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Abstract

2D-parametric model is used to simulate waves under Tropical Cyclones (TCs). Set of equations describing either wind waves
development and swell evolution, is solved using method of characteristics. Wave-rays patterns provide efficient visualization
on how wave trains develop and travel through TC varying wind field and leave storm area as swell.

The superposition of wave-trains rays exhibits coherent spatial patterns of significant wave height, peak wavelength and direction,
depending on TC characteristics, - maximal wind speed (um), radius (Rm), and translation velocity (V). Group velocity
resonance leads to appearance of waves with abnormal energy between the TC right and front sectors, further outrunning as
swell through the TC front sector. Yet, when TC translation velocity exceeds a threshold value, waves cannot reach group
velocity resonance, and travelling backwards, form a wake of swell systems trailing the forward moving TC.

2D-parametric model solutions are parameterized using 2D self-similar universal functions. Comparisons between self-similar

solutions and measurements, demonstrate excellent agreement to warrant their use for scientific and practical applications.

Self-similar solutions provide immediate estimates of azimuthal-radial distributions of wave parameters under TCs, solely

characterized by arbitrary sets of um, Rm and V conditions. Self-similar solutions clearly divide TCs between slow TCs

fulfilling conditions Rm/Lcr>1, and fast TCs corresponding to Rm/Lcr <1, where Lcr is a critical fetch. The region around

Rm/Lc = 1 corresponds to the group velocity resonance conditions, leading to the largest possible waves generated by a TC.
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Key points 

 
1. Superposition of wave-trains rays provides efficient visualization on how waves develop 

under TC and leave it as swell.  
 

2. Parametric model solutions are described using 2D self-similar universal functions.  
 

3. Self-similar solutions demonstrate good agreement with measurements that warrant their 
scientific and practical applications.  

  



ABSTRACT 

2D-parametric model is used to simulate waves under Tropical Cyclones (TCs). Set of equations 

describing either wind waves development and swell evolution, is solved using method of 

characteristics. Wave-rays patterns provide efficient visualization on how wave trains develop 

and travel through TC varying wind field and leave storm area as swell.  

The superposition of wave-trains rays exhibits coherent spatial patterns of significant wave 

height, peak wavelength and direction, depending on TC characteristics, - maximal wind speed 

(um), radius (Rm), and translation velocity (V). Group velocity resonance leads to appearance of 

waves with abnormal energy between the TC right and front sectors, further outrunning as swell 

through the TC front sector. Yet, when TC translation velocity exceeds a threshold value, waves 

cannot reach group velocity resonance, and travelling backwards, form a wake of swell systems 

trailing the forward moving TC.  

2D-parametric model solutions are parameterized using 2D self-similar universal functions. 

Comparisons between self-similar solutions and measurements, demonstrate excellent agreement 

to warrant their use for scientific and practical applications. Self-similar solutions provide 

immediate estimates of azimuthal-radial distributions of wave parameters under TCs, solely 

characterized by arbitrary sets of um, Rm and V conditions. Self-similar solutions clearly divide 

TCs between slow TCs fulfilling conditions Rm/Lcr>1, and fast TCs corresponding to Rm/Lcr 

<1, where Lcr is a critical fetch. The region around Rm/Lc = 1 corresponds to the group velocity 

resonance conditions, leading to the largest possible waves generated by a TC.  

  



Plain Language Summary 

2D-parametric model is used to simulate waves under Tropical Cyclones (TCs). Solution of 

model equations using method of characteristics, provides distribution of wave energy, peak 

frequency and direction along wave-rays. Wave-rays patterns provide efficient visualization on 

how wave trains develop and travel through TC wind field and leave storm area as swell. 

Superposition of wave-rays exhibits coherent spatial patterns of wave parameters depending on 

TC characteristics, - maximal wind speed (um), radius (Rm), and translation velocity (V). The 

most striking feature of wave fields under TC is the azimuthal asymmetry, resulting from group 

velocity resonance between waves and moving TC. This effect leads to appearance of waves 

with abnormal energy between the TC right and front sectors, further outrunning as swell in TC 

heading direction. 2D-parametric model solutions are parameterized using 2D self-similar 

universal functions. Comparisons between self-similar solutions and measurements, demonstrate 

excellent agreement. Self-similar solutions provide immediate estimates of azimuthal-radial 

distributions of wave parameters under TCs. Suggested self-similar solutions can be used for 

scientific and practical applications, in particular to provide fast estimates of waves generated by 

moving TC with arbitrary sets of um, Rm and V.  

  



 

1. Introduction 

 

Besides strong interests for marine engineering and navigation safety, tropical cyclone (TC)–

generated wave fields are now systematically invoked as essential components of the two-way, 

air–ocean coupled system to control the dynamical evolution of extreme events. Marine-

atmosphere extremes are also crucial for the determination of coastal sea levels and coastal 

erosion. 

In that context, there have been considerable efforts to improve knowledge about the main 

characteristics of TC–generated surface waves, both from measurements and numerical 

modeling experiments. Full sophisticated spectral wave models certainly have the capability to 

provide detailed wave information [e.g. Moon et al., 2003, Liu et al., 2017, Julien et al., 2020]. 

Yet, computer limitations, lack of precise well-resolved surface winds and/or needs to consider 

large ensembles of solutions, especially to help forecast TC dynamics, also invite to develop 

more simplified but robust solutions. 

For instance, a practical model should help to rapidly anticipate and document the role of partial 

resonance effects to increase the effective fetch and duration of the wave-growth process in the 

different directions of tropical weather systems, i.e. the wave trapping phenomenon [e.g., King 

and Shemdin, 1978; Dysthe and Harbitz, 1987; Young, 1988; Bowyer and MacAfee, 2005; 

Young and Vinoth, 2013; Kudryavtsev et al., 2015]. To further note, severe weather systems are 

difficult to fully characterize, making remote sensing techniques essential for observing surface 

processes. At time, satellite observations can produce spatially well‐resolved snapshots of 

surface winds [e.g. Mouche et al., 2019, Combot et al., 2020]. However, most extreme events 

may still be under sampled, and this lack of observations cannot always lead to fully characterize 

spatio-temporal surface wind forcing conditions. These wind forcing uncertainties may then 

cause large biases for surface momentum fluxes and wave developments. 

Nevertheless, despite this expected spatio-temporal complexity of extreme weather systems, 

generated surface waves are generally reported to well follow self-similar fetch laws, originally 

suggested by Kitaigorodskii [1962]. For very intense low pressure systems, the main vortex 

structure of the winds and the motion of this vortex apparently solely govern the spatial 

distribution of generated waves and their associated directional characteristics (energy, 

wavelength). Thus, the wave field largely mirrors the main overall vortex structure of the winds, 



but wave developments can become strongly asymmetrical, from the wave trapping 

phenomenon, due to the translating motion of the main vortex. 

From experimental campaigns, airborne scanning radar altimeter measurements, first reported by 

Wright et al. [2001] and Walsh et al. [2002], largely support this assumption. These airborne 

measurements have been more recently analyzed [Hwang et al., 2017, Hwang and Walsh, 2018], 

and provide unique quantitative information about the azimuthal and radial distributions of wave 

spectra inside TCs. In the front half of a TC, single wave systems seem to largely dominate. In 

the other TC sectors, multiple wave systems are generally observed, in the back and right 

quarters outside the radius of maximum wind. 

In this paper, a first objective is thus to apply the revised 2D-parametric model [Kudryavtsev et 

al., companion paper] to predict wave field developments under moving TCs, and to assess how 

these predictions are consistent with available airborne and satellite observations. Moreover, a 

second objective is to demonstrate how these proposed 2D-parametric model predictions can be 

analytically reduced using 2D self-similar functions. Considering a prescribed structure of the 

TC winds and its translation, this is successfully performed. The reduced self-similar solutions 

shall then be considered as the generalization of 1D fetch-laws for TC-generated waves, to 

provide useful robust first guess estimates for practical nowcasting and scientific applications. 

The approach is outlined, section 2, with solutions for stationary TCs presented in section 3, and 

for moving TCs in section 4. Analysis are then performed, and reported in section 5, including 

comparisons with available airborne and satellite observations. In section 6, self-similarity 

properties of the numerical outputs are demonstrated, and practical solutions are proposed. 

Following a short discussion, section 7, concluding remarks are givenin section 8.  

 

2. Approach  

The governing model relationships are represented by a system of equations, Eq. (47) to (50), in 

[Kudryavtsev et al., companion paper, hereinafter referred as Part1]. The model is written in 

characteristic form, and describes the along-ray evolution of energy, frequency and direction of 

wave trains travelling under the forcing of a wind field varying in space and time.  

