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Abstract

The Ocean State Ocean Model OSOM is an application of the Regional Ocean Modeling System spanning the Rhode Island

waterways, including Narragansett Bay, Mt. Hope Bay, larger rivers, and the Block Island Shelf circulation from Long Island

to Nantucket. This paper discusses the physical aspects of the estuary (Narragansett and Mount Hope Bays and larger rivers)

to evaluate physical circulation predictability. This estimate is intended to help decide if a forecast and prediction system is

warranted, to prepare for coupling with biogeochemistry and fisheries models with widely disparate timescales, and to find the

spin-up time needed to establish the climatological circulation of the region. Perturbed initial condition ensemble simulations

are combined with metrics from information theory to quantify the predictability of the OSOM forecast system–i.e., how long

anomalies from different initial conditions persist. The predictability timescale in this model agrees with readily estimable

timescales such as the freshwater flushing timescale evaluated using the total exchange flow (TEF) framework, indicating that

the estuarine dynamics rather than chaotic transport is the dominant model behavior limiting predictions. The predictability

of the OSOM is ˜ 7 to 40 days, varying with parameters, region, and season.
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Key Points:9

• This paper introduces the ROMS-OSOM, a Regional Ocean Modeling System10

(ROMS) implementation simulating Rhode Island waterways called the Ocean11

State Ocean Model (OSOM).12

• The predictability of the OSOM is evaluated using information theory and initial13

condition ensembles in summer and winter conditions.14

• The flushing time scale (freshwater and salinity) of Narragansett and Mt. Hope15

Bays are calculated and resemble the predictability timescales, indicating that16

predictability is largely governed by the estuarine circulation in this model.17
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Abstract18

The Ocean State Ocean Model OSOM is an application of the Regional Ocean Mod-19

eling System spanning the Rhode Island waterways, including Narragansett Bay, Mt.20

Hope Bay, larger rivers, and the Block Island Shelf circulation from Long Island to21

Nantucket. This paper discusses the physical aspects of the estuary (Narragansett22

and Mount Hope Bays and larger rivers) to evaluate physical circulation predictabil-23

ity. This estimate is intended to help decide if a forecast and prediction system is24

warranted, to prepare for coupling with biogeochemistry and fisheries models with25

widely disparate timescales, and to find the spin-up time needed to establish the cli-26

matological circulation of the region. Perturbed initial condition ensemble simulations27

are combined with metrics from information theory to quantify the predictability of the28

OSOM forecast system–i.e., how long anomalies from different initial conditions per-29

sist. The predictability timescale in this model agrees with readily estimable timescales30

such as the freshwater flushing timescale evaluated using the total exchange flow (TEF)31

framework, indicating that the estuarine dynamics rather than chaotic transport is the32

dominant model behavior limiting predictions. The predictability of the OSOM is ∼733

to 40 days, varying with parameters, region, and season.34

Plain Language Summary35

A new model of waterways near Rhode Island is introduced and examined. The36

model is intended for studying the physical circulation of this region and its ecosystem37

changes. This study uses a variety of metrics to assess for how long a forecast with this38

model might be useful (i.e., how long the model’s initial state determines its behavior)39

and relatedly how long to run (or spin up) the model to have poorly known initial40

conditions not affect the result systematically.41

1 Introduction42

Coastal marine forecast systems are in use or development in a number of re-43

gions worldwide (e.g. Wilkin et al., 2018; Moore et al., 2011; Lellouche et al., 2018;44

Pinardi & Coppini, 2010; Mel & Lionello, 2014; Raboudi et al., 2019). As each re-45

gion is unique, the length of forecast window and relative levels of forced to internal46

variability differ among these systems. The Ocean State Ocean Model (OSOM) is47

a new model in development, which is an extension and synthesis of past prototype48
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models (Bergondo, 2004; Bergondo & Kincaid, 2007; Liu et al., 2016; Wertman, 2018;49

Ullman, 2019; McManus et al., 2020) being evaluated for potential use as a forecast50

system. In this evaluation, key questions are: How often should a forecast be made?51

How far into the future can forecasts be skillful? How long does the model take to52

spin up? How accurate must surface and boundary forcing be to arrive at useful fore-53

casts, given that these data would also be predictions (e.g., from numerical weather54

prediction models)? Which regional societal challenges are better framed as changes55

to the region’s climatology (i.e., projections) rather than as predictable futures that56

depend on the model’s initial conditions (i.e., forecasts)? In this paper, a framework57

for addressing these questions is developed by adapting methods from information58

theory and ensemble-based measures of predictability, internal variability, and forced59

variability. The OSOM is taken as a test example of these methods and, as a coastal60

model in development with unique characteristics, the specific results of this study are61

useful for the future development of this particular model.62

Forecasting hydrodynamic parameters is pertinent for an estuary as they play a63

vital role in controlling the physical as well as biogeochemical changes. An important64

aspect of forecasting is finding the predictability/forecasting timescales that limit the65

degree to which initial conditions govern the future behavior of the numerical model66

for individual parameters. These timescales quantify the persistence of anomalies and67

are a feature of the numerical model. Predictability is a measure of a model’s ability to68

forecast or predict the evolution of anomalies in the future from initial conditions given69

prescribed external forcing. By contrast, changing forcing due to climate change (e.g.,70

Xiu et al., 2018), altered topography via erosion or dredging (Hayward et al., 2018),71

changes to wastewater treatment or power plant effluent (Mustard et al., 1999), etc.,72

are external factors affecting boundary conditions rather than initial conditions whose73

impact can be assessed using projections of future climatology with altered boundary74

conditions over a variety of plausible initial conditions. Thus, predictability measures75

a model’s potential to predict or forecast a future state which is distinct from climatol-76

ogy, which is distinct from projecting the changes to climatology forced from changes77

to boundary conditions. The state of the system in a forecast can be only considered78

in a probabilistic way and hence predictability is a property involving two distribu-79

tions (DelSole, 2004): predictability quantifies the departure of a forecast distribution80

from the climatology distribution (Shukla, 1981; Leung & North, 1990). Quantifying81
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this departure involves measurement of uncertainty in the forecast signal. The un-82

certainties in the initial conditions can be thought of as anomalies which eventually83

are forgotten by the model, or overwhelmed by chaotic variability or the influence84

of boundary conditions as time proceeds until the forecast statistical distribution be-85

comes indistinguishable from the climatology distribution. Beyond this time scale a86

forecast provides no additional information beyond climatology, and forecasts are then87

no more useful than projections of the future climatological range of possibilities.88

