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Abstract

We evaluate several high-order quadrature schemes for accuracy and efficacy in obtaining orientation-averaged single-scattering
properties (SSPs). We use the recently developed, highly efficient MIDAS to perform electromagnetic scattering calculations
to compare and evaluate the gain in efficiency from these quadrature schemes. MIDAS is shown to be superior to DDSCAT, a
popular discrete dipole approximation (DDA) method. This study is motivated by the fact that quality physical precipitation
retrievals rely on using accurate orientation-averaged SSPs derived from realistic hydrometeors as input to radiative transfer
simulations. The DDA has been a popular choice for single-scattering calculations, due to its versatility with respect to target
geometry. However, being iterative-solver-based (ISB), the most used DDA codes, e.g. DDSCAT and ADDA, must solve
the scattering problem for each orientation of the target separately. As the size parameter and geometric anisotropy of the
hydrometeor increase, the number of orientations needed to obtain accurate orientation-averages can increase drastically and so
does the computation cost incurred by the ISB-DDA methods. MIDAS is a Direct-Solver-Based (DSB) code, using Method of
Moments (MoM) instead of DDA, its decomposition of the original large matrix with a high rank into multiple more manageable
smaller matrices of lower ranks makes it much more computationally efficient and stable while maintaining excellent accuracy.
In addition, direct solvers consider all requested orientations at once, giving MIDAS further advantage over popular ISB-DDA
methods. Combined with high-order quadrature for orientation average, MIDAS can be orders of magnitude more efficient in
obtaining RTM-ready SSPs than existing ISB-DDA methods.
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Key Points:

+ Accurate calculation of orientation-averaged single-scattering by realistic hydrom-
eteors is essential for precipitation retrieval

e The number of incident directions needed to achieve single-scattering properties
convergence is investigated for several quadrature schemes

« Accurate orientation-averaged single-scattering properties of complex-shaped re-
alistic ice particles can be much more efficiently calculated
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Abstract

We evaluate several high-order quadrature schemes for accuracy and efficacy in obtain-
ing orientation-averaged single-scattering properties (SSPs). We use the recently developed,
highly efficient MIDAS to perform electromagnetic scattering calculations to compare and
evaluate the gain in efficiency from these quadrature schemes. MIDAS is shown to be su-
perior to DDSCAT, a popular discrete dipole approximation (DDA) method. This study is
motivated by the fact that quality physical precipitation retrievals rely on using accurate
orientation-averaged SSPs derived from realistic hydrometeors as input to radiative transfer
simulations. The DDA has been a popular choice for single-scattering calculations, due to
its versatility with respect to target geometry. However, being iterative-solver-based (ISB),
the most used DDA codes, e.g. DDSCAT and ADDA, must solve the scattering problem for
each orientation of the target separately. As the size parameter and geometric anisotropy of
the hydrometeor increase, the number of orientations needed to obtain accurate orientation-
averages can increase drastically and so does the computation cost incurred by the ISB-DDA
methods. MIDAS is a Direct-Solver-Based (DSB) code, using Method of Moments (MoM)
instead of DDA, its decomposition of the original large matrix with a high rank into multi-
ple more manageable smaller matrices of lower ranks makes it much more computationally
efficient and stable while maintaining excellent accuracy. In addition, direct solvers consider
all requested orientations at once, giving MIDAS further advantage over popular ISB-DDA
methods. Combined with high-order quadrature for orientation average, MIDAS can be
orders of magnitude more efficient in obtaining RTM-ready SSPs than existing ISB-DDA
methods.

1 Introduction

Cloud and precipitation warrant extensive and continuous survey because they funda-
mentally impact the water and energy cycles of our planet, exerting enormous influences on
its weather and climate. Spaceborne remote sensing offers a cost-effective means to ensure
adequate spatiotemporal observation coverage of these phenomena over unpopulated areas
such as the oceans. Thus, the remote sensing of cloud and precipitation has been the focus
of multiple NASA Earth Science missions in the past few decades, e.g. the Tropical Rain-
fall Measuring Mission (TRMM) (Kummerow et al., 1998, 2000), the CloudSat-CALIPSO
missions (Stephens et al., 2002, 2008), and the Global Precipitation Measurement (GPM)
mission (Hou et al., 2014). Aiming to achieve a better understanding of their impacts,
observations of cloud and precipitation from the active and passive microwave instruments
of these missions have been extensively and routinely used for monitoring and analyzed to
improve their quantitative physical estimates.

The canonical approach in physical precipitation retrieval has been 1) using the single-
scattering properties (SSPs) derived from ensembles of plausible hydrometeors in radiative
transfer models (RTMs) for forward calculations to simulate instrument responses, and
2) matching observed instrument responses with simulated ones to arrive at the retrieved
particle ensemble properties (Ding et al., 2016; Kuo et al., 2016; Haddad et al., 2017).
Consistent physical estimates so retrieved from these microwave observations thus require
SSPs of realistic precipitation particles covering the natural ranges of morphologies and
compositions (Haddad et al., 1997; Olson et al., 2016; Munchak, 2018; Kneifel et al., 2018).
Therefore, the uncertainty resulting from the assumptions of particle geometries or from
their SSP calculations constitutes an upstream source of retrieval uncertainties, which is
likely to propagate through the retrieval process and cause irreconcilable errors downstream.

Given the crucial importance of accurate SSPs from realistic hydrometeors to the suc-
cess of precipitation retrieval algorithms, significant efforts have been devoted, and pro-
gresses have been made, in the last couple decades to 1) the enhancement of the realism
and complexity of particle models in both geometry and composition through simulated
deposition growth, aggregation, riming and/or melting (Liu, 2008; Kuo et al., 2016; Lu et
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al., 2016; Eriksson et al., 2018), and 2) the development of computationally efficient numer-
ical methods to solve the electromagnetic (EM) scattering of hydrometeors with irregular
shapes and heterogeneous compositions (Bohren & Singham, 1991; Mishchenko, 2014; Fenni
et al., 2018). Due to their irregular, complex shapes and uneven distribution of composi-
tions, these hydrometeors do not exhibit symmetries as spheres, spheroids, or other regular
convex shapes do. Consequently, their SSPs are orientation-dependent and lack symmetry
to exploit. Most of the existing microwave RTMs (Evans & Stephens, 1995; Deeter & Evans,
1998) used to simulate instrument responses, however, are simplified to deal only with axially
or azimuthally symmetric scattering medium. The hydrometeors are thus usually assumed
to be uniformly randomly oriented. SSPs must therefore be obtained for each hydrometeor
at a number of orientations, which are then averaged to produce axially symmetric SSPs.

For solving the EM scattering of these complex hydrometeors, methods based on the
discrete dipole approximation (DDA, aka coupled dipole approximation) (Draine & Flatau,
1994; Yurkin & Hoekstra, 2007; Penttild et al., 2007; Petty & Huang, 2010) have been
more generally applicable than other methods, e.g. Mie and T-matrix, for their versatility
with respect to the shapes of the scattering target. Thus, several DDA-based codes, e.g.
DDSCAT (Draine & Flatau, 2013), ADDA (Yurkin & Hoekstra, 2011), have been used
extensively to characterize scattering by arbitrarily shaped precipitation particles (Nowell
et al., 2013; Ori et al., 2014; Johnson et al., 2015; Kuo et al., 2016; Eriksson et al., 2018).

There are basically two solution strategies, hence two categories, of DDA implementa-
tions, one based on iterative solvers (e.g. DDSCAT and ADDA) and the other on direct
solvers (Petty & Huang, 2010). The direct-solver-based (DSB) DDA methods are more
efficient when SSPs for multiple orientations are needed because, once the matrix has been
inverted, it may be applied to incident waves from different directions (equivalent to vary-
ing the orientation of the target while keeping the incident direction constant). However,
as the mass of the hydrometeor increases, the number of dipoles and hence the rank of the
matrix increases proportionally. Since the computation complexity of matrix inversion is
approximately O(n3) where n is the number of dipoles, the computational cost increases
drastically. Moreover, when its rank is high, the matrix is usually less numerically stable to
invert.