2.1. Wind field 

To model the radial wind speed profile, the form suggested by Holland [1980] is adopted:  



( )
1/22

2( ) exp 1
2 2

B B
m m

m m
R R rf rfu r u u rf
r r

       = + − + + −                
  (1) 

which is widely used to simulate TC wind field. In (1), mu  is the maximum wind speed at 10-

meter level, mR  is the radius of maximum wind speed, r  is radial distance, B  is the shape 

parameter. In addition, the wind velocity is considered to spiral towards the TC eye, with a mean 

inflow angle 020inϕ =  [Zhang and Uhlhorn, 2012]. In the following calculations, the shape-

parameter B  in (1) is set to B =1.5. TC wind field (1) can be either stationary or moving with 

translation velocity, V , directed along the y-axis. Such wind field is considered as input 

parameter to solve the system of equations (47) to (50) from Part1.   

2.2. Initialization 

Hereinafter, the problem is solved by the method of characteristics, stated in a coordinate system 

moving with the TC, where the coordinate origin coincides with the TC eye. In this case, TC 

translation velocity, V , must be added to the r.h.s. of the wave train trajectories, eq. (50) in Part 

1.  

Each of the characteristics represents a wave-ray along which a wave train can develop, starting 

from its initial instant of generation. From a set of N  wave trains, the starting point of the j -th 

wave train at initial time 0t =  is 0 0( , ) ( , )j j j jx y x y= . For initial conditions for each ray, we 

define the peak frequency, 0
j
pω , and energy, 0

je , through their duration-development laws 

( ) t

t

q
pu g c tg uαω =  and ( )2 4 t

t

p
eeg u c tg u=  correspondingly, with the wave direction aligned 

with the local wind u 0 0( , )j jx y . Initial values follow from a «small» initial time-interval τ :  
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where 
t

cα , 
tec , tq , and tp  are duration-laws constants. These constants are not free, but are 

unambiguously linked to the corresponding fetch-laws constants cα , ec , q , and p  [see e.g. 

Kudryavtsev et al., 2015; Dulov et al., 2020 and references cited therein]:  

[ ] [ ]
/ (1 ),   / (1 )

(1 ) / (2 ) ,    (1 ) / (2 )t t

t t

t t
q p

e e

q q q p p q

c c q c c c q cα α α α

= + = +

= + = +
    (3) 



In the following calculations, the initial time-interval is assigned as τ =5 min, and the reference 

time is counted from τ .  

The wave-trains with initial parameters (2) are “seeded” on a polar grid shown in Fig.1. By 

default, the grid azimuthal resolution is 09ϕ∆ =  with radial logarithm-spacing r r ϕ∆ = ∆  and 

minimal minr  equal to min 4mr R= , mR  is radius of maximum wind speed.  

The system of differential equations, written in characteristic form, is solved numerically using 

the Runge-Kutta method of the 4-th order. To accelerate calculations, we used variable time-step 

for integration, increasing as time squared, but not exceeding 30 min.  

Figure 1 is about here 

Throughout the paper the following notations/definitions are used : TC moves in direction of y -

axis, azimuth 00ϕ =  corresponds to TC heading, azimuthal directions are counted counter-

clockwise. To describe the wave field development, TC areas are divided between Right-, Left-, 

Front- and Back-Sectors, R-S, L-S, F-S, and B-S, correspondingly, as indicated in Fig.1. In the 

R-S and L-S, wind velocity is almost aligned or opposite to the TC heading, respectively. In the 

F-S and B-S, wind is directed almost across the TC heading. Each of these sectors can 

additionally be divided in half, forming eight slices with azimuthal step 45 deg.  

3. Stationary TC 

3.1. Dynamics of Individual Rays 

The dynamics of four wave trains are first considered, starting at radial distances: 2mr R=

mr R= , 2 mr R= , and 4 mr R=  for a TC maximum wind speed 50mu = m/s and 50mR = km, 

Fig.2. On the initial stage, traveling through the complex wind velocity field varying both in 

speed and in direction, wave trains exhibit fast development, i.e. rapid growth of significant 

wave height (SWH) and the associated peak wavelength. At the beginning, developing waves 

follow the veering wind direction, but in the course of their development, waves become too 

“inertial”, start to deviate from the wind direction, and travel outwards the TC. The wave trains 

attain maximal energy, with monotonically growing wavelength, at radial distance around mR . 

Then, due to deviation from wind direction and a decrease of the wind speed at mr R> , wave 

breaking dissipates the energy, and the energy balance adjusts to the reduced forcing. Further, 

passing the point of a local full development, i.e. 10 cos( ) 0.85p w pu cα ϕ ϕ= − ≈ , the wind energy 

input terminates, and wave trains travel outwards as swell systems.  



Figure 2 is about here 

Solid and dash lines in Fig.2 demonstrate the model simulations with and without accounting for 

the wave focusing effects, described by the 1st term in r.h.s of Eq. (47) in Part 1. For the 

azimuthally isotropic wind field with radial profile (1), the gradient of wind direction, WG , is 

directed along the tangent to the circle and has the magnitude 1WG r= . During the initial stage, 

growing waves develop along the wind direction. Hence, the projection of WG  on direction 

perpendicular to the wave direction, sinn
W W inG G ϕ= − , is negative. It leads to the focusing of 

wave-rays, acting as extra energy input source to wind waves. For the train started in vicinity of 

the eye, the effect of the ray focusing results in the appearance of a caustic zone (identifying as 

sharp minimum of black line in the upper-right plot, Fig. 2) on the initial stage of development. 

However, referring to Fig.2, the focusing effect results in an overall negligible impact on the 

energy and peak wavelength while wave trains are subject to intense wind forcing. The reason is 

that the rate of the energy input through focusing is much smaller than the rate of the energy gain 

from the wind and wave breaking dissipation. Moreover, the dissipation is a strongly non-linear 

function of wave steepness, providing a threshold-like energy level limitation to any small 

disturbances acting on the energy balance. On the contrary, when wave trains turn into regime of 

swell systems, focusing effects can become very effective and result in remarkable wave energy 

enhancement in the pre-caustic zone (identifying as sharp maximum of blue line in the upper-

right plot) and, subsequent wave energy attenuation away from the caustic zone, Fig.2. 

3.2. Rays Superposition 

Superposition of wave-rays, seeded from the polar grid, Fig.1, is shown Fig.3. To plot the 

composition of a large number of rays, an overlapping “rule” applies, i.e. the ray with the largest 

local wavelength is on top of all others. These longest waves are associated with the most 

developed ones, and this representation emphasizes primary wave systems.   

The spatial distribution of wave-train parameters then exhibits an apparent azimuthal isotropy. In 

this specific case, the maximum of energy locates at radial distance close to mR  (Fig.3, upper-

left). Once wave trains become locally fully developed, they further travel outwards as swell 

systems, almost in radial direction. For these emerging swells, energy decreases, but the 

wavelength is conserved (Fig.3, upper-right and upper-left).  

Figure 3 is about here 



Wave direction departures from the wind ones results in important feature, namely the 

development of wave field from the TC center towards its periphery. A map of wave-train travel 

time, Fig.3, down-left, clearly demonstrates that local time for the most developed waves to 

appear, increases from the TC eye towards its periphery. Accordingly, the vicinity of the TC eye 

can be considered as the area where a primary wave system started. Moreover, for the given 

time, t , a radial contour, ( )dr t , can correspond to a boundary dividing wave fields between its 

stationary part, ( )dr r t< , where waves exhibit features typical to (stationary) fetch-limited 

development, and its evolving part, ( )dr r t> , where waves develop in time with properties 

typical for duration-limited development. In 1D-case, such a division of a wave field between 

two regions exhibiting fetch- and duration-limited development was introduced by 

Kitaigorodskii [1962] for the evolution of wind waves from the coast starting from the state of 

the rest.  

4. Moving TC 

4.1 Rays patterns.  

Wave train dynamics, starting on radial distances [ 2, ,2 ,4 ]m m m mR R R R  with azimuthal step 

30deg for a TC with mu =50m/s and mR =50 km, moving with different translation velocities V = 

[0, 5, 7, 12] m/s are displayed Fig.4.  

As compared to a stationary TC (upper row in Fig.4), TC motions induce radical changes for the 

trajectories and distribution of wave parameters. TC motions introduce marked azimuthal 

anisotropy, increasing for faster TCs. Similar to the stationary TC case, generated waves at initial 

stage follow the veering wind, but associated to the TC translation, developing and relatively 

slow wave-trains can travel backwards. Most distinct wind directions relative to the TC 

translation velocity, V , in the Right- and Left-Sectors (R-S and L-S), results in the appearance 

of important azimuthal anisotropy for the patterns of wave-rays.  

Figure 4 is about here  

Qualitatively, kinematics of the train can be described as the following. All wave-trains starting 

in the F-S, L-S and in the left half (slice) of B-S, travel backwards with some adjustment to the 

veering wind, then “detach” from the wind forcing, and leave the TC area as swell systems. Due 

to the TC motion, the residence time of these trains is reduced compared to the stationary case, 

and therefore they are less developed.  

Kinematics for wave trains starting in the R-S and in the right slice of B-S is more complicated. 

