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Abstract

Reconstruction and prediction of the state of the near-Earth space environment is important for anomaly analysis, development
of empirical models and understanding of physical processes. Accurate reanalysis or predictions that account for uncertainties in
the associated model and the observations, can be obtained by means of data assimilation. The ensemble Kalman filter (EnKF)
is one of the most promising filtering tools for non-linear and high dimensional systems in the context of terrestrial weather
prediction. In this study, we adapt traditional ensemble based filtering methods to perform data assimilation in the radiation
belts. We use a one-dimensional radial diffusion model with a standard Kalman filter (KF) to assess the convergence of the
EnKF. Furthermore, with the split-operator technique, we develop two new three-dimensional EnKF approaches for electron
phase space density that account for radial and local processes, and allow for reconstruction of the full 3D radiation belt space.
The capabilities and properties of the proposed filter approximations are verified using Van Allen Probe and GOES data.
Additionally, we validate the two 3D split-operator Ensemble Kalman filters against the 3D split-operator KF. We show how
the use of the split-operator technique allows us to include more physical processes in our simulations and offers computationally
efficient data assimilation tools that deliver accurate approximations to the optimal solution of the KF and are suitable for
real-time forecasting. Future applications of the EnKF to direct assimilation of fluxes and non-linear estimation of electron

lifetimes are discussed.
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Key Points:

« We verify the convergence of the EnKF to the optimal state estimate given by KF.
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techniques in terms of the time evolution of PSD radial profiles.
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Abstract

Reconstruction and prediction of the state of the near-Earth space environment is im-
portant for anomaly analysis, development of empirical models and understanding of phys-
ical processes. Accurate reanalysis or predictions that account for uncertainties in the
associated model and the observations, can be obtained by means of data assimilation.
The ensemble Kalman filter (EnKF) is one of the most promising filtering tools for non-
linear and high dimensional systems in the context of terrestrial weather prediction. In
this study, we adapt traditional ensemble based filtering methods to perform data as-
similation in the radiation belts. We use a one-dimensional radial diffusion model with

a standard Kalman filter (KF) to assess the convergence of the EnKF. Furthermore, with
the split-operator technique, we develop two new three-dimensional EnKF approaches
for electron phase space density that account for radial and local processes, and allow

for reconstruction of the full 3D radiation belt space. The capabilities and properties of
the proposed filter approximations are verified using Van Allen Probe and GOES data.
Additionally, we validate the two 3D split-operator Ensemble Kalman filters against the
3D split-operator KF. We show how the use of the split-operator technique allows us to
include more physical processes in our simulations and offers computationally efficient
data assimilation tools that deliver accurate approximations to the optimal solution of
the KF and are suitable for real-time forecasting. Future applications of the EnKF to
direct assimilation of fluxes and non-linear estimation of electron lifetimes are discussed.

1 Introduction

Radiation belts electron dynamics exhibit strong changes in time and space dur-
ing geomagnetically active periods over time scales ranging from minutes to hours. En-
hanced radiation in space during geomagnetic storms can damage spacecraft electron-
ics through deep dielectric and surface charging. Failure or damage of such systems yields
significant societal and economical impacts. Therefore, understanding and prediction of
particle dynamics in the near Earth has become increasingly important.

Several physics-based models that describe the evolution of electron phase space
density in the radiation belt region have been developed (e.g. Salammbé (Beutier & Boscher,
1995; Bourdarie et al., 1996), DREAM-3D (Reeves et al., 2012), BAS (Glauert et al., 2014),
VERB-3D code (Shprits, Subbotin, & Ni, 2009; Subbotin & Shprits, 2009). Physics-based
models include uncertainties due to the errors in the initial and boundary conditions,
wave models, transformation of fluxes from real space into invariant space, as well as po-
tentially missing physical processes. Similarly, sparse observations are contaminated by
secondary particles, noise and errors associated to spatial transformations. Therefore,
the most reliable reconstruction and prediction of the state of the radiation belts can only
be obtained by accounting for both, the data and the model, which is achieved through
data assimilation.

The Kalman filter (KF) (Kalman, 1960) was developed in the context of engineer-
ing control problems and provides the best linear unbiased estimator, under the assump-
tion of known Gaussian distributed model and observation errors. For non-linear sys-
tems, the sequential data assimilation algorithms most commonly used are the Extended
Kalman filter (EKF) (Jazwinski, 1970), which entails a linearization of the model op-
erator and the Ensemble Kalman filter (EnKF) (Evensen, 1994, 2003), which is a Monte
Carlo approximation of the KF that does not require any linearization. The standard
KF is a stable algorithm that offers the optimal estimate for single model runs of lin-
ear systems. However, one major advantage of the EnKF is the calculation of single er-
ror covariance matrices at every time step of the simulation. Since error estimation and
assimilation of observations occur through the ensemble, the EnKF does not require lin-
earization of neither the model nor the observation operators, allowing for non-linear ef-
fects to be taken into account.
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The use of such data assimilation tools to analyse the state of the radiation belts
is becoming increasingly popular. A variety of studies have used 1D radial diffusion mod-
els to apply the KF or the EKF algorithms, (e.g., Naehr & Toffoletto, 2005; Koller et
al., 2005; Shprits et al., 2007; Kondrashov et al., 2007; Ni et al., 2009; Kondrashov et
al., 2011; Daae et al., 2011; Shprits et al., 2012; Schiller et al., 2012), or the EnKF (e.g.,
Koller et al., 2007; Reeves et al., 2012; Godinez & Koller, 2012). Data assimilation in
1D space is useful to gain insights of the evolution of the system, but does not allow for
propagation of covariances between different pitch angles and energies. Therefore, 1D
approaches do not exploit the full potential of the satellite observations, and moreover,
does not proper study of acceleration and loss processes. On the contrary, multidimen-
sional models enable us to use the entire information on pitch angle distributions and
energy spectra from different satellites.

