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Abstract

We evaluate several high-order quadrature schemes for accuracy and efficacy in obtaining orientation-averaged single-scattering

properties (SSPs). We use the recently developed, highly efficient MIDAS to perform electromagnetic scattering calculations

to compare and evaluate the gain in efficiency from these quadrature schemes. MIDAS is shown to be superior to DDSCAT, a

popular discrete dipole approximation (DDA) method. This study is motivated by the fact that quality physical precipitation

retrievals rely on using accurate orientation-averaged SSPs derived from realistic hydrometeors as input to radiative transfer

simulations. The DDA has been a popular choice for single-scattering calculations, due to its versatility with respect to target

geometry. However, being iterative-solver-based (ISB), the most used DDA codes, e.g. DDSCAT and ADDA, must solve

the scattering problem for each orientation of the target separately. As the size parameter and geometric anisotropy of the

hydrometeor increase, the number of orientations needed to obtain accurate orientation-averages can increase drastically and so

does the computation cost incurred by the ISB-DDA methods. MIDAS is a Direct-Solver-Based (DSB) code, using Method of

Moments (MoM) instead of DDA, its decomposition of the original large matrix with a high rank into multiple more manageable

smaller matrices of lower ranks makes it much more computationally efficient and stable while maintaining excellent accuracy.

In addition, direct solvers consider all requested orientations at once, giving MIDAS further advantage over popular ISB-DDA

methods. Combined with high-order quadrature for orientation average, MIDAS can be orders of magnitude more efficient in

obtaining RTM-ready SSPs than existing ISB-DDA methods.
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Abstract22

We evaluate several high-order quadrature schemes for accuracy and efficacy in obtain-23

ing orientation-averaged single-scattering properties (SSPs). We use the recently developed,24

highly efficient MIDAS to perform electromagnetic scattering calculations to compare and25

evaluate the gain in efficiency from these quadrature schemes. MIDAS is shown to be su-26

perior to DDSCAT, a popular discrete dipole approximation (DDA) method. This study is27

motivated by the fact that quality physical precipitation retrievals rely on using accurate28

orientation-averaged SSPs derived from realistic hydrometeors as input to radiative transfer29

simulations. The DDA has been a popular choice for single-scattering calculations, due to30

its versatility with respect to target geometry. However, being iterative-solver-based (ISB),31

the most used DDA codes, e.g. DDSCAT and ADDA, must solve the scattering problem for32

each orientation of the target separately. As the size parameter and geometric anisotropy of33

the hydrometeor increase, the number of orientations needed to obtain accurate orientation-34

averages can increase drastically and so does the computation cost incurred by the ISB-DDA35

methods. MIDAS is a Direct-Solver-Based (DSB) code, using Method of Moments (MoM)36

instead of DDA, its decomposition of the original large matrix with a high rank into multi-37

ple more manageable smaller matrices of lower ranks makes it much more computationally38

efficient and stable while maintaining excellent accuracy. In addition, direct solvers consider39

all requested orientations at once, giving MIDAS further advantage over popular ISB-DDA40

methods. Combined with high-order quadrature for orientation average, MIDAS can be41

orders of magnitude more efficient in obtaining RTM-ready SSPs than existing ISB-DDA42

methods.43

1 Introduction44

Cloud and precipitation warrant extensive and continuous survey because they funda-45

mentally impact the water and energy cycles of our planet, exerting enormous influences on46

its weather and climate. Spaceborne remote sensing offers a cost-effective means to ensure47

adequate spatiotemporal observation coverage of these phenomena over unpopulated areas48

such as the oceans. Thus, the remote sensing of cloud and precipitation has been the focus49

of multiple NASA Earth Science missions in the past few decades, e.g. the Tropical Rain-50

fall Measuring Mission (TRMM) (Kummerow et al., 1998, 2000), the CloudSat-CALIPSO51

missions (Stephens et al., 2002, 2008), and the Global Precipitation Measurement (GPM)52

mission (Hou et al., 2014). Aiming to achieve a better understanding of their impacts,53

observations of cloud and precipitation from the active and passive microwave instruments54

of these missions have been extensively and routinely used for monitoring and analyzed to55

improve their quantitative physical estimates.56

The canonical approach in physical precipitation retrieval has been 1) using the single-57

scattering properties (SSPs) derived from ensembles of plausible hydrometeors in radiative58

transfer models (RTMs) for forward calculations to simulate instrument responses, and59

2) matching observed instrument responses with simulated ones to arrive at the retrieved60

particle ensemble properties (Ding et al., 2016; Kuo et al., 2016; Haddad et al., 2017).61

Consistent physical estimates so retrieved from these microwave observations thus require62

SSPs of realistic precipitation particles covering the natural ranges of morphologies and63

compositions (Haddad et al., 1997; Olson et al., 2016; Munchak, 2018; Kneifel et al., 2018).64

Therefore, the uncertainty resulting from the assumptions of particle geometries or from65

their SSP calculations constitutes an upstream source of retrieval uncertainties, which is66

likely to propagate through the retrieval process and cause irreconcilable errors downstream.67

Given the crucial importance of accurate SSPs from realistic hydrometeors to the suc-68

cess of precipitation retrieval algorithms, significant efforts have been devoted, and pro-69

gresses have been made, in the last couple decades to 1) the enhancement of the realism70

and complexity of particle models in both geometry and composition through simulated71

deposition growth, aggregation, riming and/or melting (Liu, 2008; Kuo et al., 2016; Lu et72
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al., 2016; Eriksson et al., 2018), and 2) the development of computationally efficient numer-73

ical methods to solve the electromagnetic (EM) scattering of hydrometeors with irregular74

shapes and heterogeneous compositions (Bohren & Singham, 1991; Mishchenko, 2014; Fenni75

et al., 2018). Due to their irregular, complex shapes and uneven distribution of composi-76

tions, these hydrometeors do not exhibit symmetries as spheres, spheroids, or other regular77

convex shapes do. Consequently, their SSPs are orientation-dependent and lack symmetry78

to exploit. Most of the existing microwave RTMs (Evans & Stephens, 1995; Deeter & Evans,79

1998) used to simulate instrument responses, however, are simplified to deal only with axially80

or azimuthally symmetric scattering medium. The hydrometeors are thus usually assumed81

to be uniformly randomly oriented. SSPs must therefore be obtained for each hydrometeor82

at a number of orientations, which are then averaged to produce axially symmetric SSPs.83

For solving the EM scattering of these complex hydrometeors, methods based on the84

discrete dipole approximation (DDA, aka coupled dipole approximation) (Draine & Flatau,85

1994; Yurkin & Hoekstra, 2007; Penttilä et al., 2007; Petty & Huang, 2010) have been86

more generally applicable than other methods, e.g. Mie and T-matrix, for their versatility87

with respect to the shapes of the scattering target. Thus, several DDA-based codes, e.g.88

DDSCAT (Draine & Flatau, 2013), ADDA (Yurkin & Hoekstra, 2011), have been used89

extensively to characterize scattering by arbitrarily shaped precipitation particles (Nowell90

et al., 2013; Ori et al., 2014; Johnson et al., 2015; Kuo et al., 2016; Eriksson et al., 2018).91

There are basically two solution strategies, hence two categories, of DDA implementa-92

tions, one based on iterative solvers (e.g. DDSCAT and ADDA) and the other on direct93

solvers (Petty & Huang, 2010). The direct-solver-based (DSB) DDA methods are more94

efficient when SSPs for multiple orientations are needed because, once the matrix has been95

inverted, it may be applied to incident waves from different directions (equivalent to vary-96

ing the orientation of the target while keeping the incident direction constant). However,97

as the mass of the hydrometeor increases, the number of dipoles and hence the rank of the98

matrix increases proportionally. Since the computation complexity of matrix inversion is99

approximately O(n3) where n is the number of dipoles, the computational cost increases100

drastically. Moreover, when its rank is high, the matrix is usually less numerically stable to101

invert.102

The iterative-solver-based (ISB) DDA methods, on the other hand, implemented with103

a Fast Fourier Transform (FFT) acceleration for matrix and vector multiplications in both104

