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Abstract

Equilibrium climate sensitivity (ECS) and its related feedbacks are important metrics used to measure the global mean surface

temperature change in future climate projections. This paper uses the radiative kernel approach and a simplified cloud feedback

calculation (comparing three different cloud feedback methods) to analyze the differences in the ECS, as well as the feedbacks

contributing to it, between two versions of the Flexible Global Ocean-Atmosphere-Land System model (i.e., FGOALS-g2 and

FGOALS-g3). The results show that the ECS of FGOALS-g3 is smaller than that of FGOALS-g2 (2.8 K versus 3.3 K). The

main feedbacks contributing to the ECS change in FGOALS-g3 are the weaker surface albedo feedback and stronger negative

shortwave cloud feedback. The reduced surface albedo feedback in FGOALS-g3 is associated mainly with its mean base state,

which has a lower surface air temperature and larger sea ice area compared with FGOALS-g2. The enhanced negative shortwave

cloud feedback in FGOALS-g3 is caused mainly by the larger low-cloud area fraction and liquid water path. Furthermore, the

ECS change can be traced back to the different cloud parameterization scheme, parameter tuning, ocean grid, and external

forcings used in FGOALS-g3, as these all affect the mean climate state of the model.
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Key Points: 13 

 Three methods of different complexities for calculating cloud feedbacks are compared.  14 

 The equilibrium climate sensitivity of FGOALS-g3 is smaller than that of FGOALS-g2.  15 

 The equilibrium climate sensitivity decrease in FGOALS-g3 can be attributed mainly to 16 

its more cloud and weaker surface albedo feedback. 17 
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Abstract 19 

Equilibrium climate sensitivity (ECS) and its related feedbacks are important metrics 20 

used to measure the global mean surface temperature change in future climate projections. This 21 

paper uses the radiative kernel approach and a simplified cloud feedback calculation (comparing 22 

three different cloud feedback methods) to analyze the differences in the ECS, as well as the 23 

feedbacks contributing to it, between two versions of the Flexible Global Ocean-Atmosphere-24 

Land System model (i.e., FGOALS-g2 and FGOALS-g3). The results show that the ECS of 25 

FGOALS-g3 is smaller than that of FGOALS-g2 (2.8 K versus 3.3 K). The main feedbacks 26 

contributing to the ECS change in FGOALS-g3 are the weaker surface albedo feedback and 27 

stronger negative shortwave cloud feedback. The reduced surface albedo feedback in FGOALS-28 

g3 is associated mainly with its mean base state, which has a lower surface air temperature and 29 

larger sea ice area compared with FGOALS-g2. The enhanced negative shortwave cloud 30 

feedback in FGOALS-g3 is caused mainly by the larger low-cloud area fraction and liquid water 31 

path. Furthermore, the ECS change can be traced back to the different cloud parameterization 32 

scheme, parameter tuning, ocean grid, and external forcings used in FGOALS-g3, as these all 33 

affect the mean climate state of the model. 34 
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Plain Language Summary 50 

Equilibrium climate sensitivity (ECS) is an important quantity as it measures the 51 

magnitude of projected warming. However, there is some uncertainty regarding ECS-related 52 

feedbacks due to the different methods used to calculate them. Three methods of different 53 

complexity used to calculate cloud feedbacks are compared here, and the simplest method is 54 

selected to analyze the change in ECS between two versions of the Flexible Global Ocean-55 

Atmosphere-Land System model (i.e., FGOALS-g2 and FGOALS-g3). The main causes of the 56 

ECS difference between FGOALS-g3 and FGOALS-g2 are the surface albedo feedback and the 57 

shortwave cloud feedback. These are related to the different base states which are further due to 58 

the different cloud schemes, parameter tuning, and ocean grids used in the two models. Regional 59 

characteristics cause the differences between the surface albedo feedback of the two versions of 60 

the model to change over time.  61 

 62 
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1 Introduction 70 

Climate warming is an important topic related to the future of humankind, and carbon 71 

dioxide is one of the main greenhouse gases (GHGs) that causes this warming. Equilibrium 72 

climate sensitivity (ECS), defined as the equilibrium change in annual global mean surface 73 

temperature following a doubling of the atmospheric CO2 concentration relative to the pre-74 

industrial level (piControl; Flato et al., 2013), can be used to understand how much the Earth’s 75 

surface temperature will change in response to a certain CO2 concentration (Zeebe, 2011). The 76 

ECS magnitude could be amplified or damped by many feedbacks—an interaction in which a 77 

perturbation in one climate quantity causes a change in another, which in turn leads to an 78 

additional change in the first quantity (Cubasch and Cess, 1990; Pachauri et al., 2014). The 79 

physical feedbacks affecting the ECS include the temperature feedback (λT), water vapor 80 

feedback (λwv), surface albedo feedback (λα), and cloud feedbacks (λc; Zhang et al., 1994). The 81 

temperature feedback can further be decomposed into the Planck feedback (λPlanck) and lapse rate 82 

feedback (λLR). 83 

The ECS range of climate models participating in the Coupled Model Intercomparison 84 

Project phase 3 (CMIP3; Randall et al., 2007) was 2.1–4.4 K, and then 2.1–4.7 K for CMIP5 85 

(Flato et al., 2013), and 1.8–5.6 K for CMIP6 (Zelinka et al., 2020), indicating that the large 86 

uncertainty in the ECS has not narrowed with the ongoing model development (Soden and Held, 87 

2006). Although the lower limit of climate sensitivity is well-constrained and already provides 88 

useful information for policy makers, the upper limit is more difficult to quantify (Knutti and 89 

Hegerl, 2008). The wide ECS range in the CMIP models is caused by many factors: different 90 

resolutions and/or grids (McGregor, 2015; Doescher et al., 2002), cross-field correlations (Soden 91 

et al., 2008), different climate background states (Friedrich et al., 2016), and uncertainties 92 



 

regarding the evolution of tropical low cloud (Vial et al., 2017). For example, different cloud 93 

parameterizations are always considered to be a major factor affecting the ECS (Zhao et al., 94 