Up until now, only two 3D data assimilation approaches for the radiation belt re-
gion have been implemented: one for the KF and one for the EnKF. Shprits et al. (2013)
introduced the ”operator-splitting” technique for 3D data assimilation with the KF. The
authors showed the robustness of the 3D split-KF approach and presented the evolution
of PSD radial profiles resulting from assimilation of CRRES data. More recently, Cervantes
et al. (2020) presented simulations using a 3D split-KF tool, that includes mixed diffu-
sion terms in the forecast step. Bourdarie and Maget (2012) used the EnKF to recon-
struct radiation belts fluxes along satellite orbit, but they did not present global evolu-
tion of reconstructed fluxes and did not validate the EnKF against KF.

The goals of this work are: (1) to investigate the convergence of the state estimate
from the EnKF to the optimal estimate from KF applied to a 1D radial diffusion model,
and (2) to combine the operator-splitting and the EnKF approaches to obtain global re-
analysis of the radiation belts. We address these goals as follows: we extend the split-
operator technique to the EnKF in order to develop two computationally efficient 3D
EnKF approximations. We use the VERB-3D code and the new split-EnKF methods
to assimilate electron fluxes from Van Allen Probes and Geostationary Operational En-
vironmental Satellites (GOES) in the entire 3D phase space. We present the global evo-
lution of PSD in the radiation belts obtained with the new multidimensional EnKF ap-
proaches. Finally, we validate the convergence of our EnKF simulations by performing
a systematic comparison of KF and EnKF methods for radiation belt electrons. Such
a validation of data assimilation methods has not been provided in previous studies.

In the next Section, we describe the physics-based model and the satellite data. In
Section 3, we present the theory of the filtering algorithms. Section 4 is devoted to the
results of data assimilation experiments with real data. In Section 5, we discusse the re-
sults of the experiments and Section 6 gives an overview of the conclusions of this study
and proposed future work.

2 VERB-3D model and Data
2.1 Model description

The 3D Versatile Electron Radiation Belt (VERB-3D) (Shprits, Subbotin, & Ni,
2009; Subbotin & Shprits, 2009) code solves the modified 3D Fokker-Planck equation that
describes the time evolution of the phase-averaged electron phase space density (PSD
or f) inside the Earth’s magnetosphere in terms of the three adiabatic invariants (p, J,
®) (Schulz & Lanzerotti, 1974; Walt, 1994). Using bounce- and drift-averaged diffusion
coefficients (Dr+r+, Dppy Dpags Dagps Dagas)s this equation can be transformed into (L*,
p, ag) coordinates and is known as the bounce- and drift-averaged Fokker-Planck-equation:
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where aq is the equatorial pitch angle, p is the relativistic momentum and L* =
(2rM)/(®RE), with M the magnetic moment (Roederer & Zhang, 2014). T'(ap) is an
approximation of the bounce frequency in a dipole field and is estimated after Lenchek
et al. (1961). The radial diffusion coefficients (Dp~r~) are calculated following Brautigam
and Albert (2000). Bounce-averaged diffusion coefficients are computed with the Full
Diffusion Code (Shprits & Ni, 2009) using the hiss-wave parametrization of Orlova et
al. (2014) and the chorus-wave (day and night side) parameterization of (Orlova & Sh-
prits, 2014). The plasmapause location is estimated following Carpenter and Anderson
(1992). The lifetime parameter 7 is assumed to be infinite outside the loss cone and equal
to a quarter of the electron bounce inside the loss cone.
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The solution of equation (1) neglecting mixed diffusion can be computed on a grid
with 25 x 25 x 25 points along radial, energy, and pitch angle dimensions, with a uni-
form grid covering L* values from 1 to 6.6. In order to obtain better resolution in high-
PSD regions, e.g. at low energies and at the edge of the loss cone, logarithmic distribu-
tions are used for equatorial pitch angle grid points (from 0.3° to 89.7°) and energy grid
points, which increase with decreasing L*, i.e. at L* = 1 the energy range is 2 — 200
MeV and at L* = 6.6 the energy range is 0.01 — 10 MeV (Subbotin & Shprits, 2009;
Subbotin et al., 2011). The initial PSD is calculated as the steady state solution of the
radial diffusion equation. The six boundary conditions required to solve equation (1) are
chosen as follows: at the inner radial boundary (L* = 1), PSD is equal to zero to rep-
resent the losses to the atmosphere; at the upper radial boundary (L* = 6.6), time-dependent
PSD is estimated from GOES measurements. Setting PSD equal to zero at the lower pitch
angle boundary (g = 0.3°), we account for electron precipitation in a weak diffusion
regime (Shprits, Chen, & Thorne, 2009). A zero PSD-gradient is applied at the upper
a-boundary (o = 89.7°) to describe a flat pitch angle distribution (Horne et al., 2003).
At the upper energy boundary, a zero PSD boundary condition is applied representing
the absence of high-energy electrons (> 10 MeV), while at the lower energy boundary
PSD is set constant in time to represent a balance of convective source and loss processes.

2.2 Satellite Observations

We test the new split-operator EnKF' techniques using electron observations ob-
tained from the Van Allen Probes and GOES missions for the entire month of Novem-
ber, 2012. This particular period is chosen, as it includes both quiet and active geomag-
netic conditions, and an intense storm (Kp = 6*) on November 15.

The NASA’s Van Allen Probes mission (formerly Radiation Belt Storm Probes (RBSP)),
launched on 30.08.2012 from the Cape Canaveral, consisted of two spacecraft (probes
A and B) at nearly identical highly elliptical orbits (HEO) with perigee of approximately
618 km, apogee of ~ 30400 km (~ 5.8 Re geocentric) and 10° inclination (Mauk et al.,
2012). The Energetic Particle, Composition and Thermal Plasma Suite (ECT) (Spence
et al., 2013) on board both Van Allen Probes hosts four identical Magnetic Electron Ion
Spectrometers (MagEIS) (Blake et al., 2013) and three Relativistic Electron Proton Tele-
scopes (REPT) (Baker et al., 2012). These instruments provided pitch-angle resolved
electron flux measurements from 01.09.2012 until 18.10.2019 covering large energy ranges:
a) MagEIS: electron seed population to relativistic electron population (20—240 keV,
80—1200 keV, 800—4800 keV) and b) REPT: Very Energetic Electrons (2 MeV, 5 MeV,
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10 MeV). In this study, we use MagEIS and REPT electron flux measurements from RBSP
A and B averaged over 30min.