DDSCAT and ADDA, have a computational complexity roughly proportional toO(N logN),105

where N is the number of grid cells, i.e. N = l × w × h with l, w, and h for, respectively,106

number of cells in length, width, and height of the rectangular grid system used to contain107

the dipoles of the hydrometeor, which is composed of n dipoles. In general, N > n but,108

for sparse hydrometeors like those studied here, N >> n. Then, each target orientation109

(incident wave direction) must be solved independently and separately. When different110

orientations are needed for the scattering target that lack symmetry, as is the case with111

most solid- and mixed-phase hydrometeors, the computation expense required to obtain112

solutions increases proportionally with the number of orientations. This is exactly the113

situation encountered in conducting forward radiative transfer simulations with the great114

majority of existing RTMs in support of retrieval algorithms for complex hydrometeors.115

The contrast of computation complexity, and thus expense, between DSB- and ISB-116

DDA methods can be illustrated with a simple example. If a hydrometeor requires only117

n = 200 dipoles to represent in a N = 1003 (= 100×100×100) bounding cubic grid system,118

i.e. a mere 2 × 10−4 fraction in volume, the DSB- and ISB-DDA methods would already119

have comparable computation complexity. Even the sparsest snowflakes, e.g. dendrites, are120

rarely that sparse. Therefore, except for very small and compact particles (few hundred121

dipoles), the ISB-DDA methods almost always have an advantage in computation efficiency122

over the DSB-DDA methods, even when the number of orientations has been taken into123

account. This is the primary reason that the ISB-DDA methods are more popular than the124

DSB-DDA methods.125
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A notable anomaly is the recently developed scattering model MIDAS, for MoM Integral-126

equation Decomposition for Arbitrarily-shaped Scatterers (formerly NESCoP in Fenni et al.127

2018), applying a domain-decomposition technique known as the characteristic basis func-128

tion method (CBFM) to the Method of Moments (MoM) in solving EM scattering. MIDAS129

belongs essentially to the DSB category, though not a DDA approach. After the application130

of a Method of Moment (MoM) with piece-wise constant basis functions, in the context of131

volume integration equation method (VIEM), the CBFM allows for the decomposition of132

the original matrix of size 3n × 3n into multiple smaller matrices of sizes 3ni × 3ni with133

n =
∑

i ni. Thus, the computation complexity is approximately reduced from O(n3) to134
∑

iO(n3

i ) (Fenni et al., 2016). As a DSB method, MIDAS also effectively solves all orienta-135

tion at the same time. With the computation efficiency gain from its matrix decomposition,136

we believe MIDAS offers an optimal balance of the strengths of both the DSB- and ISB-137

DDA methods, making it a compelling method for solving the EM scattering of complex138

hydrometeors.139

The number of orientations needed for the averaged SSPs to converge depends on140

the size of the hydrometeor (relative to the wavelength), on the anisotropy of its shape,141

and on the performance of the quadrature scheme used. Unfortunately, this dependence142

is not a simple linear relation and is difficult to determine a priori. One may need to143

experiment with the number of orientations to ensure convergence by gradually increasing144

it. We are therefore motivated to use the highly computationally efficient MIDAS to evaluate145

the efficacy of several quadrature schemes (Hardin & Sloane, 1996; Beentjes, 2015), namely146

adaptive quadrature (aq), Lebedev quadrature (lb), and spherical design (sd), in minimizing147

the number of orientations, and hence computation resource, needed for an acceptably148

accurate orientation average.149

Several past studies have discussed the convergence of the orientation-averaged SSPs150

of atmospheric particles and devoted attention to optimal averaging schemes (Okada, 2008;151

Penttilä & Lumme, 2011; Um & McFarquhar, 2013). Mainly because of the computational152

burden associated with the use of the DDA-based codes, none of these studies has involved153

an as wide and varied set of complex-shaped particles, nor as large numbers of target154

orientations as this study, which checks more extensively the convergence of averaged SSP155

and provides a more comprehensive comparison of the numerical average methods selected156

for evaluation.157

Thus, we benchmark MIDAS against a popular ISB-DDA method, i.e. DDSCAT, in our158

evaluation of the quadrature schemes. We detail the background of our study in section 2159

with introductions to and descriptions of relevant previous works, the hydrometeors used in160

this study, and the scattering codes used, i.e. DDSCAT and MIDAS. After introducing the161

notations and definitions used in this paper, we compare the differences between the existing162

and the new approaches with respect to orientation averages in section 3. We report next,163

in section 4, the impacts of quadrature schemes on the convergence of orientation-average164

and on computational cost, contrasting MIDAS with DDSCAT. Section 5 concludes and165

outlines our plans for MIDAS.166

2 Context of the study167

2.1 Snow particles168

We use a subset of the realistic solid-phase aggregate snow particles described in (Kuo169

et al., 2016) for this evaluative study. The aggregate snow particles are made of pristine170

ice crystals, which are numerically grown using the algorithm pioneered by Gravner and171

Griffeath (2009) nicknamed “Snowfake”. The pristine crystals of various sizes are then172

numerically aggregated to form the aggregate snow particles that span the range of particle173

shapes and sizes that may occur naturally. The resulting geometries and their SSPs, derived174

with DDSCAT, of 6646 aggregate particles have been cataloged in the database OpenSSP175
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and made available at ftp://gpmweb2.pps.eosdis.nasa.gov/pub/OpenSSP/. In Figure 1,176

we show three examples of aggregate snow particles from the OpenSSP database.177

The noteworthy feature of the particles from the OpenSSP database is their irregu-178

lar and complex geometry, which presents a significant challenge and an arduous test for179

the flexibility and computational efficiency of the scattering solution approaches and the180

numerical averaging schemes considered in this paper.181

2.2 The DDA-based code DDSCAT182

The discrete dipole approximation (DDA), also known as the coupled dipole approxi-183

mation, is a general, versatile method for computing EM scattering by particles of arbitrary184

geometry and dielectric composition (Purcell & Pennypacker, 1973). The principle of the185

DDA is to replace the scatterer by a set of point dipoles, often organized in a rectangular186

lattice of cubic cells, with a grid spacing that is small enough to adequately represent the ge-187

ometry of the particle and ensure a sufficiently accurate solution. Each dipole (j = 1, ..., N),188

located at position rj , has a polarization Pj = αjEj , where αj is the dipole polarizability189

and Ej is the electric field at rj due to the incident wave Einc
j plus the contribution of190

each of the other N − 1 dipoles (k 6= j). As detailed in Draine & Flatau (1994), solv-191

ing the scattering problem amounts to solving the system of 3N complex linear equations192
∑N

k=1
AjkPk = Einc

j , where Ajk is a 3 × 3 matrix, equal to α−1

j if j = k, and including193

retardation effects if j 6= k, so that −AjkPk represents the electric field at rj due to dipole194

Pk at location rk. Once this system is solved for all unknown polarizations Pj , j = 1, ..., N ,195

all the scattering quantities of interest (extinction, absorption, scattering, backscattering,196

asymmetry parameter) can be directly evaluated from the resultant polarizations (Draine,197

1988; Draine & Flatau, 1994; Yurkin & Hoekstra, 2007).198

Because of its flexibility and applicability to arbitrary geometries, DDA-based methods199

have been extensively used to calculate the SSPs of hydrometeors. The two most popular200

implementations of the DDA are the open-source codes DDSCAT (Draine & Flatau, 2013)201

and ADDA (formerly, Amsterdam DDA, Yurkin & Hoekstra, 2011). Penttilä et al. (2007)202

documented the accuracy and computational performance of four different implementations203

of DDA by comparing them to exact techniques. They conclude that 1) DDSCAT is the204

most accurate and 2) ADDA is the fastest and least memory consuming code, by virtue of205

its efficient MPI implementation, which parallelizes a single DDA computation by grouping206

together memories of multiple processors, and thus allowing the solutions of large particles.207

In this study, we use DDSCAT to test and validate the accuracy and computational208

performance of our MoM/CBFM-based model MIDAS by applying both to the calculation209

of orientation-averaged scattering efficiencies. The choice of using DDSCAT as a benchmark210

is justified by its high accuracy and being the second fastest code among those evaluated211

in Penttilä et al (2007). In addition, the MIDAS version evaluated here uses OpenMP for212

shared-memory parallelization similar to DDSCAT1. In such a configuration, the efficient213

