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Abstract

Low frequency earthquakes (LFEs) originating below the central San Andreas Fault are associated with slow-slip within the

more ductile portion of the crust beneath the seismogenic zone. Monitoring efforts over 15 years recorded >1 million LFEs

with >70 per day. We apply machine learning (ML) to statistical features describing the seismic waveforms and estimate

the LFE daily intensity. Using 4 years of independent data, the ML model produces a 0.68 correlation. The burst-like LFE

behavior is reproduced and the largest misfit occurs during the low-amplitude daily undulations. The ability to continuously

monitor LFE activity provides insight to when geodetic measurements of slow slip are possible, without the need for developing

a computational-intensive template-matching catalog. Similarities are found between detecting LFEs and tremors, which

provides evidence tremors are composed of LFEs. The approach reveals by ML the rich information contained in the features

of continuous seismic waveforms.
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UMR 8538, Paris, France.7

Key Points:8

• Machine learning estimates daily LFE rate from statistical features of continuous9

seismic waveforms.10
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Abstract15

Low frequency earthquakes (LFEs) originating below the central San Andreas Fault are16

associated with slow-slip within the more ductile portion of the crust beneath the seis-17

mogenic zone. Monitoring efforts over 15 years recorded >1 million LFEs with >70 per18

day. We apply machine learning (ML) to statistical features describing the seismic wave-19

forms and estimate the LFE daily intensity. Using 4 years of independent data, the ML20

model produces a 0.68 correlation. The burst-like LFE behavior is reproduced and the21

largest misfit occurs during the low-amplitude daily undulations. The ability to contin-22

uously monitor LFE activity provides insight to when geodetic measurements of slow slip23

are possible, without the need for developing a computational-intensive template-matching24

catalog. Similarities are found between detecting LFEs and tremors, which provides ev-25

idence tremors are composed of LFEs. The approach reveals by ML the rich informa-26

tion contained in the features of continuous seismic waveforms.27

Plain Language Summary28

Low frequency earthquakes (LFEs) are a class of events occurring beneath the sec-29

tion of a fault that produces strong ground shaking. This type of event has been observed30

along the central San Andrea Fault and occurs much more frequently than regular earth-31

quakes. This study applies machine learning (ML) using statistical features derived from32

continuous daily seismic waveforms to train a ML model that is capable of estimating33

the daily LFE intensity. Inferring the daily rate of LFEs allows continuous monitoring34

of the fault zone using statistical features of daily seismic waveforms, without develop-35

ing a computationally expensive LFE catalog. Bursts of these events are associated with36

deep slow-slip at the base of the fault that is integral to quantifying the entire slip bud-37

get. The ML model uses features that quantify the energy released and varying frequency38

content in daily seismic waveforms to estimate the LFE activity. Similarities are found39

between monitoring for LFEs and detecting tremors, providing evidence that tremors40

are composed of LFEs. The technique exemplifies the abundant information in seismic41

waveforms that is capable of training ML models to identify processes deep in the fault42

zone with the potential to extract more information related to slip events.43

1 Introduction44

Non-volcanic tremor is inferred to be the superposition of rapidly occurring low-45

frequency earthquakes (LFEs) that coincide with slow-slip on the lower-crustal fault in-46

terface where material behaves in a ductile-like manner (Shelly et al., 2007). Observa-47

tions of this class of earthquake have provided insight to better understand how faults48

accommodate plate motions and allow discovery by informing physical models of the fault49

structure and frictional regime in the deep roots of a fault zone (Bürgmann, 2018; Ru-50

binstein et al., 2009; Peng & Gomberg, 2010). The phenomenon was first observed in51

the Nankai trough subduction zone in Japan, downdip from the locked plate interface52

(Obara, 2002), and later in the Cascadia (Rogers & Dragert, 2003) and Mexican (Frank53

et al., 2013) subduction zones. Along the more shallow, crustal strike-slip (transform)54