The GOES fleet are a series of meteorological geostationary satellites operated by
the U.S. National Oceanic and Atmospheric Administration (NOAA) at nearly geosyn-
chronous orbit (Data Book GOES, 2005). We use pitch-angle resolved electron flux mea-
surements from the Magnetospheric Electron Detectors (MAGED) (Hanser, 2011; Ro-
driguez, 2014a) and the Energetic Proton, Electron, and Alpha Detectors (EPEAD) aboard
GOES 13 and 15 (Rodriguez, 2014b). MAGED consists of nine solid-state-detector tele-
scopes, five in the east-west (equatorial) plane and the other four in the north-south (merid-
ional) plane, measuring electron fluxes at energies of: 30—50 keV, 50—100 keV, 100—
200 keV, 200 — 350 keV and 350 — 600 keV. In addition, onboard each GOES satellite
two EPEADs, one detector oriented eastward and the other westward, measure MeV elec-
tron and proton flux data in two energy ranges: > 0.8 MeV and > 2 MeV. EPEAD in-
tegral fluxes and pitch-angles are obtained by averaging the measurements of the East
and West telescopes. We use the 90° pitch-angle differential flux data from MAGED and
fit the two integral channels of EPEAD to an exponential function. To obtain differen-
tial flux for energies of interest we use the exponential fits. In this study, we use elec-
tron flux observations from MAGED and EPEAD averaged over 30min intervals.

Measured electron fluxes (J) are converted to PSD (f) as: f = J/p? (Rossi & Ol-
bert, 1970). Local magnetic field measurements are used to compute the first adiabatic
invariant (u). Using the IRBEM library (Boscher et al., 2013), we estimate the value of
the second (K) and third adiabatic (L*) invariants in the T89 magnetic field model (Tsyganenko,
1989).

3 Filtering Algorithms

In this section, the classic Kalman filter (Kalman, 1960) and the stochastic Ensem-
ble Kalman filter (EnKF) (Evensen, 1994, 2003) are briefly reviewed, and their conver-
gence and correspondence are discussed. We also give an overview of the split-operator
adaptations of the KF and EnKF, and in subsection 3.5, we introduce our method of val-
idation.

3.1 Kalman filter (KF)

Using VERB-3D and available satellite observations, our goal is to estimate the most
probable state of the radiation belts (PSD at time k, denoted as z{) and the uncertainty
of the state estimate (described by the error covariance matrix P¢) associated with er-
rors in the model and the data. Sequential data assimilation methods, such as the KF,
allow us to determine estimates of the state and covariance analytically by defining an
initial state vector z§ and initial covariance P, and iterating over two elementary steps:
1) the forecast step and 2) the analysis step.

The forecast step: for a given linear dynamic represented by a set of partial dif-
ferential equations, the time evolution of the state vector z is assumed to be governed
by numerically discretized partial differential operator M:

Z£ = Mz;_,, (2)

where M is a linear discretization of equation (1) and z£ is the PSD state vector in the
3D phase space volume advanced by the model M in time, therefore superscripts ” f”
indicate here forecasted state. Deviations of the forecast state estimate from the true state
of system are defined by the forecast error covariance matrix P£ which can be calculated
from a previous analysis step as
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P/ =MP{_ MT 1 Q, (3)

model errors are commonly assumed to be a sequence of uncorrelated white noise with
zero mean and model error covariance Q.

The analysis step or update step: the observations of the system yzbs are as-

sumed to have uncertainties described by uncorrelated white noise with zero mean and
observation error covariance R. Combining the forecast error covariance matrix P£ with
the uncertainty of the data R, the Kalman filter finds optimal weights (defined in the
Kalman gain Kj) that minimize the error covariance P§ of the optimal state estimate
z§ at time £,

K, = P/H'(R+HP/HT) !
7} = 7f + Ki(y™ — Hyz), (4)
i = (I- KH)PY,

the observation operator H maps the model space onto the observation space and ac-
counts for differences in dimensionality between data and model, due to the sparsity of
the observations. Note that the covariance update requires the model operator to be lin-
ear. For physical systems with underlying non-linear processes, this requirement does
not hold in standard Kalman filter formulation and it is necessary to either linearize the
equation for the covariance update, which is know in the literature as extended Kalman

filter (Jazwinski, 1970) or to use an ensemble based update, such as in the Ensemble Kalman
filter.

3.2 Ensemble Kalman filter (EnKF)

The EnKF can be interpreted as a purely statistical Monte Carlo approximation
of the KF. In other words, the optimal state of the system z} at time % is approximated
by the mean Zj; of an ensemble of samples {z{, }, where i = 1, .., Neps:

1 Nens
a 50 __ a
Zy =7, = N E Z;k (5)
ens i=1

the ensemble error covariance can then be interpreted as the error covariance of the op-
timal state estimate and gives the spread of the ensemble distribution. The error covari-
ance matrices Pi and P are empirically approximated as

1 T
_pf ~ f =f f =f
PZ =P, ~ Nowo — 1 (Zi,k - Zk) (Zi,k - Zk)

T

P = P% ~ 1 a _ sa a _ za

e =TT N Zigx — 2k |\Z;r — 2
ens

Available observations y{P® are treated as random variables by generating an ensemble

of observations. To this end, observation perturbations with €; ;, are drawn from a Gaus-
sian distribution with mean equal to the observed value and covariance R, which rep-
resents measurement errors:

(6)

obs obs

Yik =¥k TEk (7)
where i = 1, .., Nens. Every state in the ensemble is propagated in the update step, as
follows:

z}) = z{k + Ky (yzlﬁcs — Hz£k> (8)
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where the Kalman gain (K}) with the optimal weighting factors is calculated as in equa-
tion (4).