2016), and the greater decrease in low cloud coverage and extra-tropical albedo is the main 95 

reason for the higher ECS of the CMIP6 models compared with those in CMIP5 (Zelinka et al., 96 

2020). Furthermore, aerosol–cloud interactions are the primary cause of the different ECS in the 97 

two versions of the European Centre Earth model, EC-Earth2 and EC-Earth3 (Wyser et al., 98 

2020). In addition, advances in the methods used to calculate the ECS mean our understanding of 99 

climate feedbacks is constantly changing; hence, the calculation method is another important link 100 

affecting the values of ECS and climate feedback parameters. 101 

A number of methods have been developed to quantify and compare the ECS and the 102 

feedbacks contributing to it associated with different models. Among these methods, the one 103 

proposed by Gregory et al. (2004) is the most widely used for calculating the ECS of a General 104 

Circulation Model (GCM) in which the climate variables respond to a constant forcing, such as 105 

an instantaneous doubling or quadrupling of CO2. In this method,  106 

 𝑁 = 𝐹 − 𝐻 = 𝐹 + 𝜆𝑡𝑜𝑡∆𝑇𝑠 (1) 107 

where N is the top of atmosphere (TOA) net radiative flux, F is the radiative forcing induced by 108 

the forcing agent, H is the radiative response caused by the raised CO2 concentrations, which 109 

offsets F, 𝜆𝑡𝑜𝑡 is the total climate feedback parameter, and ∆𝑇𝑠 is the change in the near-surface 110 

air temperature (SAT). If F = H, then N is equal to zero and the SAT change reaches a new 111 

equilibrium state ∆𝑇𝑒𝑞𝑚 (Shine et al., 2003). In this case, in an experiment of abruptly 112 

quadrupled CO2 concentration (abrupt4×CO2) relative to the piControl run, the ECS is taken to 113 

be half of ∆𝑇𝑒𝑞𝑚.  114 



 

Based on the partial radiative perturbation method (Wetherald and Manabe, 1988), Soden 115 

and Held (2006) proposed a widely used technique that decomposes each feedback into two 116 

parts: a “radiative kernel”, [𝜕(𝑁 − 𝐹)/𝜕𝑋], describing the TOA radiative flux response to an 117 

incremental change in a variable X (surface temperature, atmospheric temperature, water vapor, 118 

surface albedo, cloud) that depends on the base state of the model, and the climate response of 119 

the variable, (𝑑𝑋/𝑑𝑇𝑠). The two parts are combined to measure the feedback amplitude of a 120 

particular variable. The radiative kernel part implies that there is a linear relationship between 121 

the TOA radiative flux and the perturbated variable. However, because cloud processes are 122 

nonlinear, cloud feedbacks are more appropriately calculated in a different way (Shell et al., 123 

2008).  124 

The simplest method to calculate the cloud feedback parameter is to regress the change in 125 

cloud radiative forcing (CRF) onto the change in global average SAT between the doubled-CO2 126 

run and piControl run (Cess and Potter, 1988). Alternatively, the cloud feedback parameter can 127 

be calculated as the residual difference between the total climate feedback (𝜆𝑡𝑜𝑡) and the sum of 128 

the other feedbacks (𝜆𝑇, 𝜆𝛼, and 𝜆𝑊𝑉; Soden and Held 2006; Senior and Mitchell, 2000). 129 

To further reduce the sensitivity to uncertainties caused by external radiative forcings, 130 

another method has been proposed that involves adjusting the model-simulated change in CRF to 131 

account for cloud masking effects (Soden et al., 2008). For example, in the Community 132 

Atmosphere Model version 5 (CAM5), the cloud forcing was adjusted to account for the direct 133 

and indirect effects of GHGs and aerosols by introducing a “GHG kernel” and “aerosol kernel”, 134 

which remove the forcing effects of GHGs and aerosols, respectively (Hansen et al., 2005; 135 

Gettelman et al., 2016). In addition, to correct for changes in non-cloud variables that can alter 136 

the cloud feedback, Vial et al. (2013) used the difference in the kernels for temperature, water 137 



 

vapor, and surface albedo between all-sky and clear-sky conditions as part of the cloud feedback 138 

term.  139 

Yet another method to determine cloud feedbacks is to use overcast-sky CRF histograms, 140 

where “overcast” indicates that cloud covers the entire atmospheric column in the radiation code. 141 

In this method, zonal and monthly mean annual cycles of temperature and water vapor profiles 142 

are averaged together as input to the Fu and Liou (1992) radiation code (Zelinka et al., 2012). 143 

In brief, although the ECS calculation proposed by Gregory et al. (2004) is the most 144 

commonly used, methods of different complexity are used to calculate feedbacks contributing to 145 

the ECS, especially the cloud feedback. These methods all produce different feedback parameter 146 

values, which makes it difficult to directly compare different studies. Consequently, one aim of 147 

this study is to compare the values of the cloud feedback parameter obtained using different 148 

methods and to identify the method that results in the smallest residual value. Another aim is to 149 

analyze the change in the ECS, as well as the feedbacks contributing to that change, between two 150 

versions of the Flexible Global Ocean-Atmosphere-Land System model,FGOALS-g2 and 151 

FOGALS-g3, which are participating in CMIP5 and CMIP6, respectively. 152 

The remainder of this paper is organized as follows. The two versions of the FGOALS-g 153 

model and the comparison of different cloud feedback methods are described in section 2. The 154 

analysis of ECS and the contributing feedback components are presented in section 3. A 155 

summary and discussion are provided in section 4. 156 

2 Model Description, Methods, and Data Processing 157 

2.1. Model Description 158 

FGOALS-g is a coupled model developed at the State Key Laboratory of Numerical 159 

Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), part of the 160 



 

Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences. The model 161 

currently has three formal versions; i.e., FGOALS-g1, FGOALS-g2, and FGOALS-g3, which 162 

have participated in CMIP3, CMIP5, and CMIP6 respectively (Li et al., 2007, 2013a, 2020a). 163 

These versions of FGOALS-g comprise four component models (i.e., the atmospheric model, 164 

ocean model, sea ice model, and land surface model) and a coupler. Compared with FGOALS-165 

g2, the components were updated in FGOALS-g3 as follows. The Grid-point Atmospheric 166 