The iterative-solver-based (ISB) DDA methods, on the other hand, implemented with
a Fast Fourier Transform (FFT) acceleration for matrix and vector multiplications in both
DDSCAT and ADDA, have a computational complexity roughly proportional to O(N log N),
where N is the number of grid cells, i.e. N =1 x w x h with [, w, and h for, respectively,
number of cells in length, width, and height of the rectangular grid system used to contain
the dipoles of the hydrometeor, which is composed of n dipoles. In general, N > n but,
for sparse hydrometeors like those studied here, N >> n. Then, each target orientation
(incident wave direction) must be solved independently and separately. When different
orientations are needed for the scattering target that lack symmetry, as is the case with
most solid- and mixed-phase hydrometeors, the computation expense required to obtain
solutions increases proportionally with the number of orientations. This is exactly the
situation encountered in conducting forward radiative transfer simulations with the great
majority of existing RTMs in support of retrieval algorithms for complex hydrometeors.

The contrast of computation complexity, and thus expense, between DSB- and ISB-
DDA methods can be illustrated with a simple example. If a hydrometeor requires only
n = 200 dipoles to represent in a N = 1003 (= 100 x 100 x 100) bounding cubic grid system,
i.e. a mere 2 x 10™* fraction in volume, the DSB- and ISB-DDA methods would already
have comparable computation complexity. Even the sparsest snowflakes, e.g. dendrites, are
rarely that sparse. Therefore, except for very small and compact particles (few hundred
dipoles), the ISB-DDA methods almost always have an advantage in computation efficiency
over the DSB-DDA methods, even when the number of orientations has been taken into
account. This is the primary reason that the ISB-DDA methods are more popular than the
DSB-DDA methods.
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A notable anomaly is the recently developed scattering model MIDAS, for MoM Integral-
equation Decomposition for Arbitrarily-shaped Scatterers (formerly NESCoP in Fenni et al.
2018), applying a domain-decomposition technique known as the characteristic basis func-
tion method (CBFM) to the Method of Moments (MoM) in solving EM scattering. MIDAS
belongs essentially to the DSB category, though not a DDA approach. After the application
of a Method of Moment (MoM) with piece-wise constant basis functions, in the context of
volume integration equation method (VIEM), the CBFM allows for the decomposition of
the original matrix of size 3n x 3n into multiple smaller matrices of sizes 3n; x 3n; with
n = Y ,;n;. Thus, the computation complexity is approximately reduced from O(n?) to
>, O(n?) (Fenni et al., 2016). As a DSB method, MIDAS also effectively solves all orienta-
tion at the same time. With the computation efficiency gain from its matrix decomposition,
we believe MIDAS offers an optimal balance of the strengths of both the DSB- and ISB-
DDA methods, making it a compelling method for solving the EM scattering of complex
hydrometeors.

The number of orientations needed for the averaged SSPs to converge depends on
the size of the hydrometeor (relative to the wavelength), on the anisotropy of its shape,
and on the performance of the quadrature scheme used. Unfortunately, this dependence
is not a simple linear relation and is difficult to determine a priori. One may need to
experiment with the number of orientations to ensure convergence by gradually increasing
it. We are therefore motivated to use the highly computationally efficient MIDAS to evaluate
the efficacy of several quadrature schemes (Hardin & Sloane, 1996; Beentjes, 2015), namely
adaptive quadrature (aq), Lebedev quadrature (Ib), and spherical design (sd), in minimizing
the number of orientations, and hence computation resource, needed for an acceptably
accurate orientation average.

Several past studies have discussed the convergence of the orientation-averaged SSPs
of atmospheric particles and devoted attention to optimal averaging schemes (Okada, 2008;
Penttild & Lumme, 2011; Um & McFarquhar, 2013). Mainly because of the computational
burden associated with the use of the DDA-based codes, none of these studies has involved
an as wide and varied set of complex-shaped particles, nor as large numbers of target
orientations as this study, which checks more extensively the convergence of averaged SSP
and provides a more comprehensive comparison of the numerical average methods selected
for evaluation.

Thus, we benchmark MIDAS against a popular ISB-DDA method, i.e. DDSCAT, in our
evaluation of the quadrature schemes. We detail the background of our study in section 2
with introductions to and descriptions of relevant previous works, the hydrometeors used in
this study, and the scattering codes used, i.e. DDSCAT and MIDAS. After introducing the
notations and definitions used in this paper, we compare the differences between the existing
and the new approaches with respect to orientation averages in section 3. We report next,
in section 4, the impacts of quadrature schemes on the convergence of orientation-average
and on computational cost, contrasting MIDAS with DDSCAT. Section 5 concludes and
outlines our plans for MIDAS.

2 Context of the study
2.1 Snow particles

We use a subset of the realistic solid-phase aggregate snow particles described in (Kuo
et al., 2016) for this evaluative study. The aggregate snow particles are made of pristine
ice crystals, which are numerically grown using the algorithm pioneered by Gravner and
Griffeath (2009) nicknamed “Snowfake”. The pristine crystals of various sizes are then
numerically aggregated to form the aggregate snow particles that span the range of particle
shapes and sizes that may occur naturally. The resulting geometries and their SSPs, derived
with DDSCAT, of 6646 aggregate particles have been cataloged in the database OpenSSP
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and made available at ftp://gpmweb2.pps.eosdis.nasa.gov/pub/0penSSP/. In Figure 1,
we show three examples of aggregate snow particles from the OpenSSP database.

The noteworthy feature of the particles from the OpenSSP database is their irregu-
lar and complex geometry, which presents a significant challenge and an arduous test for
the flexibility and computational efficiency of the scattering solution approaches and the
numerical averaging schemes considered in this paper.

2.2 The DDA-based code DDSCAT

The discrete dipole approximation (DDA), also known as the coupled dipole approxi-
mation, is a general, versatile method for computing EM scattering by particles of arbitrary
geometry and dielectric composition (Purcell & Pennypacker, 1973). The principle of the
DDA is to replace the scatterer by a set of point dipoles, often organized in a rectangular
lattice of cubic cells, with a grid spacing that is small enough to adequately represent the ge-
ometry of the particle and ensure a sufficiently accurate solution. Each dipole (j =1, ..., N),
located at position r;, has a polarization P; = o;E;, where «; is the dipole polarizability
and E; is the electric field at r; due to the incident wave E!" plus the contribution of
each of the other N — 1 dipoles (k # j). As detailed in Draine & Flatau (1994), solv-
ing the scattering problem amounts to solving the system of 3N complex linear equations
ng APy = E;-"C, where A’F is a 3 x 3 matrix, equal to ajfl if j = k, and including
retardation effects if j # k, so that —A ;P represents the electric field at r; due to dipole
P, at location rj. Once this system is solved for all unknown polarizations P;, j =1,..., N,
all the scattering quantities of interest (extinction, absorption, scattering, backscattering,
asymmetry parameter) can be directly evaluated from the resultant polarizations (Draine,
1988; Draine & Flatau, 1994; Yurkin & Hoekstra, 2007).

Because of its flexibility and applicability to arbitrary geometries, DDA-based methods
have been extensively used to calculate the SSPs of hydrometeors. The two most popular
implementations of the DDA are the open-source codes DDSCAT (Draine & Flatau, 2013)
and ADDA (formerly, Amsterdam DDA, Yurkin & Hoekstra, 2011). Penttild et al. (2007)
documented the accuracy and computational performance of four different implementations
of DDA by comparing them to exact techniques. They conclude that 1) DDSCAT is the
most accurate and 2) ADDA is the fastest and least memory consuming code, by virtue of
its efficient MPI implementation, which parallelizes a single DDA computation by grouping
together memories of multiple processors, and thus allowing the solutions of large particles.