MPI parallelization does not confer ADDA a significant advantage in speed over DDSCAT.214

The value of present study is signified by the shortcomings of the DDA-based codes when215

calculating orientation-averaged SSPs. These quantities are crucial to the well-functioning216

of the precipitation retrieval algorithms. In fact, a major drawback of the DDA is its high217

computational cost when the calculations are performed over a large number of particle218

orientations. Because of the use of iterative solvers, the computationally demanding linear219

equations must be solved repeatedly for each orientation. Yet it is well known that preference220

has been given to iterative methods, mainly because of the prohibitive memory cost of storing221

1 The claimed MPI capability of DDSCAT simply runs an independent calculation, e.g. a different ori-
entation, on each computer node of a cluster in a pleasingly parallel manner and does not group nodes’
memories together for distributed parallelism as ADDA is capable of.
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the entire matrix for the direct solvers (Yurkin & Hoekstra, 2007). In the next section, we222

will explain how the CBFM, a powerful direct-solver-based (DSB) domain-decomposition223

scheme, enables computationally efficient direct solution for multiple-excitation problems,224

and thus simulation of particles with large number of orientations, with lower computational225

resource requirements than DDSCAT.226

2.3 The MoM/CBFM-based scattering model MIDAS227

Fenni et al (2018) documents our development of MIDAS (formerly NESCoP), a nu-228

merically efficient 3D full-wave model for scattering from complex-shaped scatterers. The229

main concept in MIDAS is the use of a DSB domain-decomposition method in the context230

of the volume integral equation method (VIEM) to efficiently compute scattering properties231

of electrically and numerically large precipitation particles. First, the VIEM is linearized232

with the conventional Method of Moments (MoM), with piecewise constant basis functions.233

We refer readers to Fenni et al. (2018) for further details about the volume integration for-234

mulation and the application of the MoM. As a result we obtain a system of linear equations235

ZMoME = Einc, where ZMoM is the MoM matrix of size 3n× 3n, Einc is the incident field236

and E is the unknown total electrical field inside the particle. The MoM solution is essen-237

tially of the same form as in the DDA. "The only difference between the two approaches238

is that the integral equations give more mathematical insight into the approximation, thus239

pointing at ways to improve the method, while the model based on point dipoles is physically240

clearer" (Yurkin & Hoekstra, 2007).241

The next step is to apply the domain decomposition method known as the Characteristic242

Basis Function Method (CBFM) (Mittra & Du, 2008; Lucente et al., 2008). The basic idea of243

a domain decomposition method is to replace the numerically large global EM problem with244

smaller, more manageable independent local problems, while using appropriate coupling245

conditions between the sub-domains. The particular feature that distinguish the CBFM246

from other domain decomposition methods is its use of a direct solver to calculate the247

unknown electric field inside the global domain (Lucente et al., 2008). The CBFM operates248

by generating a new set of Si basis functions, named characteristic basis functions, for249

each sub-domain (i = 1 : M), whose purpose is to reduce, as much as possible, the overall250

numerical size (n) of the EM problem. A more efficient direct solver can then be implemented251

to solve the resulting compressed system of linear equations Zc
α = Einc,c. Zc is the resulting252

compressed matrix, of size K ×K, where K =
∑M

i=1
Si, and α, of size K × NID, contains253

the coefficients used to calculate the total electric fields inside the object, for NID incident254

directions, as a linear combination of the new sets of basic functions.255

The size-reduction of the initial MoM matrix is quantified through the compression rate256

CR, which is defined as the ratio between the original number of basis functions in the x,257

y and z directions and the number of post-CBFM unknowns : CR = 3n/K. The CBFM258

is thus much better adapted to the calculation of averaged scattering quantities, because259

the compressed system of linear equations is solved once for all incident directions , i.e.260

multiple excitations. Once the electric field inside the snow particle is known for the NID261

incident directions, the scattered field Es can be calculated at any scattering direction, and262

its computation cost at NSCA observation points scales as O(n×NID ×NSCA). Readers are263

referred to Fenni et al. (2018) for further details about MIDAS (previously NESCoP) and264

the CBFM process.265

Accuracy and computational efficiency of an OpenMP-parallelized version of MIDAS266

are validated against DDSCAT in Fenni et al. (2018) by applying it to calculating the267

SSPs of ice aggregates from the OpenSSP database (Kuo et al., 2016). We have observed268

good agreements between them, as long as the iterative solver used by DDSCAT does not269

encounter numerical convergence problems. We have also noticed that the performance of270

DDSCAT, in both accuracy and computational efficiency, strongly depends on the size of271

the rectangular container of the particle and its density of non-trivial dipoles, while MIDAS272
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offers a more constant level of accuracy and faster time to solution. We have expected273

the superior performance of MIDAS over DDSCAT in situations where a large number of274

orientations are requested. We, however, have pleasantly found that, even for solving the275

SSPs at one single orientation, MIDAS outperforms DDSCAT in computing time when the276

size parameter gets large (Fenni et al., 2018).277

3 Calculation of Orientation Averages278

3.1 Notations and Definitions279

The topic discussed here is evidently complex, for which similar or equivalent but
different terms may be used in the literature to refer to or describe various concepts. To
avoid confusion, we define the terms and associated concepts that will be consistently used
in the following discussions. In this paper, we use two quantities to describe the scatterer’s
"size" relative to the wavelength at which the scattering solution is sought. One involves
the maximum dimension, Dmax, which is the distance between the farthest two points
within the scatterer or, equivalently, the diameter of the smallest sphere that encloses (or
circumscribes) the scatter. We call it "electrical size" of the scatterer, and defined it as

xd = πDmax/λ (1)

Another is xe, using the equivalent volume sphere diameter De, i.e.

xe = πDe/λ (2)

Together, xd and xe give an indication of the sparsity of the scatterer. With the same280

xe, a scatterer with a larger xd is considered to be sparser than the one with a smaller xd,281

i.e. the latter is more compact.282

Due to the priority given to expediency, weather models and retrieval algorithms use283

simplified one-dimensional (1D) RTMs that can only handle media with axially (or az-284

imuthally) symmetric scattering, which SSPs derived from irregularly shaped particles do285

not possess. These particles are therefore assumed to be uniformly (i.e. non-preferentially)286

randomly oriented and their SSPs must be orientationally averaged to attain the required287

symmetry. Two questions thus arise: (1) how to determine the number of particle orienta-288

tions required for orientation-averaged SSPs to converge and (2) how to achieve convergence289

with a minimum number of orientations. The goal is to incur the lowest computational cost290

for any electrical size regardless of the complexity of particle geometry. The popular DDA291

codes provide no convenient answers to the above two questions because 1) their interfaces292

offers only the simplest sampling of the orientation angles for average and, more impor-293

tantly, 2) the computational cost becomes prohibitive with these codes for electrically large294

particles and a large number of orientations.295

DDSCAT and MIDAS use different but equivalent conventions for specifying scatterer
orientation. DDSCAT rotates the scatterer in θ and β as defined in its user guide, whereas
MIDAS reorients the direction of the incoming EM wave while holding the scatterer fixed in
space. The incident direction (ID) of MIDAS, (θi, φi), is related to the scatterer’s orientation
in DDSCAT, (θ, β), through the relations:

θi = θ ; φi = (β + π) mod 2π (3)

with the subscript i here denoting "incident" (i.e. not a dummy running index). With this296

equivalence established, we shall use primarily (θi, φi) in describing orientation to simplify297

our discussion.298

We also recall that the scattering quantity of focus is the polarization-averaged backscat-299

ter efficiency. Thus, we do not consider polarization rotation, and we only change the in-300
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cident wave direction by varying θi and φi as described in Fig 2. With DDSCAT, this301

is equivalent to fixing the third angle (φ) at 0 and changing only the β and θ angles for302

specifying the target orientation of the particle. For DDSCAT, the φ rotations do not affect303

the polarization-averaged scattering quantities, nor does it have a significant impact on the304

computational cost (Draine & Flatau, 2013). Thus, for the present study we will only vary305

the β and θ angles for DDSCAT. Note that this is equivalent to varying the β and γ angles306

for ADDA.307

Scattering calculations reported in this paper are performed with OpenMP-parallellized
versions of MIDAS and DDSCAT run on a single large-memory computing node of 48 CPUs
and 380 GB of RAM. Comparisons between MIDAS and DDSCAT are usually expressed
using relative difference in percentage, which is defined based on the difference between a
quantity, Q, and its corresponding reference, Qr, i.e.