Model of LASG/IAP version 3 (GAMIL3; Li et al., 2020b) was used instead of GAMIL2 (Li et 167 

al., 2013b), the LASG/IAP Climate system Ocean Model version 3 (LICOM3; Yu et al., 2018) 168 

was used in place of LICOM2 (Liu et al., 2012), the Land Surface Model for Chinese Academy 169 

of Sciences (CAS-LSM; Xie et al., 2018) was used rather than the Community Land Model 170 

version 3 (CLM3, Oleson et al., 2004), the coupler 6 (Craig et al., 2005) was upgraded to the 171 

coupler 7 (Craig et al., 2012), and the external forcings recommended by CMIP6 (Eyring et al., 172 

2016) were used instead of those from CMIP5 (Taylor et al., 2012). The upgrades of the 173 

component models focus mainly on the horizontal grid resolution, physical processes, and tuning 174 

parameters (Li et al., 2020a). In both FGOALS-g2 and FGOALS-g3, the sea ice model is the 175 

Community Ice CodE version 4 (CICE4). CAS-LSM is based on CLM4.5 (Oleson et al., 2013) 176 

and takes into account the effects of lateral groundwater flow (Xie et al., 2012; Zeng et al., 177 

2018), human water intake (Zou et al., 2014; Zeng et al., 2016), soil freezing and thawing 178 

interface changes (Gao et al., 2016; 2019), and river nitrogen transport processes (Liu et al., 179 

2019). 180 

 181 

2.2. Methods 182 



 

Our feedback calculations were based on the radiative kernels of CAM5 (Pendergrass et al., 183 

2018) and used three different cloud feedback methods. The default method was to use the sum 184 

of the net TOA radiation flux change under GHG forcing and aerosol forcing as cloud masking 185 

of radiative forcing, which may be written as follows: 186 

 𝜆𝑡𝑜𝑡 = 𝜆𝑠𝑢𝑚 + 𝑅𝑒𝑠 = 𝜆𝑇
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

+ 𝜆𝑊𝑉
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

+ 𝜆𝛼
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

+ 𝜆𝑐 + 𝑅𝑒𝑠  (2) 187 

 𝜆𝑐 =
𝛥𝐶𝑅𝐸

𝛥𝑇𝑠
+

𝛥𝐶𝑅𝐸𝐺𝐻𝐺

𝛥𝑇𝑠
+

𝛥𝐶𝑅𝐸𝐴𝑒𝑟𝑜𝑠𝑜𝑙

𝛥𝑇𝑠
+ ∑ (𝜆𝑥

𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦
− 𝜆𝑥

𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦
)𝑋  (3) 188 

The left-hand side of Eq. (2) is the total feedback (𝜆𝑡𝑜𝑡) corresponding to the ECS calculated by 189 

the Gregory et al. (2004) method. The first term on the right-hand side of Eq. (2) is the sum of all 190 

feedback components (𝜆𝑠𝑢𝑚) calculated using the radiative kernels of CAM5, which include the 191 

temperature feedback (𝜆𝑇
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

), the water vapor feedback (𝜆𝑊𝑉
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

), and the surface albedo 192 

feedback (𝜆𝛼
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

) of the whole sky, as well as the cloud feedback (𝜆𝑐). The second term on 193 

the right-hand side is a residual term (𝑅𝑒𝑠). In Eq. (3), Δ𝐶𝑅𝐸 is the change in cloud radiative 194 

effect (CRE), in which the CRE is the difference between the TOA whole-sky radiative flux and 195 

clear-sky radiative flux. The second and third terms on the right-hand side of Eq. (3) are the 196 

GHG forcing and aerosol forcing adjustment terms, respectively. The fourth term on the right-197 

hand side of Eq. (3), [∑ (𝜆𝑥
𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦

− 𝜆𝑥
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

)𝑋 ], is the sum of differences between whole-sky 198 

and clear-sky feedbacks (except for the cloud feedback).  199 

Another relatively simple cloud feedback method used in this study is that of Soden et al. 200 

(2004):  201 

 𝜆𝑐 =
Δ𝐶𝑅𝐸

Δ𝑇𝑠
+ 𝜆𝑐𝑙𝑜𝑢𝑑𝑐𝑜𝑟𝑟 (4) 202 

 𝜆𝑐𝑙𝑜𝑢𝑑𝑐𝑜𝑟𝑟
= ∑ (𝜆𝑥

𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦
− 𝜆𝑥

𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦
)𝑋  (5) 203 



 

Eq. (4) is relatively accurate when perturbations are small, however its accuracy decreases when 204 

perturbations become large, as in the abrupt4×CO2 experiments (Jonko et al., 2012; Block and 205 

Mauritsen, 2013). Eq. (4) can alternatively be written as: 206 

 𝜆𝑐 =
𝛥𝐶𝑅𝐸

𝛥𝑇𝑠
+ (𝜆𝑇

𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦
−   𝜆𝑇

𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦
  207 

 +𝜆𝑊𝑉
𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦

− 𝜆𝑊𝑉
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

+ 𝜆𝛼
𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦

− 𝜆𝛼
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

) (6) 208 

Combining Eq. (2) and Eq. (6), 209 

 𝜆𝑡𝑜𝑡 = 𝜆𝑇
𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦

+ 𝜆𝑊𝑉
𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦

+ 𝜆𝛼
𝑐𝑙𝑒𝑎𝑟 𝑠𝑘𝑦

+
𝛥𝐶𝑅𝐸

𝛥𝑇𝑠
+ 𝑅𝑒𝑠 (7) 210 

The methods that are based on Eq. (3) and Eq. (4) require the use of kernel data to calculate 211 

the cloud feedback, but the following method does not. In this method, the cloud feedback term 212 

