robust picks. A lin-234

ear fit, with the data weighted by pick quality, is applied as an initial estimate for the235

trends. Predictions within ±10 seconds of this fit are considered to also be correct mea-236

surements for the discontinuity in question. The weighted linear model is then fit to this237

new set of data points (Fig. 4b). Maps of the uncorrected and corrected relative travel238

time measurements are included in the Supplement (Fig. S11-S13).239

7 Discussion240

The task of pattern recognition in seismology is not new. Cross-correlation has pre-241

viously been used to generate SS datasets (Houser et al., 2008), measure precursor ar-242

rival times in stacked data for the mid-mantle (Waszek et al., 2018), and identify pre-243

cursor signals in individual data (P. Shearer, 1991). It performs well when the two sig-244

nals are noise and defect-free, but the majority of real data does not fulfil these crite-245

ria. Setting the cross-correlation approach as our benchmark, we repeat the clustering246

analysis to identify 410-km and 660-km measurements from cross-correlation predictions,247

and compare to the CNN picks. A cutoff cross-correlation score of 0.9379 is required to248

obtain an equal number of precursor signals when using the cross-correlation method as249

compared to the CNN model (i.e. 38,985 picks), significantly higher than the 0.6 typ-250

ically used for automatic cross-correlation picking (Chambers et al., 2005).251

The histograms in Figures 5a and b are the number of predictions made between252

epicentral distances of 120 – 130◦ in time bins of 1 s. The two large Gaussian distribu-253

tions correspond to predictions from the discontinuities, with the fraction of seismograms254

within the bin associated to that cluster shown. The CNN produces roughly twice as many255

predictions at this epicentral distance range, and identifies over 50% more precursors over-256

all than using cross-correlation; e.g. 410 picks are found for 28% of seismograms using257

the CNN compared to 19% from cross-correlation, demonstrating its greater predictive258

capabilities.259

Plotted in Figure 5c are a random selection of precursor picks from the CNN model260

with various epicentral distance and phase quality. These picks were considered by the261

clustering analysis to be true identification of precursors. A corresponding examination262

of picks with a range of qualities confirms the marked improvement in waveform shape263

with increasing quality (Fig. S1), and justifies our lower quality limit of 0.6. We note,264
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a

b

Figure 4. a. Predicted precursor relative arrival time as a function of epicentral distance for

the individual seismograms, with theoretical (IASP and PREM) and fitted trends for the S410S

and S660S measurements. Picks retained have prediction quality of 60% or higher. Note that

these measurements have been corrected for S40RTS (Ritsema et al., 2011) and Crust2.0 (Bassin

et al., 2000). b. Visualization of the procedure for determining real measurements for a discon-

tinuity. We first consider a subset of the data that encloses the discontinuity in question. By

using density-based clustering, the most dense cluster will consist of points that correspond to

the observed trend, shown in blue. An initial linear fit is done using these points to have a guess

at the trend, shown in red. An uncertainty cutoff is established, and points within that boundary

are now considered to be real measurements, show in light blue. A final linear fit is performed on

this new set of points to correct the trend, show in yellow. Notice the small difference between

the initial and final linear models.
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a

b

c

Figure 5. a. Predicted differential time as a function of epicentral distance for individual seis-

mograms, with a histogram of picks between 120 – 130◦ epicentral distance range, for the CNN

models. Lines correspond to predictions from IASP91 (Kennett & Engdahl, 1991) (red dotted),

PREM (Dziewonski & Anderson, 1981) (orange solid), and the best fit (red solid). Cluster quan-

tities refer to the proportion of picks in each cluster. b. As in (a), but for cross-correlation picks.

c. A random selection of seismograms and their respective precursor picks from the CNN model.

The width of the pick (red line) is proportional to 2σ of the predicted arrival.

however, that the CNN occasionally picks signals that appear to be sidelobes from neg-265

ative amplitude interfering phases (Fig. 4a). This is because the code picks the best-matching266

signal in a window regardless of shape, relying on the moving window to produce qual-267

ity. A future goal is the implementation of a null output. In the meantime, the DBSCAN268

clustering analysis could be applied to remove interfering signals and their sidelobes. This269

would be particularly useful for mid-mantle precursors which have both positive and neg-270

ative polarities (Waszek et al., 2018). The cross-correlation picks do not pick the inter-271
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fering negative signal gap, instead showing significant noise, highlighting its poorer per-272

formance.273

SdS-SS differential travel time measurements from individual seismograms are a274

new type of measurement that is not yet widely used, primarily due to the difficulty in275

detection of the precursors. The measurements provide new high resolution observations276

of the MTZ discontinuities (Fig. S11-13), allowing for refinement of existing global and277

regional-scale seismic velocity models. For example, our preliminary global analysis pre-278

sented here reveals that IASP91 (Kennett & Engdahl, 1991) provides a better fit to both279

the 410 and 660 (Fig. 5). PREM uses 400 and 670 km for the discontinuity depths, and280

our measurements here are deeper and shallower than these values respectively. In con-281

sequence, the outputs and future developments from our algorithm represent a critical282

contribution to global seismology, in particular for tomography modelling efforts which283

require measurements from millions of seismograms.284

In addition to consistency of picking, and extraction of seismic signals from noise,285

the CNN technique provides a remarkable time saver in its capability to automatically286

process and pick seismic phases. Once a model is trained, the methods developed here287

allow for very rapid acquisition of new seismic datasets. The scanning algorithm picks288

a 140 s subset of a seismogram in approximately six seconds, which is similar to hand-289

picking times, however the computer will continue to pick data constantly. Using a high290