San Andreas Fault (SAF) near Parkfield, California, Nadeau and Dolenc (2005) also ob-55

served non-volcanic tremor, which provided evidence of slow slip in tectonic environments56

other than subduction thrusts. Following these initial discoveries, slow slip is now ob-57

served at most major tectonic plate boundaries and is considered an significant percent-58

age of the total slip budget (Jolivet & Frank, 2020).59

Observational evidence suggests LFEs represent deep shear slip at the base of a fault60

zone and the continuous monitoring of LFE activity could serve as a proxy for slow slip61

(Shelly, 2017; Shelly et al., 2007). Non-volcanic tremors also originating from the deep62

fault are low amplitude seismic signals that contain bursts of energy in the 1-5 Hz range,63

but are depleted in higher frequencies and are believed to be composed of LFEs (Shelly64
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et al., 2007). Tremor signals have been decomposed into individual LFEs using earth-65

quake waveform techniques, e.g. template matching, to show the rapid succession of these66

events produce tremors (Shelly & Hardebeck, 2010). Near the Parkfield section of the67

SAF (Figure 1), the time and locations of LFEs are cataloged for 15 years of activity and68

provide a detailed record of deep crustal deformation (Shelly, 2017). The LFEs migrate69

along strike at rates up to 80 km/hr (Shelly, 2017; Shelly & Hardebeck, 2010; Shelly, 2010a),70

show episodic, near-continuous, and bimodal recurrent activity (Shelly, 2010b, 2010a),71

exhibit decoupled behaviour from the northern to southern sections of the fault (Trugman72

et al., 2015), and can be triggered by low amplitude stresses produced by tides and tele-73

seismic earthquakes, suggesting a weak frictional environment (Thomas et al., 2012, 2009;74

Peng et al., 2009; van der Elst et al., 2016; Delorey et al., 2017). Observing complemen-75

tary geodetic observations of deep slow-slip on the SAF is challenged by the low signal-76

to-noise ratio of GPS and InSAR measurements compared to the expected sub-millimeter77

displacements. At Parkfield, Rousset et al. (2019) quantify the average slow-slip moment78

release, equivalent to a M4.9 earthquake, by stacking all GPS measurements recorded79

during bursts of LFE activity with the highest daily rates. This geodetic observation does80

not quantify individual slow slip events, but does show bursts of LFE activity can be used81

as a proxy for deep slip on the SAF.82

Developing the LFE catalog for the SAF utilizes waveform template matching with83

a 6 second LFE example to scan the entire local seismic network and identify individ-84

ual events (Shelly, 2017). The ability to quantify the daily LFE intensity without com-85

piling a complete catalog has the potential to provide insight into the physics of fault86

mechanics and potentially help constrain the slip budget of large magnitude earthquakes.87

Machine learning (ML) has shown the ability to predict the timing of laboratory earth-88

quakes (Rouet-Leduc et al., 2017) and quantify the physics prior to the slip event in these89

experiments (Hulbert et al., 2019; Rouet-Leduc et al., 2018). In the Cascadia subduc-90

tion zone, ML models are able to increase the detection potential of tremors (Rouet-Leduc91

et al., 2020), estimate the GPS measured surface displacement (Hulbert et al., 2020), and92

identify the release of seismic energy before the slow-slip events (Hulbert et al., 2020).93

In this study, we show a ML model can estimate the daily LFE rate on the SAF. The94

ML model is trained with statistical features describing the continuous seismic waveforms95

from a subset of local borehole seismic sensors. The final ML model estimates the daily96

LFE intensity directly from features of the waveforms. The application demonstrated97

here provides new evidence of the ability of ML models to identify weak sources of ground98

motion associated with LFEs and the potential to extract more information related to99

slow slip events.100

2 Data and Methods101

2.1 LFE Catalog and Daily Rates102

The LFE catalog developed by Shelly (2017) contains more than 1 million events103

that occur at >15 km depth in the lower crust near Parkfield, California, which includes104

the transition from the northern creeping to the southern locked regions of this ∼160 km105

section of the SAF (Figure 1a). The events are distributed throughout 88 families at dis-106

crete locations that produce nearly identical waveforms and enable the detection of re-107

peating families with template matching. The Parkfield section of the SAF has hosted108

numerous M∼6 earthquakes, with the most recent in September 2004 (Bakun et al., 2005).109

