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Abstract

The loss of autocorrelations of tropical sea surface temperatures (SST) during late spring, also called the spring predictability

barrier (SPB), is a factor that strongly limits the predictability of El Nino Southern Oscillation (ENSO), and especially the

statistical SST-based ENSO forecasts starting from the winter-spring season. Recent studies show that Pacific atmospheric

circulation anomalies in winter-spring may have a long-term impact on the summer tropical climate via the SST footprint.

Here, we infer an index based on sea level pressure (SLP) data from February-March in a single area surrounding Hawaii, and

show that this area is the most informative part of the large SLP pattern initiating the SST footprinting mechanism. We then

construct a statistically optimal linear model of the Nino 3.4 index taking this atmospheric index as a forcing. We find that

this forcing efficiently lowers the SPB and provides significant improvements of interseasonal Nino 3.4 forecasts.
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Abstract14

The loss of autocorrelations of tropical sea surface temperatures (SST) during late spring,15

also called the spring predictability barrier (SPB), is a factor that strongly limits the pre-16

dictability of El Nino Southern Oscillation (ENSO), and especially the statistical SST-17

based ENSO forecasts starting from the winter-spring season. Recent studies show that18

Pacific atmospheric circulation anomalies in winter-spring may have a long-term impact19

on the summer tropical climate via the SST footprint. Here, we infer an index based on20

sea level pressure (SLP) data from February-March in a single area surrounding Hawaii,21

and show that this area is the most informative part of the large SLP pattern initiat-22

ing the SST footprinting mechanism. We then construct a statistically optimal linear model23

of the Nino 3.4 index taking this atmospheric index as a forcing. We find that this forc-24

ing efficiently lowers the SPB and provides significant improvements of interseasonal Niño25

3.4 forecasts.26

Plain Language Summary27

Interseasonal forecasting of El Niño Southern Oscillation (ENSO) is in high demand28

due to the impacts of ENSO on regional climatic conditions around the world as well as29

the global climate. Improvements in the quality of climate data in recent decades have30

led to the active use of statistical ENSO models, which compete with physical models31

in predictive power. The main disadvantage of statistical forecasts is the pronounced sea-32

sonal growth of uncertainty when predicting the upcoming summer-fall ENSO conditions33

from winter-spring months; this phenomenon is called the spring predictability barrier34

(SPB). A number of recent works revealed that winter-spring atmospheric anomalies can35

substantially impact the ENSO system through the SPB via a complex atmosphere-ocean36

interaction mechanism. Here, we introduce a reliable ENSO predictor constructed from37

sea level pressure data relating to this mechanism and show that the predictor signif-38

icantly improves the multimonth (up to one year) ENSO forecast by lowering the SPB39

in a statistical model of the key ENSO index.40

1 Introduction41

Statistical models are known to be simple and effective tools for interseasonal pre-42

dictions of ENSO dynamics (Barnston et al., 2012; Jan van Oldenborgh et al., 2005). The43

IRI/CPC ENSO Predictions Plume (Barnston et al., 2012) — an ensemble forecast of44
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the Niño 3.4 index defined as the average SST in the region (5◦N-5◦S, 170◦W-120◦W)45

— demonstrates that both statistical and dynamical models yield close prediction skills46

at lead times up to 12 months. This similarity likely reflects the near-linearity of the sea-47

sonal tropical Indo-Pacific SST predictability studied by Newman and Sardeshmukh (2017).48

The main factor limiting statistical forecasts is the spring predictability barrier (SPB),49

also called the spring persistence barrier, i.e., the empirically observed loss of autocor-50

relations in the tropical Pacific climate dynamics in May-June (Torrence & Webster, 1998;51

Barnston et al., 2012). Since many statistical models rely on SST anomalies (SSTAs)52

in the tropics, the SPB impacts statistical models more than dynamical models during53

forecasts beginning in spring (Barnston et al., 2012). Basically, the SPB phenomenon54

can be explained as a manifestation of ENSO seasonality related to the phase locking55

of ENSO dynamics with a seasonal cycle (Liu et al., 2018). In the tropical SSTA vari-56

ability, there is a distinct one-year temporal pattern (cycle) that lasts from June to May57

of the following year, with persistent SST anomalies developing in the middle of the cy-58

cle (autumn-winter), whereas smaller and noisier anomalies appear at the beginning and59

end of the cycle (summer and spring, respectively). In particular, Tippett and L’Heureux60