This article has three purposes: (1) To describe the OSOM; (2) To use ensemble89

simulations to find predictability timescales; (3) To find estuarine flushing timescales90

for fresh and saline water masses and compare these to (2). The model is forced by91

winds, tides, river runoff, evaporation, precipitation and also forced by heat fluxes and92

open boundary conditions. So, unlike the numerical weather prediction models for93

which the information theory techniques applied here were developed, the OSOM is94

a forced model where much of the variability comes from external forcing that may95

determine the trend of the evolution of the state parameters, or alternatively internal96

variability (e.g., hydrodynamic instabilities and chaos) may dominate. A compan-97

ion paper by the authors to this one develops a non-parametric information theory98

approach to quantifying the amount of internal vs. forced variability similar to the99

ensemble approach of (Llovel et al., 2018), and uses this metric to quantify the rel-100

ative importance of different choices in boundary forcing. As the balance of sources101

of variability depends on forcing, resolution, classes of flow, etc., the measured forced102

vs. intrinsic variability depends on the specifics of the model, rather than being a103

general description of the waterways under study. So, too, do the predictability met-104

rics describe the specific model being studied rather than the system. However here105

a comparison to traditional estuarine flushing timescales serves to illustrate that the106

model is governed by physical principles, so quantifying these based on the real–rather107

than simulated–world may nonetheless be useful in establishing physical guidelines108

underlying limits on predictability. Metrics from information theory provide a natural109

way of quantifying distances between two probability distributions (Cover & Thomas,110

2012). Information theory metrics have been used in myriad ways in other fields (e.g.,111

electronic communications, image processing, and molecular biology). Using informa-112

tion theory metrics for weather prediction and climate projection is well established113

(Leung & North, 1990; Schneider & Griffies, 1999; Roulston & Smith, 2002; Kleeman,114
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2002; DelSole, 2004; Haven et al., 2005), but they are not commonly used in coastal115

modeling. DelSole (2004) relates the requirement to quantify uncertainty with the us-116

age of metrics from information theory. The most commonly used metrics are entropy,117

relative entropy, and mutual information (Shannon, 1948), although other variants118

are also useful (Kleeman, 2002; Leung & North, 1990). A key advantage for use of119

these metrics in coastal modeling is that they can be ascribed to a variety of phys-120

ical or biogeochemical variables; here we examine salinity, temperature, and kinetic121

energy over regions and at observation locations, but in future work we will examine122

biogeochemical variables in the OSOM.123

An important time scale for an estuary is the flushing time scale or residence124

time scale (Knudsen, 1900), which is defined as the average residence time of a par-125

cel of fluid inside the estuary (e.g., Monsen et al., 2002), and thus also the average126

retention time of water masses in the estuary. As the numerical model represents the127

physical domain, there is an inherent relation between the forecasting timescales and128

the flushing time scale, because eventually tracer anomalies present in the initial con-129

ditions will be flushed from the estuary, and the flushing timescale is an estimate of130

how long this process will take (assuming the anomalies are conserved on each water131

parcel). Here these timescales are found for the OSOM, a model developed specifically132

for Narragansett Bay and connected waterways.133

Narragansett Bay (NB) is a medium-sized estuary and a natural harbor. As per134

the classification of estuaries based on physical and hydrological attributes, NB is a135

class 8 estuary (a moderate area, volume, and freshwater flow estuary that is deep and136

salty: Engle et al., 2007). It is a prime example of a coastal plain estuary, also known137

as a drowned river valley, which is the most common type of estuary in temperate138

climates. The bay covers an area of ∼ 400 km2 (Pilson, 1985). It is 16 km wide (East-139

West), 32 km long (North-South), and has 412 km of shoreline. The Bay extends from140

the Providence and Seekonk rivers in the north to Rhode Island Sound in the South.141

To the east, it connects to Mount Hope Bay, fed by the Tauton River and connected142

by the Sakonnet River to Rhode Island Sound. The whole of the Narragansett Bay,143

Mount Hope Bay, associated rivers, and Rhode Island Sound is simulated in OSOM144

(Figure 1), but the emphasis in this paper is variables within NB and Mount Hope Bay.145

The average depth is 8 m and the deepest point is 60 m. The bathymetry varies with146

steep slopes in the Rhode Island Sound towards the open ocean and along the dredged147
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navigation channels. The Bay provides a natural habitat for many living things and is148

of commercial and ecological importance to the local community. Commercial fishing149

and shell fishing are important economic activities and the Bay has also been used for150

recreational sports such as a harbor for the America’s Cup and the Volvo Ocean Race151

sailing competitions. Recently pollution has prevented these activities; bacteria and152

viruses have caused beach closures, harmful blooms, and shell fishing bans, and hypoxia153

is frequent and sometimes induces large fish kills. OSOM will be used to simulate the154

physics of the Bay and predict the physical and biogeochemical conditions conducive155

to these events, as well as assess the impact of different management and mitigation156

practices. The predictability timescales studied here help reveal the utility of the157

model to forecast the physical conditions for harmful events.158

This article has been structured as follows: Section 2 provides detail of the com-159

putational model OSOM. Section 3 describes the theory of using mutual information160

to find predictability timescales. Section 4 contains the ensemble simulation setup for161

forecasting and climatology sets. Application of mutual information to the ensembles162

has also been described in Section 4. Section 5 states the results for various cases and163

also gives the flushing timescales obtained via OSOM.164

2 Ocean State Ocean Model165

The Ocean State Ocean Model (OSOM) is an application of the Regional Oceanic166

Modelling System - ROMS (Shchepetkin & McWilliams, 2005). The curvilinear terrain-167

following coordinate system employed in ROMS is well suited for coastal applications168

since the bathymetric variations in coastal systems and estuaries are large. The model169

has curvilinear varying horizontal resolution as well, from ∼ 50m towards the North to170

around 200m in the south of the modelled domain. The horizontal grid consists of 1000171

× 1100 grid cells and 15 terrain-following sigma levels in the vertical. The Generic172

Length Scale (GLS) scheme is used to represent unresolved turbulence (Umlauf &173

Burchard, 2003).174

The offshore forcing at the open boundaries is provided by surface elevation and175

depth-averaged velocity using 9 tidal constituents (M2, S2, N2, K2, K1, O1, Q1, M4,176

M6) from the Eastcoast tidal constituent database (Mukai et al., 2002) and, at subti-177

dal timescales, with low-pass filtered output of the hindcast version of the Northeast178
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Figure 1. a. ROMS OSOM horizontal grid resolution, which is the geometric average of that

in the ζ direction (∼ East - West direction) and in the η direction (∼ North - South direction).

The finest resolution is at North where Narragansett Bay is. Resolution decreases towards the

open ocean. b. Bathymetry: The Narragansett Bay and Mount Hope Bay are regions of shallow

bathymetry and depth increases across the Rhode Island Sound toward open ocean. Wastewater

Treatment Facilities (WWTFs) are shown in blue. Important rivers are highlighted in magenta:

1. Connecticut River, 2. Thames River, 3. Pawcatuck River, 4. Maskerchugg River, 5. Hunt

River, 6. Hardig Brook, 7. Pawtuxet River, 8. Woonasquatucket and Moshassuck River, 9.