First, we consider TC cases with  V =5m/s and V =7m/s, Fig.4. Except for the trains starting at 



mr R<  in the upper slice of R-S, other trains, being initially slow, first travel backwards. In the 

course of the wave development, the group velocity can equalize the TC translation velocity. At 

these points, trajectories are largely inflected and take a « hook »-like shape. Trough of this 

hook-like trajectory corresponds to the turning point, where the direction of the wave-trains 

changes from backward to forward relative to the TC motion. Following (Dysthe and Harbitz, 

1987), we term this effect as local group velocity quasi-resonance between wave and TC motion. 

Passing the turning point, these quasi-resonant trains move forward, slowly relative to the TC. 

Therefore, their residence time under TC forcing is significantly increased. Within the TC R-S, 

the waves gain energy from the wind, rapidly develop, travelling through F-S in TC heading 

direction. These trains are the most developed, and their energy and wavelength significantly 

exceed the corresponding values for the stationary TC case.  

Note, wave trains starting at mr R<  in the upper slice of R-S, travel backwards through the 

complex wind field, with decreasing speed and rotating direction. As a consequence, these trains 

being strongly undeveloped enter the TC L-S as swell waves, with direction opposite to the local 

wind, Fig.4.  

For large TC translation velocity, case V =12m/s in Fig.4, none of the wave trains starting in the 

right-half of the TC are capable to reach the group velocity resonance. Following a 1D 

parametric model [Kudryavtsev et al., 2015], wave-trains can reach the group velocity 

resonance, only if the TC maximal wind speed ( mu ), radius of mu  ( mR ), and translation velocity 

(V ), satisfy the condition  

( )1/22 q
m m T mgR u c u V>         (4) 

with 46.5 10Tc = ×  and 0.275q = − , parameters used by Kudryavtsev et al. (2015). For the Fig.4 

cases, TC mR =50km and mu =50m/s, the maximal V  satisfying inequality (4) is V =10m/s. Case 

V =12m/s thus does not satisfy this condition (4), and hence can be treated as wave generation 

by fast TC. In this case, the group velocity of all developing waves are always less than the TC 

translation velocity, and waves are all traveling backwards and leave the storm area.  

Figure 4 is about here 

4.2. Time evolution of wave parameters along ray  

Fig.5 illustrates the time-evolution of wave parameters along the trajectories of four wave trains 

selected from Fig.4. Three of these trains (marked by red, blue and green in Fig.5) satisfy 

conditions of the group velocity resonance. Two out of these three (red and blue) represent 



“family” of trains starting in the TC R-S, in the area of maximum wind. Travelling with the TC 

under maximal wind forcing, these wave trains rapidly develop, attaining the maximum of their 

energy, Fig.5. Further, these wave trains move over areas of decreasing wind speed. Their 

energies start to decrease, due to the impact of unbalanced wave breaking dissipation appearing 

after the reduced wind forcing. With the continuing decrease of wind speed and rotation of its 

direction, the inverse wave age, 10 cos( )p w pu cα ϕ ϕ= − , becomes less than 0.85, in about 7 

hours after initial generation. Wave trains turn into a swell regime outrunning the TC.  

The other train (green in Fig.5) represents a “family” of resonant wave trains initially generated 

at the periphery of TC R-S. In the course of their development, before and after the turning point, 

the wave trains travel through increasing wind forcing conditions. Entering the area of highest 

wind speed, these wave trains equalize their group velocities with V, and the ray becomes 

perpendicular to the TC heading, Fig.5. Now traveling with the TC, waves gain energy in the 

area of maximal wind, and then turn into swell regime with the rotation and decrease of local 

winds.  

Both families of these resonant wave trains represent the longest and the highest waves 

generated by the TC. However, the family initially generated at the periphery, shall attain a 

maximal development after a significantly longer time-integration than those starting in the 

maximal wind speed area: 6-7 hours against 17 hours in specific case shown Fig.5.  

Solid and dash lines in Fig.5 demonstrate the model simulations with and without accounting for 

the wave focusing effects. From simulations, during the development stage, the rate of energy 

input through focusing is much smaller than from the wind forcing. Hence, effect of the focusing 

is negligible on wave train dynamics. However, when wave trains attain a swell regime, waves 

travel as free waves, and focusing effects result in local wave energy enhancements in the pre-

caustic zone, e.g. corresponding to a local peak in the cross-ray divergence factor shown in the 

upper-right plot of Fig.5. Subsequent wave energy attenuation follows away from the caustic 

zone due to wave-rays defocusing, Fig.5. 

Figure 5 is about here 

4.3. Superposition of all wave trains.  

Hereafter, we consider wave field parameters resulting from the superposition of all wave-trains 

originating from the polar grid points shown in Fig.1. As mentioned in sec.3.2, an “overlapping 

rule” applies to plot the composition of the large number of the rays, i.e. the ray with the largest 

local wavelength is traced on top of other. The longest wave is associated with the most 

developed one. Therefore, such representation emphasizes the primary wave system.   



Figure 6 is about here 

4.3.1.  Time development 

Overlapping large number of rays provides a clear presentation on the space-time evolution of 

wave parameters under TC forcing, Fig.6. On the initial stage, t=5h, a circular pattern of the most 

developed waves appear in the vicinity of the maximum wind speed, which is however shifted 

backwards due to the TC displacement. Even at this initial stage, asymmetries in both 

wavelength and significant wave height (SWH) of waves developing in the left- and right-half of 

TC are already well expressed. As discussed, asymmetries appear with the alignment of the 

group velocity of wave-trains and TC heading in the right-half, and their opposite direction in the 

left-half. This impacts, the residence time of wave-trains in the high wind speed area and the 

consequent wind energy gain.  

At larger time, t=10h and more, Fig.6, wave-trains subject to group velocity resonance, move 

forward. Being slow relative to TC, they rapidly develop, gaining energy from the wind. A wave 

front is well detectable where the most developed waves advance, Fig.6. The wave front 

corresponds to a line connecting points with abrupt changes of both wavelength and SWH along 

the rays. Note, this advancing front of “the most developed” waves extends towards the TC 

periphery and overlaps the area with developing wind wave trains, forming mixed sea areas. 

Referring to Fig.6, one may find that in 20 hours, waves generated from the TC high-wind area 

cover a total area with radius 5 mR . For this particular case, this time of development can be 

considered as the time-scale the wave field reaches stationarity.  

Figure 7 is about here 

4.3.2. “Stationary” fields 

Fields of wave parameters (energy, wavelength and direction) generated by a TC with the same 

characteristics, mu =50m/s and mR =50km as in Fig.6, but with different translation velocities V = 

[3, 5, 7, 12] m/s, after a large integration time, 40 hours, are shown in Fig.7. After 40 hours, all 

wave trains can outrun the TC area of influence. Therefore, following the “overlapping rule”, 

wave fields, Fig.7, correspond to the most developed wave trains at any given spatial point, i.e. 

can be treated as stationary solutions for the primary wave system generated by the TC.  

The superposition of large number of rays provides spatial patterns of wave parameters already 

discussed. In particular, except for the fast TC, case V =12m/s in Fig.7, the effect of the group 

velocity resonance results in strong azimuthal asymmetry with maximal values of energy in the 



area of maximum wind speed, around a region dividing the TC between the F-S and R-S sectors, 

with the longest waves emitted through F-S in the TC heading direction. The faster the TC, the 

larger are both the SWH and length of TC-generated waves. This applies as long as the TC 

translation velocity does not exceed a “threshold” value. For such conditions, waves generated 

inside a very fast TC never reach the group velocity resonance. All the developing waves travel 

backwards, forming a wake of swell systems behind the TC, illustrated for V =12m/s in Fig.7.  

A mosaic of wave parameters generated by TCs with V =8m/s, mR =[30 50 70] km and mu = [30 

50 70] m/s is shown Fig.8. Together with Fig.7, Fig. 8 demonstrates large variability of SWH 

and peak wavelength fields, both in magnitudes and shape of the resulting patterns, depending on 

the TC parameters. However, a careful inspection of Fig.7 and Fig.8, reveals very similar spatial 

distributions of sH , pλ  and pϕ  for some particular combinations of TC parameters [V , mR , mu

],  e. g., the field of wave parameters for a TC set [8, 30, 30] in Fig.8 and the predicted field for a 

TC set [5, 50, 50] in Fig.7, or wave fields for TC sets [8 30 70] and [8 70 50] in Fig.8. Such a 

property of TC-generated wave fields will further be considered in details in Sec.6. 

Figure 8 is about here 

5. Wave Systems 

5.1. Decomposition on wind waves and swell systems 

Wave parameters shown in Fig.7 and Fig.8, correspond to the primary, the most developed, wave 

system. Other coincident rays are beneath. Fig.9 shows all wave trains and distributions of 

corresponding parameters passing through a fixed box, indicated in Fig.7, during the 40 hours 

interval.  

Figure 10 is about here 

First, referring to Fig.9-left, a rather large number of wave-trains are predicted, traveling in 

different directions, with various energies. Some of these wave trains, with minimal SWH, 

originate from the box, to leave it in the course of their development. Distributions of SWH and 

traveling time of these trains over wavelength and directions are shown, Fig. 9-mid and -right, 

correspondingly. Two wave systems can be revealed. The first system is associated to wind 

waves with directions coinciding with the wind direction. This system thus includes all wind 

waves captured within this box, either originating inside or outside the box.  