3.3 Convergence of the EnKF to the standard KF

It is important to note, that for a linear system and a large number of samples Ne,s —
oo the EnKF and the KF produce the same mean and covariance estimate (Mandel et
al., 2011). In other words, in the linear case the EnKF converges to the KF in the limit
of an infinite number of ensemble members. Burgers et al. (1998) carefully revisited the
analysis step of the KF and EnKF, and gave the fundamental setup of the EnKF for this
convergence to hold. They showed that treating the observations as random variables
allows the covariance of the analyzed ensemble P? (in Eq. 6) to be expressed in the same
way as in the analysis error covariance of the KF, i.e:

P! = (I-K:H)P] +O(N"'/?), (9)
where fluctuations due to the finite ensemble size have on average zero mean and O(N(~1/2))
rms magnitude. These deviations are proportional to R—(yo% — y"*)(yoh — y™*)7T)

and (zf k= zﬁ)(yf}fj — y¢P%)T). The authors state, that also in the forecast step corre-

spondence between the KF and EnKF is given, when each ensemble member evolves ac-
cording to:

2!, =Mz, +ddf, (10)

where alqéC is an stochastic forcing representing model errors from a distribution with zero
mean and covariance Qe, defined as:

p— T
Qe = (daj — dg*)(daf — dg*) = dg*(dg")T. (11)
In the limit of infinite ensemble size, convergence Qe = Q is given, Q being the model
error covariance matrix of the KF. The ensemble mean then evolves as

7] =M(z]_,)=M(z]_,) +nl (12)

where n.l represents possible non-linear terms in the model, that are not present in the

standard KF. Thus, if the ensemble mean is used as the optimal state z*f = Zi’k and

the EnKF is setup following equations (7), (10) and (11), the EnKF and the standard

KF filter converge to the same state estimate in the linear case. For this reason, the EnKF
is even used when non-linear effects are neglected and the underlying operator is indeed
linear. For high dimensional problems, the optimal KF shows major shortcomings in terms
of computational efficiency, as operating and storing large covariance matrices make the
method very computationally demanding. In this regard, the EnKF has the advantage

of using each error covariance matrix for the particular time step in question and then
dismissing it.

It is crucial, however, that the use of the EnKF on finite ensemble sizes only pro-
vides an approximation of the KF, which makes this filtering method suboptimal. De-
spite the underlying Gaussian assumption, accuracy and stability have been rigorously
shown for different approaches of the EnKF on non-linear operators (de Wiljes et al., 2018;
de Wiljes & Tong, 2020).

3.4 Operator splitting technique

Shprits et al. (2013) proposed a suboptimal approximation of the KF that uses the
operator-splitting method, often applied to solve partial differential equations. With this



269 technique, the Kalman filter algorithm can be sequentially applied to the 1D diffusion

270 operators in radial distance, energy and pitch-angle (mixed terms are neglected). Since
m each diffusion operates along one dimension in the model space, we can solve the equa-
72 tions sequentially for constant values of the other two dimensions, obtaining the solu-

273 tion in the entire 3D phase space (L*, F, «). The update or analysis step of the KF is

274 performed after each diffusion along one dimension. This ”splitting” of the diffusions and
215 thereby of the dimensionality of the problem allows the split-KF to operate with smaller
276 matrices compared to the full-3D case and is, therefore, computationally much more con-
277 venient.

278 In this study, we use the split-operator method to separatly perform data assim-

279 ilation using the EnKF for each diffusion operator. This method may be viewed as a form
280 of localisation as correlations across dimensions are not considered anymore in the fil-

281 ter update. Computationally, the problem is reduced to the calculation of matrices in

282 rather manageable sizes, i.e. the size of the state vector is always (NepsXN), where N

283 is the number of grid nodes in the L, E or a dimensions, and Ng,s is the number of en-

284 sembles. The P/ matrices are handled by the algorithm as 2D matrices of size (N xN).

285 Therefore, even for a large N.,s, the split-EnKF approach is, as in the split-KF approach,
286 highly computationally efficient. For these reasons, the split-EnKF approach allows to

287 increase dimensionality and also study different filter variations. We present two new split-
288 EnKF variations and compare them with a 1D radial diffusion EnKF (e.g., Reeves et al.,
289 2012), a 1D radial diffusion KF (e.g., Shprits et al., 2007) and the 3D split-operator KF

290 (e.g., Shprits et al., 2013), as listed below:

201 1. In order to setup the EnKF and check its convergence to the KF, we implemented
202 the EnKF in a simple 1D radial diffusion model, named here EnKF(1D_RD),
293 and compare the reanalysis results with a 1D-KF radial diffusion model, denoted
204 KF(1D_RD) for simplicity.
205 2. We solve the three diffusion equations (radial, energy and pitch-angle) sequentially
206 and assimilate data after calculation of each diffusion using a 1D split EnKF up-
207 date, i.e. a total of three updates is performed. This filter approach is denoted here
208 as EnKF(3x1D) and we compare its results to the KF analogous, which uses a
299 standard KF for the 1D split update, for simplicity called KF(3x1D). The pseu-
300 docode of this filter is given in Algorithm 1.
301 3. Here, we solve the three diffusion equations (radial, energy and pitch-angle), but
302 we first assimilate data using a 1D split EnKF update after the radial diffusion
303 part, and then use a 2D split EnKF update for the local diffusion, meaning that
304 energy and pitch-angle diffusion are computed simultaneously. We denote this fil-
305 ter approach as EnKF(1D_RD+2D _LD) and present its pseudocode in Algo-
306 rithm 2. A similar split-KF approach is rather computationally expensive, as it
307 requires the calculation and storage of 4D forecast error covariance matrices ev-
308 ery time step. Therefore, we compare the EnKF(1D_RD+2D_LD) with the EnKF (3x1D)
309 and EnKF(lD,RD).
310 3.5 Validation
su In order to validate the results of our data assimilation experiments (see next sec-
312 tion), we calculate the value of the innovation:
d =y - Hzi, (13)
313 for every time step of the simulations. The value of d is the mathematical distance be-
314 tween the observations and the forecast vector. Additionally, the equations for the state
315 estimate (Eq. (4) and (8)) reveal that Ky -d = (2§ — z}:) This means, that the inno-
316 vation also gives a notion of the difference between the optimal state estimate and the
317 forecast estimate. We use the innovation to quantify the accuracy of the state estimate
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obtained with a particular filter approach. The innovation becomes zero, when the es-
timate and the observations coincide. When the mean state underestimates the obser-
vations d > 0 and the estimated state overestimates the observations d < 0.