The seismicity data along a 160 km transect and within 7.5 km of the fault shows much110

more activity in the northern creeping section (Figure 1b). The brittle to ductile tran-111

sition is estimated using the 95th percentile of the seismicity depths along the fault and112

varies from about 9 km to the north and 15 km to the south. Similarly, the LFE fam-113

ilies northwest of Parkfield are between 20-25 km depth and shallower when comparing114

to the 22-30 km depth to the southeast (Figure 1b).115
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Figure 1. Central coastal range of California in map view. Inset shows the western U.S. with

the San Andreas Fault in red and the study area indicated by the black box. (A) Creeping and

locked section of the fault (gray line) near Parkfield, shown with a yellow star. Low frequency

earthquake family locations are shown as circles with the depth indicated by color. Inverted black

triangles are the HRSN seismic sensors used in the analysis; smaller black triangles show the

entire HRSN network. The time periods of seismic data from the HRSN applied to model train-

ing, evaluating, and testing is shown between 2004-2017. (B) Depth profile showing seismicity

(gray dots) within dashed box in A and low frequency earthquakes (open circles). The distance is

relative to the Parkfield 2004 M6 hypocenter shown with a yellow star with northwest (NW) and

southeast (SE) relative to map view. The dashed black line is the 95th percentile of event depth

along the fault indicating the transition to a more ductile environment.
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We develop a daily LFE-intensity time-series that is compiled using all cataloged116

events between January 2004 and December 2016. The daily count ranges up to 2050117

LFEs per day, with peak activity following the 2004 M6 Parkfield earthquake, and an118

average of 202 LFEs per day. Below the locked section south of Parkfield the daily av-119

erage is 131 LFEs per day with 6% of the times exceeding twice the standard deviation120

from the mean. In this section of the SAF the LFEs waveforms have higher amplitudes121

and occur at a more steady rate (Nadeau & Dolenc, 2005; Shelly & Hardebeck, 2010).122

Below the creeping section to the north the average is 70 LFEs per day with 10% of the123

times exceeding twice the standard deviation from the mean. Here the LFEs exhibit more124

burst-like activity that was used to constrain the geodetic observations (Rousset et al.,125

2019).126

2.2 Seismic Waveforms127

The High-Resolution Seismic Network (HRSN; BP network) is a permanent array128

of 13 closely spaced borehole seismometers located near Parkfield and operated by the129

Berkeley Seismological Laboratory (Figure 1). The network is designed to enhance mi-130

croseismicity detection along the SAF and is used in the development of the LFE cat-131

alog (Shelly, 2017). We use 5 stations (EADB, FROB, SCYB, SMNB, and VCAB) that132

perform well when developing the LFE catalog (Shelly, 2017), and obtain all available133

3-channel (DP; 500 sample per second) daily records between 2004 and 2016. We reverse134

the polarity and perform channel swaps following the corrections documented in Shelly135

(2017). The data is preprocessed by deconvolving the instrument response function to136

obtain waveforms in the native m/s units. From 2010 to 2013 some instruments were up-137

graded with gain amplifiers to improve small event detection, but not all instrument re-138

sponse files were correctly documented, which can produce inconsistent waveform am-139

plitudes after deconvolving the instrument response function. Days containing multiple140

file segments for the entire day are used and any gaps between segments are filled with141

zeros. Days with inconsistent channel recordings or only partial waveforms records are142

discarded.143

2.3 Data Features144

Data features are calculated using the 3 channels of each sensor as follows. The wave-145

forms are filtered with a 4th order zero-phase Butterworth bandpass filter using corners146

of 1-4 Hz, 4-8 Hz, 8-12 Hz, and 12-16 Hz. For each filtered waveform the zero-crossing-147