(Chen et al., 2014) is simplified as: 213 

 𝜆𝑐 =
𝛥𝐶𝑅𝐸

𝛥𝑇𝑠
 (8) 214 

Using Eq. (8) to replace the cloud feedback term in Eq. (2): 215 

 𝜆𝑡𝑜𝑡 = 𝜆𝑇
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

+ 𝜆𝑊𝑉
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

+ 𝜆𝛼
𝑤ℎ𝑜𝑙𝑒 𝑠𝑘𝑦

+
𝛥𝐶𝑅𝐸

𝛥𝑇𝑠
+ 𝑅𝑒𝑠 (9) 216 

If the second and third terms on the right-hand side of Eq. (3), 
𝛥𝐶𝑅𝐸𝐺𝐻𝐺

𝛥𝑇𝑠
 and 

𝛥𝐶𝑅𝐸𝐴𝑒𝑟𝑜𝑠𝑜𝑙

𝛥𝑇𝑠
, are zero, 217 

then Eq. (2) becomes equivalent to Eq. (7). If the second term on the right-hand side of Eq. 218 

(4), 𝜆𝑐𝑙𝑜𝑢𝑑𝑐𝑜𝑟𝑟
, is zero, then Eq. (7) becomes equivalent to Eq. (9).  219 

In real calculations, there are large uncertainties associated with the residual term among 220 

different kernel methods (Vial et al., 2013). Therefore, we compared the residuals calculated 221 

using three different methods: the CAM5 radiative kernel method (Eq. (2) and Eq. (3), group 1), 222 

the wholly simplified method (Eq. (9), group 2), and the simplified method (Eq. (7), group 3; 223 

Fig. 1). In the three methods, except for the calculation of cloud feedback is different, the 224 

calculation of other feedback is identical, different cloud feedback methods have great influence  225 



 

(about 0.3~0.7) on the cloud feedback and final residual in multi-model comparison. The 226 

residual amplitude in group 2 (𝜆𝑐𝑙𝑜𝑢𝑑_𝑐𝑜𝑟𝑟 = 0) was the smallest among the three groups in both 227 

versions of FGOALS-g. It should be noted that in group 1, the GHG and aerosol forcing 228 

experiments of CAM5 were used to calculate the FGOALS-g feedback. As these experiments 229 

were not performed using FGOALS-g, this may be one of the reasons for the large residual 230 

associated with this method. We used the wholly simplified method based on Eq. (9) in the 231 

following analysis because of its simple calculation, easy operation, clear physical meaning, and 232 

small residual.  233 

To further investigate the source of the residual term, we divided the residual in Eq. (9) into 234 

longwave (LW) and shortwave (SW) components as follows. Eq. (9) can be rewritten as: 235 

 λT  + λWV  +  λα + λc + 𝑅𝑒𝑠 =
𝑅𝑆𝑊－𝑅𝐿𝑊

∆𝑇𝑠
 (10) 236 

where the net radiative flux (𝑅) is set to be positive downward and negative upward. The 237 

feedbacks calculated by kernels were separated into LW and SW radiative fluxes (𝑅𝐿𝑊 and 238 

𝑅𝑆𝑊). The LW and SW radiative feedbacks are written as: 239 

 λT  + λLWWV
 + λLWc + 𝑅𝑒𝑠𝐿𝑊 =

－𝑅𝐿𝑊

∆𝑇𝑠
= λLW (11) 240 

 λα  + λSWWV  + λSWc + 𝑅𝑒𝑠𝑆𝑊 =
𝑅𝑆𝑊

∆𝑇𝑠
     = λSW (12) 241 

where 𝑅𝑒𝑠𝐿𝑊 and 𝑅𝑒𝑠𝑆𝑊 are the residuals of the difference between the total feedback and the 242 

sum of the LW and SW component feedbacks, respectively. 243 

 244 

2.3. Data Processing 245 

During post-processing of the model data, the stratosphere is masked, with the height of the 246 

tropopause crudely estimated at 100 hPa in the tropics and lowered to 300 hPa at the poles. As 247 



 

introduced in Soden and Held (2006), we use decadal means to compare FGOALS-g3 with 248 

FGOALS-g2 to diminish interannual variability. Considering the dependence of ECS on data 249 

length (Senior and Mitchell, 2000), the 150-year abrupt4×CO2 and piControl simulations were 250 

divided into fast-response (years 1–20) and slow-response (years 21–150) stages to facilitate a 251 

more comprehensive understanding of the differences between the two model versions. In 252 

addition, there is an assumption that the radiative flux of a variable X is calculated independently 253 

for each layer, which is generally valid at the global scale (Colman and McAvaney, 1997). 254 

3 Results 255 

 256 

3.1. Equilibrium Climate Sensitivities and Feedbacks 257 

The ECS was 2.8K for FGOALS-g3 and 3.3K for FGOALS-g2 when using the 150-year 258 

dataset, but this increased to 3.0K and 3.7K for FGOALS-g3 and FGOALS-g2, respectively, 259 

when considering only the slow-response stage (years 21–150; Fig. 2). Thus, there was a 0.2K 260 

and 0.4K difference in the ECS of FGOALS-g3 and FGOALS-g2, respectively, when 261 

considering only later years in the simulation, which we attribute to their different fast- and slow-262 

response stages. 263 

The SAT anomaly (SATA) variation in the 150
th

 year of the FGOALS-g3 simulation was 264 

smaller than that of FGOALS-g2 (Fig. 3a, solid line), which is consistent with the change in the 265 

ECS. However, the changes of the SATA were significantly different in the fast- and slow-266 

response stages between the two model versions; compared with FGOALS-g2, changes were 267 

larger in the fast-response stage and smaller in the slow-response stage in FGOALS-g3. As with 268 

the global mean SATA evolution, the decrease of the sea ice area (SIA) in the Northern 269 

Hemisphere occurred faster (slower) in FGOALS-g3 in the fast- (slow-) response stage than in 270 



 

FGOALS-g2 (Fig. 3b, solid line). The decrease of the SIA in the Southern Hemisphere was 271 

consistently slower in FGOALS-g3 than in FGOALS-g2 throughout the whole simulation. In 272 

addition, the global mean SAT of FGOALS-g3 was higher by about 0.75K than that of 273 

FGOALS-g2 in the piControl simulation (Fig. 3a, dashed line), whereas the SIA in the Northern 274 