Blackstone River, 10 ten Mile River, 11. Palmer River, 12. Taunton River.
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Coastal Ocean Forecast System (NECOFS), a regional model covering the northeast179

U. S. coastal ocean (Beardsley & Chen, 2014). The surface elevation and depth- aver-180

aged velocity forcing are implemented using the Chapman (1985) and Flather (1976)181

methodologies respectively. The depth-dependent velocity, temperature, and salinity182

at the open boundaries are forced using the Marchesiello et al. (2001) combined radi-183

ation and nudging open boundary condition using low-pass filtered NECOFS output.184

The nudging timescales vary with stronger nudging on inflow (timescale of 1.6h) than185

on outflow (timescale of 24h).186

Surface heat and momentum fluxes are estimated from meteorological variables187

obtained from models and local observations using the updated COARE bulk formulae188

(Fairall et al., 2003). All meteorological forcing except for winds are assumed to be spa-189

tially uniform over the model domain. Spatially variable winds for the region were ob-190

tained from the North American Mesoscale (NAM) analyses, a data-assimilating, high191

resolution (12 km) meteorological simulation (https://www.ncei.noaa.gov/data/192

north-american-mesoscale-model/access/historical/analysis). Air tempera-193

ture and barometric pressure were estimated by averaging the measurements at the194

six stations of the Narragansett Bay PORTS system (http://www.co-ops.nos.noaa195

.gov/ports.html). Precipitation and relative humidity are from observations at T.196

F. Green Airport, in Warwick, RI. Net shortwave and downward longwave radia-197

tive fluxes were taken from the nearest ocean gridpoint of NOAAs North American198

Regional Reanalysis model (http://www.emc.ncep.noaa.gov/mmb/rreanl). Upward199

longwave radiation was computed based on the ocean surface temperature in the model200

simulations.201

Freshwater discharge from local rivers and the major waste water treatment facili-202

ties (WWTF) discharging into NB were applied as point source inflows. The discharges203

of many of the rivers are measured at United States Geological Survey (USGS) gauging204

stations (Hunt, Palmer, Moshassuck, Woonasquatucket, Blackstone, Ten Mile, Paw-205

tuxet, Taunton, Pawcatuck, Connecticut, Quinebaug, Yantic, and Shetucket Rivers).206

The Moshassuck and Woonasquatucket Rivers, which discharge into the upper Prov-207

idence River, were combined in the model. Likewise the gauged discharges of the208

Quinebaug, Yantic, and Shetucket Rivers were combined to form the model Thames209

River. For the small rivers entering Greenwich Bay (Maskerchugg River and Hardig210

Brook) which are presently not gauged, historical flow measurements were used with211
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simultaneous measurements from the nearby Hunt River to develop a linear regression212

model predicting the discharge of the former from gauged measurements from the lat-213

ter river. The gauging stations varied in their proximity to the locations at which the214

rivers discharge into the model domain. In order to account for the river discharge215

from the portion of the watershed downstream of the gauging station, the measured216

discharges were scaled up using estimates of the drainage areas upstream and down-217

stream of the gauge under the assumption that discharge/drainage area downstream is218

equal to its value upstream of the gauge. Discharges from four WWTFs (Fields Point,219

Bucklin Point, East Providence, and East Greenwich) in the upper/mid Bay region220

were obtained from the plant operators.221

The WWTF point sources were implemented at a single ROMS gridpoint but222

the discharges for the rivers are spread over 2–5 gridpoints to reduce the tendency for223

model instability. River forcing in ROMS requires, in addition to the river discharge224

discussed above, specification of the vertical profile of the river inflow transport and225

the concentration of tracers in the inflowing water. The vertical profile of the river226

inflow was specified as linearly varying with zero transport at the bottom. Salinity of227

the inflowing water was set to 0. In the simulations discussed here, the river water228

temperature was also set to 0 which eventually leads to artificially cold rivers, but229

experimentation versus using more realistic temperatures reveals modestly lower tem-230

peratures at the observation sites in the Bay over the integration times used (especially231

in winter). Setting river temperature to 0 only affected the temperatures in zone 1 and232

5 for winter where rivers have more influence (Figure 4 illustrates zone boundaries).233

The cold bias found was about 4-6 K in zone 1 and 1-2 K in zone 5. The temperature at234

the grid points closest to buoys were not affected as all the observation locations shown235

in Figure 2 are sufficiently away from river sources. However, it is recommended for236

future operational simulations that time varying river water temperature be estimated237

using a regression equation involving air temperature as well as water temperature on238

the previous day.239

2.1 Basic model validation240

The model output has been compared with buoy data obtained from the Rhode241

Island Data Discovery Center (http://ridatadiscoverycenter.org), where a vari-242

ety of regional data are accessible. In particular, the model has been compared with243
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moored observations collected at locations shown in Figure 2. Figure 3 illustrates244

the best and worst matches for temperature and salinity of the model with the his-245

torical observations. Comparison of the model versus surface temperatures derived246

from LandSat also confirms that the patterns of heating and cooling are similar to the247

satellite data, although seasonality in OSOM is somewhat larger than in the satellite248

record (by roughly 1◦C in climatological comparisons).249

71.5 71.4 71.3 71.2 71.1 71.0
Longitude

41.4

41.5

41.6

41.7

41.8

41.9

42.0

La
tti
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PP
GB

Stations Locations

Figure 2. Stations where surface as well as bottom temperature and salinity observations

are continuously collected during the months of July-August of 2006: Greenwich Bay (GB),

Bullock’s Reach (BR), Conimicut Point (CP), North Passage (NP), Mount Hope Bay (MtHB),

Poppasquash Point (PP), Mount View (MtV), and Quonset Point (QP). Model data is compared

with observations from these stations.

Figure 3 indicates that the model has skill at the high frequency variability (tides250

and diurnal cycle), although variability at the bottom level is underestimated. The251

lower frequency temperature and salinity have biases of up to 2K at the surface and252
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Figure 3. (a-d) Comparison of the Mount Hope Bay moored buoy observations of salinity and

temperature at the surface (a, b) and maximum depth (c, d). This case is the closest match of

the OSOM to the observations during the two months shown: July and August of 2006. (e, f, g,

h) Comparison of the Greenwich Bay moored buoy observations of salinity and temperature at

the surface (e, f) and maximum depth (g, h). This case is the poorest match of the OSOM to the

observations during the two months shown: July and August of 2006. Red color represents the

observed values and different colors show different ensemble members. Figures S1 to S6 in the

supporting information compare the rest of the marked observation locations.

1K at the bottom, and 3 and 2 psu at the surface and bottom of MtHB. At GB, the253

errors at surface and bottom are up to 5 K and 6 psu and 2 K and 4 psu respectively.254

The emphasis of this paper is on measuring the basic predictability of the OSOM255

as modeled in this version. It is not necessary for this assessment for the OSOM to be256

completely realistic, but these basic comparisons show that it has skill in reproducing257

realistic variability in temperature and salinity. Future work will address improve-258

ments in the model setup to reduce biases and errors, such as improving the assumed259

temperature of river inflows, parameterizations of mixing, evaluation of tides, different260

products for surface and offshore boundary conditions, etc.261

3 Predictability using information theory262

DelSole & Tippett (2007) state that the two guiding principles for measuring263

predictability of a variable by contrasting the forecast and a climatology distribution264

should be 1) separate, non-identical measures for a given prediction, and 2) the measure265

of predictability should be invariant to linear transformation (Schneider & Griffies,266

1999; Majda et al., 2002). Measures of predictability using information theory are267
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naturally invariant to linear transformations and will be explained in general in the268

following paragraphs.269

Consider a signal, such as a variable or regional average of a variable modeled270

by the OSOM, X, having a probability distribution pi(x) when considered over a271

particular time or space interval. The probability distribution pi(x) is of the ith event272

(ith bin) after dividing the data into N bins. A fundamental quantity in information273

theory is the Shannon entropy (Shannon, 1948) defined by274

H(X) =

N∑
i=1

p(xi) log2

(
1

p(xi)

