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Abstract

One of the scientific payloads of Chang’E-5 (CE-5), i.e., the lunar penetrating array radar (LRPR), will carry out the in

situ exploration of the regolith structure and guide the drilling sampling process. To evaluate the performance of the LRPR

system, we present a multifrequency full-waveform inversion (FWI) with the total variation (TV) regularization constraint

using simulated CE-5 LRPR data for imaging the regolith structure and estimating the physical parameters (permittivity and

conductivity). The multifrequency FWI strategy is used to improve the inversion resolution, which updates the low-frequency

gradient for the deep region and then increases the frequency range to update the shallow region. The TV regular-ization

constraint not only reduces the gradient noise but also improves the inversion accuracy of local structures. To evaluate the

actual LRPR measurement scenario, we use the actual source wavelet obtained from the LRPR instrument prototype in a

ground lab to replace the theoretical Ricker wavelet. The actual source includes the effect of antenna radiation patterns and

clutter noise from the metallic lander. Two typical heterogeneous lunar regolith model tests demonstrate that the proposed FWI

scheme effectively reduces the lander metal impact, provides a reliable way to estimate the lunar regolith physical parameters

and image the subsurface structures.
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Numerical Verification of Full Waveform Inversion

for the Chang’E-5 Lunar Penetrating Array Radar
Jing Li, Member IEEE, Hai Liu, Senior Member IEEE and Lige Bai

Abstract—One of the scientific payloads of Chang’E-5 (CE-5),
i.e., the lunar penetrating array radar (LRPR), will carry out the
in situ exploration of the regolith structure and guide the drilling
sampling process. To evaluate the performance of the LRPR
system, we present a multifrequency full-waveform inversion
(FWI) with the total variation (TV) regularization constraint
using simulated CE-5 LRPR data for imaging the regolith
structure and estimating the physical parameters (permittivity
and conductivity). The multifrequency FWI strategy is used
to improve the inversion resolution, which updates the low-
frequency gradient for the deep region and then increases the
frequency range to update the shallow region. The TV regular-
ization constraint not only reduces the gradient noise but also
improves the inversion accuracy of local structures. To evaluate
the actual LRPR measurement scenario, we use the actual source
wavelet obtained from the LRPR instrument prototype in a
ground lab to replace the theoretical Ricker wavelet. The actual
source includes the effect of antenna radiation patterns and
clutter noise from the metallic lander. Two typical heterogeneous
lunar regolith model tests demonstrate that the proposed FWI
scheme effectively reduces the lander metal impact, provides a
reliable way to estimate the lunar regolith physical parameters
and image the subsurface structures.

I. INTRODUCTION

The Lunar Penetrating Radar (LPR) is a nondestructive,

high-resolution, and high-efficiency tool that has been used

for on-ground exploration of the subsurface structure of the

Moon [1]. A standard LPR system carried by Chang’E-3 (CE-

3) recorded a radar image to reveal the significant stratigraphic

zones of the northern Mare Imbrium in 2013 [1]-[3]. A similar

LPR system carried by CE-4 was launched at the end of 2018

and landed at the south pole Aitken (SPA) basin on the far side

of the Moon [4]. At the end of 2020, as the third phase of the

Chinese Lunar Exploration Program (CLEP), CE-5 will plan to

launch, and lunar regolith penetrating array radar (LRPR) will

be equipped at the bottom of the lander to detect the subsurface

regolith structure. The drilling equipment will drill a sample of

the lunar regolith structure of the landing site for the sample

return mission [5]. Compared with previous common-offset

LPR, multi-offset LRPR has the Vivaldi antenna array fixed

on the bottom of the lander, which includes 12 antennas

working in a single-input and multi-output (SIMO) work

mode. The antenna center frequency is approximately 2 GHz.