performance computer, the scanning algorithm picked the entire dataset of 58,567 sig-291

nals in 10 hours. In comparison, the same dataset required several months for compi-292

lation via handpicking (Waszek et al., 2018). Naturally, any automation represents a time293

saver compared to handpicking, and this method requires a significantly larger compu-294

tational time then basic automatic algorithms (cross-correlation). However, it provides295

a performance comparable to the former; significantly better than the latter.296

8 Conclusions297

We have demonstrated the significant capabilities of CNNs in the task of picking298

seismic phases, exploiting the pattern recognition capabilities of these deep learning mod-299

els. A trained model picks new data accurately and efficiently. It is able to identify other300

phases with similar features, and extract small-amplitude signals that typically appear301

masked by noise to the human eye. Thus, a model trained on SS data can produce a dataset302
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of directly measured travel times for SS precursors, providing a new dataset to constrain303

Earth’s upper mantle. Further consideration of deep learning models and potential ap-304

plications to seismology could revolutionize the field by automatically picking waveforms305

as they become available. We encourage the use of and welcome contributions to our open-306

source Autopicker code.307
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This document contains examples of precursors picks for different CNN quality values

(Fig. S1), and plots of S410S-SS and S660S-SS relative travel times for stacked data in

all bin sizes, comparing autopicked to handpicked results (Figs. S2-S10). We also present

plots of S410S-SS and S660S-SS relative travel times generated by autopicked results for

individual seismograms (Fig. S11-S13).

Movies S1 to S4 show visually how the autopicker iteratively scans stacked data or

seismograms to identify signals, and determines the polarity of the signals by calculating

quality values.

Table S1 lists average pick quality for stacked data, comparing handpicked and au-

topicked. Table S2 is the average CNN pick quality for handpicked data, separated by

handpicked quality. Table S3 shows the minimum CNN quality pick values required to

retain the same number of bins as the handpicking quality check procedure.
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Movie S1. Example of the CNN model scanning for and identifying an SS phase signal.

Movie S2. Determining phase polarity by scanning on the positive and negative polarity

versions of a seismogram.

Movie S3. Identifying SS precursors in a stack.

Movie S4. Scanning for SS precursors in an individual seismogram.
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Figure S1. Examples of SS picks of various qualities.
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Figure S2. Comparison of measured travel times in handpicked versus autopicked stacked

data, for all bin sizes. a. 5◦. b. 7.5◦. c. 10◦. d. 15◦.
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Figure S3. Maps of autopicked (top) and handpicked (bottom) S410S-SS travel time mea-

surements in stacked data, 5◦ radius caps.
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Figure S4. Maps of autopicked (top) and handpicked (bottom) S410S-SS travel time mea-

surements in stacked data, 7.5◦ radius caps.
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Figure S5. Maps of autopicked (top) and handpicked (bottom) S410S-SS travel time mea-

surements in stacked data, 10◦ radius caps.
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Figure S6. Maps of autopicked (top) and handpicked (bottom) S410S-SS travel time mea-

surements in stacked data, 15◦ radius caps.
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Figure S7. Maps of autopicked (top) and handpicked (bottom) S660S-SS travel time mea-

surements in stacked data, 5◦ radius caps.
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Figure S8. Maps of autopicked (top) and handpicked (bottom) S660S-SS travel time mea-

surements in stacked data, 7.5◦ radius caps.
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Figure S9. Maps of autopicked (top) and handpicked (bottom) S660S-SS travel time mea-

surements in stacked data, 10◦ radius caps.
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Figure S10. Maps of autopicked (top) and handpicked (bottom) S660S-SS travel time mea-

surements in stacked data, 15◦ radius caps.
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Figure S11. Maps of autopicked S410S-SS travel time measurements in individual seismo-

grams, uncorrected and corrected for S40RTS and Crust2.0.
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Figure S12. Maps of autopicked S660S-SS travel time measurements in individual seismo-

grams, uncorrected and corrected for S40RTS and Crust2.0.
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Figure S13. Maps of autopicked S660S-S410S travel time measurements in individual seismo-

grams, corrected for S40RTS and Crust2.0.
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Table S1. Average pick quality for stacked data.

Data Handpicked Autopicked (all) Autopicked only
S410S, 5◦ 0.816 0.773 0.740
S410S, 7.5◦ 0.816 0.800 0.765
S410S, 10◦ 0.839 0.829 0.762
S410S, 15◦ 0.856 0.856 N/A
S660S, 5◦ 0.881 0.822 0.772
S660S, 7.5◦ 0.886 0.854 0.771
S660S, 10◦ 0.895 0.881 0.778
S660S, 15◦ 0.911 0.911 N/A

Table S2. Average pick quality for stacked data, separated by handpicked quality.

Data a b c d
S410S, 5◦ 0.859 0.837 0.803 0.762
S410S, 7.5◦ 0.878 0.799 0.803 0.773
S410S, 10◦ 0.874 0.838 0.813 0.787
S410S, 15◦ 0.885 0.820 0.808 0.730
S660S, 5◦ 0.919 0.887 0.866 0.863
S660S, 7.5◦ 0.918 0.900 0.870 0.838
S660S, 10◦ 0.913 0.906 0.881 0.845
S660S, 15◦ 0.919 0.908 0.889 0.839

Table S3. Minimum pick quality for stacked autopicked data to achieve the same quantity of

picks as handpicked.

Data S410S quality S660S quality
5◦ 0.798 0.860
7.5◦ 0.698 0.825
10◦ 0.660 0.773
15◦ 0.613 0.693
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