)
. (1)

The entropy (with base 2 logarithm) is quantified in units of bits, because the Shannon275

entropy effectively measures the average amount of digital storage required to capture276

the information present in the variability of X.277

To understand Equation 1 begin with the innermost term. Hartley (1928) first278

proposed using the logarithmic function log2(1/p(xi)) to quantify information or un-279

certainity in an event having probability p(xi). The formulation log2(1/p(xi)) implies280

that low probability events have higher uncertainty. Shannon (1948) completed this281

measure by additionally weighting the logarithm with probability giving rise to the282

entropy definition Equation 1, which resembles the thermodynamic entropy function283

in statistical mechanics resulting from a system that visits a set of equally probably284

states (e.g. Sethna et al., 2006). Shannon’s entropy is formulated so that high prob-285

ability events reduce uncertainty with a strong weighting because they occur often286

(Cover & Thomas, 2012). Shannon entropy quantifies uncertainty and the number of287

states needed to categorize a single probability distribution.288

To compare two distributions p(x) and p(y) relative entropy and mutual infor-289

mation measures are useful comparative metrics. Kleeman (2002) recommends the290

relative entropy (a.k.a., Kullback-Leibler distance Cover & Thomas, 2012) for climate291

modelling, which is R =
N∑
i=1

p(xi) log2
p(xi)
p(yi)

. Here, let X be the forecast and Y be the292

climatology. Recall that predictability measures the information contained in a partic-293

ular forecast that is not present in the climatology, i.e., the information which stems294

from the forecast initial conditions. It is easy to see that if the forecast probability295

p(xi) equals the climatology forecast p(yi), R goes to zero indicating no distance or296

difference in information between the forecast and climatology. As a forecast evolves,297

during the time interval before R reaches zero, p(x) and p(y) are distinguishable (un-298
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der similar levels of unpredictable noise) and after R reaches zero they are not, thus299

this time interval is the predictability window.300

Within the predictability window, interchanging p(xi) and p(yi) changes the value301

of R, not just by sign from the logarithm, but also by magnitude due to the prefactor302

p(x). Thus, the relative entropy R depends on both p(x) and p(y) asymmetrically303

and will change if they are interchanged (i.e., the metric depends on which variable304

is considered the climatology and which is considered the forecast). Our potential305

predictability will compare different ensemble members where one is taken as fore-306

cast member, and from same ensemble a different member is taken as a climatology307

reference (Kumar et al., 2014). As the different ensemble members should be inter-308

changeable in this approach, the magnitude of our metric (in contrast to R) should309

not change by interchanging the forecast and climatology, hence a different metric is310

preferred: mutual information.311

Mutual information, I(X;Y ), is symmetric in X and Y , and hence is a natural312

metric of distance between these variables without direction. Let two random variables313

X and Y have joint probability p(xi, yj) and marginal probability p(xi) and p(yj). X314

and Y are divided into N bins each (they can also be divided into different bins but we315

have used the same number of bins for simplicity). The mutual information I(X;Y )316

between them is (Cover & Thomas, 2012)317

I(X;Y ) =

N∑
i=1

N∑
j=1

p(xi, yj) log2

p(xi, yj)

p(xi)p(yj)
, (2)

Mutual information resembles relative entropy. In fact, it measures the relative entropy318

between the joint distribution p(xi, yj) and the product of the marginal distributions319

(p(xi)p(yj)). If X and Y are independent variables, then p(xi, yj) = p(xi)p(yj) and320

thus I(X;Y ) = 0. However, if they are not independent, so that one contains infor-321

mation about the other, then there is mutual information shared and I(X,Y ) > 0. If322

they are totally dependent, i.e., knowing the value of X reveals the value of Y and vice323

versa, then p(xi, yj) = p(xi) = p(yj) for each value of i, j and the mutual information324

equals the Shannon entropy: I(X,Y ) = H(X) = H(Y ). Thus, mutual information325

is the metric of the information shared by X and Y versus if they were independent326

variables. Mutual information between X and Y is symmetric and measures a distance327

between the two probability distributions. It quantifies the amount of information one328

variable contains about the other (again in bits). It can also measure the reduction329
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in uncertainty of one distribution given knowledge of a second distribution, or the330

degree to which they are not independent (Cover & Thomas, 2012): I(X;Y ) measures331

the degree of statistical constraint of X on Y and vice versa (Fano, 1961). Mutual332

information is easily extended to more than one variable leading to a multivariate333

predictibilty analysis (DelSole & Shukla, 2010).334

Unlike relative entropy R, mutual information I(X;Y ) does not go to zero when335

p(x) approaches p(y), instead it approaches the Shannon entropy H(X) from Eq. 1. We336

use the property that I(X;Y ) approaches H(X) to delimit the predictability window,337

taken as when the probability distribution of the forecast and the climatology become338

effectively indistinguishable, taken to be the first time when I(X;Y ) reaches within339

90% of H(X). This threshold is somewhat arbitrary, as convergence is not typically340

monotonic or complete, so any threshold will tend to have “near misses” and later341

signs of potential predictability as will be illustrated in a variety of figures in the text342

and supplementary material. However, to compare to the flushing timescales in later343

sections, a threshold is a simple test, and a range of predictability timescales is then344

formulated by comparing to individual climatology ensemble members as well as the345

climatology ensemble mean to appropriately gauge the level of certainty.346

DelSole & Shukla (2010) state that mutual information itself is a measure of fore-347

cast skill and provide skill scores founded on mutual information and relative entropy.348

The metrics in Equations 1-2 are based on the probabilities of events, not the units349

or dimensions of the events, so their use on various parameters and between forecasts350

and climatology can be compared regardless of the type of variable: physical variables,351

biological variables, chemical variables, or sociological variables of arbitrary units can352

be compared. For this reason, these information theory metrics are ideal for evaluat-353

ing forecast skill in a model like OSOM where a variety of applications are intended.354

The metrics are also invariant under linear transformation of the signal and hence355

are robust to trivial changes such as changes of the units of measurement (DelSole &356

Tippett (2007)), unlike alternatives such as the root mean square technique for skill357

assessment (for example, Jin et al., 2018) which require normalization.358

To find the predictability time scales of ROMS-OSOM we will compare ensembles359

members which differ in initial conditions. Hence our focus is on finding the poten-360

tial predictability (model-model comparison) instead of actual predictability or model361
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forecast skill (model - observation comparison, for example, Kumar et al., 2014). The362

climatology comes from the model simulations and is a result of past or historical363

forcings (hindcasts) with unperturbed initial conditions. It will be compared to fore-364

casts with an anomaly of perturbed initial conditions that will eventually decay or be365

flushed out. The time it takes for the forecast to approach the climatology is the pre-366

dictability time scale. In other words, the convergence between forecast member and367

climatology member signals the end of the predictability time period. After this period368

running the forecast is of no utility, and it will statistically resemble any climatological369

estimate without predictable consequences remaining from its initial anomaly. This370

decay occurs because even though an anomaly is introduced, the forcings and bound-371

ary conditions are identical between the climatology and the forecast. In a realistic372

forecast, the model would be initialized with observations and run with historical ex-373

ternal forcings as future external forcings are unknown a priori. The initialization374

due to observations would create anomalies which are similar to perturbations we add375

to initial conditions in hindcasts to find potential predictability. Also, in a realistic376

forecast, the forecast signal will begin to diverge away from future observations and377

converge towards the model climatology signal–another sign marking the predictability378

time scale.379

4 Ensemble setup380

To begin, temperature and salinity were interpolated from hindcasts of the FV-381