(2020) recently showed that approximately 90% of the Niño 3.4 index variability can be61

explained by a 1-dimensional deterministic signal defined on the June-May interval mul-62

tiplied by different amplitudes in different years, with extrema in December and the low-63

est absolute values in May and June. As a result of this seasonality, spring SSTAs are64

strongly influenced by atmospheric noise and therefore yield little information for pre-65

dicting SSTAs in the next cycle. Finding effective predictors that can bridge adjacent66

cycles and thus avoid the SPB remains a challenging task in ENSO predictive model-67

ing.68

Oceanic predictors play a central role in statistical ENSO models. An upper ocean69

heat content in the tropics characterized by, e.g., a warm water volume along the equa-70

tor, is widely thought to be one of the earliest predictors for ENSO-related anomalies71

(McPhaden, 2003; Timmermann et al., 2018). This predictor exhibits no persistence bar-72

rier in boreal spring but leads the tropical SST by several months (McPhaden, 2003).73

The latter is consistent with the recharging oscillator (Burgers et al., 2005; Jin, 1997)74

and delayed oscillator (Suarez & Schopf, 1988; Galanti & Tziperman, 2000) models of75

ENSO, both reflecting ocean-atmosphere feedback loops, which imply lagged intercon-76

nections between the SST and thermocline. The models based on pure SST analyses (e.g.,77
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(Kondrashov et al., 2005; Gavrilov et al., 2019)) can capture the impact of this factor78

by increasing the depth of memory: series of lagged SSTs used to initialize such mod-79

els contain information on SST tendencies that, in turn, depend on anomalies of the up-80

per ocean heat content, as noted by Tippett and L’Heureux (2020). However, the ENSO81

oscillatory structure is significantly complicated by ENSO-independent atmospheric anoma-82

lies acting as a forcing, which can alter the zonal wind stress over the equatorial Pacific83

Ocean and trigger ENSO events (Vimont et al., 2003; Yu & Fang, 2018). Specifically,84

extratropical atmospheric patterns dominating in the winter season over the Pacific Ocean85

have a long-term impact on the whole upcoming ENSO cycle via the SST footprinting86

mechanism (Vimont et al., 2009, 2003). Fang and Mu (2018) argue that this mechanism87

needs to be considered to weaken the SPB, and both oceanic and atmospheric factors88

are important for long-term ENSO forecasts. Typically, the time series used for statis-89

tical ENSO model learning begin in the middle of the 20th century; i.e., the analyzed90

time interval covers approximately two dozen El Niño (La Niña) events. However, the91

significance of ENSO predictors that are somehow extracted from atmospheric data of92

such short duration is always questionable due to the possibility of detecting spurious93

correlations. Moreover, a model that takes such an extracted predictor may exhibit a94

good fit with the analyzed sample but be otherwise useless. Naturally, such a situation,95

also called overfitting, is probable when the predictor is assembled from many weakly96

correlated signals from different regions without relevant statistical tests. Therefore, sta-97

tistical significance becomes a major issue both in deriving a useful signal from data and98

in studying the benefits of the model skills acquired using the predictor.99

In this work, we derive an atmospheric ENSO predictor from sea level pressure (SLP)100

data that is useful for forecasting the Niño 3.4 index across the SBP. We introduce a February-101

March SLP index reflecting the footprinting mechanism that features a strong signifi-102

cant correlation with the Niño 3.4 index in each month during the upcoming June-May103

ENSO cycle. Next, we pass the index obtained as a forcing to an autoregressive (AR)104

model with memory and periodic coefficients that is built from the Niño 3.4 index. Bayesian105

hypothesis testing is employed to optimize the model, e.g., to confirm the optimality of106

the model with such a forcing. We show that the forcing yields a significant improve-107

ment in the model prediction skill at lead times reaching up to one year due to a sub-108

stantial reduction in the SPB.109
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2 Atmospheric ENSO predictor110

To find a pre-SPB atmospheric ENSO predictor, we use a monthly 1959–2019 SLP111

dataset on a 144×73 global grid taken from NCEP-NCAR Reanalysis 1 (Kalnay et al.,112