Hemisphere of FGOALS-g3 was larger than that of FGOALS-g2 (Fig. 3b, dots). Overall, the 275 

different evolution of the SAT in the fast- and slow-response stages between the two model 276 

versions was associated with the sea ice reduction. 277 

During the slow-response stage, the value of λsum was relatively close to λtot, again 278 

demonstrating the small residual of our chosen feedback calculation method (Fig. 4). The 279 

difference in λtot between the two model versions can be attributed to the differences in each 280 

feedback. How much each feedback contributes depends on the dataset length, because the 281 

climate feedback amplitudes are related to the dataset length used (Table 1). 282 

Considering the full dataset length (Fig. 4, triangles), the differences in the lapse rate 283 

feedback, water vapor feedback, and surface albedo feedback more or less cancel out, resulting 284 

in the cloud feedback contributing the most to the ECS difference. That is, the stronger negative 285 

cloud feedback in FGOALS-g3 is the main reason for the ECS decrease from FGOALS-g2 to 286 

FGOALS-g3, which is consistent with the result that stronger positive cloud feedbacks 287 

contribute to the higher multi-model mean ECS of CMIP6 models compared with CMIP5 288 

models (Zelinka et al., 2020; Table 1). 289 

During the slow-response stage (Fig. 4, hollow circles), the difference in the surface albedo 290 

feedback between the two model versions was close to that of the cloud feedback, and was 291 

therefore another main contributor to the lower ECS in FGOALS-g3. The causes of these 292 

changes will be discussed in sections 3.2 and 3.3. 293 



 

 294 

3.2. Surface Albedo Feedback  295 

The surface albedo feedback is closely related to changes in SIA. As described in the 296 

previous section, the SIA evolution in both polar regions during the slow-response stage is 297 

consistent with the variation in SAT; i.e., the SIA decreases less in FGOALS-g3 than in 298 

FGOALS-g2, and the SAT increases less in FGOALS-g3 than in FGOALS-g2. Changes in the 299 

surface albedo feedback unfold differently in the three stages considered here, so for simplicity 300 

and brevity, in the following we focus on the Arctic region only.  301 

The overall change in the surface albedo feedback between the two model versions arises 302 

mainly during the slow-response stage around the center of the Arctic, during the fast-response 303 

stage in the Okhotsk Sea, and during both the fast- and slow-response stages in the North 304 

Atlantic and Bering Sea (not shown). Figure 5 shows the differences in the surface albedo 305 

feedback, SAT, and SIA between the abrupt4×CO2 and piControl simulations in the center of the 306 

Arctic, North Pacific (Bering Sea and Okhotsk Sea), and North Atlantic (Davis Strait, Labrador 307 

Sea, and Norway Sea) in the fast- and slow-response stages.  308 

In the fast-response stage, the SIA decrease in FGOALS-g3 occurs significantly faster than 309 

in FGOALS-g2 in the North Atlantic, North Pacific, and Hudson Bay, which could be associated 310 

with the relatively large SIA at the edge of the Artic region in FGOALS-g3. Hence the range and 311 

amplitude of the warming in FGOALS-g3 are larger than in FGOALS-g2 (Fig. 5a and 5b). In the 312 

central Arctic, although the decrease in SIA in FGOALS-g3 occurs slightly slower than in 313 

FGOALS-g2, the mean SIA decreases faster in the Northern Hemisphere (Fig. 3b). These results 314 

show that the SIA change in the central Arctic does not dominate the stronger surface albedo 315 



 

feedback in FGOALS-g3 during the fast-response stage, but rather the SIA change at the edge of 316 

the Arctic region is dominant (Table 1). 317 

In the Okhotsk Sea and North Atlantic (Davis Strait, Labrador Sea, and Norway Sea), the 318 

difference in the surface albedo feedback during the fast-response stage between the two model 319 

versions is also related to changes in the ocean circulation. The Atlantic meridional overturning 320 

circulation (AMOC) is important in regulating the pace of surface warming (Medhaug and 321 

Furevik, 2011; Chen and Tung, 2018). The AMOC index, defined as the maximum of the 322 

meridional overturning stream function between 15°N and 65°N below 500 m in depth, 323 

decreases significantly faster in FGOALS-g3 (about –21 Sv) than in FGOALS-g2 (about –8 Sv) 324 

during the fast-response stage (Fig. 6). The stronger AMOC and AMOC decrease are closely 325 

associated with the faster changes in SAT, SIA, and surface albedo feedback in FGOALS-g3.  326 

On the other hand, during the slow-response stage, the AMOC remains essentially 327 

unchanged in both model versions, which is similar to the small changes seen during the slow-328 

adjustment stage in the Geophysical Fluid Dynamics Laboratory (GFDL) model (He et al., 329 

2017). During the slow-response stage, the change in SIA in the central Arctic is consistent with 330 

the finding that differences in the surface albedo feedback between models stem mainly from the 331 

sensitivity of the surface albedo to surface temperature (Winton, 2006). That is, the more 332 

regional snow and sea ice there is, the higher the surface albedo, which leads to lower local 333 

temperatures, thus promoting the increase of regional snow and sea ice, and vice versa. The 334 

positive surface albedo feedback loop in FGOALS-g3 is slower than in FGOALS-g2 during the 335 

slow-response stage around the center of the Arctic (Fig. 5c and 5d) and eventually dominates 336 

the change in surface albedo feedback in the simulation as a whole, which is closely related to 337 

the lower background temperature in FGOALS-g3 (about 2 K lower). Moreover, the weak 338 



 

AMOC of FGOALS-g3 in the slow stage will weaken the heat northward transport in the upper 339 

ocean level, which can contribute to slow down the warming (Fig. 6). Levermann et al. (2007) 340 

also pointed out that the positive relationship between mean AMOC and AMOC decline under 341 

CO2 forcing is mediated by sea ice. However, the relationship among AMOC, SAT and SIA is 342 

complex in CMIP5 or CMIP6 models which is not simply to promote or inhibit the change of 343 

ECS among different models (Weijer et al., 2020). 344 

In general, the difference in the surface albedo feedback between FGOALS-g2 and 345 