COM model (Beardsley & Chen, 2014) and velocities were taken to be zero. From382

these conditions, the model was spun up for two months before analysis begins. Two383

months were estimated to be sufficient as the average flushing time in NB is about384

one month (Pilson, 1985), and post-analysis estimates of the predictability timescale385

confirm this conjecture. The initial conditions used for ensemble simulations were386

derived from one single spun-up simulation for each season taken from the bound-387

ary conditions for the year 2006. Simulations were performed in each of two seasons:388

January-February (JF) and July-August (JA). The months JA were chosen because389

NB faces hypoxia during those months (Codiga et al. (2009)), and JF was chosen as a390

contrasting alternative. For each season (JF, JA) there is a set of climatology ensemble391

members that were simulated consisting of 7 and 10 members respectively. The JF392

and JA climatology ensemble has two sets of corresponding forecast ensembles: one393
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initialized by perturbing only temperature, and the other set initialized by perturbing394

only salinity.395

Each climatology ensemble member is forced in the same way, but each has re-396

alistic initial conditions chosen from consecutive days selected from the spin-up run397

before the simulation start day (Smith et al., 2007). This method of building a cli-398

matology ensemble is perhaps unfamiliar to some readers, and differs from the typical399

average across multiple years of simulations (where the climatology is across varying400

forcing, rather than varying initial conditions). To create a larger contrast, the same401

initial conditions were perturbed by tripling the anomaly of each climatology ensem-402

ble member from the climatology ensemble mean. This second ensemble of enhanced403

initial conditions are called the “forecast ensemble”, and the same number of members404

are in the forecast and climatology ensembles (7 in JF and 10 in JA). The forecast405

ensemble members by design have bigger spread in their initial conditions than the406

climatology ensemble. As each ensemble contains both forced and internal variability,407

it was not sufficient to have only one forecast represent the “climatology”, but rather a408

mean over an ensemble of realistic initial conditions serves as a better reference clima-409

tology. Furthermore, it is potentially undesirable to compare a single climatology run410

versus an ensemble mean of forecasts–care is needed to compare ensemble means ver-411

sus ensemble means (the approach here) and individual simulations versus individual412

simulations. However, comparing the individual models within the ensembles is used413

to formulate a range of possible predictability timescales, and comparing individual414

members with other individual members yields similar results to the ensemble versus415

ensemble comparison method used primarily here.416

Model data is saved in 2 hour window time averages. The granularity is needed417

to capture the strong tidal variability in this region. Thus each day has 12 data418

points for all the variables and for all the ensemble members. Predictability analysis is419

performed for 3 types of data: 1) Timeseries of volume-weighted averages of variables420

(temperature, salinity) over the 7 zones shown in Figure 4, 2) Predictability of kinetic421

energy using spatial data over 7 zones, and 3) Predictability of timeseries for a grid422

point closest to a moored observation. Thus, the effects of predictability on different423

variables or different levels of averaging is illustrated.424
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Figure 4. Narragansett Bay has been divided into 7 zones. Volume weighted temperature and

salinity has been used from each zone to find predictability timescales.

The number of ensemble members is justified by deciphering whether external425

forcing (wind, tidal, river runoff, and evaporation/precipitation) or internal chaos (non-426

linearities, eddies) is setting the trend for evolution of state parameters in the ensemble427

mean. The methodology of Llovel et al. (2018) and Leroux et al. (2018) is used as a428

guide. The ratio of “noise” to signal with respect to time was found, where noise is429

taken as the standard deviation of the model spread and signal is the mean over the430

ensemble. Let σ be the standard deviation of φni , which is also same as the model431

spread. The ratio σi/〈φ〉i remains less than 0.5 within the predictability window and432

below 0.1 after crossing predictability time scale. Llovel et al. (2018) state that a433

noise to signal ratio of less than 0.5 is sufficient so that external forcing is dominant in434

setting the ensemble mean variability over internal chaos, indicating also that model435

trend is captured sufficiently with this number of ensemble members. The upcoming436

companion paper by the authors expands on the approach of Llovel et al. (2018) using437

information theory techniques to quantify forced versus internal variability even for438

non-Gaussian and non-independent datasets.439

Let a variable in the climatology ensemble be given by cnt,i where t denotes time,440

i denotes spatial grid-point, and n is the ensemble member. Similarly, a variable in441

the forecast ensemble is fnt,i. The information entropy metrics have been calculated442

between forecast and climatology using two approaches: 1) Between running time win-443
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dows (probability distributions of variability in t) of spatial volume weighted averaged444

data (i.e., averaged over i) in a zone or at an observation location, and 2) examining445

the covariability of spatial grid points (probability distributions based on i) within a446

zone at a fixed time. The advantage of the former is that it more naturally describes447

the evolution of slow variations over large regions of the Bay, while the latter can be448

used for very rapid convergence of variables with shorter predictability timescales.449

The first running window approach is primarily used for evaluating predictability450

of temperature and salinity. First, data is averaged (volume weighted) over each zone.451

Hence, Σi
[
cnt,idVi

]
/ (ΣjdVj) = cnt and Σi

[
fnt,idVi

]
/ (ΣjdVj) = f

n

t with the over-bar452

representing volume weighted average over a zone (dVi is the volume associated with453

each gridpoint). Next, the ensemble mean of all climatology members was found, given454

by 〈c〉t = (1/N)
∑N
n=1 c

n
t where the angle brackets represent ensemble average. A run-455

ning window of size τ is selected and a histogram of values is used to estimate the456

probability distributions of the climatology and forecasts, from which I(f ; c)nt is cal-457

culated over the time interval with climatology spanned by end members (〈c〉t, 〈c〉t+τ )458

and forecast variability
(
f
n

t , f
n

t+τ

)
according to Equation 2. Shannon entropy H(c)nt459

is also calculated from these histograms for (〈c〉t, 〈c〉t+τ ) according to Equation 1.460

The predictability time is taken to be when the mutual information averaged over461

the forecast ensemble I(f ; c)t = (1/N)
∑N
n=1 I(f ; c)nt reaches 90% of the climatology462

ensemble mean Shannon entropy 〈H(c)〉t. The resulting timescales are tabulated in463

table 1. The uncertainty range (square brackets) for the timescale is estimated by464

repeating the above procedure N times replacing 〈c〉t with each of the climatology465

ensemble members cnt . Results for a typical zone, Zone 6, are shown in Figures 5 and466

6. Predictability time scale obtained by comparing forecast ensemble members to the467

single unperturbed member from the climatology ensemble were similar to when com-468

pared with the mean of climatology ensemble (see Figures S26-S32 in supplemental469

information). Comparing climatology ensemble members with the single unperturbed470

climatology member also gave similar results (see Figures S33-S39 in supplemental471

information).472

Figure 7 shows a similar method of estimating predictability at a single grid point473

near the Mount Hope Bay (MtHB) buoy, which follows the same algorithm but without474

spatial averaging. The running window method is useful when the time interval under475

consideration is long enough to provide a reasonable histogram approximation of the476
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Figure 5. Predictability results for Zone 6 volume-averaged temperature (c) and salinity (d)

in January to February. Top: Temperature (a) and salinity (b) timeseries from ensemble mem-

bers is plotted for 7 climatology ensemble members (in black) and 7 forecast ensemble members