In this study, we use DDSCAT to test and validate the accuracy and computational
performance of our MoM/CBFM-based model MIDAS by applying both to the calculation
of orientation-averaged scattering efficiencies. The choice of using DDSCAT as a benchmark
is justified by its high accuracy and being the second fastest code among those evaluated
in Penttild et al (2007). In addition, the MIDAS version evaluated here uses OpenMP for
shared-memory parallelization similar to DDSCAT!. In such a configuration, the efficient
MPI parallelization does not confer ADDA a significant advantage in speed over DDSCAT.

The value of present study is signified by the shortcomings of the DDA-based codes when
calculating orientation-averaged SSPs. These quantities are crucial to the well-functioning
of the precipitation retrieval algorithms. In fact, a major drawback of the DDA is its high
computational cost when the calculations are performed over a large number of particle
orientations. Because of the use of iterative solvers, the computationally demanding linear
equations must be solved repeatedly for each orientation. Yet it is well known that preference
has been given to iterative methods, mainly because of the prohibitive memory cost of storing

I The claimed MPI capability of DDSCAT simply runs an independent calculation, e.g. a different ori-
entation, on each computer node of a cluster in a pleasingly parallel manner and does not group nodes’
memories together for distributed parallelism as ADDA is capable of.



the entire matrix for the direct solvers (Yurkin & Hoekstra, 2007). In the next section, we
will explain how the CBFM, a powerful direct-solver-based (DSB) domain-decomposition
scheme, enables computationally efficient direct solution for multiple-excitation problems,
and thus simulation of particles with large number of orientations, with lower computational
resource requirements than DDSCAT.

2.3 The MoM/CBFM-based scattering model MIDAS

Fenni et al (2018) documents our development of MIDAS (formerly NESCoP), a nu-
merically efficient 3D full-wave model for scattering from complex-shaped scatterers. The
main concept in MIDAS is the use of a DSB domain-decomposition method in the context
of the volume integral equation method (VIEM) to efficiently compute scattering properties
of electrically and numerically large precipitation particles. First, the VIEM is linearized
with the conventional Method of Moments (MoM), with piecewise constant basis functions.
We refer readers to Fenni et al. (2018) for further details about the volume integration for-
mulation and the application of the MoM. As a result we obtain a system of linear equations
ZMME — E"¢ where ZM°M is the MoM matrix of size 3n x 3n, B¢ is the incident field
and E is the unknown total electrical field inside the particle. The MoM solution is essen-
tially of the same form as in the DDA. "The only difference between the two approaches
is that the integral equations give more mathematical insight into the approximation, thus
pointing at ways to improve the method, while the model based on point dipoles is physically
clearer" (Yurkin & Hoekstra, 2007).

The next step is to apply the domain decomposition method known as the Characteristic
Basis Function Method (CBFM) (Mittra & Du, 2008; Lucente et al., 2008). The basic idea of
a domain decomposition method is to replace the numerically large global EM problem with
smaller, more manageable independent local problems, while using appropriate coupling
conditions between the sub-domains. The particular feature that distinguish the CBFM
from other domain decomposition methods is its use of a direct solver to calculate the
unknown electric field inside the global domain (Lucente et al., 2008). The CBFM operates
by generating a new set of S; basis functions, named characteristic basis functions, for
each sub-domain (i = 1 : M), whose purpose is to reduce, as much as possible, the overall
numerical size (n) of the EM problem. A more efficient direct solver can then be implemented
to solve the resulting compressed system of linear equations Z°a = E™“¢. Z¢ is the resulting
compressed matrix, of size K x K, where K = Zi\il S;, and «, of size K X N\;p, contains
the coefficients used to calculate the total electric fields inside the object, for A7p incident
directions, as a linear combination of the new sets of basic functions.

The size-reduction of the initial MoM matrix is quantified through the compression rate
CR, which is defined as the ratio between the original number of basis functions in the =z,
y and z directions and the number of post-CBFM unknowns : CR = 3n/K. The CBFM
is thus much better adapted to the calculation of averaged scattering quantities, because
the compressed system of linear equations is solved once for all incident directions , i.e.
multiple excitations. Once the electric field inside the snow particle is known for the Ajp
incident directions, the scattered field E° can be calculated at any scattering direction, and
its computation cost at Alsca observation points scales as O(n X Aip X Nsca). Readers are
referred to Fenni et al. (2018) for further details about MIDAS (previously NESCoP) and
the CBFM process.

Accuracy and computational efficiency of an OpenMP-parallelized version of MIDAS
are validated against DDSCAT in Fenni et al. (2018) by applying it to calculating the
SSPs of ice aggregates from the OpenSSP database (Kuo et al., 2016). We have observed
good agreements between them, as long as the iterative solver used by DDSCAT does not
encounter numerical convergence problems. We have also noticed that the performance of
DDSCAT, in both accuracy and computational efficiency, strongly depends on the size of
the rectangular container of the particle and its density of non-trivial dipoles, while MIDAS
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offers a more constant level of accuracy and faster time to solution. We have expected
the superior performance of MIDAS over DDSCAT in situations where a large number of
orientations are requested. We, however, have pleasantly found that, even for solving the
SSPs at one single orientation, MIDAS outperforms DDSCAT in computing time when the
size parameter gets large (Fenni et al., 2018).

3 Calculation of Orientation Averages
3.1 Notations and Definitions

The topic discussed here is evidently complex, for which similar or equivalent but
different terms may be used in the literature to refer to or describe various concepts. To
avoid confusion, we define the terms and associated concepts that will be consistently used
in the following discussions. In this paper, we use two quantities to describe the scatterer’s
"size" relative to the wavelength at which the scattering solution is sought. One involves
the maximum dimension, D,,.,, which is the distance between the farthest two points
within the scatterer or, equivalently, the diameter of the smallest sphere that encloses (or
circumscribes) the scatter. We call it "electrical size" of the scatterer, and defined it as

g = TDmaz /A (1)
Another is z., using the equivalent volume sphere diameter D,, i.e.

e =D/ A (2)

Together, 4 and z. give an indication of the sparsity of the scatterer. With the same
Te, & scatterer with a larger x4 is considered to be sparser than the one with a smaller x4,
i.e. the latter is more compact.

Due to the priority given to expediency, weather models and retrieval algorithms use
simplified one-dimensional (1D) RTMs that can only handle media with axially (or az-
imuthally) symmetric scattering, which SSPs derived from irregularly shaped particles do
not possess. These particles are therefore assumed to be uniformly (i.e. non-preferentially)
randomly oriented and their SSPs must be orientationally averaged to attain the required
symmetry. Two questions thus arise: (1) how to determine the number of particle orienta-
tions required for orientation-averaged SSPs to converge and (2) how to achieve convergence
with a minimum number of orientations. The goal is to incur the lowest computational cost
for any electrical size regardless of the complexity of particle geometry. The popular DDA
codes provide no convenient answers to the above two questions because 1) their interfaces
offers only the simplest sampling of the orientation angles for average and, more impor-
tantly, 2) the computational cost becomes prohibitive with these codes for electrically large
particles and a large number of orientations.

DDSCAT and MIDAS use different but equivalent conventions for specifying scatterer
orientation. DDSCAT rotates the scatterer in 6 and g as defined in its user guide, whereas
MIDAS reorients the direction of the incoming EM wave while holding the scatterer fixed in
space. The incident direction (ID) of MIDAS, (6;, ¢;), is related to the scatterer’s orientation
in DDSCAT, (0, B), through the relations:

6;=0;¢;=(B+m) mod2r (3)

with the subscript ¢ here denoting "incident" (i.e. not a dummy running index). With this
equivalence established, we shall use primarily (6;, ¢;) in describing orientation to simplify
our discussion.