Er(%) = 100× (Q −Qr)/Qr (4)

when comparing SSPs obtained from the MIDAS and DDSCAT methods, the solution of308

DDSCAT is used as the reference.309

In the following subsections, we first describe the orientation-average approach imple-310

mented in DDSCAT, and then the one used with MIDAS previously in Fenni et al (2018).311

We describe next the process of defining and achieving the convergence of the averaged312

SSPs. We then evaluate two quadrature schemes over the sphere, namely Lebedev quadra-313

ture (lb) and Spherical Design (sd). These schemes are selected based on their reported314

good performance (Beentjes, 2015).315

3.2 DDSCAT316

For DDSCAT, orientation-averaged scattering quantities are computed by fixing the317

incident wave direction and evaluating the scattering over a number of particle orientations.318

For a uniformly randomly oriented target with no symmetry, the orientational average Q of319

a quantity Q(β, θ, φ) is calculated as follows320

Q =
1

8π2

∫

2π

0

dβ

∫

1

−1

d cos θ

∫

2π

0

dφ Q(β, θ, φ) (5)

where (β, θ and φ) are the angles describing the 3D orientation of the snow particle (Draine321

& Flatau, 2013). Given that the focus of this study is on the calculation and convergence322

of orientation-averaged backscatter efficiency (Qbks), a scalar quantity independent of po-323

larization, Eq. 5 is re-written as:324

Q =
1

4π

∫

2π

0

dβ

∫

1

−1

d cos θ Q(β, θ) (6)

Indeed, the backscatter efficiency Qbks is the most sensitive scattering quantity to the325

particle shape and to the parameters of the scattering model. We refer the reader to Bohren326

& Singham (1991) for the physical insight into backscattering that explains this sensitivity.327

Thus, ensuring the convergence of Qbks automatically guarantees the convergence of other328

scattering quantities, namely the orientation-averaged extinction and scattering efficiencies.329

After one has solved the scattering problem for a given (β, θ, φ), the solutions corre-330

sponding to other values of φ, while holding β and θ constant, are efficiently obtained by331

appropriately weighted sums of the solutions found at (β, θ, φ). Thus, averaging over φ is332

relatively inexpensive and most of the computational cost is associated with the number of333

different (θ, β) (Draine & Flatau, 2013).334
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DDSCAT offers a default sampling scheme through its input file (i.e. ddscat.par),335

which samples uniformly in β and cos θ in equi-interval manner. The range for β (2π for the336

entire sphere) is simply divided into Nβ equal intervals, and the midpoint of each interval337

is taken. Sampling in θ is done quite differently. The parity of Nθ determines the equi-338

interval samples over cos θ: A simple arithmetic sum is used if Nθ is even while Simpson’s339

rule is used if it is odd. Therefore, if averaging over orientations is desired, Draine & Flatau340

(2013) recommends an odd value of Nθ be specified for greater accuracy. In the remainder341

of the paper, this sampling scheme will be abbreviated to ’dn’, short for DDSCAT native342

quadrature.343

3.3 MIDAS344

Instead of rotating the target, MIDAS equivalently changes the incident wave to the345

counter direction of the target rotation. Thus, holding the particle fixed, the averaging is346

performed over a number of incident wave directions (θi, φi) as follows347

Q =
1

4π

∫

2π

0

∫ π

0

Q(θi, φi) sin θi dθidφi (7)

where (θi, φi) describes the direction of the incident wave, referred to as ID, as illustrated348

in Figure 2.349

For MIDAS, the integral over the incident directions, in Eq. 7, is evaluated by a double350

use of a tailored subroutine QAG from QUADPACK (Piessens et al., 1983), a FORTRAN90351

library routine for numerical integration using adaptive quadrature. With the approximated352

function f as input, the original QAG is a simple globally adaptive integrator that calculates353

an approximation to a definite integral I =
∫ b

a
f , using a Gauss-Kronrod quadrature rule,354

while adapting the quadrature nodes, and thus refining the sub-intervals of the integration355

domain.356

In our case, we provide, as input to the QUADPACK subroutine QAG, the values of357

the scattering quantity under consideration (here Qbks ) at NID nodes uniformly spaced in358

θi and φi on the sphere surface. NID = Nθi × Nφi
, where Nθi is the number of nodes for θi359

and Nφi
the number of nodes for φi. The program exits when convergence is achieved or360

the sub-interval refinement goes beyond the provided grid resolution (dθi or dφi). Since we361

pre-compute Qbks at the NID nodes, we do not in actuality benefit, in reduced computation362

time, from the adaptive reduction in number of nodes offered by QAG. But we do make the363

most use out of QAG for its adaptive approximation improvement and accuracy refinement364

features and its core Gauss-Kronrod quadrature rule. As an illustration, if we calculate the365

SSPs with a uniform step in θi and φi, dθi = dφi = 10◦, we would provide 37 evaluation366

nodes to the outer integral (in φi) and 19 ones to each of the 37 inner integrals (in θi), which367

represent in total the 703 nodes of the grid.368

As described previously, both MIDAS incident directions and DDSCAT target orienta-369

tions will be referred to as IDs in the rest of the paper. For example, calculating Qbks using370

DDSCAT with dn and 703 IDs means running DDSCAT with its native quadrature scheme,371

with Nφ = 1 and Nθ × Nβ = 703 total target orientations. Figure 3 shows the distribution372

of 703 quadrature nodes for MIDAS aq (left) and DDSCAT dn (right).373

3.4 Discrepancy in Orientation Averages374

When comparing scattering efficiencies at individual incident directions, i.e. at ex-375

actly the same ID, the results from MIDAS and DDSCAT have always shown fairly good376

agreement. However, we have noticed large differences between MIDAS and DDSCAT377

when it comes to orientation-averaged scattering quantities, particularly for aggregates378

with large size parameters, pointing to performance disparity in the different quadrature379
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schemes used by the methods. Figure 4 shows the relative difference observed between MI-380

DAS and DDSCAT solutions in the extinction and backscatter efficiencies, Qext and Qbks,381

and asymmetry parameter, g, at 12 frequencies equally spaced from 15 to 200 GHz, for a382

complex-shaped snow particle with an equivalent volume sphere diameter of De = 3.22 mm,383

a maximum dimension of Dmax = 11.45 mm, and a particle size parameter of xe = 6.74 at384

the highest considered frequency f = 200 GHz.385

Recalling the definition of the relative difference Er, i.e. Equation 4, Figure 4a shows386

that the results are in good agreement at a given orientation, but a difference up to 18%387

arises for Qbks when averaged over 180 IDs for DDSCAT (Nθi = 18 and Nφi
= 10) and 231388

IDs for MIDAS (Nθi = 11 and Nφi
= 21) (Figure 4b). Similar differences (not shown here)389

are observed for Qbks in results obtained from MIDAS with NID = 703 and 2701 incident390

directions, using uniform step of 10◦ and 5◦, respectively in both θi and φi.391

It is worth noting that a good agreement is maintained between MIDAS and DDSCAT392

for the averaged extinction coefficient Qext and asymmetry parameter g, which confirms the393

higher sensitivity of Qbks to orientation. The exorbitant computational cost associated with394

DDSCAT for a large number of target orientations prohibits us from calculating the SSPs395

using a larger NID at all 12 frequencies, on the 64 GB/16 CPU/8 day wall-time server that396

was used by the time of the previous study (Fenni et al., 2018)). Indeed, as can be seen in397

Figure 4b, re-drawing Figure 17b of Fenni et al. (2018), no result is plotted at f = 200 GHz398

because this particular DDSCAT run exceeded the 8-day (i.e. 192-hour) wall-time quota399

allocated to us on that previous server without completing.400

Given the importance of Qbks in radar retrieval algorithms, it is crucial to understand401

the source of the observed difference in averaged backscatter efficiency, Qbks, and to verify402

that this difference is not due to an error in our MIDAS EM solution. To do so, we have run403