1996). SLP anomalies (SLPAs) are obtained from this dataset by subtracting the peri-113

odic SLP annual climatology and then applying linear detrending at each grid point. To114

represent ENSO dynamics, the monthly detrended 1960–2019 Niño 3.4 index is produced115

from the Extended Reconstructed SST (ERSST) dataset, version 5 (Huang et al., 2017a).116

We analyze the correlations of the SLP in the winter and spring seasons with the yearly117

Niño 3.4 index time series in each month of the upcoming ENSO cycle. The correlation118

maps for three selected ENSO months are plotted in the three upper panels of Fig. 1;119

a figure showing the results for all months is also provided in the Supporting Informa-120

tion (SI). The correlations in the central part of the Pacific Ocean are much higher for121

the SLP from February onward than for the SLP during December-January. Moreover,122

in February-March, there is a distinguishable SLP pattern surrounding Hawaii that per-123

sistently correlates with the Niño 3.4 index over the entire June-May ENSO cycle.124

Fig. 1 shows only the significant correlations (based on the pairwise AR1 surro-125

gate test) of the SLP in each grid point with the Niño 3.4 index. However, to conclude126

that the SLP signal at a given point actually correlates with the index, we must reject127

the more general null hypothesis — that an identical or higher sample correlation can128

appear by chance at some other point on the globe, i.e., in a random (independent of the129

Niño 3.4 index) sample preserving the spatiotemporal properties of the analyzed SLP130

sample. For this purpose, for every analyzed SLP season, we use 10000 random globally131

distributed yearly SLPA time series obtained by generating AR1 surrogates of the SLPA132

principal components (PCs) — the time series of the SLPA EOFs (see the SI). For each133

of the SLPA surrogates, we calculate the maximal absolute correlation with the Niño 3.4134

index over all grid points. Then, the obtained ensemble of correlations is used to calcu-135

late the critical values for the correlations plotted in Fig. 1: the black contours in this136

figure bound the areas of significant correlations for a 0.1 significance level (the right-137

tailed test for absolute correlation values is applied). The results confirm the persistence138

of a small area near Hawaii with strong significant correlations between the February-139

March SLP and the upcoming Niño 3.4 index. To summarize the correlation maps for140

the Niño 3.4 index in different months, let us also consider the correlations of the winter-141

spring SLP with the upcoming ENSO cycle as a whole. According to Tippett and L’Heureux142

–5–



manuscript submitted to Geophysical Research Letters

SLP (DJ), Nino 3.4 (Jul)

0.6 0.2 0.2 0.6

SLP(FM), Nino 3.4 (Jul)

0.6 0.2 0.2 0.6

SLP(AM), Nino 3.4 (Jul)

0.6 0.2 0.2 0.6

SLP (DJ), Nino 3.4 (Oct)

0.6 0.2 0.2 0.6

SLP(FM), Nino 3.4 (Oct)

0.6 0.2 0.2 0.6

SLP(AM), Nino 3.4 (Oct)

0.6 0.2 0.2 0.6

SLP (DJ), Nino 3.4 (Jan+1)

0.6 0.2 0.2 0.6

SLP(FM), Nino 3.4 (Jan+1)

0.6 0.2 0.2 0.6

SLP(AM), Nino 3.4 (Jan+1)

0.6 0.2 0.2 0.6

SLP (DJ), Nino 3.4 (EOF)

0.6 0.2 0.2 0.6

SLP(FM), Nino 3.4 (EOF)

0.6 0.2 0.2 0.6

SLP(AM), Nino 3.4 (EOF)

0.6 0.2 0.2 0.6

Figure 1. Correlations of the seasonal SLP means during December-January (DJ), February-

March (FM) and April-May (AM) with the Niño 3.4 index in the following months. The three

upper rows show the correlations with the Niño 3.4 index in July, October and January. The bot-

tom row shows the correlations with the Niño-EOF time series characterizing the whole ENSO

cycle following the considered SLP seasons. Only significant correlations (0.1 significance level)

are plotted in accordance with the AR1 surrogate test applied to absolute values of the correla-

tions in each grid point separately. The black contours correspond to the 0.1 significance level of

the stronger test based on globally distributed SLPA surrogates (see the main text). The yellow

rectangles mark the area used for the HI.