We also recall that the scattering quantity of focus is the polarization-averaged backscat-
ter efficiency. Thus, we do not consider polarization rotation, and we only change the in-
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cident wave direction by varying 6; and ¢; as described in Fig 2. With DDSCAT, this
is equivalent to fixing the third angle (¢) at 0 and changing only the 5 and 6 angles for
specifying the target orientation of the particle. For DDSCAT, the ¢ rotations do not affect
the polarization-averaged scattering quantities, nor does it have a significant impact on the
computational cost (Draine & Flatau, 2013). Thus, for the present study we will only vary
the 5 and 6 angles for DDSCAT. Note that this is equivalent to varying the 5 and « angles
for ADDA.

Scattering calculations reported in this paper are performed with OpenMP-parallellized
versions of MIDAS and DDSCAT run on a single large-memory computing node of 48 CPUs
and 380 GB of RAM. Comparisons between MIDAS and DDSCAT are usually expressed
using relative difference in percentage, which is defined based on the difference between a
quantity, @, and its corresponding reference, @Q,, i.e.

Er(%) =100 x (Q — Qr)/Qr (4)

when comparing SSPs obtained from the MIDAS and DDSCAT methods, the solution of
DDSCAT is used as the reference.

In the following subsections, we first describe the orientation-average approach imple-
mented in DDSCAT, and then the one used with MIDAS previously in Fenni et al (2018).
We describe next the process of defining and achieving the convergence of the averaged
SSPs. We then evaluate two quadrature schemes over the sphere, namely Lebedev quadra-
ture (Ib) and Spherical Design (sd). These schemes are selected based on their reported
good performance (Beentjes, 2015).

3.2 DDSCAT

For DDSCAT, orientation-averaged scattering quantities are computed by fixing the
incident wave direction and evaluating the scattering over a number of particle orientations.
For a uniformly randomly oriented target with no symmetry, the orientational average @ of
a quantity Q(f,0, ¢) is calculated as follows

2 1 2

Q= [ 48[ aeoso [ a0 Q.0.9) (5)
™ Jo -1 0

where (3, 0 and ¢) are the angles describing the 3D orientation of the snow particle (Draine

& Flatau, 2013). Given that the focus of this study is on the calculation and convergence

of orientation-averaged backscatter efficiency (Q,s), a scalar quantity independent of po-

larization, Eq. 5 is re-written as:

. 1 27T 1
QEA w[fmeQmw (6)

Indeed, the backscatter efficiency Qprs is the most sensitive scattering quantity to the
particle shape and to the parameters of the scattering model. We refer the reader to Bohren
& Singham (1991) for the physical insight into backscattering that explains this sensitivity.
Thus, ensuring the convergence of Q,;, automatically guarantees the convergence of other
scattering quantities, namely the orientation-averaged extinction and scattering efficiencies.

After one has solved the scattering problem for a given (3, 6, ¢), the solutions corre-
sponding to other values of ¢, while holding 8 and 6 constant, are efficiently obtained by
appropriately weighted sums of the solutions found at (8, 6, ¢). Thus, averaging over ¢ is
relatively inexpensive and most of the computational cost is associated with the number of
different (0, 3) (Draine & Flatau, 2013).
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DDSCAT offers a default sampling scheme through its input file (i.e. ddscat.par),
which samples uniformly in 8 and cos # in equi-interval manner. The range for 8 (27 for the
entire sphere) is simply divided into Az equal intervals, and the midpoint of each interval
is taken. Sampling in 6 is done quite differently. The parity of Ap determines the equi-
interval samples over cos#: A simple arithmetic sum is used if Ap is even while Simpson’s
rule is used if it is odd. Therefore, if averaging over orientations is desired, Draine & Flatau
(2013) recommends an odd value of A be specified for greater accuracy. In the remainder
of the paper, this sampling scheme will be abbreviated to ’dn’, short for DDSCAT native
quadrature.

3.3 MIDAS

Instead of rotating the target, MIDAS equivalently changes the incident wave to the
counter direction of the target rotation. Thus, holding the particle fixed, the averaging is
performed over a number of incident wave directions (6;, ¢;) as follows

- 1 27 e )
Q= E/o /0 Q(b;, di)sinb;  db;de; (7)

where (0;, ¢;) describes the direction of the incident wave, referred to as ID, as illustrated
in Figure 2.

For MIDAS, the integral over the incident directions, in Eq. 7, is evaluated by a double
use of a tailored subroutine QAG from QUADPACK (Piessens et al., 1983), a FORTRAN90
library routine for numerical integration using adaptive quadrature. With the approximated
function f as input, the original QAG is a simple globally adaptive integrator that calculates
an approximation to a definite integral I = f: f, using a Gauss-Kronrod quadrature rule,
while adapting the quadrature nodes, and thus refining the sub-intervals of the integration
domain.

In our case, we provide, as input to the QUADPACK subroutine QAG, the values of
the scattering quantity under consideration (here Quis ) at A7p nodes uniformly spaced in
0; and ¢; on the sphere surface. AGfp = Np, X Np,, Where Ap, is the number of nodes for 6;
and Ap, the number of nodes for ¢;. The program exits when convergence is achieved or
the sub-interval refinement goes beyond the provided grid resolution (d6; or d¢;). Since we
pre-compute Qpis at the A7p nodes, we do not in actuality benefit, in reduced computation
time, from the adaptive reduction in number of nodes offered by QAG. But we do make the
most use out of QAG for its adaptive approximation improvement and accuracy refinement
features and its core Gauss-Kronrod quadrature rule. As an illustration, if we calculate the
SSPs with a uniform step in 6; and ¢;, df; = d¢; = 10°, we would provide 37 evaluation
nodes to the outer integral (in ¢;) and 19 ones to each of the 37 inner integrals (in 6;), which
represent in total the 703 nodes of the grid.

As described previously, both MIDAS incident directions and DDSCAT target orienta-
tions will be referred to as IDs in the rest of the paper. For example, calculating Qpxs using
DDSCAT with dn and 703 IDs means running DDSCAT with its native quadrature scheme,
with A% = 1 and Ap x Az = 703 total target orientations. Figure 3 shows the distribution
of 703 quadrature nodes for MIDAS aq (left) and DDSCAT dn (right).

3.4 Discrepancy in Orientation Averages

When comparing scattering efficiencies at individual incident directions, i.e. at ex-
actly the same ID, the results from MIDAS and DDSCAT have always shown fairly good
agreement. However, we have noticed large differences between MIDAS and DDSCAT
when it comes to orientation-averaged scattering quantities, particularly for aggregates
with large size parameters, pointing to performance disparity in the different quadrature
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schemes used by the methods. Figure 4 shows the relative difference observed between MI-
DAS and DDSCAT solutions in the extinction and backscatter efficiencies, Qey ¢ and Qprs,
and asymmetry parameter, g, at 12 frequencies equally spaced from 15 to 200 GHz, for a
complex-shaped snow particle with an equivalent volume sphere diameter of D, = 3.22 mm,
a maximum dimension of D,,,, = 11.45 mm, and a particle size parameter of z. = 6.74 at
the highest considered frequency f = 200 GHz.

Recalling the definition of the relative difference Er, i.e. Equation 4, Figure 4a shows
that the results are in good agreement at a given orientation, but a difference up to 18%
arises for Qurs when averaged over 180 IDs for DDSCAT (Ap, = 18 and A, = 10) and 231
IDs for MIDAS (Ap, = 11 and Ap, = 21) (Figure 4b). Similar differences (not shown here)
are observed for Qs in results obtained from MIDAS with A7p = 703 and 2701 incident
directions, using uniform step of 10° and 5°, respectively in both 6; and ¢;.