rate, the 5-95%, 10-90%, 25-75%, 40-60% inter-quantile-range (IQR), the variance, the148

skew, the kurtosis, the min-max range, and the root-mean-squared are calculated. This149

produces 40 features for each channel, 120 features per day for each sensor, and 600 to-150

tal for the 5 sensors (4 filters * 10 statistics * 3 channels * 5 sensors = 600 features). To151

develop a continuous time series with 600 features per day, sensors with missing daily152

waveforms are represented as a vector of 120 not-a-number (NaN) values when assem-153

bling the feature matrix. The values are scaled to unit variance using the standard de-154

viation of the previous 15 days. Although the ML model is insensitive to scale differences155

between individual features, this technique scales the features consistently through time156

and removes amplitude variations from the equipment upgrades. Additionally, no future157

information is used to modify a point in the time series, unlike scaling by the standard158

deviation of the entire series. The short window length is selected to remove seasonal-159

ity observed in the waveforms that could potentially bias the ML model. The scaled fea-160

ture time series is split into training (N=1826), test (N=1096), and blind test (N=1461)161

data sets. Prior to splitting, shuffling is not applied to retain the temporal behavior in-162

herent to the data.163
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2.4 Gradient Boosted Tree ML Model164

We develop a ML model based on gradient boosted trees (XGBoost package; Chen165

& Guestrin, 2016) that is designed as a regression analysis to estimate the daily LFE in-166

tensity from 600 statistical features of the waveforms for that day. The ML model is trained167

using 5 years of data from January 2005 to December 2009 and the performance is eval-168

uated throughout the training process using 3 years of test data from January 2010 to169

December 2012. We fit 9 hyperparameters (max depth, learning rate, n estimators, gamma,170

min child weight, subsample, colsample bytree, reg alpha, and reg lambda) using a Bayesian171

optimizer (scikit-optimize package; Head et al., 2018). Determining the best combina-172

tion of hyperparameters is an iterative process and requires training thousands of ML173

models. The hyperparameter optimizer is updated using the average Pearson’s cross cor-174

relation coefficient from the training data 5 fold cross validation. The best fit hyperpa-175

rameters obtained from the cross validation are applied to the test data, which allows176

a quantitative metric to further constrain the search space during additional model train-177

ing to converge at a global minimum. This procedure ensures an unbiased metric when178

reporting the performance, but produces data leakage since the best-fit parameters are179

unintentionally tuned to the test data. The final analysis uses the blind-test data set be-180

tween 2013 and 2016 to evaluate the ML model.181

3 Results182

3.1 Model Training, Testing, and Blind-Test183

The results for the 3 data sets are shown as the LFE intensity versus the model184

estimate, and quantified with the Pearson cross correlation and R2 values (Figure 2). The185

correlation metric describes the similarity in the shape of the curves and the R2 value186

describes the variance between the known values and model estimates, which is consis-187

tently lower compared to the correlation. The training data used in the 5 fold cross val-188

idation has a range between 0.75 and 0.80 correlation values for each year (Figure S1),189

and a 0.73 correlation value and 0.54 R2 value for the entire 5 year period (Figure 2a).190

The test dataset results are consistent with the training and have a 0.72 correlation value191

and 0.52 R2 value (Figure 2b). When viewing each year from 2010 to 2011 separately192

(Figure S2), the correlation value decreases annually from 0.77 to 0.68, which coincides193

with the network upgrades (Shelly, 2017). The training and test results show the longer194

wavelength undulation and LFE bursts are reproduced by the model, with the largest195

discrepancy observed in estimating the higher-frequency lower-amplitude variations (Fig-196

ures S1 and S2). Consistent values are obtained when using 4 and 7 splits in the cross197

validation to vary the subsets of data used in each validation. For this data set, the hy-198

perparameters (Test S1) are robust to develop a model that estimates the LFE inten-199