(2020), the ENSO cycle in the Niño 3.4 index can be represented well by the 1st lead-143

ing EOF constructed from the series of 12-month nonoverlapping windows of the Niño144

3.4 index time series, each starting in June. For the dataset analyzed here, this EOF (here-145

inafter Niño-EOF) captures approximately 88% of Niño 3.4 index variance. Hence, the146

projection of June-to-May intervals of the Niño 3.4 index to this EOF can be treated as147

a yearly time series of the ENSO cycle amplitude. The bottom row of Fig. 1 demonstrates148
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that the area surrounding Hawaii is the only place on the globe with apparent correla-149

tions between the February-March SLP and Niño-EOF. Based on this finding, we de-150

fine the Hawaiian index (HI) as the mean SLPA in the region (13◦N-19◦N, 150◦W-160◦W)151

averaged over February-March. The yearly time series of the HI significantly correlates152

with the Niño 3.4 index in all months of the ENSO cycle, as Fig. 2a demonstrates. The153

Niño-EOF component of the Niño 3.4 index dominates these correlations compared with154

other Niño 3.4 12-month EOFs (see Fig. 2a). The correlation coefficient between the HI155

and the upcoming ENSO cycle represented by the Niño-EOF time series is 0.66; Fig. 2b156

shows that moderate and strong ENSO events play the most important role in such a157

strong correlation.158

We can determine the possible benefits of the HI in ENSO forecasting by consid-

ering the AR model constructed from the Niño 3.4 index with parameters separately es-

timated for each month of the year (the AR model with periodic coefficients). In Fig.

2c, we compare the mean squared errors (MSEs) of 1-month predictions given by such

a model with those of the same model but complemented by the HI factor:

xni = ai1x
−1
ni + ai2x

−2
ni + · · ·+ ailx

−l
ni + bihn + ξni, (1)

where xni is the Niño 3.4 index in the ith month of the nth ENSO cycle, x−jni is the same159

index j months before xni, hn is the HI value preceding the nth ENSO cycle, and l is160

the lag. In this notation i runs from 1 to 12, where i = 1 corresponds to June – the first161

month of the cycle. The SPB-related loss of autocorrelations clearly manifests as pro-162

nounced June peaks of the MSE
〈
ξ2ni
〉
n

in the pure AR models (bi = 0) with different163

lags (see Fig. 2c). Lags greater than 2 months hardly improve the forecast in all months164

of the cycle, but the addition of the HI to the lag=2 AR model leads to a substantial165

decrease in the June MSE peak. Thus, the SPB weakens when both the lagged SST and166

the HI are used together as ENSO predictors.167

Now let us try to ascertain the origin of the HI factor by studying large-scale at-168

mospheric structures over the North Pacific preceding different ENSO cycles. To this end,169

we construct composite patterns as the February-March SLPA averaged separately over170

the years of El Niño and La Niña onset. Only the years with moderate and strong ENSO171

events (stars in Fig. 2b) are taken to form the El Niño/La Niña-related SLPA subsam-172

ples. This criterion eliminates the uncertainties in separating out weak and neutral ENSO173

phases, which depends on the specific definition of the ENSO index. The resulting El174
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Figure 2. Relation of the February-March (FM) SLP with the Niño 3.4 index cycle. (a)

Correlations of the HI with the Niño 3.4 index as a function of the Niño 3.4 month (solid red

curve) and the 0.05 significance level (dashed red lines) from the AR1 two-tailed test. Niño

3.4 months run from January in the HI years to December one year ahead. Contributions of

the Niño 3.4 components corresponding to three leading 12-month EOFs (see the text) are

shown by blue and violet curves (see the legend). (b) ENSO cycle amplitudes vs. the HI. These

amplitudes are the projections of June-May Niño 3.4 windows to the Niño-EOF. Cycles corre-

sponding moderate and strong (moderate+), weak and neutral ENSO events (as classified by

https://ggweather.com/enso/oni.htm) are plotted by stars, colored circles and black circles,

respectively. Red and blue denote El Niño and La Niña phases, respectively. (c) The 1-month

mean squared errors (MSEs) of the Niño 3.4 linear regressive model (1) as a function of the

month. MSEs of the autoregressive (bi = 0) model with l = 1, 2, 3 are shown by black, pink and

blue, respectively. The MSE of the model depending on both the 2 previous Niño 3.4 months