Tt is worth noting that a good agreement is maintained between MIDAS and DDSCAT
for the averaged extinction coefficient ), and asymmetry parameter g, which confirms the
higher sensitivity of Qs to orientation. The exorbitant computational cost associated with
DDSCAT for a large number of target orientations prohibits us from calculating the SSPs
using a larger A7p at all 12 frequencies, on the 64 GB/16 CPU/8 day wall-time server that
was used by the time of the previous study (Fenni et al., 2018)). Indeed, as can be seen in
Figure 4b, re-drawing Figure 17b of Fenni et al. (2018), no result is plotted at f = 200 GHz
because this particular DDSCAT run exceeded the 8-day (i.e. 192-hour) wall-time quota
allocated to us on that previous server without completing.

Given the importance of Qs in radar retrieval algorithms, it is crucial to understand
the source of the observed difference in averaged backscatter efficiency, @, and to verify
that this difference is not due to an error in our MIDAS EM solution. To do so, we have run
DDSCAT at exactly the same orientations as those used in MIDAS with the aq configuration.
Using the same aq quadrature scheme helps isolate the contribution by the EM scattering
solution method to the observed difference.

Figure 5 shows a comparison of Qpxs obtained from MIDAS and DDSCAT as functions
of 8; and ¢; at f = 50 and 133.3 GHz, where the orientation-averaged Qpis values from
MIDAS and DDSCAT show the greatest discrepancies (Figure 4b). With a relative difference
no greater than 7% in absolute value, we can tell that the observed discrepancy is not likely
caused by the EM scattering solution, but by the difference in the quadrature scheme. This
is verified in Figure 6 which shows Qs at 50 GHz for the MIDAS aq with 231 IDs and
DDSCAT dn with 180 IDs, resulting in the large difference in @, seen in Figure 4b. A
new DDSCAT simulation using dn with 231 IDs by specifying Ap, = 11 and Ap, = 21 is
also shown (3"¢ row of Figure 6). Thus, both MIDAS and DDSCAT use the same number
of quadrature nodes, i.e. Afp = 231, in Figure 5 and in the 1% and 3"¢ rows of Figure 6,
whereas a smaller number, i.e. A7p = 180, is used with DDSCAT in the 2"? row of Figure
6. However, while the same quadrature scheme, i.e. aq, is used in Figure 5, different ones,
i.e. aq and dn, are used for MIDAS and DDSCAT, respectively, in Figure 6. One can see
that using an equal number and comparable distribution of nodes improves the agreement
in Qs between the DDSCAT dn and MIDAS aq quadrature schemes.

To summarize, these observations demonstrate the importance of the numerical inte-
gration process, namely the quadrature scheme and the number of quadrature nodes, to
ensure the accuracy and convergence of the orientation-averaged SSPs, especially for Q..
which will be the focus of the rest of this paper. Given that computational cost increases
with the number of nodes (i.e. orientations), especially for DDA methods, more efficient
quadrature schemes that can achieve similar accuracy as aq or dn but with fewer nodes are
thus desirable. We introduce two such efficient schemes, Lebedev quadrature and Spherical
Design, in the next section.
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3.5 Lebedev quadrature and Spherical Design

The selection of Lebedev (Ib) quadrature and Spherical Design (sd) schemes for eval-
uation in this paper is primarily motivated by the comparative study of Beentjes (2015),
which assesses several quadrature schemes for integration over the surface of a unit sphere
in ®3. Figures 4, 5, and 6 of Beentjes (2005) show that the 1b and sd schemes require fewer
quadrature nodes, compared to the Gaussian Product and Monte Carlo schemes, to achieve
integration approximation up to machine precision when applied to a set of test functions
with different levels of smoothness. Beentjes (2015) concludes that sd and 1b quadratures
perform the best under general circumstances.

The Lebedev quadrature grid nodes are constructed to be invariant under the octahedral
rotation group. The corresponding set of integration weights are determined by enforcing
the exact integration of polynomials (i.e. spherical harmonics) up to a given degree, leading
to a sequence of increasingly dense grids analogous to the one-dimensional Gauss-Legendre
scheme (Burkardt, 2010b).

A spherical design, on the other hand, is a set of A nodes on the d-dimensional sphere
(d-sphere), S, such that the average of any polynomial of degree t or less equals the
average value of the polynomial on the whole sphere. In our case d = 2, i.e. S? C R>.
Such a set is often called a spherical t-design to indicated the value of ¢, i.e. the degree
of the polynomial. It gives thus a constellation of A’ nodes on the surface of a unit sphere
with equal weights (i.e. 1/A0) for use in numerical integration (Burkardt, 2010a; Hardin &
Sloane, 1996; R. Womersley, 2017; R. S. Womersley, 2018)

Figure 7 shows examples of the distributions of quadrature nodes for a spherical design
(sd; specifically, spherical 21-design) and a Lebedev quadrature (lb) of degree 27. See
Beentjes (2015) for detailed mathematical definition and analysis of these two quadrature
schemes. In our study, we use the pre-computed numerical values of quadrature nodes
and weights from Burkardt (2010b) for Lebedev quadrature. For spherical design, we use
the datasets in Burkardt (2010a) derived from Hardin & Sloane (1996) up to a polynomial
of degree 21, i.e. p (or t) = 21, corresponding to Al = 240, beyond which we use point
distributions in Womersley (2017) for up to p = 325, corresponding to Al = 52978.

4 Application to snow aggregates : convergence and calculation cost

Here, we study the impact of the different quadratures described in the previous section,
namely dn with DDSCAT and aq, sd, and Ib with MIDAS, on both the speed of convergence
for orientation-averaged backscatter efficiency Q. and the computational cost of its calcu-
lation, for a large variety of particle geometries and electrical sizes at Ku, Ka, and W bands
(13.6, 35.6, and 94 GHz, respectively). The complex refractive indices of ice, determined by
interpolation from the tables of Warren and Brandt (Warren, 1984) given at a temperature
of 266 K, were 1.7861 + ¢ 3.116 10~%, 1.7861 + 4 7.987 10~* and 1.7863 + ¢ 2.100 10~3 for
the Ku, Ka, and W bands, respectively.

For the remainder of the paper, we define relative difference in Q,,, with respect to
a reference value, at which we assert that the @, has achieved convergence, i.e. reached
its stable value of Q... This reference @, corresponds to the value achieved using the
aq scheme with a number of IDs sufficiently large (more than 7000 IDs), ensuring absolute
convergence. We consider the absolute convergence value, and thus the reference Q.
validated when all aq, sd and 1b schemes, used with sufficiently large \;p, converge within
machine precision.

Following Equation 4, the relative difference is thus calculated as Er(%) = 100 x
(Quis (NiD) — Qois )/ Qpis» Which describes how far a given @y, is from @, with any of the
used integration schemes, at A7p. Obtaining the accurate Q,, with certainty for complex-
shaped particles is made possible by the high computational efficiency of MIDAS. We were
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able to calculate Q,,, for up to 7800 IDs for various complex-shaped particles, in a few hours
each, on a single 48-CPUs computing node (see section 3.1), while the computational cost
of DDA-based codes had limited the number of target orientations to smaller numbers in
previous studies. For example, the maximum number of relevant orientations (not involving
polarization rotation) used with ADDA in Um and MaFarquhar (2013) was 33 in 6 and 32
in 7 totaling 1056 orientations, where, as mentioned in 3.1, the 8 and ~ angles in ADDA
are equivalent to, respectively, § and 6 angles in DDSCAT.