DDSCAT at exactly the same orientations as those used in MIDAS with the aq configuration.404

Using the same aq quadrature scheme helps isolate the contribution by the EM scattering405

solution method to the observed difference.406

Figure 5 shows a comparison of Qbks obtained from MIDAS and DDSCAT as functions407

of θi and φi at f = 50 and 133.3 GHz, where the orientation-averaged Qbks values from408

MIDAS and DDSCAT show the greatest discrepancies (Figure 4b). With a relative difference409

no greater than 7% in absolute value, we can tell that the observed discrepancy is not likely410

caused by the EM scattering solution, but by the difference in the quadrature scheme. This411

is verified in Figure 6 which shows Qbks at 50 GHz for the MIDAS aq with 231 IDs and412

DDSCAT dn with 180 IDs, resulting in the large difference in Qbks seen in Figure 4b. A413

new DDSCAT simulation using dn with 231 IDs by specifying Nθi = 11 and Nφi
= 21 is414

also shown (3rd row of Figure 6). Thus, both MIDAS and DDSCAT use the same number415

of quadrature nodes, i.e. NID = 231, in Figure 5 and in the 1st and 3rd rows of Figure 6,416

whereas a smaller number, i.e. NID = 180, is used with DDSCAT in the 2nd row of Figure417

6. However, while the same quadrature scheme, i.e. aq, is used in Figure 5, different ones,418

i.e. aq and dn, are used for MIDAS and DDSCAT, respectively, in Figure 6. One can see419

that using an equal number and comparable distribution of nodes improves the agreement420

in Qbks between the DDSCAT dn and MIDAS aq quadrature schemes.421

To summarize, these observations demonstrate the importance of the numerical inte-422

gration process, namely the quadrature scheme and the number of quadrature nodes, to423

ensure the accuracy and convergence of the orientation-averaged SSPs, especially for Qbks,424

which will be the focus of the rest of this paper. Given that computational cost increases425

with the number of nodes (i.e. orientations), especially for DDA methods, more efficient426

quadrature schemes that can achieve similar accuracy as aq or dn but with fewer nodes are427

thus desirable. We introduce two such efficient schemes, Lebedev quadrature and Spherical428

Design, in the next section.429
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3.5 Lebedev quadrature and Spherical Design430

The selection of Lebedev (lb) quadrature and Spherical Design (sd) schemes for eval-431

uation in this paper is primarily motivated by the comparative study of Beentjes (2015),432

which assesses several quadrature schemes for integration over the surface of a unit sphere433

in ℜ3. Figures 4, 5, and 6 of Beentjes (2005) show that the lb and sd schemes require fewer434

quadrature nodes, compared to the Gaussian Product and Monte Carlo schemes, to achieve435

integration approximation up to machine precision when applied to a set of test functions436

with different levels of smoothness. Beentjes (2015) concludes that sd and lb quadratures437

perform the best under general circumstances.438

The Lebedev quadrature grid nodes are constructed to be invariant under the octahedral439

rotation group. The corresponding set of integration weights are determined by enforcing440

the exact integration of polynomials (i.e. spherical harmonics) up to a given degree, leading441

to a sequence of increasingly dense grids analogous to the one-dimensional Gauss-Legendre442

scheme (Burkardt, 2010b).443

A spherical design, on the other hand, is a set of N nodes on the d-dimensional sphere444

(d-sphere), Sd, such that the average of any polynomial of degree t or less equals the445

average value of the polynomial on the whole sphere. In our case d = 2, i.e. S2 ⊂ R3.446

Such a set is often called a spherical t-design to indicated the value of t, i.e. the degree447

of the polynomial. It gives thus a constellation of N nodes on the surface of a unit sphere448

with equal weights (i.e. 1/N ) for use in numerical integration (Burkardt, 2010a; Hardin &449

Sloane, 1996; R. Womersley, 2017; R. S. Womersley, 2018)450

Figure 7 shows examples of the distributions of quadrature nodes for a spherical design451

(sd; specifically, spherical 21-design) and a Lebedev quadrature (lb) of degree 27. See452

Beentjes (2015) for detailed mathematical definition and analysis of these two quadrature453

schemes. In our study, we use the pre-computed numerical values of quadrature nodes454

and weights from Burkardt (2010b) for Lebedev quadrature. For spherical design, we use455

the datasets in Burkardt (2010a) derived from Hardin & Sloane (1996) up to a polynomial456

of degree 21, i.e. p (or t) = 21, corresponding to N = 240, beyond which we use point457

distributions in Womersley (2017) for up to p = 325, corresponding to N = 52978.458

4 Application to snow aggregates : convergence and calculation cost459

Here, we study the impact of the different quadratures described in the previous section,460

namely dn with DDSCAT and aq, sd, and lb with MIDAS, on both the speed of convergence461

for orientation-averaged backscatter efficiency Qbks and the computational cost of its calcu-462

lation, for a large variety of particle geometries and electrical sizes at Ku, Ka, and W bands463

(13.6, 35.6, and 94 GHz, respectively). The complex refractive indices of ice, determined by464

interpolation from the tables of Warren and Brandt (Warren, 1984) given at a temperature465

of 266 K, were 1.7861 + i 3.116 10−4, 1.7861 + i 7.987 10−4 and 1.7863 + i 2.100 10−3 for466

the Ku, Ka, and W bands, respectively.467

For the remainder of the paper, we define relative difference in Qbks with respect to468

a reference value, at which we assert that the Qbks has achieved convergence, i.e. reached469

its stable value of Qbks. This reference Qbks corresponds to the value achieved using the470

aq scheme with a number of IDs sufficiently large (more than 7000 IDs), ensuring absolute471

convergence. We consider the absolute convergence value, and thus the reference Qbks472

validated when all aq, sd and lb schemes, used with sufficiently large NID, converge within473

machine precision.474

Following Equation 4, the relative difference is thus calculated as Er(%) = 100 ×475

(Qbks(NID)−Qbks)/Qbks, which describes how far a given Qbks is from Qbks, with any of the476

used integration schemes, at NID. Obtaining the accurate Qbks with certainty for complex-477

shaped particles is made possible by the high computational efficiency of MIDAS. We were478
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able to calculate Qbks for up to 7800 IDs for various complex-shaped particles, in a few hours479

each, on a single 48-CPUs computing node (see section 3.1), while the computational cost480

of DDA-based codes had limited the number of target orientations to smaller numbers in481

previous studies. For example, the maximum number of relevant orientations (not involving482

polarization rotation) used with ADDA in Um and MaFarquhar (2013) was 33 in θ and 32483

in γ totaling 1056 orientations, where, as mentioned in 3.1, the β and γ angles in ADDA484

are equivalent to, respectively, β and θ angles in DDSCAT.485

4.1 Cylinder of Varying Length486

We calculated Qbks using MIDAS and DDSCAT at Ka band (f = 35.75 GHz or λ =487

8.4mm) of a cylinder with a radius of rc = 0.1 mm and length L varying from 4.2 to488

84 mm corresponding to λ/2 to 10λ. Figure 8 shows the variation of Qbks as a function489

of L depending on the code used (MIDAS or DDSCAT), the quadrature scheme, and the490

number of incident directions at quadrature nodes used to calculate the averaged scattering491

quantities. In the figure legend, sd1 refers to the nodes distribution in Burkardt (2010)492

derived from Hardin & Sloane (1996), whereas sd2 refers to the dataset from Womersley493

(2017) based on the work described in Womersley (2018), as detailed in section 3.5. For the494

rest of the paper, sd refers to sd2.495

First, as expected, Fig 8 shows that increasing the electrical size of the cylinder results496

in an increase in the number of nodes required to achieve the convergence, regardless of497

the quadrature scheme used. Second, Qbks clearly converge faster with small numbers of498

quadrature nodes for sd and lb then for aq or dn (the latter used by DDSCAT only). It is499

evident that all sd1, sd2, and lb schemes outperform the aq and dn schemes, as we increase500

the length of the cylinder. Knowing that Qbks converged at L = 10λ = 84 mm with 5400501

and 5551 IDs for DDSCAT dn and MIDAS aq respectively, we can see that the sd and lb502

schemes require significantly smaller numbers of quadrature nodes to converge to the same503