sity from the waveform statistical features.200

After the training and testing is complete, the ML model is applied to the blind-201

test dataset and a 0.69 correlation value and 0.45 R2 value are reported (Figure 2c). The202

correlation values range from 0.54-0.75 if the test data set is separated into the individ-203

ual years, with 2013 and 2016 showing the lowest correlation (Figure S3). The time se-204

ries of the first 180 days in 2015 show the model performance (Figure 3). Qualitatively205

it captures the multi-day rate changes and adequately estimates the bursts of LFE ac-206

tivity, but does not always correctly capture the higher frequency variations. The results207

indicate the model is over estimating the LFE intensity when the observed daily rate is208

<100 LFEs per day. This is shown in the density plot with the highest concentration of209

points below the ±50 interval (Figure 2c) and observed in the blind-test time series (Fig-210

ure S3). Some of the time intervals that are over estimated coincide with periods of miss-211

ing seismic data. Station FROB and SMNB are problematic during days 1-20 in 2015212

and the model estimate is above the near zero LFE intensity reported in the catalog (Fig-213

ure 3). Beginning in 2010 long periods of network degradation occur more frequently (Figure214
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Figure 2. Density plot showing the model estimate versus the cataloged number of LFEs per

day for the (A) training, (B) test, and (C) blind test datasets. The white line shows the 1:1 cor-

relation and is bounded by ±50 shown as the white dashed line. The Pearson’s cross correlation

and R2 values are listed for each in the upper left.
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Figure 3. LFE intensity shown with 5 seismic waveform examples. The top curve is the

LFE daily intensity from the catalog (grey line) shown with the model estimate (black line) for

days 1-180 of 2015. The 5 waveform traces shown below are the horizontal channel (DP2) for

each sensor used to calculate the statistical features. The vertical axis is clipped to highlight the

amplitude variations in noise.

3 in Shelly, 2017), suggesting the ML model is correctly estimating the LFE activity215

when the template matching was unable to detect all events. To test if the model is over216

estimating because is it trained using data when the network is performing best, we do217

the opposite and train a model with the same hyperparameters using data from 2013.5218

to 2017 and use 2013.0 to 2013.5 to estimate the LFE intensity. The results show an in-219

crease in correlation value from 0.55 to 0.66 for this time interval (Figure S4) indicat-220

ing the model trained with the best data is most likely estimating an accurate LFE in-221

tensity, even if the network performance decreases.222

3.2 Feature Importance223

Tree based ML model architectures have the benefit of quantifying the feature im-224

portance to interpret which information is most influential in the model output. The fea-225

ture importance is quantified using the SHAP summary value (Lundberg & Lee, 2017)226

to report the contribution and a positive or negative correlation with the target variable227

(Figure 4). The SHAP values for the 2 most influential features are more than 2 times228

greater than the others, but that does not indicate causality, only how the model is ob-229

taining information to perform best. The most influential feature is the 5-95% IQR from230
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Figure 4. SHAP metric showing feature importance with the more influential features hav-

ing a greater value. The 20 that contribute most to the model are shown in descending order

with the feature name listed on the vertical axis. Features positively correlating are in red and

negatively correlating in blue.

station SMNB on channel DP2 in the 8-12 Hz bandpass with a SHAP value of 27 that231

is positively correlated. Inspection of the feature time-series indicates similarities with232

the LFE intensity but it does not, as expected, match peak-for-peak because of the non-233

linear relationship the model develops using information from the entire dataset. The234

features ranked 2 through 5 are all zero crossing rate in the 4-8 Hz, 8-12 Hz, and 12-16235

Hz bandpass and 3 of them are positively correlated. The 4th ranked feature is the zero236

crossing rate in the 8-12 Hz bandpass and correlates negatively with the LFE rate, in-237

dicating this value is informing the model of when not to expect LFEs. Regardless of238

station or channel, the top 20 features are 5-95% IQR or zero crossing rate, 13 correlate239

positively and 7 negatively, and 5 are in the 4-8 Hz bandpass without any in the 1-4 Hz240

bandpass. None of the central-moment statistics appear in the top 20 best features listed.241