4.1 Cylinder of Varying Length

We calculated @, using MIDAS and DDSCAT at Ka band (f = 35.75 GHz or A =
8.4mm) of a cylinder with a radius of r. = 0.1 mm and length L varying from 4.2 to
84 mm corresponding to A/2 to 10\. Figure 8 shows the variation of Quks as a function
of L depending on the code used (MIDAS or DDSCAT), the quadrature scheme, and the
number of incident directions at quadrature nodes used to calculate the averaged scattering
quantities. In the figure legend, sd1 refers to the nodes distribution in Burkardt (2010)
derived from Hardin & Sloane (1996), whereas sd2 refers to the dataset from Womersley
(2017) based on the work described in Womersley (2018), as detailed in section 3.5. For the
rest of the paper, sd refers to sd2.

First, as expected, Fig 8 shows that increasing the electrical size of the cylinder results
in an increase in the number of nodes required to achieve the convergence, regardless of
the quadrature scheme used. Second, @, clearly converge faster with small numbers of
quadrature nodes for sd and 1b then for aq or dn (the latter used by DDSCAT only). It is
evident that all sd1, sd2, and lb schemes outperform the aq and dn schemes, as we increase
the length of the cylinder. Knowing that Q,,, converged at L = 10\ = 84 mm with 5400
and 5551 IDs for DDSCAT dn and MIDAS aq respectively, we can see that the sd and Ib
schemes require significantly smaller numbers of quadrature nodes to converge to the same
Qurs value. For example, as convergence is reached using DDSCAT with 5400 IDs and
MIDAS with 5551 IDs, MIDAS using sd2 with just A7p = 482 achieves Q. within 5% at
L = 10A. In stark contrast, both MIDAS using aq and DDSCAT using dn with A7p = 703
show relative differences of 244% and 239%, respectively. Similar behavior is observed when
the cylinder is rotated around the vertical axis Z (not shown), which confirms the efficiency
of the sd and lb schemes regardless of the orientation of the particle.

4.2 Complex Ice Hydrometeors

We compare next the efficacy of the quadrature schemes for orientation-averaged backscat-
ter efficiency (Q,,) using complex, realistic snow aggregates. Table 1 lists a set of 10 snow
aggregates selected from the OpenSSP database for this study. From left to right, columns
1 and 2 list aggregate id number and images of the particles rendered from two perspec-
tives. The next two, i.e. columns 3 and 4, list respectively size parameter, x., and electrical
size, x4, as described in section 3.1. The following three columns list the numbers of IDs
required for @, to achieve relative convergence at W band for the aq, sd, and 1b quadra-
tures, respectively. The last column lists, as a reference, the theoretical number of nodes,
Agn, according to Yaghjian (1996), required to accurately sample the fields scattered by the
particle. For spherical scanning, A, is derived from equal sample spacing in both ¢ and 6,
ie. 60 = d¢ = As/(2.2a + As/2), where a = Dina./2 is the radius of the minimum sphere
enclosing the particle and A\; = \/ \/a is the wavelength inside the scatterer with €. being
the real part of its relative permittivity to the medium in which the scatter is embedded
(Yaghjian, 1996). Observing the duality between the radiated field from and the incoming
field towards a minimum sphere, it is logical to argue for the same relation in estimating
the theoretical number of incident plane waves needed to accurately represent the scattered
field for averaging Qpgs.
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Figure 9 shows, for the snow aggregates in Table 1, except a0012, the convergence
of Q. at W band as a function of the number of incident directions for aq, sd, and
b quadrature schemes. @, is assumed to have achieved relative convergence when the
relative difference with respect to the reference is definitively below 1%. Dashed black lines
in each panel indicates £1% of the converged Q,,. To ensure absolute convergence, i.e.
Qurs» We have used 7800 IDs for aq and 5000 IDs for sd and Ib to compute Q,y, for all the
particles listed in Table 1. Almost all of the plots in Figure 9, except for a0012, have been
truncated at 2000 IDs for clarity. It can be deduced from Table 1 and Figure 9, by the
lack of correlation between . or x4 and Noq, Nsa, Or Njp, that the rate of convergence does
not only depend on the size of the particle but also likely on the anisotropy of its geometry.
We, however, have yet to identify a general and reliable rule for the impact of target shape
on A7p needed for @y, to converge. But, it is safe to conclude that sd and Ib schemes need
far fewer numbers of IDs for @, of the particles in Table 1 to converge within 1.0% of the
references.

In Figures 10-13, we examine more closely the interesting convergence pattern of Q.
for snow aggregate a0012, which takes the highest AL, for Qs to converge, among the 10
particles of Table 1. Snow aggregate a0012 is composed of N = 46953 cells/dipoles of size
Se = 50 pm, with directional maximum dimensions, along the 3 Cartesian axes, of (D,, D,,
D.)=(7.0, 8.6, 10.7) mm. Figure 10 shows the convergence trends of the relative difference
(%) in Q. calculated using DDSCAT and MIDAS with the aq, sd an Ib schemes. The
relative difference is evaluated with respect to Q,,, computed using MIDAS with the aq,
sd and Ib schemes for A7p > 5000. First, it is clear that @, converges faster for the lower
frequencies for all quadrature schemes, confirming the impact of the electrical size of the
snow aggregate on the number of incident directions required to reach @Q,;,. The absolute
value of the relative difference in @, falls below 1% for MIDAS and stabilizes at 1.3% for
DDSCAT, with fewer than 200 IDs, at Ku band for all the quadrature schemes considered.
However, Q,,, with MIDAS using aq and DDSCAT using dn converge at a much slower
rate at W band.

Figure 10 shows that the native scheme used by DDSCAT has the most difficulty
to achieve convergence. This observation is confirmed in Table 2, which summarizes the
variation of the relative difference in Q,;, with A7p for solution methods and quadrature
schemes used, as well as the corresponding computational cost. DDSCAT with dn requires
more than 7000 IDs to push the relative difference below 5% while only 1891 IDs are needed
by MIDAS with aq for a similar performance. In a stark contrast, MIDAS with either sd or
Ib reduces the relative difference to below 1% for fewer than 500 IDs.

Figures 11-13 provide further insight on the convergence behavior, by showing Qpxs
value for aggregate a0012 at W band (f = 94 GHz) as a function of (6;, ¢;) with a rainbow
color bar in logarithmic scale, visualized on a 2D heat map and a 3D sphere, for four (4)
cases, i.e. DDSCAT with dn (Figure 11), MIDAS with aq (Figure 12), 1b (Figure 13),
and sd (Figure 14). For comparison, results are shown for three (3) progressively greater
numbers of IDs (Afp) in each case. First, one can see that the shape of a0012 exhibits a
high degree of anisotropy that causes a particular concentration of large Qs at the sphere’s
poles, where the incident direction is perpendicular to the largest pristine surface. The very
slow rate of convergence observed for DDSCAT, in comparison to MIDAS, can be then
explained by the fact that DDSCAT dn under-samples Qs near the poles of the sphere
(Note the white bands near the poles on the 2D heat maps in Figure 11) where the essential
of Qs variations occur for this particular geometry. This is due to the sampling in cos6;
for DDSCAT dn as opposed to 6; for MIDAS aq. This therefore means that the convergence
speed of Q,,, for MIDAS with aq and DDSCAT with dn, is not only impacted by the
complex geometry of the realistic snow aggregate, but also by orientation sampling, if there
is significant anisotropy. On the other hand, 1b and sd schemes perform well with much
fewer quadrature nodes irrespective of the complex geometry or orientation of the snow
aggregate (see Figures 13 and 14).
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Another practical point that differentiates the Ib and sd schemes from the classical aq
or dn schemes, is that one needs to determine, for Ib and sd, only one parameter, namely the
number of nodes, while for aq and dn there are two parameters to be determined, namely
Np, and Ny, , which complicates the convergence study. For example, in Um & McFarquhar
(2013), 25 different combinations were used for angles 3 and v with A = 27+1 and A}, = 2%,
where both j and k vary independently from 1 to 5, in order to study the effects of (j, k)
on the convergence of averaged single-scattering properties. The conclusion of the authors
is that (j, k) does not have a clear impact on the convergence. However, the study of Um &
McFarquhar (2013) considers only four (4) geometries and only one (1) of which is of a non-
convex shape that can be considered as "complex". Moreover, even this only non-convex
geometry is not appreciably anisotropic.