Qbks value. For example, as convergence is reached using DDSCAT with 5400 IDs and504

MIDAS with 5551 IDs, MIDAS using sd2 with just NID = 482 achieves Qbks within 5% at505

L = 10λ. In stark contrast, both MIDAS using aq and DDSCAT using dn with NID = 703506

show relative differences of 244% and 239%, respectively. Similar behavior is observed when507

the cylinder is rotated around the vertical axis Z (not shown), which confirms the efficiency508

of the sd and lb schemes regardless of the orientation of the particle.509

4.2 Complex Ice Hydrometeors510

We compare next the efficacy of the quadrature schemes for orientation-averaged backscat-511

ter efficiency (Qbks) using complex, realistic snow aggregates. Table 1 lists a set of 10 snow512

aggregates selected from the OpenSSP database for this study. From left to right, columns513

1 and 2 list aggregate id number and images of the particles rendered from two perspec-514

tives. The next two, i.e. columns 3 and 4, list respectively size parameter, xe, and electrical515

size, xd, as described in section 3.1. The following three columns list the numbers of IDs516

required for Qbks to achieve relative convergence at W band for the aq, sd, and lb quadra-517

tures, respectively. The last column lists, as a reference, the theoretical number of nodes,518

Nth, according to Yaghjian (1996), required to accurately sample the fields scattered by the519

particle. For spherical scanning, Nth is derived from equal sample spacing in both φ and θ,520

i.e. δθ = δφ = λs/(2.2a + λs/2), where a = Dmax/2 is the radius of the minimum sphere521

enclosing the particle and λs = λ/
√

ǫ′r is the wavelength inside the scatterer with ǫ′r being522

the real part of its relative permittivity to the medium in which the scatter is embedded523

(Yaghjian, 1996). Observing the duality between the radiated field from and the incoming524

field towards a minimum sphere, it is logical to argue for the same relation in estimating525

the theoretical number of incident plane waves needed to accurately represent the scattered526

field for averaging Qbks.527
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Figure 9 shows, for the snow aggregates in Table 1, except a0012, the convergence528

of Qbks at W band as a function of the number of incident directions for aq, sd, and529

lb quadrature schemes. Qbks is assumed to have achieved relative convergence when the530

relative difference with respect to the reference is definitively below 1%. Dashed black lines531

in each panel indicates ±1% of the converged Qbks. To ensure absolute convergence, i.e.532

Qbks, we have used 7800 IDs for aq and 5000 IDs for sd and lb to compute Qbks for all the533

particles listed in Table 1. Almost all of the plots in Figure 9, except for a0012, have been534

truncated at ≈2000 IDs for clarity. It can be deduced from Table 1 and Figure 9, by the535

lack of correlation between xe or xd and Naq, Nsd, or Nlb, that the rate of convergence does536

not only depend on the size of the particle but also likely on the anisotropy of its geometry.537

We, however, have yet to identify a general and reliable rule for the impact of target shape538

on NID needed for Qbks to converge. But, it is safe to conclude that sd and lb schemes need539

far fewer numbers of IDs for Qbks of the particles in Table 1 to converge within 1.0% of the540

references.541

In Figures 10-13, we examine more closely the interesting convergence pattern of Qbks542

for snow aggregate a0012, which takes the highest Naq for Qbks to converge, among the 10543

particles of Table 1. Snow aggregate a0012 is composed of N = 46953 cells/dipoles of size544

Sc = 50 µm, with directional maximum dimensions, along the 3 Cartesian axes, of (Dx, Dy,545

Dz)=(7.0, 8.6, 10.7) mm. Figure 10 shows the convergence trends of the relative difference546

(%) in Qbks, calculated using DDSCAT and MIDAS with the aq, sd an lb schemes. The547

relative difference is evaluated with respect to Qbks computed using MIDAS with the aq,548

sd and lb schemes for NID > 5000. First, it is clear that Qbks converges faster for the lower549

frequencies for all quadrature schemes, confirming the impact of the electrical size of the550

snow aggregate on the number of incident directions required to reach Qbks. The absolute551

value of the relative difference in Qbks falls below 1% for MIDAS and stabilizes at 1.3% for552

DDSCAT, with fewer than 200 IDs, at Ku band for all the quadrature schemes considered.553

However, Qbks with MIDAS using aq and DDSCAT using dn converge at a much slower554

rate at W band.555

Figure 10 shows that the native scheme used by DDSCAT has the most difficulty556

to achieve convergence. This observation is confirmed in Table 2, which summarizes the557

variation of the relative difference in Qbks with NID for solution methods and quadrature558

schemes used, as well as the corresponding computational cost. DDSCAT with dn requires559

more than 7000 IDs to push the relative difference below 5% while only 1891 IDs are needed560

by MIDAS with aq for a similar performance. In a stark contrast, MIDAS with either sd or561

lb reduces the relative difference to below 1% for fewer than 500 IDs.562

Figures 11-13 provide further insight on the convergence behavior, by showing Qbks563

value for aggregate a0012 at W band (f = 94 GHz) as a function of (θi, φi) with a rainbow564

color bar in logarithmic scale, visualized on a 2D heat map and a 3D sphere, for four (4)565

cases, i.e. DDSCAT with dn (Figure 11), MIDAS with aq (Figure 12), lb (Figure 13),566

and sd (Figure 14). For comparison, results are shown for three (3) progressively greater567

numbers of IDs (NID) in each case. First, one can see that the shape of a0012 exhibits a568

high degree of anisotropy that causes a particular concentration of large Qbks at the sphere’s569

poles, where the incident direction is perpendicular to the largest pristine surface. The very570

slow rate of convergence observed for DDSCAT, in comparison to MIDAS, can be then571

explained by the fact that DDSCAT dn under-samples Qbks near the poles of the sphere572

(Note the white bands near the poles on the 2D heat maps in Figure 11) where the essential573

of Qbks variations occur for this particular geometry. This is due to the sampling in cos θi574

for DDSCAT dn as opposed to θi for MIDAS aq. This therefore means that the convergence575

speed of Qbks, for MIDAS with aq and DDSCAT with dn, is not only impacted by the576

complex geometry of the realistic snow aggregate, but also by orientation sampling, if there577

is significant anisotropy. On the other hand, lb and sd schemes perform well with much578

fewer quadrature nodes irrespective of the complex geometry or orientation of the snow579

aggregate (see Figures 13 and 14).580
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Another practical point that differentiates the lb and sd schemes from the classical aq581

or dn schemes, is that one needs to determine, for lb and sd, only one parameter, namely the582

number of nodes, while for aq and dn there are two parameters to be determined, namely583

Nθi and Nφi
, which complicates the convergence study. For example, in Um & McFarquhar584

(2013), 25 different combinations were used for angles β and γ with Nβ = 2j+1 and Nγ = 2k,585

where both j and k vary independently from 1 to 5, in order to study the effects of (j, k)586

on the convergence of averaged single-scattering properties. The conclusion of the authors587

is that (j, k) does not have a clear impact on the convergence. However, the study of Um &588

McFarquhar (2013) considers only four (4) geometries and only one (1) of which is of a non-589

convex shape that can be considered as "complex". Moreover, even this only non-convex590

geometry is not appreciably anisotropic.591

As for computational expense, because DDSCAT is an ISB-DDA code, requiring a592

large NID to achieve convergence in orientation averages, it incurs a large and sometimes593

prohibitive cost, especially with the default dn scheme for targets of large electrical size.594

Indeed, combining 1) the iterative solver’s limitations with multiple excitations and 2) the595

low-order of the simple dn scheme used by DDSCAT to compute Qbks, particularly for596

complex, highly anisotropic geometries, makes it very computationally expensive to reach597

convergence. MIDAS, being a DSB solution, deals much better with problems involving598

multiple excitations, and rewards us with a significant reduction in CPU time, even for with599

the similarly low-order aq.600

Furthermore, we recall that, for DDSCAT, the primary determinant for computation601

cost is not the number of dipoles, n, but the number of cells N in the grid system that602

encloses the target. DDSCAT and ISB-DDA methods in general are thus computationally603

inefficient for highly porous or sparse particles, for which a large number (N - n) of trivial604

dipoles, must be included to build up a full volume enclosing the particle (Yurkin & Hoekstra,605