4 Reanalysis with satellite measurements

In this Section, we give a detailed description of the main setup of the EnKF split-
operator variations and present the corresponding data assimilation results for satellite
measurements for each proposed filter together with a systematic comparison with KF
filtering results.

4.1 Setup of the EnKF(1D_RD)

As discussed in subsection 3.3, the state estimated with the EnKF converges to the
optimal state estimated by the KF for linear systems and for a large number of ensem-
ble members. For the initial setup and tests, we use a simple radial diffusion model with
parametrized losses (Shprits et al., 2006). We first implement the standard Kalman fil-
ter assuming model and observation errors equal to 50%, and matrices Q and R are cho-
sen to be diagonal matrices. The initial state z§ is estimated as a steady state solution
of the radial diffusion equation. Then, using the setup of the KF(1D_RD) as a baseline,
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Figure 1. Simulation tests using filters KF(1D_RD) and EnKF(1D_RD): Electron PSD at u = 1300
MeV/G and K = 0.11 G°® Re. a) Van Allen Probe and GOES observations, b) reanalysis results using

KF(1D_RD), panels ¢) to g) reanalysis results using EnKF(1D_RD) for different number of ensembles, N¢y, s
25, 50, 100, 150 and 250, respectively.
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we implement the EnKF(1D_RD) as suggested by Burgers et al. (1998). The initial en-
semble is constructed from the initial state of the KF(1D_RD) z¢, by adding perturba-
tions drawn from a Gaussian distribution with zero mean and variance of 0.5-z§. Sim-
ilarly, the observation ensemble is created by adding Gaussian white noise with zero mean
and variance of 0.5 - ygbs to each data point. The model error term, dq”, in equation
(10), is modelled as a Gaussian distribution with zero mean and variance of 0.5-z%. In
order to determine the ensemble size, for which sufficient convergence is given, we run
several test simulations using different number of ensembles and compare them with the
KF(1D_RD) results. For our tests, satellite observations from Van Allen Probes and GOES
from November 2012 are assimilated at a time step of 1 hour. The results of these test
simulations are shown in Figure (1). In Panel a, the assimilated satellite observations

are displayed, panel b shows the reanalysis results obtained using the KF(1D_RD), pan-
els ¢ to g present the reanalysis results obtained using the EnKF(1D_RD) for different
number of ensembles, 25, 50, 100, 150 and 250, respectively. Visual inspection of the fig-
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Figure 2. Differences between simulation tests using filters KF(1D_RD) and EnKF(1D_RD):
Electron PSD at p = 1300 MeV/G and K =
between panels b and ¢ of Figure (1), C) difference between panels b and d of Figure (1), D) difference between
panels b and e of Figure (1), E) difference between panels b and f of Figure (1), F) difference between panels b

and g of Figure (1).

0.11 G°® Re. a) Van Allen Probe and GOES data, B) difference

ure shows how the state of the radiation belts is improved by increasing the ensemble
size. In order to assess when the EnKF(1D_RD) state estimate sufficiently approximates
the KF(1D_RD) estimate, we calculate the difference of the PSD from KF(1D_RD) in
panel b against PSD of EnKF(1D_RD) in panels c) to g). PSD differences are shown in
Figure (2). Panel a depicts the satellite observations, panels B to F present the differ-
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ence between panels c—g and panel b of Figure (1), respectively. From panel B, it be-
comes clear that an ensemble size equal to the grid nodes in L-domain is too small and
leads to poor results in the EnKF(1D_RD) estimate. Although, the values of the PSD
difference clearly decrease with increasing number of ensembles, panels E and F are very
similar, showing only larger deviations around November 16. Since, the simulation in pan-
els f and g of Figure (1) were carried out using 150 and 250 ensemble members, the small
differences in panels E and F of Figure (2) indicates that above 150 ensembles conver-
gence to the KF(1D_RD) becomes so slow that an increase of 100 ensembles does not
lead to significant improvement. For this reason, we consider ensembles with 150 mem-
bers as sufficient to approximate the KF(1D_RD) and use this ensemble size for the data
assimilation simulations presented in the next subsections.

4.2 Comparison between EnKF(1D_RD) and KF(1D_RD)

Now, that we estimated an adequate ensemble size, we can compare the reanaly-
sis results obtained with the EnKF(1D_RD) and the KF(1D_RD). Figure (3, I) presents
the electron PSD at 1 = 1300 MeV/G and K = 0.11 G%5 Re measured by the four
satellites (panel a), the reanalysis results using EnKF(1D_RD)(panel b) and KF(1D_RD)
(panel c), the difference between PSD both reanalysis, EnKF(1D_RD) - KF(1D_RD), (panel
d) and the Kp index (bottom panel).

Noticeably, panels a), b) and c) reveals that both filters are able to reproduce the
general features shown by the satellite observations throughout the simulated period. The
difference between both simulations (panel d) allows for a more detailed overview of the
filter performance. Blue tones in this plot indicate areas, where the EnKF(1D_RD) pro-
duces lower PSD values than the KF(1D_RD). Yellow to red colors indicate the oppo-
site trend. The largest/lowest values in the PSD-difference are related to the recovery
phase of the 15 November storm, when rather active geomagnetic conditions (see Kp,
bottom panel) enhance electron PSD.

In order to assess the accuracy of the reanalysis in relation to the satellite data,
we analyse the innovations of the two simulations. Resulting innovations for the two 1D_RD
simulations are presented in Figure (3, II). The innovation of EnKF(1D_RD) is in panel
a), the innovation of KF(1D_RD) in panel b), the difference between both innovations
(EnKF(1D_RD) - KF(1D_RD)) is in panel ¢) and Kp is shown in the bottom panel.