(in red). Bottom: Information theory metrics (temperature (c) and salinity (d)) shows the con-

vergence of mutual information (blue) with Shannon entropy (pink). The blue range indicates

the forecast ensemble and the blue line is the forecast ensemble mean. The Shannon entropy of

the climatological mean is shown at the top of the pink range and 90% of this value is shown as

the bottom of the pink range. The mutual information converges to 90% of the Shannon entropy

in 7-40 days (Table 1). Figures S14 to S19 in the supporting information show similar plots for

other zones.

temporal probability distribution. The histogram intervals and bin sizes were chosen477

for each case such that the predictability time period is not sensitive to variations478

around those values (overly small or large choices show significant dependence on479

choices of binning and duration). The predictability timescale remains more sensitive480

to τ than the number of bins. While entropy and mutual information are both sensitive481

to data binning and duration choices, the timescale for mutual information to converge482

to Shannon entropy is less sensitive for the selected bin sizes and duration.483

The second spatial variability method evaluates entropy using all spatial grid484

points within a zone. Let Z be the set of all grid points in a zone. I(f ; c)nt is evaluated485

from Equation 2 between the spatial histograms estimating the probability distribu-486
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Figure 6. Predictability results for Zone 6 volume-averaged temperature (c) and salinity (d)

in July to August. Top: Temperature (a) and salinity (b) timeseries from ensemble members is

plotted for 10 climatology ensemble members (in black) and 10 forecast ensemble members (in

red). Bottom: Information theory metrics (temperature (c) and salinity (d)) shows the conver-

gence of mutual information (blue) with Shannon entropy (pink). The blue range indicates the

forecast ensemble and the blue line is the ensemble mean. The shannon entropy of the climato-

logical mean is shown at the top of the pink range and 90% of this value is shown as the bottom

of the pink range. Figures S20 to S25 in the supporting information show similar plots for other

zones.

tions of 〈c〉t,i∈Z and fnt,i∈Z . H(c)nt is evaluated using Equation 1 for 〈c〉t,i∈Z . This487

approach eliminates the need for time windows by comparing the spatial variation488

between the forecast and climatology ensemble mean. This methodology has a utility489

when predictability is short so a running window may be longer than the predictability490

timescale. For example, kinetic energy has low predictability and hence this approach491

is used and is shown for Zone 6 in Figure 8.492

Both the running window and spatial variability approaches use data without493

fixed references and are non-parametric. The data is not assumed to be Gaussian or494

any other distribution and hence our approach is robust towards all kinds of probabil-495

ity distributions, so long as the sampling is such that the histograms are an accurate496

representation of the probability distributions. Likewise, the method measures vari-497
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Figure 7. Surface temperature (a) and salinity (b) predictability metrics during July-August

at one grid point closest to Mount Hope Bay (MtHB) buoy as shown in Figure 2. Information

theory metrics for temperature and salinity are shown in c and d respectively. Surface tempera-

ture at this location is predictable for 27.4 [13.7 - 27.4] days and surface salinity is predictable for

18.5 [8.3 - 19.5] days. Figure S13 in the supporting information shows bottom temperature and

salinity predictability.

ability by the same units of measure in the forecasts and climatology, so the units498

or standards of measurement are consistent regardless of whether physical, biological,499

environmental, or other metrics are chosen.500

5 Results501

5.1 Predictability results502

Figures 5 and 6 show typical temperature and salinity results, drawn for both sea-503

sons from Zone 6. Other zones are similarly illustrated in the supplementary material.504

In each figure, the first row shows a timeseries comparison between the climatology505

ensemble (black) and forecast ensemble (red). The second row has information theory506

statistics, which permit a more precise time of convergence than just comparison of the507

timeseries in the upper row. Magenta shows H(X) and the range of H(x)n, the entropy508

of ct,i, blue members represent I(X;Y )n and single blue line between blue shaded re-509

gion is the average I(X;Y ) over all the I(X;Y )n. Table 1 has the predictability510

timescales and uncertainty range. Results for each zone from 1 to 7 and combinations511
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Figure 8. Kinetic energy predictability is less than 2 days for Zone 6 for July-August. In

this case, the spatial variability metric was used as the predictability timescale was shorter than

the running time windows. Using all the spatial grid points instead of the volume weighted time

series provides enough sample points to create a probability distribution, and is also sensitive

to convergence in higher-order statistics beyond the spatial mean. Alternatively, very frequent

output windows in time could have been used with the time window method, but this method

was chosen to illustrate the possibilities when initial condition effects are quickly lost and there is

rapid convergence to climatology. Kinetic energy results for other zones is similar and are given

in supporting information Figures S7 to S12.

of zones which progressively increase in volume from North to South are tabulated512

in Table 1. The combined zones enable us to compare the predictability time scale513

with flushing/turnover time scales evaluated over similar combined regions measured514

by distance from the northern end of the estuary to the southern end (Figure 9).515

Table 1 compares the predictability timescales by region and season. The summer516

timescales tend to be longer, reflecting the typically drier conditions during summer517

of the year simulated. The timescales for salinity tend to increase as more and more518

of the Bay regions are included, indicating that anomalies persist somewhere within519

the Bay after initialization. For regions within the Bay, local circulations and patterns520

of mixing differ among the different regions, but few clear patterns emerge. Overall,521

the span of timescales is from 6.9 days to 40.5, indicating that predictions of a week522

or longer may potentially have skill, and that 1-2 months of spinup is necessary for523

initial condition effects to be lost and for forcing to become dominant.524

Figure 7 shows an example of temperature and salinity predictability for a single525

grid point, for a location nearest to the Mount Hope Bay buoy (MtHB in Figure 2).526

Perhaps counter to intuition, the central predictability timescale estimates (temper-527
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Table 1. Predictability in days for January-February with respect to zones for temperature

and salinity based on when mean mutual information between ensemble members and climatol-

ogy reaches 90% of climatology’s Shannon entropy for the first time. The range is estimated by

the range over each of the member of the climatology ensemble.

zones January-February July-August

Temp.Pred.(days) SalinityPred.(days) Temp.Pred.(days) SalinityPred.(days)

1 36.5[36.2-37.2] 7.3[6.9-7.7] 10.2[9.1-10.6] 9.4[9.1-9.9]

2 14.2[12.1-14.3] 10.5[9.4-11.0] 10.3[9.3-33.0] 27.7[26.6-29.0]

3 11.5[11.5-12.0] 18.3[18.3-19.0] 16.4[16.0-27.4] 23.8[22.1-26.3]

4 13.0[13.0-14.9] 16.9[16.7-17.0] 22.5[21.1-31.5] 31.5[31.4-32.5]

5 11.9[11.7-13.0] 16.9[16.8-17.1] 9.6[9.5-23.0] 18.5[16.6-31.2]

6 30.2[30.0-33.8] 21.9[20.1-23.0] 17.8[17.3-27.0] 23.0[22.9-24.5]