The second type of the waves, waves with wavelengths around 350-400m and directions 

deviating from the wind, can be classified as swell waves. These waves can reach large SWH 

values (from 10m to 15m) with directions to the left from the TC heading.  

A careful inspection of the travel-time-histogram further helps to divide these swell wave-trains 

on two sub-systems: a first one corresponding to «small» travel time, about 10 to 15 hours, with 

the largest SWH, about 15m, and a second one corresponding to “long” integration time, 50-65 

hours, with smaller SWH, about 10m. Both swell sub-systems result from group-velocity 

resonance. However, the fore-running swell originates from wind waves generated within the 

high wind area, around a region bounded between R-S and B-S. The other swell system 

originates from wind waves generated in the periphery (see Fig.4 and Fig.5). Both swell systems 

can exist independently, possibly leading to superpositions of waves with very large amplitudes. 

Still, superpositions may only appear after a rather long time interval, about 50 hours and more, 

predefined by the travel time of the swell originating from the TC periphery.  

The whole ensemble of wave-trains, falling into each of the boxes spread over TC as shown in 

Fig.1, are then further divided in two wave systems: (i) “wind waves”, with local inverse wave 

age cos( ) ( , ) 0.85p p w pu x y cα ϕ ϕ≡ − ≥ , and “swell”, with local inverse wave age 0.85pα < . 

Then, among all these wave trains classified as “wind-waves” or “swell” in a given box, two 

wave trains are selected, having the largest wavelength among all waves belonging to each of the 

two system classes. This provides the spatial distribution of wave parameters for both types of 

wave systems under a TC. An example of TC-generated wave fields (shown before, Fig.7) is 

displayed Fig.10.  

Figure 10 is about here 

Wind-waves fields clearly exhibit a left-to-right asymmetry, associated to the difference between 

wind and TC heading directions. An alignment between wind and TC heading, in the R-S, leads 

to an increased residence time of waves within the storm area, and hence to the stronger 

development. Referring to Fig.10, cases V = [3, 5, 7] m/s, waves starting around mR , at the 

boundary between R-S and B-S, subject to the group velocity resonance, can lead to the 

formation of an area of maximal energy. This zone corresponds to pure wind seas, and does not 

contain swell system (compare plots for wind waves and swell system). Still, the direction of this 

system of wind-waves does not align with the local wind direction. This system thus overlaps 

younger wind waves, aligned with the local wind, that start at the TC periphery and travel 

backwards when crossing the area of maximal energy. These young waves represent a secondary 

system of local wind-waves, distinct from well-developed wave system.  



Wind-wave trains with maximal energy entering a veering wind area, turn into the regime of 

swell system, compare 3rd and 4th rows in Fig.10. This swell system is the longest one, and start 

to spread ahead of the TC; its energy attenuate with increasing distance due to dissipation and 

effect of group defocusing effect, 2nd row in Fig.10. Swell emerging from wind waves 

developing in other parts of the storm, finally cover the whole TC area and travel under different 

directions compared to the wind. Except over the area of maximal energy, where pure wind 

waves propagate, wave field in the other parts of TC is composed by two main systems, swell 

and wind waves.  

For a fast TC, V =12m/s in Fig.10, group velocity resonance is not possible and all developing 

wind-wave trains travel backward. Still, the increased residence time results in a marked left-to-

right TC asymmetry, expressed as regions of high wave energy on the boundary between R-S 

and B-S. In this case of a fast TC, most of the TC storm area is covered by pure wind waves, and 

swell can only appear in its rear part, when developing wind waves travel backwards through the 

decreasing and veering wind area.  

5.2 Comparison with observations  

Model simulations are compared with some reported observations, to assess the model capability 

to quantitatively reproduce general features of observed wave fields under TC.  

5.2.1 Spectral distributions over TC 

Hwang and Walsh [2018] reappraised airborne 2D wave spectral measurements inside TCs. 

These measurements provided great opportunity to investigate evolution of the waves and their 

spectral content in different parts of TCs. Fig. 11 displays 2D wave spectra [Hwang and Walsh, 

2018, their Fig 4], inside TC Ivan for 8 azimuthal slices with width pi/4 counterclockwise from 

TC heading, at radial distances from 50 to100 km and from 150 to 200 km.  

Fig.11 is about here 

Model distributions (histograms) of the wave-trains energy over the wavelength and direction in 

the same TC slices are also shown in Fig.12. These model distributions (histograms) serve as 

proxies of the observed spectra. Model spectra in Fig.11 correspond to TC with parameters: mu = 

50m/s, mR = 50km, and V = 5m/s, close to TC Ivan characteristics. The azimuthally isotropic 

model wind field with the radial profile (1) differs from the real one. However, this difference is 

acceptable, assuming that it is sufficient to test the model capabilities on a quantitative level.   



From careful inspection, Fig.11, the model “spectra” are comparable with observations in both 

the area of high winds and on the TC periphery, from 150 to 200 km. The model well reproduces 

SWH, directions and wavelengths of the primary wave system in different parts of TC. Similar to 

observations: (i) directionally monomodal spectra are dominant in slices 1, 7, and 8 of the TC 

coverage area; (ii) overall, there is a leftward and frontward trend of wave propagation inside the 

TC coverage area, except for slices 3 and 4 where waves propagate backward; (iii) the highest 

waves are in the front sectors, slices 1, 8, and 7; (iv) wave energy in the back sectors is 

significantly reduced; (v) “spectra” patterns in the area around mR  are very similarly to those 

outside the mR .  

Although, the model simulations were performed using an idealized wind field described 

noticeably different from the one presented by Hwang and Walsh [2018], this quantitative 

agreement is encouraging.  

An other example of the comparison is the directional buoys wave data on Australia’s North-

West shelf during the passage of 9 TC in 1995-2000, reported by Young [2006]. A typical wave 

directional spreading functions measured in each of the four quadrants of TC are shown in Fig. 

12, right-half (taken from Young [2006] his Fig.5). Positions of the measurements are shown in 

the right column in Fig.12. The measurements revealed that the directional spectra gradually 

skew from the dominant wave direction towards wind direction. Plausible points of the dominant 

waves generation, obtained by backward ray tracing, are shown in the right column by the bullet 

points.  

The left-half of Fig. 12 demonstrate model simulations stylized to Young’s [2006] data shown in 

the right-half. Model TC parameters are mR =50 km, mu = 50 m/s and V =7 m/s. Histograms of 

SWH of trains passing a square with the side of 3r  are considered as a proxy of wave spectra 

(see sec. 5.1) and shown in left column of Fig.12. Locations of the squares centers are indicated 

in the right column of Fig.12, left-half. Angular-frequency distributions of SWH in the wave-

trains histograms (spectra) are in a quantitative agreement with the measurements, reproducing 

correctly azimuthal location of dominant swell relative to the wind direction.  

The right column in the left-half of Fig.12 demonstrate initial position (starting point) and 

trajectory of the dominant waves (observed in the “point of measurements”) in moving (red 

lines) and stationary (green lines) coordinate systems. Model staring positions of waves are in 

conformity with Young’ [2006] estimates, i.e. compare right columns in the left-side and right-

half of Fig.12. Notice, that length of the trajectories in stationary coordinate system “correlates” 



with corresponding SWH, to justify the application of self-similarity laws for wave development 

with use of the extended fetch approach. This is discussed in details in the following Sec.6. 

5.2.2. Significand wave height profiles across TC 

Satellite altimeter measurements can provide unique data on spatial distributions of wave heights 

inside TC [Quilfen et al., 2006; Quilfen et al., 2010; Kudryavtsev et al., 2015]. Zhang and Oey 

[2019] presented 24 years of TC SWH measurements in the western North Pacific to investigate 

the dependence of generated waves on TC translation velocity and intensity. According to 

[Zhang and Oey, 2019], for slow TC, V <3m/s, the SWH distribution is almost symmetrical over 

the TC area. But for TC cases with larger translation velocity, V  from 3m/s to7m/s, a strong 

SWH asymmetry arises in the right-front sector, exceeding 7–8 m and reported to attain 10-11 m 

at mu = 50 m/s. These values are averaged over a large ensemble of TCs, and for each specific 

case, SWH measurements can largely differ.  

Fig.13 is about here 

Profiles of the wave energy along the altimeter tracks crossing TC Isabel and Songda close to 

their eyes, already analyzed in Kudryavtsev et al. [2015], are shown Fig.13. These cases 

correspond to strong asymmetries of wave energy between TC right- and left- sectors.  

To simulate the observations, wind profiles are specified using (1) with mu =70m/s, mR =30km, 

shape parameter B =1.5, and translation velocity V = 6m/s, closed to the TCs parameters [see 

Table 1 from Kudryavtsev et al., 2015]. Fields of the wavelength and SWH parameters for the 

primary wave system, and their profiles along the altimeter tracks are displayed in Fig.13. 