(l = 2) and the HI is shown in red. (d-g) Composite patterns of the FM SLPAs preceding El

Niño events (d,f) and La Niña events (e,g). (d,e) The nonnormalized composites; (f,g) the com-

posites normalized by the standard deviation (SD) of the FM SLPAs in each grid point. The

green contours bound the significant values for significance levels of 0.05 and 0.35 (see the main

text and SI). The rectangle marks the HI area.
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Niño and La Niña composites are shown in Fig. 2d,e. The significance of the compos-175

ites was studied by testing the null hypothesis that the multiyear means obtained could176

appear in random SLP dataset subsamples of the same size as the size of the investigated177

subsamples related to El Niño and La Niña (see the SI for details). The areas bound by178

the contours in Fig. 2d-g are filled with significant values at significance levels of 0.05179

and 0.35 from the right-tailed test applied to the absolute values of the composites. Note180

that these areas do not necessarily encompass the highest absolute composite values; this181

is due to the nonuniform distribution of the SLP variance over the spatial grid and hence182

the spatially dependent distribution of the SLP means under the null hypothesis. In con-183

trast, the contours of the significance levels coincide with the isolines of the composites184

normalized to the standard deviation of the February-March SLP at each grid point (see185

the bottom panels of Fig. 2f,g). These normalized composites outline the areas that con-186

tain the most useful information for predicting the ENSO phase in the upcoming cycle.187

The El Niño and La Niña composites resemble the negative and positive patterns,188

respectively, of the North Pacific Oscillation (NPO). This is not surprising since the winter-189

spring NPO pattern initiates the subtropical SST footprint, which persists into the sum-190

mer season and can impact the ENSO variability by forcing zonal wind anomalies along191

the equator (Vimont et al., 2003). From Fig. 2d-g, we can learn that the ENSO-related192

NPO-like structure is apparently asymmetric with respect to the ENSO phase: the pos-193

itive pattern cannot be obtained by simply inverting the negative pattern. In particu-194

lar, in the La Niña composite, the northern part of the NPO dipole is shifted eastward,195

while its southern part penetrates deeper into the tropics. However, the most significant196

region surrounds the HI area (see Fig. 2f,g), which is common for both composites. This197

explains the strong correlation of the HI with the ENSO cycle. Thus, we can conclude198

that the HI relates to the SST footprinting mechanism and actually captures the linear199

part of the interaction between the winter-spring NPO pattern and ENSO. Nonlinear200

data analysis methods, such as those of (Kramer, 1991; Mukhin et al., 2015, 2018; Gavrilov201

et al., 2016; Hannachi & Iqbal, 2019), could help extract a better ENSO predictor by cap-202

turing the asymmetry of the NPO pattern; nevertheless, we leave this complex task for203

future works and restrict our consideration to a linear analysis.204
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3 Niño 3.4 forecast by a forced AR model205

In this section, we construct a statistically optimal model for long-term Niño 3.4

forecasting on the basis of the AR model with periodic coefficients forced by the suggested

HI. The basic form of the model is given by Eq. 1: the value of the Niño 3.4 index in

some month is predicted from the values in the l preceding months as well as the HI value,

which is calculated once a year from the February-March SLPs and remains constant dur-

ing each June-to-May interval. Thus, the HI plays the role of a piecewise uniform forc-

ing signal that determines the “substructure” for each ENSO cycle. Physically, the HI

produces seasonally dependent shifts in the predicted values during each ENSO cycle,

making the model dynamics favorable for the development of El Niño or La Niña con-

ditions. The most important point when constructing a statistical model of this kind is

the optimal number of its parameters or, equivalently, the number of factors on which

the model depends. Choosing the proper model structure should provide a sufficiently

complex but statistically correct (i.e., not overfitted) model. In our case, the number of

parameters is determined by the following structural features of the model (1). The first

feature is the lag l, which limits the length of the model memory. Another feature is the

periodic seasonal dependence of the factors’ amplitudes a and b. In the previous section,

we estimated the parameters for different months of the year independently. However,