Both innovation plots show very similar values and trends in time and radial dis-
tance. This indicates that the forecast state is corrected by a similar magnitude by both
filters, i.e. similar difference to the observations. The highest innovation values are ob-
served at the beginning of the simulation, at times of evident magnetopause crossings
(8th and 15th Nov) and throughout 16—25 November. This indicates that the model
tends to underestimate PSD at these times so that the filter apply stronger corrections
to the forecast. In panel ¢), some minor differences are observed mostly during 16—25
November. Since the underlying model is the same for both filters, these differences can
only arise from fluctuations in error covariance matrices of the EnKF caused by the use
of a finite ensemble size (see Eq. 9). The plot in panel ¢, shows times and locations at

which the EnKF(1D_RD) imposes larger (red) corrections on the forecast than the KF(1D_RD).

We analyse general trends in the innovation by calculating the mean innovation at
L* > 3 (main region of the outer belt) at every time step of the simulations. The mean
innovations for the EnKF(1D_RD) reanalysis (black line) and for the KF(1D_RD) reanal-
ysis (red dashed line) are displayed in panel four of Figure (3,II). Both curves show a
very similar evolution in time, which is in agreement with panels a and b. Moreover, this
figure nicely visualizes the variability of both innovations during the intense storm and
active times (15 - 25. Nov). Interestingly, both innovations only vary within one order
of PSD magnitude, being the only exception the major storm. In general, the EnKF(1D-
RD) and the KF(1D-RD) filters produce very similar reanalysis results.
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4.3 Reanalysis using the EnKF(3x1D) approach

In this section, we present our first split-operator variation of the EnKF, the KF(3x1D).
In this filtering approach, the radial, energy and pitch-angle diffusion equations are solved
sequentially for the entire model space. After each diffusion a 1D update step takes place
using a one-dimensional EnKF, as presented in EnKF(1D-RD). The model is thereby
updated three times every time step. The convergence and performance of this 3D fil-
ter approach are tested using the same data assimilation setup presented in the previ-
ous sections and it is compared to its KF analogous filter approach (here denoted KF(3x1D),
suggested by Shprits et al. 2013.

Figure (4.I) shows the results of the EnKF(3x1D) data assimilation in the same
format as Figure (3.I). Panel a) displays the assimilated Van Allen Probes and GOES
measurements, panel b) presents the reanalysis performed with the EnKF(3x1D), panel
¢) shows the reanalysis of KF(3x1D) and panel d) illustrates the PSD-difference between
both reanalysis (EnKF(3x1D) - KF(3x1D)). Similar to the EnKF(1D_RD), the overall
PSD features observed in the satellite measurements are well reproduced by both 3D-
split filters. However, differences in PSD between EnKF(3x1D) and KF(3x1D) are some-
what more pronounced than in the 1D-RD approach. During the first half of the sim-
ulation period, the EnKF(3x1D) tends to estimate higher PSD values than the KF(3x1D).
For the second half of November, 2012, the trend appears to be reversed. On 15 Novem-
ber, when the intense storm causes the magnetopause to reach below L* ~ 4, the dif-
ference between the simulations is largest. During the active period of 16—25 Novem-
ber, the KF(3x1D) that produces larger PSD-values than the EnKF(3x1D).

Resulting innovations, displayed in Figure (4.IT) for the EnKF(3x1D) reanalysis (panel
a) and for the KF(3x1D) reanalysis (panel b) are overall very similar, but show smaller
values for KF(3x1D) around November 15. The difference between both innovations (EnKF(3x1D)
- KF(3x1D)) (in panel c¢) shows a trend toward negative values (blue colors) within the
belt, particularly during 3 to 20 Nov. Since the underlying model is the same for both
filters, this indicates that PSD estimated with KF(3x1D) is systematically closer to the
data. There are two possible reasons for this: 1) the use of a finite number of ensembles
will also lead to discrepancies in the estimation of the covariance matrices of EnKF and
KF, and 2) error propagation due to sequential application of the update step (We will
extend on this topic in the discussion section). The largest differences between innova-
tions are observed around November 7 and on November 15, where EnKF(3x1D) reanal-
ysis is more underestimated than the KF(3x1D) reanalysis. These features are also seen
in the mean innovations above L* = 3 (in panel four), which apart from those two times
have pretty much the same evolution and variations, remaining generally within one or-
der of magnitude. Overall, the EnKF(3x1D) and KF(3x1D) filters deliver a very sim-
ilar reanalysis. It is important to note that the innovation of the 3D-split approaches is,
in general, significantly smaller compared to 1D-RD filters. This means, this is related
to the improved underlying physics-based model and to the repetition of the 1D update
step.

4.4 Reanalysis using the EnKF(1D_RD+42D_LD) approach

Here, we present our second split-operator approach for the EnKF. In this filter-
ing setup, the radial, energy and pitch-angle diffusion equations are solved sequentially
for the entire model space. After the radial diffusion a 1D update step is performed in
the L*-dimension. In contrast to the 3x1D approach, after the calculation of local pro-
cesses takes place, a single combined 2D update step in the energy and pitch-angle di-
mensions is performed. Therefore, the model is updated twice in this approximation. To
test our 2D filter approach, we use the same data assimilation setup presented in the pre-
vious sections. Since a similar KF(1D_RD+2D_LD) filter approach is numerically highly
complex and therefore very computationally expensive, we compare the EnKF(1D_RD+2D_LD)
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to a reanalysis performed with the EnKF(1D_RD) in this section, and to the results of
EnKF(3x1D) in the next section.

Figure (5.1) shows the results of the EnKF(1D_RD+2D_LD) data assimilation in
the same format as Figure (3.I). Panel b) displays the reanalysis performed with the EnKF
(ID_RD+2D_LD), panel c¢) shows the reanalysis of EnKF(1D_RD) and panel d) illus-
trates the PSD-difference between both reanalysis (EnKF(1D_RD+2D_LD) - EnKF(1D_RD)).
Both reanalysis present very similar trends overall and reproduce the main trends in the
satellite data. The PSD-difference between the two filters is highest on 15 Nov. and dur-
ing 16 - 25 Nov., where EnKF(1D_RD+2D_LD) produces slightly higher PSD values than
EnKF(1D_RD). Interestingly, the fast losses observed on 15 November, caused by mag-
netopause compression, are reproduced slightly different in both filters.