Predicted wave energy profiles are consistent with altimeter observations for both TCs. The 

model reproduces the left-to-right TC asymmetry, with the energy of the waves in the right TC 

sector attaining 16m^2, in agreement with satellite measurements. Some deviations between 

predicted and measured energy appear in left sector at large distance, mr R  between 4 and 10, 

likely related to differences between the idealized and real wind profiles.  

6. On Self-similarity of TC 2D wave field 

6.1. Approach 

The revised 2D parametric model is thus capable to reproduce observed wave fields under TC 

extreme forcing conditions, and can thus be considered as a separate robust tool for wave 

investigations. To recall, this 2D model follows self-similarity concept. Therefore, the spatial 



distribution of wave characteristics can also be anticipated to be self-similar, using proper 

scaling involving the main TC parameters: mR , mu , and V .  

Classical self-similarity theory of wave growth in terms of 1D fetch-law has already 

demonstrated its efficiency to describe TC-generated waves using the equivalent fetch concept, 

eqX  , e.g., [Bowyer and MacAfee, 2005; Young 2017, and references herein). This equivalent 

fetch, termed also as effective fetch or trapped fetch, for moving TC is not only function of mR , 

but also depends on V  and mu .  Once eqX  is specified, expected maximal values of SWH in TC, 

max
sH , can then be found from the fetch laws (see e.g. review by Young [2017]).  

Considering an idealized 1D model of wave development in the R-S and L-S, Kudryavtsev et al. 

[2015] further showed that the dimensionless energy, e , and peak frequency, pα , of wind waves 

generated by moving storm at radius r  , are indeed universal functions depending on the 

parameter crr L  
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where 0
q

p rα ∝   and 0
pe r∝   are the reference inverse wave age and energy for a stationary TC, 

corresponding to the standard fetch laws, with radius as fetch, scaled with g  and local wind 

speed ( )ru u r≡ ; aϕ  and eϕ  are universal functions, and crL  is a critical fetch  

( )1/2 q
cr cr rL c u V=         (6) 

defining a distance from the initial point of generation to the turning point where the group 

velocity of a developing wave train matches the TC translation velocity. In (6) crc  is a constant 

linked to the fetch law exponent q  and constant cα  is defined as: 1/ (1 )q
crc c q qα

−= − + . For 

crL r<

 , wave group velocity resonance can occur in the right sector of a TC, while for, crL r>

 , 

the resonance condition cannot be fulfilled, and a developing wave train travels backward, 

leaving the TC right sector via its rear boundary. Within this 1D model framework, the self-

similar relationships (5) are also valid in the left sector. The universal functions aϕ  and eϕ  are 

different, and wind waves travel and leave the left sector via the rear boundary.  



Following this approach, we can check whether self-similar relationships of the kind (6.1) can be 

refined for a 2D TC wind field. To that end, 2D self-similar solutions are anticipated to take the 

following form     
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where 0pλ , 0e , and 0pϕ  are reference distributions associated with azimuthally isotropic wave 

development under stationary TC, θ  is azimuth, and λΦ , eΦ  and ϕΦ  are 2D dimensionless 

functions accounting for the TC motion, ( )2
cr r crL u g L=   is dimension critical fetch (6). These 

dimensionless functions should take into account both the TC radius scaled by (6) and the 

azimuth. To search for solutions (7), model simulations are considered for a number of TCs with 

different parameters varying as: mu =[30 50 70] m/s, mR =[30 50 70] km, and V =[3, 5, 7, 8, 9, 

10, 12] m/s. In total 3x3x7=63 model outputs were considered. But, the reference self-similar 

solutions must first be obtained for stationary TC, providing 0pλ  and 0e  in (7).  

6.2. Stationary TC: fetch-law scaling  

An ensemble of 2D fields of wave parameters has been composed using 9 model simulations for 

stationary TC with mu  = [30, 50, 70] m/s, and mR  = [30, 50. 70] km. For each of these TC 

conditions, all wave trains passing through each of the predefined boxes, indicated in Fig.1, are 

accumulated. Among these wave trains in a given box, the longest wavelength is selected, and 

further considered as a proxy of the stationary primary wave system at a given spatial point.  

Fig.14 displays azimuthally averaged radial distributions of SWH, the spectral peak wavelength 

and direction relative to the wind for the 9 TCs, represented in dimensionless form, associated 

with the fetch laws, as:  
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where 2
0 0s s mH H g u= , 2

0 0p p mg uλ λ= , 2
m m mR R g u= , and subscript ‘0’ denotes hereinafter the 

quantities related to stationary TC. In (8) 3 / 4p =  and 1 / 4q = −  are the fetch law exponents, 



and yf  with corresponding subscript [ , , ]y h λ ϕ=  is dimensionless function of mr Rρ =  and 

mR .  

Figure 14 is about here 

As scaled, wave parameter profiles all collapse at radial distances about 2mr R < , where waves 

are young and developing, to then scatter for larger distances. To specify the dimensionless 

functions in (8), we introduce a radial distance, 0r r= , where wind waves turn into a swell 

regime. In general, 0r  scaled by mR  should be a function of mR : 0 0( )m mr R Rρ=  . Where waves 

are under wind forcing, 0( )mRρ ρ<  , dimensionless functions in (6.4) are empirically specified 

as  
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where superscript ‘w’ in yf  denotes regime of developing wind waves. In (9), it is taken into 

account that waves starting in the vicinity of the TC eye, inside the circle 0.25ρ < , cannot 

escape this region, due to inflow angle of wind velocity; once generated, these waves spiral 

towards the calm area of vanishing winds and their development stops. The last multiplier in the 

first relationship of (9) takes into account that wind waves passing the area of maximal wind 

speed are not fully developed. Hence, leaving this area, waves start to lose energy due to wave 

breaking, adjusting the energy balance to reduced wind forcing. Comparing (9) with numerical 

simulations, Fig.14, it was found that these relationships are valid for radial distances 

0( )mRρ ρ<   with 0( )mRρ   parameterized as  

0.2
0 ( ) 5m mR Rρ −=          (10) 

At 0( )m mr R Rρ≥   waves evolve as swell systems, for which the wind forcing is switched off. 

Swell equations can be rewritten as  
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         (11) 

where non-linear dissipation is solely considered. The impact of focusing/defocusing is not taken 

into account. These effects are negligible during the initial stage of swell evolution. Substituting 

(8) in (11), with 2 16se H= 

 ), and taking into account the “magic” relationship between the fetch 



law constants: 2 10 1 0p q+ + =  [Badulin et al., 2007], one may find that equations have the same 

form for 2
hf  (instead of e ) and fλ  (instead of λ ), and do not dependent on mR .  

For the sake of simplicity, we solve system (11) iteratively, first ignoring the impact of the peak 

frequency downshift on the energy attenuation. After this first iteration, solutions of equations 

(11) with boundary conditions, 0 0( )s w w
y y yf f f ρ= ≡  at 0ρ ρ= , read: 

( ) ( )

( ) ( ) ( )( )

1/44 5

0 0 0 0

1/54 5

0 0 0 0

( ) 1 ( )

( ) 1 log 1 ( )

s w w w
h h H h

s w w w
L L h

f f C f f

f f c C C f f

λ

λ λ λ λ

ρ ρ ρ

ρ ρ ρ

−

−

 = + −  

 = + + −  

  (12) 

where superscript “s”  now notes the regime of swell.  

Since pϕ  is constant along a swell-train trajectory, the difference between swell and wind 

directions is solely governed by changes of the wind direction, wϕ , along the swell trajectories. 

Corresponding relationship for p wϕ ϕ−  at 0mr R ρ≥  thus reads:  

( )0 0( ) arccos cos( )s w
in inf fϕ ϕρ ρρ ϕ ϕ = − + −      (13) 

where inϕ  is the inflow angle of the wind velocity, and 0 0( )w wf fϕ ϕ ρ= . Referring to (13), for 

0ρ ρ =1, swell and wind waves align, while, at large radial distances, 0 1ρ ρ 0 , the swell 

direction approaches the radial direction.  

Combination of wind waves and swell functions, w
yf  and s

yf  correspondingly, then gives the 

following dimensionless universal functions in (8): 

0( ) ( )w w s
y y y yf f f f h ρ ρ = − − −        (14) 

where subscript “y” stands for ( , ,h λ ϕ ), i.e. for SWH, peak wavelength and its direction relative 

to the wind one, and 0( )h ρ ρ−  is a unit step-like function, here specified as 

( )0 0( ) 1 tanh 3( ) 2h ρ ρ ρ ρ− = + −   .  

Parametrizations (8) with universal functions (14) are shown in Fig.14. Self-similar solutions are 

well consistent with numerical simulations, correctly reproducing wave parameters in the range 

mr R < 4 for a wide range of TCs parameters. Note, at large distances ( ρ  around 6 and 4.5), 

numerical simulations can take large values of SWH, related to local energy increases in the 

vicinity of the caustic zones, not taken into account in the suggested self-similar solutions.  