As for computational expense, because DDSCAT is an ISB-DDA code, requiring a
large A7p to achieve convergence in orientation averages, it incurs a large and sometimes
prohibitive cost, especially with the default dn scheme for targets of large electrical size.
Indeed, combining 1) the iterative solver’s limitations with multiple excitations and 2) the
low-order of the simple dn scheme used by DDSCAT to compute Q,,, particularly for
complex, highly anisotropic geometries, makes it very computationally expensive to reach
convergence. MIDAS, being a DSB solution, deals much better with problems involving
multiple excitations, and rewards us with a significant reduction in CPU time, even for with
the similarly low-order aq.

Furthermore, we recall that, for DDSCAT, the primary determinant for computation
cost is not the number of dipoles, n, but the number of cells N in the grid system that
encloses the target. DDSCAT and ISB-DDA methods in general are thus computationally
inefficient for highly porous or sparse particles, for which a large number (N - n) of trivial
dipoles, must be included to build up a full volume enclosing the particle (Yurkin & Hoekstra,
2007). Therefore, the particle shapes that are more likely to require large numbers of incident
directions for Q. to converge are also more computationally expensive for DDSCAT per
orientation. The computational cost of MIDAS, however, depends only on the number of
non-trivial cells (n), which explains the substantial reduction in CPU time compared to
DDSCAT, as seen in Table 2. The use of a high-order quadrature, i.e. 1b or sd, reduces the
time to solution further, by reducing the number of incident directions (A;p) required.

It is worth noting that even when DDSCAT engages more computational resources, it
does not necessarily outperform MIDAS in time to solution. The simulations involving 4186
and 7125 IDs in Table 2 were run using the pleasingly parallel MPT version of DDSCAT on
10 computing nodes with 16 MPI jobs each, totaling 160 MPI jobs. The two simulations
require 40 and 235 min respectively, against 78 min for MIDAS ran with 7381 ID on one
single 48-CPU computing node (not shown in Table 2). Note also that Table 2 shows only
the computing time with the OpenMP versions of MIDAS and DDSCAT run on a one single
computing node.

Finally, to confirm the general superiority in convergence speed and accuracy of the
high-order Ib and sd schemes over the simple aq scheme, we selected 566 larger snow aggre-
gates from the OpenSSP database to calculate their @, using MIDAS with 2701 and 496
IDs for aq, 434 IDs for Ib and 482 IDs for sd. We compare 1) the relative difference in Q.
with respect to that obtained with the reference simulation (i.e., aq with Afp = 2701) and
2) the speeds to convergence, when using substantially smaller numbers for A7p with the aq,
sd and 1b. We believe that @, calculated with aq and 2701 IDs legitimately represents the
relative convergence as we know that it mostly doesn’t vary more than 1% when we increase
Agp to 5329 IDs (not shown here). The D,,q, and D, of the 566 snow aggregates vary,
respectively, from 10 to 15 mm and from 2.2 to 3.5 mm, whereas the number of non-trivial
cells n comprising them varies from 43444 and 135780. Figure 15 compares the relative
difference in Q,,, with respect to aq with 2701 IDs, when using aq with 496 IDs and 1b
with 434 IDs. Figure 16 shows the same comparison between aq with 496 IDs and sd with
482 IDs. The two figures clearly confirm that the 1b and sd schemes require fewer incident
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directions than the simple aq scheme to achieve convergence, independent of the shape or
size of the snow aggregate. Using comparable low number of incident directions (around
450), the 1b and sd schemes estimate @, with a much smaller relative difference close and
concentrated around 0% than the aq scheme. Furthermore, the lb and sd schemes show
exactly the same relative difference with respect to aq with 2701 IDs, for the Ku and Ka
bands, suggesting that absolute convergence has been secured, at these lower frequencies,
for Ib with 434 IDs and sd with 482 IDs, as the two quadratures result in the same Q,,, for
all the considered particles.

For the superiority of Ib and sd in convergence speed, Figure 17 shows the reduction in
CPU time against running MIDAS using aq with 2701 IDs, particularly for the calculation
of the scattered field, E°, for which the reduction is consistently an order of magnitude.
The reduction for the total filed, E, is not as much because the time needed to compute
E inside the scatterer depends more on the numerical size, i.e. n, of the particle and the
size of the compressed matrix Z°. As the electrical size of the particle increases with the
simulation frequency (from left to right), the compression rate achieved by MIDAS decreases
resulting in larger Z°, and the difference of A p starts to impact the time needed to solve the
compressed system of linear equations Za = E™“°. On the other hand, the time required
to compute the scattered field E® is directly proportional to the number of incident and
scattered directions used to compute E and the resulting E°. Therefore the difference in
A7 p has a straightforward impact on the computing time of E® independent of the frequency
or electrical size of the aggregate. The difference between the first two rows of plots and
the third in Figure 17, i.e. as functions of n or x. versus as function of x4, confirms that
the computational cost of CBFM is mostly determined by the numerical size, i.e. n, of
the snow aggregate and, contrary to DDSCAT, is not significantly impacted by its physical
extent, i.e. the enclosing rectangular grid system. Thus, we observe a clearer link between
the computing time and the parameters (n, z.) than between the computing time and z4.

By reducing the number of incident directions required to achieve convergence, indepen-
dent of the complexity in the shapes of our realistic snow aggregates, the Ib and sd schemes
significantly enhance the computational efficiency of MIDAS and enable us to generate
more accurate orientation-averaged SSPs for realistic hydrometeors with more reasonable
computational cost.

5 Conclusions

The constraint of most existing deterministic radiative transfer models (RTMs) to
scattering media with axial or azimuthal symmetry necessitates the use of orientationally-
averaged single-scattering properties (SSPs) obtained from complex hydrometeors without
such symmetries. Thus, the scattering problem must be solved for multiple orientations
(or, equivalently, for multiple incident wave directions) for each hydrometeor. The averag-
ing of the orientations, which involves integration over the orientation angles (or incident
directions), is then accomplished computationally with numerical quadrature schemes.

The most popular electromagnetic (EM) scattering solution approach for targets of
arbitrary shapes has thus far been the iterative-solver-based discrete dipole approximation
(ISB-DDA), due to its versatility to complex target geometry and relative computational
efficiency over the other approaches. The widely used DDSCAT and ADDA codes are
testaments to the success of this approach. However, these ISB-DDA implementations
must solve the same scattering problem for each orientation separately. As the required
number of orientations increases, their advantage in computational efficiency diminishes.
Moreover, the default quadrature schemes offered by these two methods are of rather low
order, thus requiring more orientations than higher-order schemes for the orientation average
to converge. A user who wishes to use a non-default quadrature scheme must expend
considerable effort in configuring the execution of these methods and in organizing the
results.
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In this paper, we demonstrate that, in contrast with DDSCAT, the advantages of the
recently developed MIDAS (Fenni et al., 2018) 1) in solving the EM scattering problem
for targets of arbitrary shapes and 2) its inclusion of higher-order quadrature schemes for
orientation average. Since MIDAS, based on the Method of Moments (MoM) and using the
Characteristic Basis Function Method (CBFM), is a direct-solver-based (DSB) code, it is
much more efficient in dealing with multiple incident directions, which constitutes the right-
hand side (RHS) of the EM scattering equation Z°ca = E”“¢ in the form of multicolumned
vectors with each vector specifying an incident direction. The compressed system of linear
equations is solved once for all considered incident directions. That is, MIDAS does not need
to repeatedly solve the same EM scattering problem for each incident direction. Moreover,
the use of the CBFM and the associated domain decomposition approach, resulting in com-
pressing the original large MoM matrix, increases significantly the computational efficiency
of the MoM-based model. In practice (section 4), MIDAS has demonstrated per-orientation
computation superiority over DDSCAT.