FGOALS-g3 can be attributed mainly to their different climate base states; i.e., the lower 346 

temperature, larger sea ice cover, stronger AMOC in FGOALS-g3 in the piControl simulation, 347 

and weaker AMOC in FGOALS-g3 in the slow-response stage. These mean-state differences are 348 

further related to the different external forcings used in CMIP5 and CMIP6, and the different 349 

ocean grids used in the two model versions; in FGOALS-g3, the ocean grid was updated from a 350 

latitude-longitude grid to a tripolar grid (Li et al., 2017; Lin et al., 2020; Li et al., 2020a). 351 

 352 

3.3. Cloud Feedback 353 

Different types of clouds have different radiative effects (Zelinka et al., 2012). Low clouds 354 

reflect solar radiation and therefore have a cooling effect, whereas high clouds absorb the LW 355 

radiation emitted by the Earth and so have a warming effect. Consequently, the net effect 356 

(cooling or warming) depends on the type of clouds present. In the FGOALS-g model, the CRF 357 

calculations are closely associated with the cloud area fraction (CAF) and liquid water path 358 

(LWP; Li et al., 2014, 2015). The CAF anomaly increases significantly faster in FGOALS-g3 359 

than in FGOALS-g2 in the simulation as a whole and the difference in the CAF between the two 360 

model versions at the 150
th

 year reaches about 1.2% (Fig. 7a). Moreover, the piControl CAF of 361 



 

FGOALS-g3 is higher by about 0.8% than that of FGOALS-g2 (Fig. 7a). The LWP anomaly at 362 

the 150
th

 year of FGOALS-g3 is also higher by about 1.5 g m
–2

 than in FGOALS-g2, and the 363 

LWP in the FGOALS-g3 piControl run is higher by about 12 g m
–2

 than in FGOALS-g2 (Fig. 364 

7b). However, the ice water path (IWP) anomaly at the 150
th

 year of FGOALS-g3 decreases by 365 

about 0.4 g m
–2

 more than in FGOALS-g2, and the background IWP of FGOALS-g3 is lower by 366 

about 2 g m
–2

 than in FGOALS-g2 (Fig. 7b). The change in the condensed water path includes 367 

changes to the LWP and IWP, and comes mainly from the LWP, as the IWP changes less in the 368 

FGOALS-g models. As pointed out in many studies, the changes in LWP affect cloud scattering, 369 

which leads to a big difference in the cloud feedback between the two model versions and further 370 

affects the ECS (Turner et al., 2007; Zelinka et al., 2012; Bodas-Salcedo et al., 2016). 371 

Compared with FGOALS-g2, FGOALS-g3 has a higher CAF and LWP, and a stronger 372 

negative cloud feedback (Table 1). This is consistent with the amplification of the water vapor 373 

feedback (Silvers et al., 2018). Figure 8 shows that the difference in the spatial distribution of 374 

cloud feedbacks between the two model versions, especially the SW cloud feedback, is more 375 

prominent around the equatorial South Pacific and Indian Ocean (the sea area near the 376 

Indonesian islands), and the Southern Ocean, whereas the water vapor feedback is clearly 377 

enhanced in the equatorial South Pacific in FGOALS-g3. Many observational and model 378 

simulation studies have shown that supercooled liquid clouds are ubiquitous over the Southern 379 

Ocean and contribute about one-third of the reflected solar radiation during the austral summer 380 

(Hu et al., 2010; Huang et al., 2015; Zelinka et al., 2012; Bodas-Salcedo et al., 2016; Bacmeister 381 

et al., 2020).  382 

Zelinka et al. (2020) showed that the stronger positive net cloud feedback in CMIP6 arises 383 

primarily from the SW low-cloud component, whereas the non-low-cloud feedback has slightly 384 



 

decreased in the CMIP6 models compared with the CMIP5 models. On average, the SW low-385 

cloud feedback is more positive in CMIP6 due to larger reductions in low-cloud cover and 386 

smaller increases in LWP with warming. The change in the SW low-cloud feedback from 387 

FGOALS-g2 to FGOALS-g3 is just the opposite of the change in the multi-model mean from 388 

CMIP5 to CMIP6. The SW low-cloud feedback in FGOALS-g3 is more negative than that in 389 

FGOALS-g2 (Fig. 8c). This stronger negative SW low-cloud feedback can be attributed to the 390 

larger CAF and LWP in the piControl run, which enhances cloud scattering and suppresses the 391 

temperature increase near the ground.  392 

Low cloud (i.e., below 700 hPa) and high cloud (i.e., above 400 hPa) increase more in 393 

response to a quadrupling of CO2 in FGOALS-g3 than in FGOALS-g2, and vice versa for mid-394 

level cloud (Fig. 9). As in most models, the change in the low-cloud SW feedback dominates the 395 

net cloud feedback in FGOALS-g3 (Zelinka et al., 2020). In some of the climate models 396 

participating in CMIP3, the low-cloud SW feedback in the equatorial region has an opposite 397 

trend to the mid-level-cloud SW feedback (Zelinka et al., 2012), which is consistent with the 398 

increase in low clouds and decrease in mid-level clouds in FGOALS-g3. Moreover, the 399 

enhancement of the low-cloud SW feedback is related to the thickening of low clouds in 400 

FGOALS-g3. The vertical profile of the CAF in Fig. 9 also shows that the cloud cover in both 401 

FGOALS-g2 and FGOALS-g3 is basically constant within each layer throughout the simulation. 402 

This may be because the low-level CAF and LWP in the piControl simulations differ between 403 

the two model versions. The low-level CAF and LWP of the climate base state in FGOALS-g3 404 

are higher than in FGOALS-g2, which is primarily caused by the reduction in the high-cloud 405 

relative humidity threshold, the changed stratocumulus cloud scheme, and the parameter tuning 406 



 