2007). Therefore, the particle shapes that are more likely to require large numbers of incident606

directions for Qbks to converge are also more computationally expensive for DDSCAT per607

orientation. The computational cost of MIDAS, however, depends only on the number of608

non-trivial cells (n), which explains the substantial reduction in CPU time compared to609

DDSCAT, as seen in Table 2. The use of a high-order quadrature, i.e. lb or sd, reduces the610

time to solution further, by reducing the number of incident directions (NID) required.611

It is worth noting that even when DDSCAT engages more computational resources, it612

does not necessarily outperform MIDAS in time to solution. The simulations involving 4186613

and 7125 IDs in Table 2 were run using the pleasingly parallel MPI version of DDSCAT on614

10 computing nodes with 16 MPI jobs each, totaling 160 MPI jobs. The two simulations615

require 40 and 235 min respectively, against 78 min for MIDAS ran with 7381 ID on one616

single 48-CPU computing node (not shown in Table 2). Note also that Table 2 shows only617

the computing time with the OpenMP versions of MIDAS and DDSCAT run on a one single618

computing node.619

Finally, to confirm the general superiority in convergence speed and accuracy of the620

high-order lb and sd schemes over the simple aq scheme, we selected 566 larger snow aggre-621

gates from the OpenSSP database to calculate their Qbks, using MIDAS with 2701 and 496622

IDs for aq, 434 IDs for lb and 482 IDs for sd. We compare 1) the relative difference in Qbks,623

with respect to that obtained with the reference simulation (i.e., aq with NID = 2701) and624

2) the speeds to convergence, when using substantially smaller numbers for NID with the aq,625

sd and lb. We believe that Qbks calculated with aq and 2701 IDs legitimately represents the626

relative convergence as we know that it mostly doesn’t vary more than 1% when we increase627

NID to 5329 IDs (not shown here). The Dmax and De of the 566 snow aggregates vary,628

respectively, from 10 to 15 mm and from 2.2 to 3.5 mm, whereas the number of non-trivial629

cells n comprising them varies from 43444 and 135780. Figure 15 compares the relative630

difference in Qbks, with respect to aq with 2701 IDs, when using aq with 496 IDs and lb631

with 434 IDs. Figure 16 shows the same comparison between aq with 496 IDs and sd with632

482 IDs. The two figures clearly confirm that the lb and sd schemes require fewer incident633

–14–



manuscript submitted to Journal of Geophysical Research : Atmospheres

directions than the simple aq scheme to achieve convergence, independent of the shape or634

size of the snow aggregate. Using comparable low number of incident directions (around635

450), the lb and sd schemes estimate Qbks with a much smaller relative difference close and636

concentrated around 0% than the aq scheme. Furthermore, the lb and sd schemes show637

exactly the same relative difference with respect to aq with 2701 IDs, for the Ku and Ka638

bands, suggesting that absolute convergence has been secured, at these lower frequencies,639

for lb with 434 IDs and sd with 482 IDs, as the two quadratures result in the same Qbks for640

all the considered particles.641

For the superiority of lb and sd in convergence speed, Figure 17 shows the reduction in642

CPU time against running MIDAS using aq with 2701 IDs, particularly for the calculation643

of the scattered field, Es, for which the reduction is consistently an order of magnitude.644

The reduction for the total filed, E, is not as much because the time needed to compute645

E inside the scatterer depends more on the numerical size, i.e. n, of the particle and the646

size of the compressed matrix Zc. As the electrical size of the particle increases with the647

simulation frequency (from left to right), the compression rate achieved by MIDAS decreases648

resulting in larger Zc, and the difference of NID starts to impact the time needed to solve the649

compressed system of linear equations Zc
α = Einc,c. On the other hand, the time required650

to compute the scattered field Es is directly proportional to the number of incident and651

scattered directions used to compute E and the resulting Es. Therefore the difference in652

NID has a straightforward impact on the computing time of Es independent of the frequency653

or electrical size of the aggregate. The difference between the first two rows of plots and654

the third in Figure 17, i.e. as functions of n or xe versus as function of xd, confirms that655

the computational cost of CBFM is mostly determined by the numerical size, i.e. n, of656

the snow aggregate and, contrary to DDSCAT, is not significantly impacted by its physical657

extent, i.e. the enclosing rectangular grid system. Thus, we observe a clearer link between658

the computing time and the parameters (n, xe) than between the computing time and xd.659

By reducing the number of incident directions required to achieve convergence, indepen-660

dent of the complexity in the shapes of our realistic snow aggregates, the lb and sd schemes661

significantly enhance the computational efficiency of MIDAS and enable us to generate662

more accurate orientation-averaged SSPs for realistic hydrometeors with more reasonable663

computational cost.664

5 Conclusions665

The constraint of most existing deterministic radiative transfer models (RTMs) to666

scattering media with axial or azimuthal symmetry necessitates the use of orientationally-667

averaged single-scattering properties (SSPs) obtained from complex hydrometeors without668

such symmetries. Thus, the scattering problem must be solved for multiple orientations669

(or, equivalently, for multiple incident wave directions) for each hydrometeor. The averag-670

ing of the orientations, which involves integration over the orientation angles (or incident671

directions), is then accomplished computationally with numerical quadrature schemes.672

The most popular electromagnetic (EM) scattering solution approach for targets of673

arbitrary shapes has thus far been the iterative-solver-based discrete dipole approximation674

(ISB-DDA), due to its versatility to complex target geometry and relative computational675

efficiency over the other approaches. The widely used DDSCAT and ADDA codes are676

testaments to the success of this approach. However, these ISB-DDA implementations677

must solve the same scattering problem for each orientation separately. As the required678

number of orientations increases, their advantage in computational efficiency diminishes.679

Moreover, the default quadrature schemes offered by these two methods are of rather low680

order, thus requiring more orientations than higher-order schemes for the orientation average681

to converge. A user who wishes to use a non-default quadrature scheme must expend682

considerable effort in configuring the execution of these methods and in organizing the683

results.684
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In this paper, we demonstrate that, in contrast with DDSCAT, the advantages of the685

recently developed MIDAS (Fenni et al., 2018) 1) in solving the EM scattering problem686

for targets of arbitrary shapes and 2) its inclusion of higher-order quadrature schemes for687

orientation average. Since MIDAS, based on the Method of Moments (MoM) and using the688

Characteristic Basis Function Method (CBFM), is a direct-solver-based (DSB) code, it is689

much more efficient in dealing with multiple incident directions, which constitutes the right-690

hand side (RHS) of the EM scattering equation Zc
α = Einc,c in the form of multicolumned691

vectors with each vector specifying an incident direction. The compressed system of linear692

equations is solved once for all considered incident directions. That is, MIDAS does not need693

to repeatedly solve the same EM scattering problem for each incident direction. Moreover,694

the use of the CBFM and the associated domain decomposition approach, resulting in com-695

pressing the original large MoM matrix, increases significantly the computational efficiency696

of the MoM-based model. In practice (section 4), MIDAS has demonstrated per-orientation697

computation superiority over DDSCAT.698

Combined with higher-order quadrature schemes, such as Lebedev (lb) quadrature and699

Spherical Design (sd), the computational advantage of MIDAS is even more apparent, with700

several orders of magnitude faster time to solution than DDSCAT using its default quadra-701

ture. The comprehensive superiority of MIDAS over ISA-DDA methods in accuracy and702

time to solution makes it a compelling method for solving the EM scattering problem involv-703

ing complexly shaped and mixed-phase hydrometeors in bands with high refractive-index704

contrast.705
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Figure 1: Examples of aggregate snow particles from Kuo et al. (2016). Pristine crys-
tal types are simulated using the Snowfake algorithm (Gravner & Griffeath, 2009), then
aggregation simulations are performed to create the aggregate snow particles

Figure 2: For MIDAS, a snow aggregate is discretized into n cubic cells and divided into
M CBFM blocks (different colors). To compute orientation-averaged SSPs, the orientation
of the particle is fixed and the direction of the incident wave is described by (θi, φi).
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Figure 3: Backscatter efficiency Qbks of a cylinder of length L = 10λ, as function of incident
direction (θi,φi), calculated for MIDAS (left) with an adaptive quadrature (aq) scheme with
Nθi = 19 and Nφi

= 37 and for DDSCAT (right) with it native quadrature (dn) as function
of target orientation-equivalent incident direction with Nθi = 19 and Nφi

= 37. One can
see that, unlike aq, the sampling in cos θ by DDSCAT dn does not over-sample the poles.
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(a) 1 ID

(b) 231 vs 180 IDs

Figure 4: Relative difference, Er, in extinction and backscatter efficiency factors Qext and
Qbks, and asymmetry parameter, g, between MIDAS and DDSCAT, (a) for one ID and (b)
when averaged over 231 IDs with MIDAS and 180 IDs with DDSCAT, for a snow aggregate
of maximum diameter Dmax ≈ 10λ at f = 200 GHz.