7 14.9[14.1-28.7] 25.5[19.0-26.7] 22.5[20.4-31.0] 10.0[9.0-10.3]

1to2 15.0[14.2-33.5] 9.5[9.3-9.5] 23.4[22.3-34.2] 24.8[22.1-28.1]

1to5 11.8[11.7-29.8] 17.1[17.1-17.6] 10.0[10.0-26.2] 29.4[29.4-30.6]

1to7 14.0[13.2-29.7] 17.0[17.0-18.0] 32.6[18.4-40.5] 31.4[31.4-32.6]
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ature: 27.4 [13.7 - 27.4] days; salinity: 18.5 [8.3 - 19.5] days) is quite long for this528

one gridpoint in comparison to the predictability of the whole Zone 5 that contains it529

(Table 1 and Supplementary figures; zone-averaged temperature: 9.6 [ 9.5 - 23.0 ] days;530

zone-averaged salinity: 18.5 [ 16.6 - 31.2 ] days), but note that the estimated ranges are531

consistently overlapping. There are many processes which would increase the amount532

of internal variability at a single location, such as meandering currents, waves, and533

other effects of flow-topography interaction. Thus, the predictability of an individual534

measurement location need not agree with the predictability of the region containing535

it, because of this internal variability would be missing from the zone averages. How-536

ever, in this case and indeed for all of the monitoring buoy locations shown in Figure 2,537

the buoys are deployed deliberately in locations thought to be representative of their538

section of the Bay rather than within a particular feature such as a regular plume or539

jet. Thus, the agreement in predictability timescales is perhaps not coincidental, but540

reflects judicious choices for observational advantage. Presenting results at this single541

location highlights the possibility of evaluating predictability metrics at one location,542

not just in regional averages, and the potential reasons why these two approaches may543

differ.544

Likewise, predictability is not limited to temperature and salinity. The pre-545

dictability of kinetic energy is shown in Figure 8 for Zone 6 and is less than 2 days. The546

mutual information converges towards Shannon entropy within a very short period,547

and the alternative method of calculating the probability distribution using spatial548

variability is needed. As will be shown in the next section, there is consistency be-549

tween the timescales of freshwater and salinity flushing and predictability timescales,550

which argues that the estuarine circulation tends to dominate these tracers. However,551

anomalies in the kinetic energy within a region are much more quickly generated (by552

winds and instabilities) and dissipated (by viscous and drag parameterizations) in the553

OSOM, and so the predictability timescale is one to two orders of magnitude shorter554

for kinetic energy than for temperature and salinity. Thus, the kinetic energy example555

illustrates that it is important to evaluate predictability on each metric of forecast556

interest. The next section explores the physical implications of the predictability557

timescales in comparison to flushing timescales.558
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6 Turnover timescales559

The turnover or flushing time scale is the time scale required for replenishment560

of a particular water mass in the estuary, based on its rate of resupply or removal. For561

a water mass having a volume V and volume flux rate Q, the flushing time scale is562

simply τ = V/Q (e.g., Monsen et al., 2002; Rayson et al., 2016). In the present study563

the freshwater turnover/flushing time scale and the salinity turnover time scale are564

calculated from the model output and compared with the predictability time scales.565

The approach here follows Lemagie & Lerczak (2015) in comparing estuarine timescales566

by standard definitions, except here the estuarine timescales are also compared with567

the predictability timescale.568

The freshwater volume is estimated using the relation569

Vf =

(
1− s

so

)
Vb, (3)

where Vf is the freshwater volume, s is the volume weighted average salinity of the570

Bay, so is the salinity of the open ocean or the salinity of the incoming volume flux571

in the region under consideration, and Vb is the volume of the Bay. The freshwater572

flushing time scale is573

τf =
Vf
Qr

, (4)

where Qr is the river supply and runoff.574

The salinity turnover timescale follows the isohaline procedure of MacCready575

(2011). The fluxes of saline water masses are calculated for each salinity class. Let576

Q(s) be tidally averaged salinity flux corresponding to salinity s and be given by:577

Q(s) =

〈〈∫
As

u dA

〉〉
. (5)

where double angled brackets denote temporal filtering over a tidal period with a578

Butterworth filter. As is the cross sectional area having salinity greater than s. Q(s)579

is the salinity flux for the salinity belonging in the range (s, smax). Q(s) is evaluated580

laterally at a vertical cross section along the estuary, beginning at the north and581

proceeding south. The flux moving in, Qin and moving out, Qout, of the estuary is582

calculated using an integral over the salinity classes:583

Qin,out =

∫
∂Q

∂s

∣∣∣∣
in,out

ds , (6)

–25–



manuscript submitted to JGR: Oceans

0 10 20 30 40 50 60
Flushing time, days

0

10

20

30

40Di
st

an
ce

 fr
om

 N
or

th
 o

f b
ay

, k
m

s 1

1-2

1-5

1-7

salinity predictability time scale
salinity turnover timescale
early July freshwater timescale
late July freshwater timescale
early August freshwater timescale
late August freshwater timescale

Figure 9. Freshwater flushing timescales, salinity turnover timescales, and salinity predictabil-

ity timescales for July-August as a function of distance from the northernmost extent of Nar-

ragansett Bay. Blue boxes show the salinity flushing timescale (Equation 8). Circular scattered

points show the freshwater flushing time estimated from freshwater volume and divided by river

input (Equation 4). Different colors show averages over different periods within July - August.

The salinity predictability time scale is shown by red crosses, for Zone 1 and then the combined

regions (1 to 2, 1 to 5, 1 to 7) in the last three rows of Table 1.

where “in” and “out” are evaluated on the basis of the sign of the integrand. Mac-584

Cready (2011) defines the fluxes as total exchange flow (TEF). The TEF relates to585

corresponding salt fluxes of586

Fin,out =

∫
s
∂Q

∂s

∣∣∣∣
in,out

ds . (7)

The MacCready (2011) approach results in the salinity turnover timescale of587

τs =

∫
sdV

Fin
. (8)

Using above definitions, τf and τs have been found by considering a control588

volume with one end fixed at the mouth of Providence river at the northernmost end589

–26–



manuscript submitted to JGR: Oceans

of NB and the other end gradually increasing towards the open ocean. The intention590

is to estimate these timescales in order to check whether they agree with predictability591

timescales. The time scale results are displayed in Figure 9 along with predictability592

timescales for the corresponding regions. The y-axis is the distance from the north593

of the Bay to the south end of each control volume. The x-axis provides the ranges594

of timescales. The predictability timescales (red crosses) are consistent in magnitude595

with the various flushing timescales and increase as the quantity of the Bay in the596

control volume increases (although somewhat less rapidly with distance). Four time597

periods are shown by colors–early and late for July and August–illustrating that the598

flushing timescales vary signficantly (with the amount of precipitation, mainly).599