for the optimal multiseason model, smoother dependencies should be checked, includ-

ing constant dependencies. Here, we use a discrete Fourier representation for the peri-

odic series of the model coefficients ki =
(
ai1, . . . a

i
l, b

i
)
:

ki = k0 +

q∑
n=1

cn cos
2π

12
ni+ sn sin

2π

12
ni, (2)

where i = 1, . . . , 12, q can take values from 0 to 6 (q = 0 corresponds to ki = k0;206

s6 = 0 by definition) and k0, cn and sn are the new coefficients to be estimated. The207

case q = 6 is equivalent to 12 independently learned models corresponding to differ-208

ent months. Truncating the expansion (2) by the q constraint, we can adjust the smooth-209

ness of the seasonal forcing in the model parameters.210

Thus, we have two structural parameters for the model, namely, l and q, the choice211

of which should be proven. Additionally, we have to justify that including the HI forc-212

ing hn in the model not only fits the model to the learning sample, but improve its pre-213

dictive skills. To select the optimal model, we use the Bayesian criterion of model op-214

timality based on the method described in (Gavrilov et al., 2019, 2017). This method215
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is also presented in the SI together with the method of Bayesian regression used for learn-216

ing the model (1–2).217

The model in the form of (1–2) is a stochastic evolution operator due to the ran-

dom term ξ. The forecast of the index x several months ahead is produced by iterating

this operator several times. As a result, the output of such a forecast is a random value

with some PDF. Here, following (Gavrilov et al., 2019), we define the predicted value

x as the median of this PDF, which is estimated by the Monte Carlo method with 10000

runs. Similar to Barnston et al. (2012) and Gavrilov et al. (2019), we use two metrics

to represent the seasonally dependent model prediction skill based on comparing the true

xni in the i-th target month of the n-th ENSO cycle with the predicted xni:

ei =
[
1
N

∑
n (xni − xni)2

] 1
2 ,

ri =
∑

n (xni−〈xni〉n)(xni−〈xni〉n)[∑
n (xni−〈xni〉n)

2 ∑
n (xni−〈xni〉n)

2
] 1

2
,

(3)

where N is the total number of ENSO cycles and 〈xni〉n denotes the seasonal multiyear218

mean of the index. The first metric ei is the root mean square (r.m.s.) forecast error in219

the i-th month. The second metric ri is simply the sample correlation between the pre-220

dicted and true values of the index in month i. These two metrics complement each other:221

while e signifies the quantitative forecast error, r reflects the qualitative features of the222

forecast, e.g., the tendencies of and relative changes in the predicted anomalies.223

We find that the lag=2 AR model forced by both the seasonal parameter forcing224

and the yearly HI forcing is the best Niño 3.4 index model in accordance with the Bayesian225

model optimality (see the SI). The optimal truncation of the seasonal forcing (see Eq.226

2) corresponds to q = 1; i.e., the amplitudes a and b in Eq. 1 are sinusoidal signals with227

a 1-year period. To study the benefits in multimonth forecasts from using both forcing228

signals, we compare the prediction skills of (i) the model without any forcing (b = 0229

and q = 0) but with the optimal lag l, (ii) the model with the seasonal forcing only (b =230

0) and with the optimal l and q, and (iii) the optimal model with the combined forcing.231

The results are summarized in Fig. 3a, where the metrics (3) of the model prediction232

skill are plotted for lead times of up to one year.233

Note that for any target month i, the HI forcing is available only for a limited lead234

time since each current value of the HI that is used for predictions from June to the fol-235

lowing May is taken from the February-March SLPA. For example, for predictions start-236
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ing in January, the current HI value can be used until the nearest May; further, accord-237

ing to the suggested model (1), we must use the new HI value, which remains unknown238

until the coming March. Thus, there is an area in the lead time - target month plane where239

the forecast using the HI forcing is impossible; this area is masked with a transparent240

matte overlay in Fig. 3a. An apparent option for optimal forecasting in this area is to241

use the optimal model without HI forcing (i.e., the AR(2) model with periodic coefficients)242

in those months where the forcing is unknown during the multimonth iterative predic-243

tions.244

As observed in Fig. 3a, in general, the prediction skills of the model are improved245

with the involvement of the forcing. In particular, the model with the seasonal forcing246

yields lower r.m.s. forecast errors as well as higher correlations between the forecast and247

reality at lead times up to 6-7 months. The addition of the HI forcing to the seasonally248

forced model strongly improves the multimonth forecasts with lead times greater than249