4 Discussion242

The ability of ML when applied to seismic data from laboratory shear experiments243

to infer instantaneous and future behavior demonstrates that signals are emitted through-244

out the stress loading cycle (Rouet-Leduc et al., 2017; Lubbers et al., 2018; Rouet-Leduc245

et al., 2018). Features of the seismic signals illuminate pre-failure slip characteristics by246

identifying continuous micro-failures (Hulbert et al., 2019). As shown here, the statis-247

tical representation of seismic waveforms at Parkfield contains rich information regard-248

ing daily LFE intensity. The LFE intensity is thought to be a manifestation of micro-249

failure evolution on the deep portion of the slowly-slipping fault, similar to laboratory250

studies. Sensitivity tests incorporating station dropout or using a single station (the HRSN251

station VCAB and broadband station PKD were modeled for single station analysis) pro-252

duce similar results, but manifest a reduction in LFE burst intensity. This is logical con-253

sidering the sources are distributed along a 160 km section of the fault, and illustrates254

that a larger spatial sampling of features is required to capture the diverse LFE activ-255

ity (Figure 1).256
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The less impactful features are in the 1-4 Hz bandpass, suggesting the ML model257

is identifying information to quantify the LFE intensity outside the spectral range typ-258

ically associated with LFEs. This observation is supported by the zero-crossing rate in259

the 8-12 Hz bandpass as being an important feature since LFEs are depleted in energy260

above 10 Hz (Obara, 2002). The best features reported from ML models analyzing lab-261

oratory shear data are similar to those found here (Rouet-Leduc et al., 2018), suggest-262

ing that fault frictional characteristics are similar across multiple scales. Additionally,263

applying a variation of this method to slow slip in Cascadia shows that tremor activity264

is best characterized by the IQR in the 8-13 Hz bandpass (Rouet-Leduc et al., 2019; Hul-265

bert et al., 2020). Further, a deep learning model trained using the frequency content266

of tremor with seismic data from Cascadia is able to identify tremor on the SAF near267

Parkfield (Rouet-Leduc et al., 2020). The deep learning model does not provide a spe-268

cific best-feature due to the different model design, but does highlight the strong sim-269

ilarities between detecting tremors and LFEs. This collection of results suggests that a270

characteristic acoustic release of energy across multiple scales and tectonic environments271

is responsible for both tremors and LFEs. Indeed, the results show IQRs from 4-16 Hz272

map to the LFE intensity, identifying a statistical relationship between LFEs and tremor,273

providing new evidence for tremor being comprised of LFEs.274

The technique presented here quantifies the LFE daily intensity with the goal of275

learning what information contained in seismic waveforms is relevant to forecasting in-276

stantaneous seismic activity. The statistical features applied to the ML model provide277

a snapshot of the physics recorded in the waveforms that are emitted in this low frictional278

environment. The daily sampling applied here filters the information into a 24-hour win-279

dows using all LFE families along the fault and possibly obscures useful characteristics280

contained in the <10 s LFE waveforms.281

Applying instantaneous features, we also attempted to forecast the future LFE in-282

tensity. The results produced poor predictions, especially during the LFE bursts. This283

suggests that we must isolate LFE sources along the 160 km fault segment to test whether284

or not future behavior can be forecast for single source locations.285

A limitation to the model was degraded performance during the aftershock sequence286

of the 2004 M6 Parkfield earthquake. The ML model captures the LFE increase, but un-287

derestimates the multi-month elevated activity (Figure S5). Since the ML model was not288

trained using a data set containing LFEs triggered from a large magnitude event, the289

waveform statistical properties of this type of activity will not be learned by the model.290