Analysis of the innovations gives us detailed information about these features. Fig-
ure (5.II) presents the resulting innovations for the reanalysis with EnKF(1D_RD+2D_LD)
(panel a) and with EnKF(1D_RD) (panel b). The difference between both innovations
(EnKF(1D_RD+2D_LD) - EnKF(1D_RD)) is in panel ¢), mean innovations above L* =
3 are in panel four and Kp is shown in the bottom panel. The innovation plots have sim-
ilar features in time and space for both simulations. The innovation difference shows a
tendency towards negative values (blue colors). In this case, the underlying models are
different, therefore, the observed trend indicates a systematic overestimation of PSD in
the 1D radial diffusion model. This is expected as the model on which EnKF(1D_RD+2D_LD)
operates accounts for radial and local processes, being therefore more accurate. The mean
innovations of both simulations also follow very similar trends, but the EnKF(1D_RD)
curve (red line) ocasionally exceeds the EnKF(1D_RD+2D_LD) curve (black line), par-
ticularly during the sencond half of the simulation period (e.g. November 16, 17, 24).

4.5 Comparison between EnKF(1D_RD+2D_LD) and EnKF(3x1D)

In this section, we discuss the analysis of our two split-EnKF approaches by com-
paring the EnKF(1D_RD+2D_LD) results with the reanalysis results of EnKF(3x1D).
Since the obtained PSD and innovations of both EnKF variations have already been pre-
sented, we only show their difference here. In Figure (6), panel b) displays the PSD dif-
ference between EnKF(1D_RD+2D_LD) and EnKF(3x1D) reanalysis, panel ¢) shows the
difference between the innovations of both simulations, i.e. (EnKF(1D_RD+2D_LD) -
EnKF(3x1D)), panel d) presents the mean innovation (for L* > 3) for EnKF(1D_RD+2D_LD)
(black line) and EnKF(3x1D) (red dashed line).

Although, both simulations converge to very similar solutions, the PSD differences
reveal quite a few deviations. Particularly, large differences after the 15 November are
observed. A general trend towards negative numbers in panel b, indicates that the state
estimates of EnKF(3x1D) have larger values than those of EnKF(1D_RD+2D_LD). The
innovation difference shows only a few large values at the beginning of the simulation
and during 15—25 November. Red and yellow areas in the figure indicate that the in-
novation of the EnKF(1D_RD+2D_LD) has generally higher values than EnKF(3x1D).
This is also observed in the mean innovations, especially around November 16. In this
particular case, the physical models should be theoretically the same. However, due to
the different implementation of the EnKF in the two approaches, more so the total up-
dates performed in each filter approach, the underlying models become different. The
EnKF(1D_RD+2D_LD) updates the model twice and the second update occurs in en-
ergy and pitch-angle diffusion simultaneously, involving covariance matrices of sizes (N?x
N?). This means, that spurious correlations present in the covariances will certainly lead
to differences in the estimates of EnKF(1D_RD+2D_LD) compared to those of EnKF(3x1D).
Error propagation will also play a role for these two filtering approaches, but its effect
on EnKF(1D_RD+2D_LD) results could have a rather small impact.
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Figure 6. Data assimilation results with 1D_RD+42D_LD EnKF and EnKF(3x1D) using Van
Allen probes and GEOS observations from Nov. 2012: Electron PSD at pu = 1300 MeV /G and
K = 0.11 G°® Re. a) Van Allen Probes and GOES data, b) PSD difference between 1D_RD+2D_LD EnKF
and EnKF(3x1D) reanalysis (1D_RD+2D_LD EnKF - EnKF(3x1D)) ¢) PSD difference between 1D_RD+2D_LD
EnKF and EnKF(3x1D) innovations (1ID_RD+2D_LD EnKF - EnKF(3x1D)), d) Mean innovation (calculated for
L* > 3) for ID_.RD+2D_LD EnKF (black line) and EnKF(3x1D) (red dashed line), bottom panel) Kp index.

5 Discussion

In this study, we developed and implemented two new split-operator approxima-
tions of the three dimensional EnKF to perform ensemble data assimilation of electron
PSD in the radiation belts. Using a 1D radial diffusion model, we studied the conver-
gence of the EnNKF (1D _RD) to the optimal state of the system (KF(1D_RD)). Com-
parison between the reanalyses from both 1D filters showed that 150 ensemble members
are sufficient to properly approximate the KF. Differences between the EnKF(1D_RD)
approximation and the optimal KF(1D_RD) are rather negligible.

Implementation of the KF and the EnKF for high dimensional problems is com-
putationally expensive. Using the initial setup for the EnKF(1D_RD), we implemented
the more split-operator EnKF approaches of higher dimensionality and modeled the global
state of the outer radiation belt for the month of November, 2012. We presented detailed
comparison of the split KF and EnKF filtering tools, in order to verify the accuracy of
the EnKF approaches. Our results suggest that although the split KF and EnKF ap-
proaches are simple approximations of the optimal KF, they are able to reconstruct ac-
curately the radiation belt region. Only minor differences are observed at the beginning
of the simulations, during active times and magnetopause compression events. This is
consistent with the findings of Shprits et al. (2013) and justifies the general robustness
of the split-EnKF approach.
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523 In general, the simulations need about 3 days to level out discrepancies arising from
504 the initial PSD. These initial errors appear to be larger in the 1D approaches, but be-
525 come smaller for the (EnKF(3x1D) and EnKF(1D_RD+2D_LD)) methods. Addition-

526 ally, the observed differences may be due to two facts: 1) Data assimilation requires map-
527 ping satellite observations onto invariant phase space coordinates (L*, u, K). However,