One antenna transmits the radar waves, and all of the other
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(41874134, 41874120), the Jilin Excellent Youth Fund (20190103142JH),
and the China Postdoctoral Science Foundation 2015M571366 (Corresponding
author: Hai Liu e-mail:hliu@gzhu.edu.cn). J. Li and L. Bai are with the Col-
lege of Geo-exploration Science and Technology, Jilin University, Changchun,
Jilin. 130012, China. H. Liu is with the School of Civil Engineering,
Guangzhou University, Guangzhou, 510006, China

11 antennas receive the reflection signal. After each antenna

has completed the transmission, the LRPR achieves the in situ

exploration for the drilling area [5]. This is the first time that

such an array radar (multi-offset) has been applied in Moon

structure exploration [6].

In the usual common-offset LPR, the information about

each subsurface point comes from a single ray. The multioffset

LRPR records data from multiple rays and obtains enhanced

lunar regolith images and high-resolution information about

physical properties. The tomographic inversions of multi-offset

radar data are generally based on geometrical ray theory or

full-waveform inversion (FWI). The resolution provided by

ray-based tomography is limited by the ray information caus-

ing insufficient resolution that is approximately the diameter of

the first Fresnel zone [7],[8]. For a high-resolution image, the

FWI method has been widely applied in seismic data (acoustic

or elastic waves) [9],[10] and ground-penetrating radar data

(GPR, electromagnetic wave)[11],[12],[13].

FWI is a promising technique to quantitatively image sub-

surface structures, which takes full use of waveform informa-

tion and results in a high lateral resolution on the order of half

wavelengths [10]. However, almost all successful FWIs rely on

accurate initial models, where most misfit functionals of FWI

can be easily trapped into local minima due to the famous

cycle-skipping issue. Remedies to this problem tend to utilize

the information hidden in the low-frequency signals of the

recorded radar data. One of the most successful methods is the

multiscale approach[14], which gradually inverts for permit-

tivity or conductivity models with low-to-higher wavenumbers

[13]. In addition, we need to simultaneously invert both the

permittivity and conductivity parameters. The problem of in-

verting multiple physical parameters using FWI is complicated

by interparameter trade-offs arising from inherent ambiguities

between different physical parameters. Regularization tech-

niques are required to decrease the sensitivity of FWI to the

initial model and noise and reduce the ill-posedness of the

problem resulting from uneven illumination [15],[16].

In this paper, we present the time-domain multifrequency

FWI with a total variation (TV) constraint to evaluate the

performance of LRPR data on the estimation of physical

parameters (permittivity and conductivity) and the imaging of

the regolith structure by lunar regolith numerical model tests.

We build the same model size and measurement parameter

according to the LRPR system ground experiment. The actual

source wavelet, which is measured by the LRPR instrument

prototype as measured in the ground experiment, is the input

source in the FWI test. It includes the effect of the antenna

radiation patterns and clutter noise from the metallic lander.
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This paper is organized into four parts. After the intro-

duction, we explain the theory of multifrequency FWI and

how it is used for LRPR data inversion. This includes the

use of the implicit function theorem to derive the wave-

equation formulas for the misfit gradient. Part three presents

the numerical LRPR FWI tests for applying this method to

the typical regolith model data set[17],[18]. The last section

presents the conclusions.

II. SIMULTANEOUS TIME-DOMAIN FULL WAVEFORM

INVERSION THEORY

The FWI method includes the following steps: 1) define

a connective function that connects the data residual to the

model parameters (permittivity ǫ and conductivity σ), 2) build

a misfit function, which is the squared summation of the

residuals between the predicted and the observed data, and

3) derive the gradient of the misfit function with respect to ǫ
and σ in the time domain. We begin the theory from the 2D

TM mode Maxwell equations[19],

−µ
∂Hx

∂t
=

∂Ez

∂y
, (1)

µ
∂Hy

∂t
=

∂Ez

∂x
,

ǫ
∂Ez

∂t
+ σEz =

∂Hy

∂x
−

∂Hx

∂y
+ f(t),

where ǫ, µ and σ are the permittivity, magnetic permeability,

and conductivity parameters, respectively; E and H are the

electric and magnetic field vectors; and f(t) represents a point

source function. We define a connective function that connects

the waveform data residuals to the model physical parameters.