(a) 50 GHz (b) 133.3 GHz

Figure 5: The relative difference Er between MIDAS and DDSCAT in backscatter efficiency
Qbks, at f = 50 and 133.3 GHz, as function of the incident wave direction defined by (θi,
φi). To allow an accurate comparison, we ran DDSCAT at exactly the same orientations as
those used in MIDAS with the aq configuration.
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Figure 6: Backscatter efficiency Qbks, at f = 50, as function of the incident wave direction
calculated with 231 IDs for MIDAS aq (top) and 180 and 231 IDs for DDSCAT dn (center
and bottom). The difference between MIDAS and DDSCAT on the Qbks 2D map and thus
on the Qbks is evident.

–20–



manuscript submitted to Journal of Geophysical Research : Atmospheres

Figure 7: Backscatter efficiency Qbks of a cylinder, as function of incident direction (θi,φi),
calculated with (left) spherical design (sd) at 240 nodes and (right) Lebedev quadrature (lb)
at 266 nodes.

Figure 8: Variations of Qbks of a cylinder of radius rc = 0.1 mm, calculated with MIDAS
and DDSCAT, as function of the cylinder length L, depending on the used quadrature and
the number of nodes. aq, lb and sd, used with MIDAS, refers respectively to adaptive
quadrature, Lebedev quadrature and spherical designs.
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Table 1: The number of incident directions Naq, Nlb and Nsd needed for Qbks to converge
when computed, at W band, with MIDAS and respectively the adaptive quadrature, Lebedev
quadrature and spherical designs schemes, depending on the type, geometry and electrical
size of the snow aggregate, and the theoretical number of nodes Nth needed to sample the
fields radiated by the particle, as function of the electrical size of the aggregate. We assume
that Qbks converged if the relative difference with regard to the reference goes below 1%
(see example in Figure 10). We recall that xe and xd are the size parameters corresponding
to De and Dmax, respectively, the equivalent volume diameter and maximum diameter of
the particle.

type geometry xe xd Naq Nsd Nlb Nth

a0027 2.20 10.04 496 482 350 1012

a0012 2.20 10.53 2701 98 434 1104

a0026 2.59 11.02 703 222 434 1200

a0050 2.70 8.07 496 314 230 684

a0017 2.75 11.12 1891 482 350 1200

a0022 2.78 11.62 496 482 434 1300

a0058 2.79 11.76 703 482 434 1326

a0045 2.80 11.57 703 314 350 1300

a0009 3.06 10.53 703 222 350 1104

a0006 3.18 11.27 496 482 230 1225
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a0006 a0009 a0017

a0022 a0026 a0027

a0045 a0050 a0058

Figure 9: Convergence trends of Qbks of nine different snow aggregates computed using
MIDAS with the adaptive quadrature (aq), Lebedev quadrature (lb) and spherical design
(sd) schemes as function of the number of incident directions (NID).
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(a) a0012 (b) 13.6 GHz

(c) 35.6 GHz (d) 94 GHz

Figure 10: Shape and variations of Qbks of the a0012-type particle in Table 1, computed
with MIDAS and DDSCAT at Ku, Ka andW bands , depending on the numerical integration
scheme used with MIDAS and on the number of incident directions NID. The geometry of
a0012 is composed of N = 46953 cells, divided into 17 CBFM blocks (different colors), for
the MIDAS calculations.

Table 2: Relative difference (Er) and computation time in minutes, when using MIDAS
and DDSCAT with various quadrature schemes at W band, as function of the number of
incident directions (NID). The wall time mentioned below is equal to 12 days.

DDSCAT MIDAS
dn aq lb sd

NID 2701 4186 7125 703 1891 2701 350 590 482 614

Er (%) 25.0 -12.0 5.2 -8.1 -2.1 -1.3 -2.43 0.4 0.86 0.43

time (min) 12563 ≥ wall time 3 8 15 3.3 3.4 2.6 2.8
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Figure 11: Backscatter efficiency Qbks of a0012, using DDSCAT at f = 94 GHz, as function
of the incident wave direction (θi, φi) equivalent to the target orientation (θ, β). (top) 2D
scatter plot (bottom) 3D visualization showing the impact of the particle shape on Qbks

over the sphere surface, along with the incident direction ki defined by (θi, φi). From left
to right : Qbks is calculated for 325, 1891 and 2701 IDs resulting in a relative difference Er

(%) in Qbks of −125.3%, 34.03% and 25% respectively.
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Figure 12: Backscatter efficiency Qbks of a0012, using MIDAS with the aq scheme at f = 94
GHz, as function of the incident wave direction (θi, φi). (top) 2D scatter plot (bottom) 3D
visualization showing the impact of the particle shape on Qbks over the sphere surface, along
with the incident direction ki defined by (θi, φi). From left to right : Qbks is calculated for
325, 703 and 1891 IDs resulting in a relative difference Er (%) in Qbks of −23.1%, −8.1%
and −2.1% respectively.
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Figure 13: Backscatter efficiency Qbks of a0012, using MIDAS with the lb scheme at f = 94
GHz, as function of the incident wave direction (θi, φi). (top) 2D scatter plot (bottom) 3D
visualization showing the impact of the particle shape on Qbks over the sphere surface, along
with the incident direction ki defined by (θi, φi). From left to right : Qbks is calculated for
350, 434 and 590 IDs resulting in a relative difference Er (%) in Qbks of −2.43%, 0.02% and
0.4% respectively..
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Figure 14: Backscatter efficiency Qbks of a0012, using MIDAS with the sd scheme at f = 94
GHz, as function of the incident wave direction (θi, φi). (top) 2D scatter plot (bottom) 3D
visualization showing the impact of the particle shape on Qbks over the sphere surface, along
with the incident direction ki defined by (θi, φi). From left to right : Qbks is calculated for
314, 482 and 614 IDs resulting in a relative difference Er (%) in Qbks of 0.64%, 0.86% and
0.43% respectively.
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(a) f = 13.6 GHz

(b) f = 35.6 GHz

(c) f = 94 GHz

Figure 15: Variations of the relative difference in Qbks using MIDAS, with respect Qbks(2701
IDs), assumed to represent convergence, as function of xd (middle) and xe (right) when Qbks

is calculated at Ku, Ka and W bands using aq with 496 IDs and lb with 434 IDs. The first
column compares the distribution of Er (%) for aq with 496 IDs and lb with 434 IDs and
the first row shows the distribution of xd and xe of the aggregates.
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(a) f = 13.6 GHz

(b) f = 35.6 GHz

(c) f = 94 GHz

Figure 16: Variations of the relative difference in Qbks using MIDAS, with respect Qbks(2701
IDs), assumed to represent convergence, as function of xd (middle) and xe (right) when Qbks

is calculated at Ku, Ka and W bands using aq with 496 IDs and sd with 482 IDs. The first
column compares the distribution of Er (%) for aq with 496 IDs and sd with 482 IDs and
the first row shows the distribution of xd and xe of the aggregates.
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Figure 17: Computing time required at Ku, Ka and W bands to compute, using aq with
2701 IDs (reference simulation), lb with 434 IDs and sd with 482 IDs, the total electric
field inside the snow aggregates E (three top plots) as function of n the number of cells
comprising the particle, xe and xd, and to compute the scattered field Es (two bottom
plots) as function of xe and xd.
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