To check the proposed solutions for “ordinary” cyclones, moderate winds and mR  of order 

hundreds km, model simulations are performed with mu =10m/s and mR =100 km. Corresponding 

radial profiles are shown in Fig.14 together with the self-similar solutions. An overall agreement 

is obtained between, self-similar solutions, originally developed for intense TC conditions, with 

model simulations. It demonstrates the robustness of these suggested simplified solutions (8) 

with (14).  

6.3. Moving TCs: Maxima of SWH and Wavelength 

For the distribution of wave characteristics in the central part of the TC, i.e. mr R < 4, self-

similar solutions are further used to evaluate the impact of the TC movement. First, the maximal 

values of energy, maxe , and wavelength, max
pL , are compared with the self-similar laws (7). For 

the 63 sets of triplets, maxe , max
pλ , and deviation of wave direction from the wind velocity, 

max
p wϕ ϕ− , the energy and wavelength are first scaled by the reference values 
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,        (15) 

where 61.4 10ea −= ×  and 26.0 10aλ
−= × . These constants correspond to maximal energy and 

associated peak wavelength for a stationary TC, Fig.14. Scaled energy max max
0e e  and peak 

wavelength max max
0p pλ λ  are shown Fig.15 as function of m

m crR L  where  

( )1/2 qm
cr cr mL c u V= ,         (16) 

and crc  is a constant linked to the fetch-law constants as: 1/ (1 )q
crc c q qα

−= − + . After scaling, 

these maximal values collapse for different TC conditions, to conform the self-similarity 

character of wave developments under TCs. Universal functions clearly distinguish slow TCs, 

1m
m crR L >  , from fast TCs, 1m

m crR L <  . The condition 1m
m crR L ≈   corresponds to the group 

velocity resonance for the largest possible waves generated under a moving TC.  

In azimuth, the location of maxe  for “slow” TCs is about 50 deg, i.e. at the boundary between the 

front and the right sectors. For fast TCs, this azimuth location is shifted to the boundary between 

the TC right and back sectors. Radial location of maxe  varies in the range 1 1.5mr R< <  for slow 

TCs, and in the range 1.5 2mr R< <  for fast ones. Deviation of wave direction from the wind 



varies from about 40 deg to the right, to about 40 deg to the left, for slow and fast TCs, 

correspondingly.  

Fig.15 is about here 

For practical applications, the self-similar solutions, shown in Fig.15, can be fitted as  
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where [ ], ,e e el m n  and [ ], ,l m nλ λ λ  are the fitting constants equal to: [1, 3.84, -0.4] for energy and 

[1, 1.37, -0.38] for wavelength if 1m
m crR L ≥   (slow TC); and equal to [0, 2.92, 0.53] for energy 

and [0, 1.67, 0.31] for wavelength if 1m
m crR L <   (fast TC).  

Equations (17) can be rewritten in the form of standard fetch laws:  
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using the “equivalent fetch” eX  and X λ
 , and ec  and cλ  following 1D fetch-law constants, 

specified in present study as 61.3 10ec −= ×  with 3 / 4p = , and 2 22 4.51 10c cλ απ − −= = ×  at 

11.8cα =  with 1 / 4q = −  [see Appendix B in Part 1]. The equivalent fetch defined from (15) and 

(17) for the energy and wavelength, read  
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where the constants come from ( )1/ 1.1p
e ea c =  and ( ) 1/(2 ) 1.8qa cλ λ

− = . These equivalent fetch 

expressions can then be substituted into the fetch-laws to provide fast estimates of maximal 

values of energy and wavelength of waves generated by a moving TC.  

Figure 16 is about here 

Comparisons of the equivalent fetch expressions (18) with the empirical relations suggested by 

Young [1988] and Young and Vinoth [2013], evaluated for the considered set of 63 TCs, are 

shown in Fig.16. The empirical relationships are not self-similar with TC parameters, mu , mR , 



and V , leading to rather large spreading, Fig.16, left. Nevertheless, the model solutions are 

quantitatively consistent with empirical values: comparable maximal values are found for an 

equivalent fetch around the resonance, 1m
m crR L = , and a decrease of the fetch towards smaller 

and larger values of m
m crR L . The model equivalent fetch, plotted as function of maximal wind 

speed and translation velocity, Fig.16-right, provides values in agreement with Young and 

Vinoth [2013].  

6.4. Moving TC: Self-Similarity in 2D Distributions 

Besides these maximal values, it is also tempting to check whether 2D spatial distributions of 

SWH and the peak wavelength and its direction obey the self-similar distributions in form (7). 

For that purpose, each of the TCs’ fields are divided by boxes, shown in Fig.1. Each of the boxes 

containing a number of different rays (see example in Fig.10), the ray corresponding to the 

longest wavelength is selected as the primary generated wave system. Then, the energy and 

wavelength of this primary wave train are: (i) scaled by local wind speed and gravity 

acceleration; (ii) normalized by its corresponding stationary values; and (iii) represented in form 

(7), as function of TC azimuth and radius normalized by critical fetch (6) defined for the local 

wind speed. 

These fields of primary wave system parameters,- normalized energy and wavelength, wave 

direction relative to the wind, represented in self-similar form (7), are further averaged over the 

ensemble of 63 considered TCs, and showed Fig. 17.  

Figure 17 is about here 

The lower rows in Fig.17 provide standard deviation of “individual” TC fields from the overall 

mean. Except in the vicinity of 1crr L = , where wave parameters exhibit rapid changes when the 

group velocity resonance ends, values of the normalized standard deviation are rather small. 

Fields of waves generated by a TC, being represented in the universal variables (7), thus largely 

merge. Hence self-similarity in the suggested form (7) certainly applies. The universal functions 

freely available at link  https://zenodo.org/record/4122473#.X5MxS-1n2Uk. 

Functions presented in Fig.17 correspond to 2D dimensionless universal functions λΦ , eΦ  and 

ϕΦ  in (7). Transects of these functions over the TC azimuth at fixed crr L  provides azimuthal 

distributions of the primary wave system direction relative to that in stationary TC, and the 

energy and wavelength system scaled by corresponding values for stationary TC. As it follows 

from Fig.17, the storm area of the same TC can be divided on an inner area, 1crr L < , where 

https://zenodo.org/record/4122473%23.X5MxS-1n2Uk


generated waves “feel” TC as a fast, and the outer area, 1crr L ≥ , where generated waves are 

subjected to the local group velocity resonance and thus attain an “abnormal” development.  

Self-similar solutions are mostly valid within the TC high wind area where a majority of the 

primary wave system originates, to then turn into the regime of swell. Referring to Fig.7, Fig.8 

and Fig.10, this area should be limited to mr R <3. Outside this area, primary wave systems 

travel as swell systems. A swell system can approximately be treated as free propagating waves, 

with dynamics apparently not depending upon scaling parameters used in (7). 

Figure 18 is about here 

6.5. Case studies 

Fig.18 presents comparisons between azimuthal distributions of the self-similar solutions for 

SWH, period and direction of the primary wave systems with airborne measurements reported by 

Hwang and Fan [2017, their Fig 13, cases B24 and I14] and by Hwang et al. [2017, their Fig.8] 

for TC Bonnie 1998 and Ivan 2004. Model simulations were performed using the radial wind 

speed profile (1), with inflow angle 20 deg, and the following TCs parameters: mu = 44 m/s, mR

=74 km, and V = 4.5 m/s for TC Bony; mu = 50 m/s, mR = 50 km, and V = 5 m/s for TC Ivan.  

Model simulations shown in Fig.18 represent azimuthal behavior of the self-similar solutions (7) 

for specified TC parameters at fixed radius. Azimuthal behavior for each of the wave parameters, 

originates from transect of corresponding dimensionless universal functions, λΦ , eΦ  and ϕΦ  

shown in Fig.17, over TC azimuth at fixed value of crr L . As obtained, the model reproduces 

very well the magnitudes and the azimuthal modulations of observed SWH and wave period, 

Fig.18, left- and mid-plot.  

For wave direction, model outputs and measurements are compared on quantitative level at 

radial distances 1mr R > . At smaller radial distances the data demonstrate a peculiar behavior 

that differs from “regular” azimuthal undulations of wave directions relative to the wind one at 

1mr R > .  

According to the model, such behavior results from the decrease of wind speed towards the eye 

at small radial distances. As a consequence, parameter crr L  also decreases towards the eye, and 

within the inner core area it falls below 1, 1crr L < . Waves generated inside this inner area can 

be treated as waves under fast TC. Thus, as discussed above, once generated in the front sector, 

these waves travel backwards through the complex wind velocity around the eye, and appear in 



the back sector sector as swell opposing to the wind. Open triangles in Fig.18-right show model 

simulations of the wave peak direction at radial distances mr R  from 0.1 to 0.3. Models 

simulations reproduce peculiar behaviour of the measurements which were obtained at the 

smallest radial distances. Notice that that we cannot plot in Fig.18-right the self-similar solution 

for small radial distances, since its validity is limited by 0.25mr R >  due to discussed above 

limitations in the stationary solutions (9).  

7. Discussion 

A clear advantage of the self-similarity approach is to rapidly assess wave space-time 

distributions under different TCs, characterized by mu , mR , and V . 