A. Connective Function

Let Ẽd(xr, t; xs) denote a predicted event for a given

initial permittivity model recorded at the receiver location

xr, a source excited at time t = 0 and at location xs. d is

the data that can be obtained from its waveform. Similarly,

let Ed−∆d(xr, t; xs) denote the same event in the observed

data. ∆d is the waveform difference between the predicted

and observed data. The similarity between the observed and

predicted data can be written as [20]

Fd(xr, t; xs) =

∫

dt
Ed−∆d(xr, t; xs)

A1(xr; xs)

Ẽd(xr, t; xs)

A2(xr; xs)
(2)

=

∫

dt
Ed−∆d(xr, t; xs)

A(xr; xs)
Ẽd(xr, t; xs),

Here, A1(xr; xs) and A2(xr; xs) are the amplitude normaliza-

tion factors for the observed and predicted data, respectively.

We normalize the observed and predicted data so that their

maximum amplitudes are equal to 1

A(xr; xs) = A1(xr; xs) ∗A2(xr; xs). (3)

We seek to minimize the data residuals between the ob-

served and predicted data. If the predicted and observed data

have the same waveform, the normalized cross-correlation

objective function in (2) will be maximized. The derivative of

Fd(xr, t; xs) with respect to d should then be zero at d = ∆d.

Thus,

Ḟ∆d =
[

∂Fd(xr ,t;xs)
∂d

]

d=∆d

=
∫

dt Ėd−∆d(xr,t;xs)
A(xr;xs)

Ẽd(xr, t; xs) = 0, (4)

where Ėd(xr, t; xs) = ∂Ed(xr, t; xs)/∂d. (4) is the connective

function, which will be used later to derive the Fréchet

derivative of ǫ and σ.

B. Misfit Function

The FWI method attempts to determine the physical param-

eter (ǫ and σ) model that predicts LPR data that minimizes

the misfit function[11]

γ =
1

2

∑

s

∑

r

∆d(xr, xs)
2, (5)

where ∆d is defined in the previous section and the summation

in (5) is over all the sources and receivers. The gradients of

the misfit function with respect to ǫ and σ are given by

γǫ(x) = −
∂γ
∂ǫ

= −

∑

s

∑

r

(

1
A2

∂∆d
∂ǫ

∆d
)

,

γσ(x) = −
∂γ
∂σ

= −

∑

s

∑

r

(

1
A2

∂∆d
∂σ

∆d
)

, (6)

From (4), we can obtain the following 3 equations for

permittivity ǫ (the result for σ is similar):

i)

Ḟ∆d(∆d, ǫ(x)) = 0,

⇒
∂Ḟ∆d

∂∆d
∂∆d
∂ǫ(x) +

∂Ḟ∆d

∂ǫ(x) = 0,

⇒
∂∆d
∂ǫ(x) = −

∂Ḟ∆d

∂ǫ(x)

∂Ḟ∆d
∂∆d

, (7)

ii)

∂Ḟ∆d

∂∆d
=

∫

dt Ëd−∆d(xr ,t;xs)
A(xr;xs)

Ẽd(xr, t; xs). (8)

iii)

∂Ḟ∆d

∂ǫ(x)
=

∫

dt
Ėd−∆d(xr ,t;xs)

A(xr;xs)
∂Ẽd(xr,t;xs)

∂ǫ(x) . (9)

Using (6)-(9), the gradient can be written as

γǫ(x) =
∑

s

∑

r

∂Ḟ∆d

∂ǫ(x)

∂Ḟ∆d

∂∆d

∆d(xr, xs). (10)

The Fréchet derivative
∂Ẽd(xr,t;xs)

∂ǫ(x) is derived in the next

subsection.