7 Discussion600

The predictability timescales measure the persistence of statistical anomalies de-601

viating from climatology that stem from the initial conditions. These anomalies might602

be detected to decay, through information theory metrics, by a variety of processes:603

tidal or wind-driven mixing, being carried out of the Bay by advection, or becoming604

so well stirred by turbulent motions that they no longer persist as statistical anoma-605

lies. The consistency between the salinity and temperature predictability timescales606

and the salinity flushing timescales illustrates that it is likely that these anomalies607

are removed from the Bay primarily by the estuarine circulation whose timescale is608

estimated with the variety of flushing timescales shown. Even pointwise measurements609

tend to agree with their zone-average prediction timescale (Figure 7), which indicates610

that the anomalies in OSOM temperature and salinity tend to be fairly mixed over611

broad areas, so that regions and buoys capture much the same information. It is not612

clear if this is true in the real Narragansett Bay to the same degree, but the consis-613

tency in the degree of variability between the modeled buoy locations and the buoy614

observations (Figure 3) suggests that this may be.615

The predictability timescale of kinetic energy is one to two orders of magnitude616

shorter than that of temperature or salinity (Figure 8). This suggests that kinetic617

energy in NB is not governed solely by the estuarine overturning. Indeed, NB and618

the OSOM are highly tidally-driven – with the majority of the kinetic energy involved619

in the ebb and flow. Apparently, the propagation of the tidal energy into the Bay620

through waves, winds, currents, dissipation and drag, and generally perturbations to621
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the surface elevation and kinetic energy, are a rather different set of processes operating622

on very different timescales from the estuarine overturning that transports the salinity623

and temperature anomalies and their predictability.624

8 Conclusions:625

This study has introduced the Ocean State Ocean Model (OSOM) and measures626

of its intrinsic timescales. The predictability timescales range from 6.9 to 40.5 days627

for temperature and salinity. The predictability timescales differ for different periods628

of the year and the region under observation–with generally longer periods for the629

larger basins and under drier conditions. These relationships are consistent with the630

expectations of estuarine circulation dominating the flushing of anomalies in salinity631

and temperature, and these predictability timescales are quantitatively similar to the632

range of estimates of flushing timescales.633

Information theory proves useful for quantifying predictability. It can also be634

applied to other variables such as physical, biogeochemical, and environmental metrics635

that are being considered for forecasting with the OSOM. Not all variables have the636

same timescales, as some rely on processes that operate at different speeds.637

While it is important to know the predictability timescales for understanding the638

constraints on spinning up a model and the potential length of a forecast, it is important639

to keep in mind that the skill of a forecast is not simply related to the predictability.640

Here the model skill is adequate for the assessment of predictability (Section 2.1), but641

the model shows skill deficiencies in some locations, as highlighted here by comparison642

to observations at the Greenwich Bay buoy (Figure 3). Such biases and errors in a643

model may not affect the predictability timescale, but they clearly reduce the value of644

a forecast. Future work in tuning the model parameterizations and improved forcing645

will increase model skill but are not expected to change the predictability. A higher-646

resolution version of the model is expected to have better skill and lower biases, but647

the stronger chaotic transport and resolved eddying features in such a model are likely648

to decrease the predictability timescale (by increasing internal variability). This is one649

key reason why predictability metrics are not an aspect of Narragansett Bay itself, but650

only of this particular model: the OSOM.651
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In the case of temperature and salinity predictability in the OSOM, forced estu-652

arine circulations tend to set the dominant timescales. Knowing this is useful in esti-653

mating forecast windows, spin up times, and sensitivity to forcing variability. Other654

systems, and perhaps the kinetic energy in this system, are dominated by internal655

variability rather than forced variability. A companion paper expands on this topic656

for coastal modeling, where a variety of different boundary forcing mechanisms can657

contribute.658
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Table S1. Root mean square error between observation and a single unperturbed model run

Temperature oC Salinity
Surface Bottom Surface Bottom

CP 1.55 1.43 2.69 0.91
BR 2.42 1.26 3.4 1.24
NP 1.13 0.75 2.38 0.74
MtV 1.01 1.07 1.88 0.86
MtHB 1.87 0.77 2.02 0.94
QP 1.03 2.34 2.34 0.43
PP 0.91 0.82 2.91 0.59
GB 0.89 1.21 3.28 1.7

Figure S1. Comparison of model with observations collected at Conimicut Point (CP).

Figure S2. Comparison of model with observations collected at Bullock’s Reach (BR).

November 19, 2020, 12:05pm



: X - 3

Figure S3. Comparison of model with observations collected at North Passage (NP).

Figure S4. Comparison of model with observations collected at Mount View (MtV).

Figure S5. Comparison of model with observations collected at Quonset Point (QP).
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Figure S6. Comparison of model with observations collected at Poppasquash Point (PP).

Figure S7. Mutual information between members of climatology ensemble compared with

Shannon entropy of the mean of ensemble of zone 1 for the months of July-August.

Figure S8. Mutual information between members of climatology ensemble compared with

Shannon entropy of the mean of ensemble of zone 2 for the months of July-August.

November 19, 2020, 12:05pm



: X - 5

Figure S9. Mutual information between members of climatology ensemble compared with

Shannon entropy of the mean of ensemble of zone 3 for the months of July-August.

Figure S10. Mutual information between members of climatology ensemble compared with

Shannon entropy of the mean of ensemble of zone 4 for the months of July-August.

Figure S11. Mutual information between members of climatology ensemble compared with

Shannon entropy of the mean of ensemble of zone 5 for the months of July-August.
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Figure S12. Figure shows predictability of kinetic energy. Mutual information between

members of climatology ensemble compared with Shannon entropy of the mean of ensemble of

zone 7 for the months of July-August.

Figure S13. Bottom temperature predictability at grid point closest to MtHB buoy

Figure S14. Results of zone 1 for January-February. Top figures shows temperature and

salinity ensembles. Bottom figures show information entropy metrics applied between forecast

and climatology ensembles.
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Figure S15. Results of zone 2 for January-February. Top figures shows temperature and

salinity ensembles. Bottom figures show information entropy metrics applied between forecast

and climatology ensembles.

Figure S16. Results of zone 3 for January-February. Top figures shows temperature and

salinity ensembles. Bottom figures show information entropy metrics applied between forecast

and climatology ensembles.

Figure S17. Results of zone 4 for January-February. Top figures shows temperature and

salinity ensembles. Bottom figures show information entropy metrics applied between forecast

and climatology ensembles.
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Figure S18. Results of zone 5 for January-February. Top figures shows temperature and

salinity ensembles. Bottom figures show information entropy metrics applied between forecast

and climatology ensembles.

Figure S19. Results of zone 7 for January-February. Top figures shows temperature and

salinity ensembles. Bottom figures show information entropy metrics applied between forecast

and climatology ensembles.

Figure S20. Results of zone 1 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.
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Figure S21. Results of zone 2 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S22. Results of zone 3 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S23. Results of zone 4 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.
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Figure S24. Results of zone 5 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S25. Results of zone 7 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S26. Results of zone 1 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.
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Figure S27. Results of zone 2 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S28. Results of zone 3 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S29. Results of zone 4 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.
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Figure S30. Results of zone 5 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S31. Results of zone 7 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S32. Results of zone 1 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.
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Figure S33. Results of zone 2 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S34. Results of zone 3 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S35. Results of zone 4 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.
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Figure S36. Results of zone 5 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.

Figure S37. Results of zone 7 for July - August. Top figures shows temperature and salin-

ity ensembles. Bottom figures show information entropy metrics applied between forecast and

climatology ensembles.
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