(especially the stability trigger for stratus clouds and relative humidity threshold for layer clouds) 407 

in FGOALS-g3 (Li et al., 2020b).  408 

 409 

4 Discussion and Conclusions 410 

 411 

In this study, we compared three methods of differing complexity that can be used to 412 

calculate the cloud feedback in two versions of the FGOALS-g coupled climate model and found 413 

that, the methods of cloud feedback have great influence (about 0.3~0.7) on cloud feedback in 414 

two versions of the FGOALS-g. Moreover, in both FGOALS-g2 and FGOALS-g3, the residual 415 

term is smallest when the cloud feedback parameter is simply equal to the change in CRE 416 

normalized by the change in surface temperature. Based on this simplified method, we analyzed 417 

the differences in the ECS and its related physical feedbacks between the two versions of the 418 

model. Applying an abrupt4×CO2 scenario relative to the piControl run, we obtained ECS 419 

values, calculated using a 150-year linear regression (whole-response stage) and a two-stage 420 

(fast-response and slow-response stage) linear regression of 2.8K and 3.0K, respectively, from 421 

FGOALS-g3, and 3.3K and 3.7K, respectively, from FGOALS-g2. 422 

The main feedbacks contributing to the ECS reduction from FGOALS-g2 to FGOALS-g3 423 

were the surface albedo feedback and cloud feedback, although other feedbacks also have 424 

impacts. The negative cloud feedback is strengthened in FGOALS-g3 during the fast, slow, and 425 

whole-response stages. The positive surface albedo feedback was weakened in FGOALS-g3 426 

during the slow and whole-response stages, but was still the biggest term during the slow-427 

response stage, whereas it is strengthened during the fast-response stage, which is related to the 428 

change in ocean–atmosphere interaction between the fast- and slow-response stages.  429 



 

Compared with FGOALS-g2, during the fast-response stage of FGOALS-g3, the SIA in the 430 

Northern Hemisphere decreased faster, the SAT increased faster, and the surface albedo 431 

feedback became stronger in the abrupt4×CO2 scenario relative to the piControl run. This 432 

change can be attributed to the SIA at the edge of the Arctic being larger in FGOALS-g3 than in 433 

FGOALS-g2, which causes it to melt more rapidly, and this is the result of the large 434 

change/mean state in the AMOC intensity during the fast-response/piControl stage. During the 435 

slow-response stage, the changes in SIA occur mainly in the center of the Arctic. This can also 436 

be attributed to the larger SIA and lower SAT in the center of the Arctic in FGOALS-g3 than in 437 

FGOALS-g2, which makes it harder for the ice to melt in FGOALS-g3. These features are 438 

related to the different climate background states in the two model versions, which are caused by 439 

the different external forcings recommended by CMIP5 and CMIP6, and the different ocean 440 

grids used (i.e., a latitude-longitude grid is used in FGOALS-g2 and a tripolar grid in FGOALS-441 

g3; Li et al., 2017; Lin et al., 2020; Li et al., 2020a).  442 

The difference in the cloud feedback between the versions of the two model is more 443 

prominent in the equatorial Pacific, Indian Ocean, and Southern Ocean, and this is associated 444 

with the increased low CAF and LWP in the piControl run of FGOALS-g3. Compared with the 445 

multi-model average results of Zelinka et al. (2020), the change in the cloud feedback was also 446 

the main cause of the change in ECS between FGOALS-g2 and FGOALS-g3, but the reasons for 447 

the change in this cloud feedback differ. In particular, the differences in the cloud fraction 448 

scheme and parameter (threshold for cloud formation) tuning between FGOALS-g2 and 449 

FGOALS-g3 are important. In addition, the change in the surface albedo feedback is an 450 

important contributing factor to the change in ECS. Compared with the EC-Earth model results 451 

of Wyser et al. (2020) in which the aerosol-cloud interactions contribute to the change of ECS, 452 



 

the aerosol-cloud interaction scheme keep the same in two FGOALS-g versions in two 453 

simulations (piControl and abrupt4×CO2). 454 

In brief, we attribute the changes in the cloud feedback in FGOALS-g3 primarily to the 455 

different LWP and CAF in the climate base state, especially regarding low clouds. These 456 

changes are associated with the reduction of the high-cloud relative humidity threshold, the 457 

different stratocumulus cloud scheme, and different tuning parameters used in FGOALS-g3 (Li 458 

et al., 2020a).  459 

Using multi-model statistics, Tian (2015) found that weak (strong) double Intertropical 460 

Convergence Zone (ITCZ) biases correspond to high (low) ECS values in CMIP5. However, 461 

FGOALS-g2 shows a stronger double ITCZ than FGOALS-g3 (Li et al., 2020a), and yet the ECS 462 

in FGOALS-g2 is higher than that in FGOALS-g3. Indeed, the emergent relationship between 463 

ECS and a double-ITCZ bias was found to be barely significant in CMIP6 (Schlund et al., 2020). 464 

Moreover, the increase in low cloud coverage has a stronger cooling effect in the high latitudes 465 

of the Northern Hemisphere (e.g., the North Atlantic) in FGOALS-g3, which slows down the 466 

temperature increase in that area and affects the feedback between temperature and surface 467 

albedo. In addition, the change in the cloud feedback in the North Atlantic is related to the 468 

AMOC; the stronger interaction between the AMOC and cloud feedback in FGOALS-g3 also 469 

leads to a stronger negative cloud SW feedback in that area. 470 

The cloud feedback can be divided into LW and SW feedbacks. We calculated and 471 

compared the LW and SW feedbacks in the sum of the component results (left side of Eq. (11) 472 

and Eq. (12)) and the model net long wave results (right side of Eq. (11) and Eq. (12)). The LW 473 

(Fig. 10a and 10b) and SW (Fig. 10c and 10d) residuals in FGOALS-g3 in the equatorial Pacific 474 

are significantly greater than in FGOALS-g2, indicating a strong correlation between the cloud 475 



 

and other feedbacks, especially the water vapor feedback. The LW and SW residuals in 476 