C. Fréchet Derivative

To obtain the Fréchet derivative of the electric field (E)

with respect to the perturbation ǫ(x) or σ(x), a perturbation

of ǫ → ǫ+δǫ or σ → σ+δσ will produce perturbed wavefields

δẼd. The derivation of the gradient for the FWI inversion uses
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the adjoint-state method. We can rewrite the gradient in (10)

as

γǫ(x) =
∑

s

∑

r

∂Ḟ∆d

∂ǫ(x)

∂Ḟ∆d
∂∆d

∆d,

=
∑

s

∑

r
1
K

∂Ḟ∆d

∂ǫ(x)∆f,

= −
1
K

∑

s

∫

(∂Ez

∂t
∗ Êz)dt, (11)

The details of the adjoint-state method are shown in the

Appendix. The gradient in (11) is computed by a zero-lag

cross-correlation of a forward propagated source wavefield

term and a backpropagated residuals wavefield term. The

residual wavefield is calculated by weighting the observed

data with their corresponding waveform residuals ∆d. These

weighted residuals can be used as an adjoint source from the

receiver side.

D. Model Update

After computing the gradient, the conjugate gradient (CG)

method is used to iteratively update the ǫ and σ models:

σ(x)(n+1) = σ(x)(n) + ασ
∂γ
∂σ

+ αγ(σ)TV ,

ǫ(x)(n+1) = ǫ(x)(n) + αǫ
∂γ
∂ǫ

+ αγ(ǫ)TV , (12)

where n denotes the index of the iteration, αǫ and ασ are

the step lengths, and α controls the contributions from the

regularization term. γTV is the regularization term that uses

the TV regularization to smooth the gradient.

E. Workflow for Multifrequency FWI with TV

The LRPR signal has a certain bandwidth. We use the

Wiener filter method to decompose the LRPR signal into

different frequency components. The multifrequency strategy

implements the FWI method from low- to high-frequency

components. A finite set of discrete frequencies is selected,

and the inversion is sequentially carried out from the low- to

high-frequency data components. First, the long-wavelength

components of the model parameters are recovered from the

low-frequency data, and then more details and features are

extracted as the inversion proceeds to the higher frequency

data. Fig. 1 shows the detailed workflow of the synthetic model

test.

1) Input the actual permittivity and conductivity models

and build the initial permittivity and conductivity mod-

els.

2) Use the finite difference time-domain (FDTD) method

[21] to calculate the observed data dobs and predicted

data dpre.

3) Calculate the data residual ∆d. The actual measurement

of the LRPR data can only be conducted in a three-

dimensional (3-D) domain, which can be simplified as a

point source in its far-field. An asymptotic filter is used

to convert the 3-D data to its 2-D equivalent[22].

4) Use Wiener filtering to filter the observed data and

obtain the low frequency data (dobs
′

and dpre
′

). Then,

calculate the backprojected data (∆d′ = dobs
′

− dpre
′

).

5) Calculate and sum the gradients, which are the zero-lag

correlation between the backprojected data (∆d′) and

the source field.

6) Estimate the step-length α by the backtracking line-

search method [23]. The gradients for all data are added

together to update the model with TV regularization

constraints.

7) The above steps are repeated until the normalized mis-

fit residuals fall below a threshold and then move to

the next frequency data to continue the multifrequency

update strategy.

III. NUMERICAL RESULTS

The FDTD method is used to synthesize the multi-offset

LRPR data [24]. According to the design of CE-5 [5],[6], the

LRPR installed onboard the lander of CE-5 is approximately

90 cm above the lunar surface. Fig. 2 shows a schematic

drawing of the lander of CE-5. The Vivaldi antenna elements

are divided into three groups: no. 1 to no. 7 are group A,

no. 8 to no. 11 are group B, and the no. 12 antennas are

group C. The antenna interval within each group is 0.1 m.

The distance between antenna no. 7 and no. 8 is 0.3 m [6].

The no. 12 antennas work in turn to send or receive radar

signals, producing the data record in one set of measurements.

The first 11 traces are signals transmitted by antenna 1 and

received by the other 11 antennas. The no. 12 antenna is off-

line. We only consider the in-line antenna array (1 to 11) in

our 2D numerical test.