As an example, Fig.19 displays fields of SWH, peak wavelength and directions, generated by 

TCs with different parameters derived from solution (7) with the universal function shown in 

Fig.17. Validity of these fields is restricted to the area mr R < 3. Comparing Fig.19 with Fig.7, 

where overlapping of wave-trains rays is shown, reconstructed fields may appear ‘blurred” 

compared with ray composition, but stay quantitatively very close.  

The self-similar solutions (7) can thus be treated as TC-wave Geophysical Model Function (TC-

wave GMF), to help rapidly derive 2D field of primary wave system parameters (SWH, 

wavelength, direction) to assess impacts of different input parameters  mu , mR , and V .  

The primary wave systems predicted by the TC-wave GMF on the outer radius, 3mr R = , can be 

further used as the boundary conditions for swell propagation, Eqs.(47) to (50) in Part 1. In these 

equation the wind forcing is switched off, but the angular dispersion term, first term in r.h.s. of 

eq. (47), plays the important role in swell energy evolution. This term can be estimated from the 

azimuthal distribution of wave directions along the contour mr R =3.  

The suggested self-similar description is the result of a fitting procedure applied to numerical 

solutions of 2D parametric models obtained for a very idealized wind field, with radial profile 

(1) and inflow angle 20 deg. Applicability of the universal functions λΦ , eΦ  and ϕΦ  in self-

similar solution (7) for other type of wind velocity fields may be questionable, and shall require 

additional investigations.  

Yet, wave development must be understood to be spread in space and time. Waves at a given 

location are not directly linked to the local wind, but depend on the wind velocity field integrated 

along the trajectory of the developing wave train. A typical spatial scale of wave development is 



of the order of the TC radius. Hence, scales for the wind field, relevant to the wave development, 

should be about r  in radial direction and about 2π  in azimuthal direction. Since, the exact 

shape of the wind profile is not important, we may thus anticipate that the universal function λΦ

, eΦ  and ϕΦ  in (7) can also be used for more realistic (and averaged) wind field, which can 

even be azimuthally anisotropic. Considering information on radial distribution of wind speed, 

34r , 50r , and 64r , for different quadrants, along with mR  and mu , 2D functions in polar 

coordinates system can be used to calculate the reference (for stationary TC) distribution (8) with 

(14) and corresponding values of the universal functions λΦ , eΦ  and ϕΦ . Self-similar solutions 

(7) will then provide spatial distribution of SWH, peak wavelength and direction of waves under 

TC with arbitrary wind field.  

8. Conclusion  

In this paper, the revised 2D-parametric model [Kudryavtsev et al., companion paper] has been 

applied to predict wave field developments under moving TCs, and to assess their consistencies 

with available observations. 

The model set of equations describing either wind waves development and swell evolution, was 

solved using the method of characteristics. Wave-rays patterns provide straightforward 

visualization on how the wave trains originating from different areas under the TC, develop and 

travel through the varying wind velocity field, until leaving the storm area as swell systems.  

Compared with stationary TC conditions, TC motions introduce remarkable azimuthal 

anisotropy in the wave-ray patterns and wave-trains dynamics. Wave trains starting in the lower-

half of the R-S and the right-half of B-S can be subject to the group velocity resonance. It means 

that the group velocity of a developing wave-train matches the TC translation velocity at some 

point, the turning point. At this point, the wave train direction, relative to the TC motion, 

changes from backwards to forward. This effect increases the residence time of the wave-train in 

TC strong forcing area, leading to large wave growth. The larger the TC translation velocity, the 

longer will be the waves subject to group velocity resonance. The energy of TC-generated waves 

will then also be larger the faster the TC moves. But if the TC translation velocity exceeds a 

threshold value, TC-generated waves cannot reach group velocity resonance, and in their course 

of development, will travel backwards, forming a wake of swell systems left behind the 

forwardly moving TC. 

The superposition of a large number of wave-trains rays starting from different location, exhibit 

coherent patterns for the spatial distribution of wave parameters, SWH, peak wavelength and 



direction depending on TC characteristics, - maximal wind speed, radius, and translation 

velocity, Fig.7 and Fig.8. The group velocity resonance results in maximal wave energy at the 

boundary between R-S and F-S. Wave trains further travel as swell systems through TC F-S 

sector, in direction of the TC heading. 

Model simulations are consistent with the observations reported e.g. in [Hwang and Walsh, 

2018; Hwang and Fan, 2017; Hwang et al. 2017; Young and Vinoth, Young 2017], and produce 

wave field features under TCs which are similar to that had already been known from numerical 

simulations using sophisticated wave models, e.g. WWIII model [Moon et al., 2003; Liu et al., 

2017]. Accordingly, the suggested 2D parametric model can be considered as an effective tool to 

provide large ensembles of solutions, to test different TC characteristics to help forecast TC 

dynamics. 

The energy and the momentum source terms to prescribe the 2D parametric model were 

designed to reproduce fundamental 1D self-similar laws of wave development. This questioned 

whether wave fields under TCs could also obey 2D self-similar distributions. Analysis of a set of 

model outputs for 63 TCs, spanning the range of different parameters, confirms that 2D self-

similar solutions exist either for stationary TC, Eqs (8) with (14), and for moving TC, 

relationship in form (7).  

Suggested self-similar solutions, Eq. (10), then provide immediate estimates of maximal wave 

parameters, - SWH, wavelength, and direction, generated by TC with arbitrary mu , mR , and V . 

Shape of the derived universal functions clearly divides TCs between two family-types: slow 

TCs which parameters satisfy the conditions 1m
m crR L >  , and fast TCs such that 1m

m crR L <  , 

where m
crL  is defined by (16). The region 1m

m crR L ≈   corresponds to the group velocity resonance 

with the largest possible waves generated by a TC.  

A clear advantage of the self-similarity solutions is that any and numerous scenarios of wave 

generation by TCs can immediately be assessed on quantitative level. In a certain sense, 2D self-

similar solutions (7) can be treated as TC-wave Geophysical Model Function (TC-wave GMF), 

to help analytically derive 2D field of the primary wave system parameters (SWH, wavelength, 

direction) under TC prescribed by mu , mR , and V . The 2D self-similar solution (7) with 

universal functions freely available at link https://zenodo.org/record/4122473#.X5MxS-1n2Uk.  

Comparisons between the proposed self-similar solutions with measurements of TC-generated 

waves reported in the literature [Young and Vinoth, 2013; Young, 2017; Hwang and Walsh, 

2018; Hwang and Fan, 2017; Hwang et al., 2017], see Sec. 5.2, 6.3 and 6.5, demonstrate very 

https://zenodo.org/record/4122473%23.X5MxS-1n2Uk


good agreement. This is encouraging and may warrant use of either 2D parametric model and/or 

self-similar solutions based on parametrization of 2D parametric model simulations, for practical 

and research applications.  
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Figures and Captions 

 

 

Figure 1. (left) Grid in polar coordinate system where wave-trains were initiated (seeded). Polar 

“squares” around each of the points, indicate the area where the passing trains are counted and 

quantified. (Right) Division of TC area on Front-, Left-, Back-, and Right-Sectors (F-S, L-S, B-

S, and R-S correspondingly) used throughout the paper.  

 

  



 

Figure 2. (Upper-left) example of wave-trains trajectories under stationary TC with mu =50m/s, 

mR =50km, and evolution of wave-trains parameters: (lower-left) significant wave height (SWH), 

(lower-right) peak wavelength, and (upper-right) parameter of the angular focusing (term nG  in 

(47) from Part 1). Varying color of each of the ray in upper-left plot indicates current time 

according to the color bar; and the color dots indicate initial positions of selected wave-rays. The 

same color (as the dots color) is used in other plots to mark time evolution of wave parameters 

along a given ray. Solid lines of the same style indicate evolution of wave parameters for the full 

model, and dashed lines indicate calculations without accounting for the effect of the wave ray 

focusing. Vertical lines indicate travel time when wave-train inverse wave age 

cos( ) 0.85p w pu cα ϕ ϕ≡ − = ,  and consequently wave-train turns from wind-forced regime to 

the swell one.  



 

Figure. 3. Composition of rays of wave-trains initially seeded in polar grid shown in Fig 1a One 

grid-point produces one ray. Wave parameters along the rays are: (upper-left) SWH, (upper-

right) spectral peak wavelength, (lower-left) local travel time, and (lower-right) inverse wave 

age. Each of the plots represents composition of the overlapped rays; ray with the larger local 

wavelength is on top of other. TC parameters are: mR =50 km, mu =50 m/s. Black arrows in the 

wavelength plot indicate direction of the wavenumber vector.  

 

  



 

 

Figure 4. Maps of the wave-trains rays started at radial distances [ 2, ,2 ,4 ]m m m mR R R R with 

azimuthal step 30 deg. One grid-point produces one ray. Wave parameters along the rays are: 

(left column) SWH, (mid column) spectral peak wavelength, (right column) local travel time. 