Combined with higher-order quadrature schemes, such as Lebedev (Ib) quadrature and
Spherical Design (sd), the computational advantage of MIDAS is even more apparent, with
several orders of magnitude faster time to solution than DDSCAT using its default quadra-
ture. The comprehensive superiority of MIDAS over ISA-DDA methods in accuracy and
time to solution makes it a compelling method for solving the EM scattering problem involv-
ing complexly shaped and mixed-phase hydrometeors in bands with high refractive-index
contrast.
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Figure 1: Examples of aggregate snow particles from Kuo et al. (2016). Pristine crys-
tal types are simulated using the Snowfake algorithm (Gravner & Griffeath, 2009), then
aggregation simulations are performed to create the aggregate snow particles

Incident

/ wave

Figure 2: For MIDAS, a snow aggregate is discretized into n cubic cells and divided into
M CBFM blocks (different colors). To compute orientation-averaged SSPs, the orientation
of the particle is fixed and the direction of the incident wave is described by (6;, ¢;).
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Figure 3: Backscatter efficiency Qprs of a cylinder of length L = 10\, as function of incident
direction (6;,¢;), calculated for MIDAS (left) with an adaptive quadrature (aq) scheme with
Ny, =19 and Ny, = 37 and for DDSCAT (right) with it native quadrature (dn) as function
of target orientation-equivalent incident direction with Ny, = 19 and Ny, = 37. One can
see that, unlike aq, the sampling in cos 8 by DDSCAT dn does not over-sample the poles.
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and DDSCAT, as function of the cylinder length L, depending on the used quadrature and
aq, Ib and sd, used with MIDAS, refers respectively to adaptive

the number of nodes.

quadrature, Lebedev quadrature and spherical designs.
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Table 1: The number of incident directions Ajq, NGy and Agq needed for @, to converge
when computed, at W band, with MIDAS and respectively the adaptive quadrature, Lebedev
quadrature and spherical designs schemes, depending on the type, geometry and electrical
size of the snow aggregate, and the theoretical number of nodes Aj; needed to sample the
fields radiated by the particle, as function of the electrical size of the aggregate. We assume
that Qprs converged if the relative difference with regard to the reference goes below 1%
(see example in Figure 10). We recall that z. and x4 are the size parameters corresponding
to De and Dy, respectively, the equivalent volume diameter and maximum diameter of
the particle.

| type | geometry | ze | wa || Nag | Mea | A | Nn |
a0027 2.20 | 10.04 496 | 482 | 350 | 1012
a0012 2.20 | 10.53 || 2701 | 98 | 434 | 1104
a0026 2.59 | 11.02 703 | 222 | 434 | 1200
a0050 2.70 | 8.07 496 | 314 | 230 | 684
a0017 2.75 | 11.12 1891 | 482 | 350 | 1200
a0022 2.78 | 11.62 496 | 482 | 434 | 1300
a0058 2.79 | 11.76 703 | 482 | 434 | 1326
a0045 2.80 | 11.57 703 | 314 | 350 | 1300
a0009 3.06 | 10.53 703 | 222 | 350 | 1104
a0006 3.18 | 11.27 496 | 482 | 230 | 1225
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Figure 10: Shape and variations of Q,;, of the a0012-type particle in Table 1, computed
with MIDAS and DDSCAT at Ku, Ka and W bands , depending on the numerical integration
scheme used with MIDAS and on the number of incident directions Ajp. The geometry of
a0012 is composed of N = 46953 cells, divided into 17 CBFM blocks (different colors), for

the MIDAS calculations.

Table 2: Relative difference (Er) and computation time in minutes, when using MIDAS
and DDSCAT with various quadrature schemes at W band, as function of the number of
incident directions (A7p). The wall time mentioned below is equal to 12 days.

DDSCAT MIDAS
dn aq | 1b | sd
Nip | 2701 | 4186 | 7125 || 703 | 1891 | 2701 || 350 | 590 || 482 | 614 |
Er (%) || 250 |-120| 52 || -81| -2.1 | -1.3 || -2.43 | 0.4 || 0.86 | 0.43 |

time (min) || 12563 | > walltime | 3 | 8 | 15 | 3.3 | 34| 26 | 2.8 |
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Figure 11: Backscatter efficiency Qprs of a0012, using DDSCAT at f = 94 GHz, as function
of the incident wave direction (6;, ¢;) equivalent to the target orientation (6, 8). (top) 2D
scatter plot (bottom) 3D visualization showing the impact of the particle shape on Qps
over the sphere surface, along with the incident direction k; defined by (6;, ¢;). From left
to right : Qprs is calculated for 325, 1891 and 2701 IDs resulting in a relative difference E,.
(%) in Qs of —125.3%, 34.03% and 25% respectively.
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Figure 12: Backscatter efficiency Qpis of a0012, using MIDAS with the aq scheme at f = 94
GHz, as function of the incident wave direction (60;, ¢;). (top) 2D scatter plot (bottom) 3D
visualization showing the impact of the particle shape on Qs over the sphere surface, along
with the incident direction k; defined by (6;, ¢;). From left to right : Qs is calculated for
325, 703 and 1891 IDs resulting in a relative difference E, (%) in Q. of —23.1%, —8.1%
and —2.1% respectively.
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Figure 13: Backscatter efficiency Qprs of a0012, using MIDAS with the Ib scheme at f = 94
GHz, as function of the incident wave direction (60;, ¢;). (top) 2D scatter plot (bottom) 3D
visualization showing the impact of the particle shape on Qs over the sphere surface, along
with the incident direction k; defined by (6;, ¢;). From left to right : Qs is calculated for
350, 434 and 590 IDs resulting in a relative difference E, (%) in Q,, of —2.43%, 0.02% and
0.4% respectively..
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Figure 14: Backscatter efficiency Qprs of a0012, using MIDAS with the sd scheme at f = 94
GHz, as function of the incident wave direction (60;, ¢;). (top) 2D scatter plot (bottom) 3D
visualization showing the impact of the particle shape on Qs over the sphere surface, along
with the incident direction k; defined by (6;, ¢;). From left to right : Qs is calculated for
314, 482 and 614 IDs resulting in a relative difference E, (%) in @, of 0.64%, 0.86% and
0.43% respectively.
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Figure 15: Variations of the relative difference in Q,, using MIDAS, with respect Q, (2701
IDs), assumed to represent convergence, as function of 4 (middle) and x. (right) when Q.
is calculated at Ku, Ka and W bands using aq with 496 IDs and 1b with 434 IDs. The first
column compares the distribution of Er (%) for aq with 496 IDs and 1b with 434 IDs and
the first row shows the distribution of x4 and x. of the aggregates.
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Figure 16: Variations of the relative difference in Q,, using MIDAS, with respect Q. (2701
IDs), assumed to represent convergence, as function of x4 (middle) and . (right) when Q4
is calculated at Ku, Ka and W bands using aq with 496 IDs and sd with 482 IDs. The first
column compares the distribution of Er (%) for aq with 496 IDs and sd with 482 IDs and
the first row shows the distribution of x4 and x. of the aggregates.
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