In order to ensure our numerical test resembles the actual

LRPR system, we use the source wavelets obtained from the

LRPR instrument ground experiments (Fig. 3). The LRPR

prototype is mounted on a 1:1 model of the CE-5 lander, which

includes the effect of the metallic lander and the radiation

direction of the Vivaldi array antennas at the actual position

[25]. Fig. 4a shows the source wavelets of all 11 transmitting

antennas, which are measured in the LRPR system ground

experiment. In the ground experiment, the lander is at a height

of 0.89 m, and a receiving Vivaldi antenna is set under the

driller (Fig. 3). There are strong noise and scattering signals

in the source wavelet. Fig. 4b is the spectrum of the source

wavelet. The frequency range of all antennas is from 1 GHz

to 3 GHz, and the center frequency is approximately 2 GHz.

In addition, the model size, antenna position, and physical

parameters are also designed according to the LRPR ground

experiment result of Li et al. (2018) [5].

A. Heterogeneous Lunar Layer Regolith Model Test

To evaluate the performance of the proposed FWI method

in the LRPR data, we use the previous CE-3 LPR interpreted

result to build the lunar layer regolith model and compute

the LRPR response by the FDTD method [19]. There are 11

antennas with 0.1 m intervals in each group. The distance

between antenna no. 7 and antenna no. 8 is approximately 0.3

m. The antenna array is approximately 90 cm above the surface

of the Moon (Fig. 5a) [6]. According to the measurement

results of the physical properties of the Apollo 16 samples

[26],[27] and the interpreted result from CE-3 LPR data [19],
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the permittivity of lunar regolith is from 1.5 to 5.5. To describe

the heterogeneous regolith distribution, we use the Gaussian

random media function [28] to generate the heterogeneous

lunar regolith permittivity and conductivity distribution in Fig.

5a and 5c. Fig. 5b and 5e are the initial permittivity and

conductivity models. After 40 iterations, the inverted models

are shown in Figs. 5 (5c and 5f), which are close to the actual

model in Fig. 5a. The lunar regolith layer interface can be

accurately reconstructed in the inversion result. In addition,

the local structures can also be reconstructed, and the shallow

part exhibits a reliable result.

We select a 1-D depth profile for the permittivity and

conductivity at distances of 0.65 m (white dashed lines in

Fig. 5) slices to compare the inverted result and result of the

actual model (Fig. 6). Here, the red line is the initial model,

and the inverted result (black dashed line) is in agreement

with the actual model (solid black line). However, there is

some error in the horizontal direction. This is because the

input radar wave is an approximate spherical wave diffusion.

The signal amplitude in the large-angle area is too weak. For

quantitative comparisons, Fig. 7 presents the data misfit curve

with the proposed algorithms for the first 40 iterations. The

misfit residuals of the proposed FWI decreased to 0.1 after

40 iterations. Another criterion is the data comparison that

can directly measure the quality of inverted tomograms (Fig.

8). After the FWI inversion update, the last inverted traces of

FWI (black dashed line) almost match the raw traces (black

line). This test indicates that the LRPR FWI method provides

reliable regolith physical parameter estimation and shallow

lunar regolith imaging.

To evaluate the performance of the proposed FWI in noise

data, we add different levels of Gaussian noise to the LRPR

data. Fig. 9 are the comparison of the LRPR data with the

different Gaussian noise levels (20 dB and 10 dB, respec-

tively). Fig. 10 shows the FWI inversion result with different

levels of noisy data. Both noise levels (20 dB and 10 dB) data

can invert the structure of the regolith model in Fig. 5a. We

also select the vertical and horizontal permittivity (black and

white dashed lines in Fig. 5) slices to compare the inverted

result and actual model (Fig. 11). However, the noise brings

some inversion error. The interference becomes strong when

the noise level increases (Fig. 11, black dashed line).