The problem we describe is challenging because of the spatially synchronous be-291

havior of LFE families that can produce simultaneous emissions at source locations spa-292

tially unrelated (Trugman et al., 2015), and the frequent earthquakes occurring along293

the creeping section of the fault. For these reasons the central SAF presents unique con-294

ditions in contrast to other regions where related problems are explored, e.g., tremor and295

slow-slip in Cascadia (Rouet-Leduc et al., 2019, 2020; Hulbert et al., 2020). Neverthe-296

less, the ML model extracts the LFE intensity with a high correlation to the known rate297

and suggests the engineered features utilized are sufficient to characterize the slip be-298

havior of the evolving fault system. It will be interesting to apply the trained ML model299

to other tectonic environments and learn if it generalizes to an efficient approach for mon-300

itoring LFE activity without retraining, or utilizing template based signal processing.301

Similar LFE analyses across different tectonic regions and faulting styles may provide302

additional insight into consistent and varying LFE, tremor, and slow-slip characteristics.303

Our results underscore the power of ML in seismic signal analysis, complimenting pre-304

vious studies extracting new information from seismic waveforms (Rouet-Leduc et al.,305

2017, 2018; Lubbers et al., 2018; Rouet-Leduc et al., 2019, 2020; Hulbert et al., 2020).306
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5 Conclusion307

We develop a ML model to estimate the daily LFE intensity on the central SAF308

using statistical features of seismic waveforms. The model is trained using the LFE cat-309

alog containing >1 million events to develop a daily rate and 5 borehole seismometers310

to calculate features representing characteristics of the waveforms. The ML model gets311

a correlation of 0.68 when applied to a blind-test data set. The largest misfit is observed312

when the cataloged LFE rate is <100 per day. Tests during periods of seismic station313

malfunction indicate the ML model is reporting an increased rate more consistent with314

long term activity. Similarities with the statistical features that best describe the LFE315

intensity are observed between other ML models that identify tremors and provide ev-316

idence tremors are composed of LFEs.317
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Text S1. The hyperparameter search space was refined to allow an initial large range,

then systematically narrowed to avoid overfitting the training data. The final model

is selected after the Gaussian optimizer converges on a set of hyperparameters and the

average correlation value from the 5 fold cross validation stabilizes. The best-fit model

hyperparameters are max depth = 4, learning rate = 0.039, n estimators = 688, gamma

= 0, min child weight = 28.73, subsample = 0.764, colsample bytree = 0.9, reg alpha =
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150, and reg lambda = 59.668 which produce the highest correlation with the training

data.
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Figure S1. Training cross validation results. Each 1 year period is held out and the model

is trained using the remaining 4 year. Shown are the model prediction in blue with the LFE

intensity shown in black. Predictions in red indicate >50% of the data features are missing. The

Pearson’s cross correlation is shown for each time window
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Figure S2. Test data results shown for each 1 year period. Shown are the model prediction

in blue with the LFE intensity shown in black. Predictions in red indicate >50% of the data

features are missing. The Pearson’s cross correlation is shown for each time window

October 23, 2020, 6:59pm



: X - 5

2013 2014
0

250

500

750

1000

Da
ily

 L
FE

 ra
te CC 0.56

2014 2015
0

250

500

750

1000

Da
ily

 L
FE

 ra
te CC 0.65

2015 2016
0

250

500

750

1000

Da
ily

 L
FE

 ra
te CC 0.75

2016 2017
0

250

500

750

1000

Da
ily

 L
FE

 ra
te CC 0.54

Figure S3. Blind-test results shown for each 1 year period. Shown are the model prediction

in blue with the LFE intensity shown in black. Predictions in red indicate >50% of the data

features are missing. The Pearson’s cross correlation is shown for each time window
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Figure S4. Evaluating the model performance when trained using data from periods when the

seismic network is degrading. Shown are the model prediction in blue with the LFE intensity

shown in black for the first 180 days for 2013. The Pearson’s cross correlation is shown for each

time window
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Figure S5. Results shown for 2004. Shown are the model prediction in blue with the LFE

intensity shown in black. Predictions in red indicate >50% of the data features are missing. The

Pearson’s cross correlation is shown for each time window
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