528 L* is a property of trapped particles. Therefore, no data points are available at higher

529 L-shells during magnetopause compression events. Thus, filtering techniques cannot prop-
530 erly correct the PSD in those regions. 2) The EnKF may recognize spurious correlations
531 that arise from the random perturbation of the observations, but are not really phys-

532 ical. This might be of particular importance for simulations with the EnKF(1D_RD +

533 2D_LD). Note that while it is true that the EnKF(1D_RD) filter converges to a reason-

534 able solution, the reduction in the innovations of our two 3D EnKF approaches, EnKF(3x1D)
535 and EnKF(1D_RD+2D_LD), indicates that the 3D update does allow for propagation

536 of the satellite data to other energies and pitch angles. Therefore, a more accurate anal-
537 ysis is estimated, which in turn, leads to a better forecast estimate in the next time step.
538 A difficulty in dealing with the split-filters lays in the correct use of model errors.
539 After application of the first analysis step, satellite data has been assimilated and thus
540 improvement of the model is achieved. Therefore, for the second update step, the model
541 errors described in matrix Q will not be the same as in the initial setup. A more accu-
542 rate approach could, for instance, include some dynamical reduction of the model errors
543 after each update iteration. This subject belongs to uncertainty estimation and lays be-

544 yond the scope of this study.

545 A major advantage of EnKF is that it does not require linearization of the model
546 and observation operators. Therefore, non-linear effects can be accounted for using this
547 tool. In future applications, we will use the split-EnKF approximations allows for direct
548 assimilation of flux measurements by applying a nonlinear observation operator. Such

549 an approach excludes errors due to re-mapping of fluxes into the model space, and will

550 thereby reduce uncertainties in the analysis of the observation errors. Another field of

551 application is the simultaneous non-linear estimation of the state and lifetimes of the sys-
552 tem through state vector augmentation. This problem can be solved with the EnKF with-
553 out the use of linear approximations. Similarly, the evaluation of model errors can be

554 seen as a non-linear parameter estimation problem, which can be solved using the EnKF.
555 Comparison of the free-forecasting qualities between the KF and the EnKF can now be
556 performed. The understanding of the dynamical change in the model errors due to mul-
557 tiple update step application in the 3D split-approaches for KF and EnKF is important
558 for optimal definition of the error statistics.

550 6 Conclusions

560 In this study, we setup, implement and validate two new split-operator approxi-

561 mations of the three dimensional EnKF, which allow us to reconstruct the entire state

562 of the outer radiation belt. We provide a detailed comparison between different data as-
563 similation tools using satellite observations. The main conclusions from our study are

564 summarized below:

565 e Initial setup of the EnKF using the KF implementation on a simple 1D radial dif-
566 fusion model allows us to find that 150 ensembles are sufficient to accurately model
567 the optimal state solution of the KF.

568 e The use of the split-operator technique allows us to increase dimensionality in our
569 simulations and tackles the issue of computational efficiency, which becomes par-
570 ticularly important at higher dimensions. Therefore, the new 3D split-EnKF ap-

571 proaches are suitable for forecasting purposes in real-time.

572 e Our validation method suggests that the split KF and EnKF methods show sim-
573 ilar results. The use of the new 3D approaches reduces the global innovations in
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comparison to 1D filters. This is partly due to the more accurate model but also
due propagation of pitch angle and energy data into the model space, which yields
an analysis state that is closer to the data. The use of this state estimate as ini-
tial condition in next step leads to a more accurate forecast state.

The KF(3x1D), EnKF (1D_RD+2D_LD) and EnKF(3D_RD) tools are state
of the art data assimilation techniques that reconstruct accurately the radiation belt re-
gion. The data assimilation tools developed in this study can be applied in the future
to a variety of problems, including non-linear parameter estimation, non-linear assim-
ilation of observations, free-prediction studies, error estimation and more.
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601 7 Appendix

602 In this section, we provide the reader with pseudo-codes for the algorithms of EnKF (3x1D)
603 and EnKF(1D_RD+2D_LD). Implementation of the EnKF has been performed as sug-
604 gested by (Evensen, 2003), in Section 4.3.1.

Algorithm 1 Split 3x1D Ensemble Kalman Filter (EnKF(3x1D))

1: Set variables initial mean mg and covariance Py and ensemble members Ngpg
2: Initialise ensemble of particles z := z%‘”’ ~ N(mg,Po) with i € {1,..., Nens}
3: for k=1:T do
4: 1) Forecast and Analysis step radial distance L: for all i

zﬁc =M, (z?’i“_”l)

ZZ’,; = z{ﬁg — K(H;;Z{jC — yzbs + f£k>

K =P/'H] (H P['H] +R)™!

5: 2) Forecast and Analysis step pitch angle a:

Z{%ﬁ =M, (zﬁ)
o = afie — K(Haf/re =y + ¢
K = P/*H] (H,P{*H] +R)™!
6: 3) Forecast and Analysis step energy p:
2" () = M (25 )
;" (Tn) = ZZ.,Lkap - K(HpiL‘”’ -y + &gk)

K = P{*"H] (H,P{*"H] +R)"!

7: end for
8: Return
Nens
e = Y A
i=1
R Nens
B = 3 (a0 — )l o)
i=1
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Algorithm 2 Split 1D_RD+2D_LD Ensemble Kalman Filter

1: Set variables initial mean mg and covariance Py and ensemble members Ngpg
2: Initialise ensemble of particles z := ZZ(L)”” ~ N(mg,Poy) with i € {1,..., Nens}
3: for k=1:T do
4: 1) Forecast and Analysis step radial distance L: for all i
zﬁC =M, (ziﬁc‘f’l)
ait = 2l — K(Hoali -y + ¢
K =P/"H] (HP/"H] + R)™"
5: 2) Forecast and Analysis step pitch angle « and energy p:
fLap . ary,
zZ; () = M, (Zi,k)
20 () = w K (Hapsltr —yi” 4 i)
K =P/*"H] (H,,P{*"H] +R)"!
6: end for
7: Return
Nens
~ ZLap — Z ZZZ(M)
i=1
Nens
PCLLap Z(Z?Lkap o mZLap)(ZZZap IhaLap)T
=1
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