B. Lunar Regolith with Buried Rock Model Test

The primary scientific objective of the CE-5 LRPR is to

probe the thickness and structure of the lunar regolith of the

landing site and support the drilling and sampling process. The

rocks buried in the shallow regolith are a potential threat to

drilling work. A regolith model is built with a random buried

rock to test the capability of the proposed FWI method in

buried-rock detection. In the work of Fa et al. (2015), they

divided the lunar regolith into four zones within a depth of 20

m including a reworked layered zone (1 m), an ejecta layer

(2-6 m), a paleoregolith layer (4-11 m), and the underlying

mare basalts [11]. The buried rock size increases with the

depth, which causes substantial clutter within the ejecta. We

use the same parameters as the above model test. The truly

buried rock permittivity and conductivity models are shown

in Fig. 12a and 12d. The initial permittivity and conductivity

models are linear gradient models, as shown in Fig. 12b and

12e. The buried rocks in the different layers are reconstructed

in the FWI inversion results (Fig. 12c and 12f). In addition,

the inverted permittivity parameter values are almost equal to

the actual permittivity model. Fig. 13 shows the 1-D depth

profiles for the permittivity and conductivity at distances of

0.65 m. Here, the red line is the initial data. The inverted

result (black dashed line) is in high agreement with the actual

model (black line). There is some error in the deeper part.

The 2 GHz central frequency source is off-ground at 0.9 m.

The signal amplitude is too weak in the deeper part. This

indicates that the resolution of the more in-depth part is lower

than that of the shallow area. The LRPR FWI results of the

synthetic model tests can be used to evaluate the detection

capability of the LRPR and help interpret the data in the CE-

5 mission. The limitation is that the echoes of LRPR are more

and more dissipative with the increase of the depth so that it is

more difficult of deep detection at the same time the decreased

resolution.

IV. CONCLUSIONS

In this paper, we utilized the multifrequency time-domain

FWI with the TV constraint to evaluate the performance of CE-

5 LRPR data on lunar regolith physical parameter (permittivity

and conductivity) estimation and structure identification. A

typical lunar regolith permittivity synthetic model is built, and

the model uses the actual source wavelets of the employed

Vivaldi antenna array, model size, and measurement param-

eters in our numerical test. The tests demonstrate that the

presented FWI algorithm can provide high-resolution and reli-

able inversion results for the LRPR data. The effect of antenna

radiation, random noise, and metal scattering can effectively be

reduced or suppressed in the proposed FWI inversion, which

provides a robust approach to image the regolith structure and

estimates the permittivity and conductivity by the LRPR data.

The synthetic model FWI inversion results demonstrate that

the LRPR can meet the design requirement of a 2-m detection

depth. The proposed LRPR FWI strategy provides a reliable

results to determine the drilling location and aviod the risk

of buried rocks. Meanwhile, there are some limitations: 1)

the echoes of LRPR are more and more dissipative with the

increase of the depth. The resolution become lower in the

bottom regions; 2) the center freqency of the CE-5 LRPR

anttenna is about 2 GHz, and the maximum penetrating depth

is about 3 m in the lunar regolith environment.

APPENDIX

The gradient associated with the data misfit function is

derived for the 2D FWI inversion procedure.

1) The 2D Maxwell (1) can be written as





ǫ ∂
∂t

+ σ −
∂
∂z

∂
∂x

∂
∂z

µ ∂
∂t

0
∂
∂x

0 µ ∂
∂t









Ez

Hx

Hy



 =





f
0
0



 (13)
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or in a more compact form

A(m)w(m) = F (14)

where

A =





ǫ ∂
∂t

+ σ −
∂
∂z

∂
∂x

∂
∂z

µ ∂
∂t

0
∂
∂x

0 µ ∂
∂t



 ; w =





Ez

Hx

Hy





F =





f
0
0



 ;m =





ǫ
σ
µ



 .(15)

The perturbation of the state variable w with regard to

the model variable m is given by
∂w(m)
∂m

and can be

obtained from

A(m)w(m) = F,

⇒
∂A(m)

∂m
w(m) +A(m)

∂w(m)

∂m
= 0,

⇒
∂w(m)

∂m
= −A−1(m)

∂A(m)

∂m
w(m). (16)

Ignoring the amplitude normalization factor in (7), the

connective function (derivative of Fd(xr, t; xs)) can be

written as

Ḟ∆d =< Arwd(g, t; s), ẇ∆d(g, t; s)
obs >, (17)

Here, Ar is a restriction operator onto the receiver

position and it depends on the spatial coordinates. wd

denotes the predicted data for a given background per-

mittivity and conductivity model recorded at the receiver

location g due to a source excited at time t = 0 and at

location s. wobs
∆d denotes the same event in the observed

data.