Black arrows in plots of wavelengths indicate direction of the wavenumber vector and size of the 

arrow is proportional to wavelength. TC parameters are: mR =50 km, mu =50 m/s, translation 

velocities (rows from top-to-bottom) are 0m/s, 5m/s, 7m/s and 12m/s. 

  



 

Figure 5. Examples of time-evolution of wave-trains parameters under TC with mu =50m/s and 

mR =50km, and translation speed V =5m/s. Varying color of each of the ray in the upper-left plot 

indicates travel time according to the color bar; and the color dots indicate initial positions. The 

same color (as the dots color) is used in other plots to mark time evolution of wave parameters 

along a given ray. Solid lines of the same style indicate evolution of wave parameters for the full 

model, and dashed lines indicate calculations without accounting for the effect of the wave ray 

focusing. Vertical lines indicate local time when wave-train turns from wind force regime to 

swell one.  

 

  



 

 

Figure 6. Evolution in time of superposition of wave train rays started on polar grid shown in 

Fig.1. Parameters of wave trains along the rays are: (upper row) SWH and (lower row) peak 

wavelength. Black arrows indicate direction of the wavenumber vector.  Each of the columns 

presents superposition of the rays on time moment (columns from left to right): 5, 10, 20 and 40 

hours. One grid-point produces one ray. Ray with the largest local wavelength is on top of 

others. TC parameters are: mR =50 km, mu =50 m/s, V =5m/s. 

  



 

 

Figure 7. Composition of the wave-trains rays generated by TC with mR =50 km, mu =50 m/s, 

and translation velocities V =3, 5, 8, and 12m/s (columns from left to right correspondingly). 

Upper row is SWH, sH , and the lower row is wavelength, pλ , along the rays. Values of sH  and 

pλ  are indicated by color with corresponding color-bar. Black arrows indicate wavenumber 

directions and their length is proportional to the wavelength.  

  



 

 

Figure 8. Fields of (left block of plots) SWH and (right block of plots) peak wavelength 

resulting from composition of the wave-trains rays generated by TC with V =8m/s and with mR

=[30 50 70] km (columns from left to right) and mu = [30 50 70]m/s (rows from top to bottom). 

Values of sH  and pλ  are indicated by color with corresponding color-bar. Black arrows indicate 

wavenumber directions and their length is proportional to the wavelength.  

  



 

 

Figure 9. (left) Trajectories of wave trains (dotes connected by the line) passing through the box 

shown in Fig.7. Color of the dots indicate instant value of SWH shown in color-bar in mid plot. 

Distribution of (mid) SWH and (right) travel time over wavelengths and directions of trains 

fallen into the box. Black radial lines in mid and right lots indicate wind direction, and dash line 

– direction of the box location in TC. 

 

  



 

Figure 10. Decomposition of wave fields shown in Fig.7 on wind-waves (first, sH , and third, 

pλ , rows from the top) and swell (second, sH , and forth, pλ , rows from the top) systems. 

Columns from left to right correspond to different TC translation velocities: 3, 5, 7, and 12m/s 

correspondingly, with mR =50km and mu =50m/s. Black arrows indicate direction of waves and 

their length is proportional to the wavelength.   

  



 

 

 

Figure 11. Model (first and third set of plots) and observed (second and third sets) directional 

spectra in 8 azimuthal slices with width 45 deg distribution from TC heading counter-clockwise 

(slice number shown in the upper-left corner) in radial distances (left pair of model and observed 

sets) from 50 to 100 km and (right pair of model and observed sets) from 150 to 200 km. 

Observed spectra are taken from Hwang and Walsh [2018, their Fig.4e, see also caption to this 

figure for details]. Circles (solid in model spectra and dash in observed) correspond to 

wavenumber 0.025 rad/m and 0.05 rad/m. In the model spectra, black lines indicate wind 

direction, and blue-dashed lines – azimuthal position in TC. Contoured circles and square 

indicate the dominant swell and wind wave systems, and their color corresponds to the energy 

indicated in the color-bar. Other (un-contoured) circles of different size are wave trains that ever 

passed the given azimuth-range sector, their size is proportional to the train energy scaled by 

maximal value of train energy in given azimuth-range sector.  

  



 

 

Figure 12. Left half: (Left column) Histograms (“spectra”) of wave trains passing the area 

around the black points (points of “measurements”) indicated in the right column. (Right 

column) Primary wave rays in (green lines) stationary and (red lines) moving coordinate 

systems. Open circles indicate TC eye locations when wave trains started. Black solid and dotted 

lines are wind and primary wave directions, correspondingly. TC parameters are mR =50km and 

mu =50m/s, V=7m/s. Gray circles indicate Rm, 3Rm and 5Rm. Right half: Fig. 9 taken from 

Young [2017] showing directional spreading functions of waves measured at points marked with 

small solid dots in right column. Large black circles and open circles indicate plausible position 

where the measured waves started and corresponding position of TC eye.  

  



 

Figure 13. Model simulations and altimeter observations of wind waves under TC Isabel and 

Songda. (Left column) Model fields of (top) wind, (mid) peak wavelength and direction, and 

(bottom) SWH; red and blue lines in plots indicate positions of altimeter tracks. (Right column). 

Transects of the fields shown in the left column along the altimeter tracks. Circles in the bottom 

plot are altimeter measurements taken from [Kudryavtsev et al., 2015; their Fig.4 and Fig.5]. 

Blue/Red lines and symbols correspond to TC Isabel/Songda correspondingly.  

  



 

  

Figure 14. Radial profiles of (left plot) dimensionless SWH normalized by /2p
mR : /2p

s mH R  , (mid 

plot) peak wavelength normalized by 2q
mR−
 : 2q

p mRλ −

 , and (right plot) wave peak direction 

relative to the wind. Open circles show the model simulations for nine stationary TCs with 

different combination of mu = [30, 50, 70] m/s and mR = [30, 50 70] km  and one “regular”  

cyclone with Rm=100km and um=10m/s (the lowest line). Lines correspond to self-similar 

solutions (8) with (14). Color of circles and lines indicate wind speed in accordance with color-

bar. Different lines of the same color correspond to different mR  

 

  



 

Figure 15. Left: maximal values of the energy (circles) and co-located wavelength (crosses) 

scaled by the reference values (for stationary TC) as a function of m
m crR L   with m

crL  defined by 

(16). Right: azimuth of position of max energy in TC (filled color circles), direction of the 

spectral peak (black open circles) and the peak direction relative to the wind one (red open 

circles) as function of m
m crR L  . Radial position of max energy and wave direction are shown by 

color with corresponding color-bar. Solid lines are fits, Eq. (17).  

  



 

Figure 16. Left: comparison of (open red and blue circles) the model equivalent fetch (6.7) with 

empirical one suggested by (crosses) Young [1988; relation (6)-(7)] and (triangles) by Young 

and Vinoth [2013] calculated for 63 TCs used in this study. Right: (color lines) the model 

equivalent fetch (6.7) and (black lines with numbers) empirical one [Young and Vinoth, 2013, 

Fig.6b] as a function of maximal wind speed and translation velocity. The fetch is scaled by R’ 

given in [Young and Vinoth, 2013, relation (4)], which is a logarithmic function of Rm.    

  



 

Figure.17. (Upper rows) 2D universal functions (left) ( ),e crr L ϕΦ 

  for SWH, (mid) 

( ),crr Lλ ϕΦ 

  for wavelength and (right) ( ),crr Lϕ ϕΦ 

  for the peak direction in self-similar 

solutions (7). (Lower rows) Standard deviations of the corresponding functions eΦ , λΦ , and 

ϕΦ  from the mean values shown in the upper rows.  

  



 

 

Figure 18. Azimuthal variations of (left) SWH, (mid) peak wave period, and (right) wave 

direction relative to wind one of primary wave system generated by TCs (upper) Bony and 

(lower) Ivan. Crosses in the left and mid plots are measurements taken from Hwang and Fan 

[2017, their Fig 13, cases B24 and I14] for radial distances from 0.5< mr R <2.3 (TC Bony) and 

0.5< mr R <4 (TC Ivan). Open circles in the right plots are the measured directions of waves for 

radial distances taken from Hwang et al. [2017, their Fig.8]; dashed line indicate fit of the data 

suggested in [Hwang et al., 2017]. Azimuths count from TC heading counter-clockwise. Color 

lines in all of the plots are self-similar solutions (7) with dimensionless functions shown in 

Fig.17 for different radial distances, indicated in colorbar. Open triangles in the right plot are 

numerical model solutions for mr R <0.3. Parameters of TCs ( , ,m mu R V ) used for model 

simulations are: (74km, 44m/s, 4.5m/s) for Bony and (50km, 50m/s, 5m/s) for Ivan.  

  



 

 

Figure 19. Reconstruction of (upper row) SWH and (lower row) peak wavelength and direction 

of waves generated by TC with mR =50km, mu =50m/s and different translation velocities (3m/s, 

7m/s and 12m/s, columns from left-to-right correspondingly). Reconstruction is performed using 

self-similar solutions (7) with universal functions shown in Fig.17 

 

 