FGOALS-g3 at the two poles are slightly less than in FGOALS-g2, indicating a weak 477 

relationship between the cloud and other feedbacks. In addition, the uncertainty of cloud 478 

feedback comes from the selection of different cloud feedback methods. Some methods calculate 479 

negative feedback, while others can calculate positive feedback. No matter how complex they 480 

are, their residual terms are difficult to explain clearly. Moreover, the influence of internal 481 

variability during the slow-response stage cannot be ignored. 482 
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Table 1.Vertically-integrated (up to the tropopause) global and decadal mean values of 808 

feedback parameters (λT, λPlanck, λLR, λWV, λα, and λc) given in W m
2
 K

–1
, and their sum (λsum) 809 

estimated using the CAM5 radiative kernels and CRE under all-sky conditions. The total 810 

feedbacks (λtot) were calculated using the method of Gregory et al. (2004). ‘Res’ indicates the 811 

difference between λtot and λsum.  812 

version stage 𝛌𝐓 𝛌𝐏𝐥𝐚𝐧𝐜𝐤 𝛌𝐋𝐑 𝛌𝐖𝐕 𝛌𝐖𝐕+𝐋𝐑 𝛌𝐀𝐥𝐛𝐞𝐝𝐨 𝛌𝐜 𝛌𝐬𝐮𝐦 𝛌𝐭𝐨𝐭 Res 

FGOALS 

-g3 

All –3.5986  –3.1855  –0.4167  2.3278  1.9112  0.5364  –0.3978 –1.1321 –1.3088  –0.1767  

Fast –3.7650  –3.1750  –0.5940  2.4429  1.8489  0.5380  –0.5423 –1.3263 –1.5000  –0.1737  

Slow –3.2332  –3.1442  –0.0927  2.3241  2.2314  0.5204  –0.1811 –0.5698 –1.0400  –0.4702  

FGOALS 

–g2 

All –3.4004  –3.1440  –0.2629  2.0494  1.7865  0.6218  –0.0218 –0.7511 –0.8692  –0.1181  

Fast –3.7775  –3.2110  –0.5729  2.3402  1.7673  0.3764  –0.2902 –1.3511 –1.3700  –0.0189  

Slow –3.1705  –3.0966  –0.0802  2.1944  2.1142  0.7478  0.0236 –0.2048  –0.6500  –0.4452  
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Figure 1. The residual term of the three cloud feedback calculation methods: the CAM5 827 

radiative kernel method (group 1), the wholly simplified method (𝜆𝑐𝑙𝑜𝑢𝑑_𝑐𝑜𝑟𝑟 = 0) (group 2), and 828 

the simplified method (𝜆𝑐𝑙𝑜𝑢𝑑_𝑐𝑜𝑟𝑟 ≠ 0) (group 3). 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

0

0.2

0.4

0.6

0.8

1

fast stage slow stage fast stage slow stage

FGOALS-g2 FGOALS-g3

re
si

d
u

a
l 

Group1 Group2 Group3



 

Figure 2. TOA net radiation against global mean SAT change in the abrupt4×CO2 scenario 842 

relative to the piControl run for (a) FGOALS-g3 and (b) FGOALS-g2. The black lines show the 843 

fast-response stage (the first 20 years) and the slow-response stage (the last 130 years). The red 844 

lines show all 150 years.  845 
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Figure 3. (a) The SAT anomaly change in the abrupt4×CO2 experiment relative to the 859 

piControl run (solid line), and the SAT base state in the piControl simulation (dashed line) for 860 

FGOALS-g2 (blue) and FGOALS-g3 (red). (b) The SIA anomaly change in the Northern 861 

Hemisphere (solid line) and Southern Hemisphere (dashed line) in the abrupt4×CO2 experiment 862 

relative to the piControl run, and the SIA base state in the Northern Hemisphere (dots) and 863 

Southern Hemisphere (plus signs) in the piControl simulation for FGOALS-g2 (blue) and 864 

FGOALS-g3 (red).  865 
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Figure 4. Difference of climate feedback parameters between FGOALS-g3 and FGOALS-869 

g2, including the total feedback parameter λtot (calculated using the all-sky net radiation against 870 

the global mean SAT change in the abrupt4×CO2 scenario relative to the piControl run), its 871 

components (λT, λPlanck, λLR, λWV, λα, and λc), and the sum of all components (λsum). The 872 

residual, Res, is equal to λtot − λsum. 873 
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Figure 5. Surface albedo feedback (color fill), SAT (contour line), and SIA (shadow fill) in 886 

the versions of the two model around the Arctic. (a), (b) The surface albedo feedback in the fast-887 

response stage, and the change of SAT and SIA from the 10
th

 to the 20
th

 year in the 888 

abrupt4×CO2 experiment relative to the piControl run. (c), (d) The surface albedo feedback in 889 

the slow-response stage, and the change of SAT and SIA from the 140
th

 to the 150
th

 year in the 890 

abrupt4×CO2 experiment relative to the piControl run. (a), (c) FGOALS-g3, (b), (d) FGOALS-891 

g2. 892 

893 
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Figure 6. The AMOC index anomaly change in the abrupt4×CO2 experiment relative to the 895 

piControl run (solid line) and the AMOC index base state in the piControl run (dashed line) for 896 

FGOALS-g2 (blue) and FGOALS-g3 (red). The AMOC index is defined as the maximum of the 897 

meridional overturning stream function between 15°N and 65°N below 500 m in depth. 898 
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Figure 7. Anomaly change in the abrupt4×CO2 experiment relative to the piControl run 911 

(solid line), and the base state in the piControl run (dashed line) for FGOALS-g2 (blue) and 912 

FGOALS-g3 (red). (a) Total cloud area fraction (CAF), (b) liquid water path (LWP), and (c) ice 913 

water path (IWP).  914 
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Figure 8. The difference in the distribution of (a) cloud feedback, (b) water vapor feedback, 918 

and (c) cloud SW feedback between FGOALS-g3 and FGOALS-g2.  919 
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Figure 9. The CAF profile anomaly in the abrupt4×CO2 experiment relative to the 929 

piControl run for (a) FGOALS-g3 and (b) FGOALS-g2.  930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 



 

Figure 10. The LW and SW residual term in the abrupt4×CO2 scenario relative to the 944 

piControl run. (a) The LW residual term of FGOALS-g3. (b) The LW residual term of 945 

FGOALS-g2. (c) The SW residual term of FGOALS-g3.(d) The SW residual term of FGOALS-946 

g2. 947 
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