The misfit function (5) for FWI is given by

γ = 1
2

∑

s

∑

r ∆d(g, s)2, (18)

so that, the gradient of ǫ is

∂γ

∂ǫ
=
∑

s

∑

g

∂Ḟ∆d

∂ǫ(x)

∂Ḟ∆d

∂∆d

∆d,

=
∑

s

∑

r

1

K

∂ ˙F∆d

∂ǫ(x)
∆d,

=
∑

s

∑

r

1

K
< Arwd(g, t; s), ẇ

obs
∆d (g, t; s) > ∆d,

=
∑

s

∑

r

1

K
< A−1

r

∂A

∂ǫ
wd(g, t; s), ẇ

obs
∆d (g, t; s)∆d >

=
∑

s

<
∂

∂ǫ
wd(g, t; s),

1

A

∑

r

(A∗

rẇ
obs
∆d (g, t; s)∆d

1

K
) >

=
∑

s

<
∂

∂ǫ
wd(g, t; s),w

∗(g, t; s)obs > . (19)

According to (8), we ignore the amplitude normalization

term(A(xr; xs))

K =





K1

K2

K3



 =





∫

Ez(g, t; s) Ez(g, t; s)
obsdt

∫

Hx(g, t; s) Hx(g, t; s)
obsdt

∫

Hy(g, t; s) Hy(g, t; s)
obsdt



 , (20)

w∗ = [Êz, Ĥx, Ĥy]
T is the adjoint-state variable

of w = [Ez,Hx,Hy]
T and is calculated by finite-

difference solution of the adjoint-state equations.





ǫ ∂
∂t

+ σ −
∂
∂z

∂
∂x

∂
∂z

µ ∂
∂t
0

∂
∂x

0 µ ∂
∂t









Êz

Ĥx

Ĥy



 =





f̂
0
0



 (21)

Here,

f̂ =
∑

g A
∗

r∆D(g, t; s), (22)

where ∆D(g, t; s) denotes the data residual of all LPR

data. With (15), we can derive:

∂A

∂ǫ
=





∂
∂t

0 0
0 0 0
0 0 0



 , (23)

∂A

∂σ
=





1 0 0
0 0 0
0 0 0



 , (24)

Using (19) and (23), we can get the gradient of permit-

tivity (ǫ),

∂γ

∂ǫ
=

∑

s <
∂A
∂ǫ

wd(g, t; s),w
∗(g, t; s)obs >,

=
∑

s <





∂
∂t

0 0
0 0 0
0 0 0









Ez

Hx

Hy



 ,





Êz

Ĥx

Ĥy



 >,

=
∑

s

∫

(∂Ez

∂t
Êx)dt. (25)

The dot product of the backpropagated residual vector and

the source-field vector integrated over time is the correlation

imaging condition [29].
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Fig. 1. Flow chart of the LRPR multi-frequency FWI with TV constraint algorithms.

Hieght=0.9m

The schematic drawing of the layout of antennas

1#-12# are 12 antenna elements,  

1#-7# are group A,

8#-11# are group B, 

12# is group C

Fig. 2. Schematic of the LRPR system. 12 Vivaldi antenna elements are divided into three groups. 1-7 are group A, 8-11 are group B, and 12 is group C.
The antenna array is about 90 cm height from the lunar surface [6].

(b)

Fig. 3. Photographs of the test site and the setup of the LRPR ground experiments, modify from [6].
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Fig. 12. a) and d) are lunar regolith with buried rock model; b) and e) are initial model; c) and f) are FWI inversion result.
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