4 months (where the HI forcing is available) for all target months.250

To distinguish the areas where the improvements associated with the HI forcing251

are significant, we perform an additional statistical test to reject the hypothesis that the252

prediction skills of the optimal model with the combined seasonal and HI forcing are not253

better than those of the model with the seasonal forcing alone. Using the AR model with254

the optimal lag and periodic parameters, we generate 1000 surrogate Niño 3.4 time se-255

ries representing the ensemble corresponding to the null hypothesis. Then, we learn the256

optimal model with the combined forcing on each surrogate and calculate the metrics257

(3). The areas of rejecting the null hypothesis at significance levels of 0.1 and 0.35 are258

marked by the contours in Fig. 3a for both metrics, e and r. We find that the most sig-259

nificant improvement in the prediction skills lies in the period from August to March for260

the forecast error e and the entire ENSO cycle from June to May for the correlation r.261

The lead times of the improved forecasts (1-3 months for the beginning of the cycle and262

over 12 months for the end of the cycle) can be explained by the intervals between the263

February-March season used to determine the HI and the target months. This is con-264

sistent with the hypothesis that the February-March SLP in the HI region contains use-265

ful information about the entire ENSO cycle.266

Fig. 3b additionally illustrates the benefits from using the HI in forecasts starting267

in spring (see also the more detailed Fig. S3 in the SI): while the optimal model with-268
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Figure 3. Improving statistical forecasts of the Niño 3.4 index due to the HI forcing. (a)

Prediction skills of three statistical models. From left to right: the AR model without forcing

with the optimal lag l = 2, the AR model with the seasonal forcing with the optimal structural

parameters l = 2 and q = 1, and the optimal AR model (l = 2) with the combined seasonal

(q = 1) and HI forcing. The r.m.s. forecast error (RMSE) e (normalized to the r.m.s. deviation

of the detrended Niño 3.4 index, upper panels) and the correlations r (bottom panels) are shown

in different target months for lead times from 1 to 12 months. The area where the HI forcing is

unavailable is overlain by a transparent matte mask; in the right panels (the HI-forced model),

this area is filled using the outputs of the AR(2) model with the seasonal forcing in months with

an unknown HI. The contours in the middle and right panels bound the areas of significant im-

provements of the optimal HI-forced model prediction skills relative to the AR(2) model with the

seasonal forcing alone (see the text). The left-tailed test is used for the metric e, and the right-

tailed test is used for the metric r. (b) Examples of 12-month hindcasts starting from March

(upper panel) and September (bottom panel): the original Niño 3.4 index (gray), outputs of the

model with the seasonal forcing only (red) and the model with the combined seasonal and HI

forcing (blue).
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out the HI forcing tends to predict near zero Niño 3.4 beyond the SPB, the forced model269

yields much more informative output. In contrast, the forecasts starting long before the270

SPB (e.g., in autumn) are almost the same for both models.271

4 Conclusion272

The HI derived from the SLP in February-March is shown to hold important in-273

formation for the upcoming ENSO cycle lasting from summer to spring of the next year.274

This information reflects the impacts of the spring patterns of atmospheric circulation275

anomalies on the summer tropical ocean-atmosphere system due to the SST footprint-276

ing mechanism. Thus, the HI can serve as an early predictor for ENSO across the SPB.277

We demonstrate that the statistical AR model of the Niño 3.4 index taking the HI as278

a forcing is better in the Bayesian sense and delivers significantly better multimonth pre-279

dictions. In fact, the HI forcing in the model substantially lowers the SPB and hence in-280

creases the predictability of the whole June-May ENSO cycle for forecasts starting in spring.281

Thus, we can recommend that modelers test the HI as an additional predictor in statis-282

tical ENSO models. Further, we will add this forcing into our nonlinear SST-based ENSO283

model (Gavrilov et al., 2019) included in the IRI/CPC ENSO Predictions Plume (the284

model is named “IAP-NN” in the plume) and analyze the corresponding gain in its pre-285

dictive power.286
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