Channel water storage anomalies: A new remotely sensed measurement for global river analysis

Stephen Paul Coss¹, Michael Durand¹, C. K. Shum¹, Yuchan Yi¹, Xiao Yang², Tamlin M Pavelsky², Augusto Getirana³, and Dai Yamazaki⁴

¹Ohio State University ²University of North Carolina at Chapel Hill ³NASA GSFC ⁴University of Tokyo

November 26, 2022

Abstract

River channels store large volumes of water globally, critically impacting ecological and biogeochemical processes. Despite the importance of river channel storage, there is not yet an observational constraint on this quantity. We introduce a 26-year record of entirely remotely sensed volumetric channel water storage anomaly (VCWS) on 26 major world rivers. We find mainstem VCWS climatology amplitude (VCWSCA) represents an appreciable amount of basin-wide terrestrial water storage variability (median 2.2%, range 0.05-13.8% across world rivers), despite the fact that mainstem rivers themselves represent an average of just 0.2% of basin area. We find that two global river routing schemes coupled with land surface models reasonably approximate VCWSCA (within {plus minus}50%) in only 19.2 % and 23.1 % of rivers considered (by model). These findings demonstrate VCWS is a useful measurement for assessing global hydrological model performance, and for advancing understanding of spatial patterns in global hydrology.

Hosted file

coss-grl-2020_suplement.docx available at https://authorea.com/users/538734/articles/605500channel-water-storage-anomalies-a-new-remotely-sensed-measurement-for-global-riveranalysis

1 2	Channel water storage anomalies: A new remotely sensed measurement for global
3	river analysis
4 5	Stephen Coss ^{1,2*} , Michael T Durand ^{1,2} , C.K. Shum ^{1,2} , Yuchan Yi ¹ , Xiao Yang ³ , Tamlin Pavelsky ³ , Augusto Getirana ^{4,5} , Dai Yamazaki ⁶
6	
7 8 9 10 11 12 13 14	 ¹Ohio State University, Columbus, OH ²Byrd Polar and Climate Research Center, Columbus, OH ³University of North Carolina at Chapel Hill, Chapel Hill, NC ⁴ Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD ⁵Science Applications International Corporation, Greenbelt, MD, United States ⁶Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan Corresponding author: Stephen Coss (coss.31@osu.edu)
15	Key Points:
16 17	 We introduce a 26-year record of entirely remotely sensed volumetric channel water storage anomaly.
18 19	 Storage climatology amplitude represents (0.05-13.8%) terrestrial water storage variability but just just 0.2% of basin area.
20 21 22	 This new measurement can be used to analize river spatial storage paderns in a way that was previously unprecedented.

23

24 Abstract

- 25 River channels store large volumes of water globally, critically impacting ecological and
- ²⁶ biogeochemical processes. Despite the importance of river channel storage, there is not yet an
- 27 observational constraint on this quantity. We introduce a 26-year record of entirely remotely
- 28 sensed volumetric channel water storage anomaly (VCWS) on 26 major world rivers. We find
- 29 mainstem VCWS climatology amplitude (VCWSCA) represents an appreciable amount of basin-
- 30 wide terrestrial water storage variability (median 2.2%, range 0.05-13.8% across world rivers),
- despite the fact that mainstem rivers themselves represent an average of just 0.2% of basin
- 32 area. We find that two global river routing schemes coupled with land surface models
- reasonably approximate VCWSCA (within ±50%) in only 19.2 % and 23.1 % of rivers considered
- 34 (by model). These findings demonstrate VCWS is a useful measurement for assessing global
- 35 hydrological model performance, and for advancing understanding of spatial patterns in global
- 36 hydrology.

37 Plain Language Summary

Rivers are a critical part of global hydrology, but until now the variation in how much water 38 39 rivers store has not been observed directly on the global scale. We created a 25 year recored of 40 this measurement across 26 of the worlds largest rivers. We found that the storage variation in river main channels can represent up to 13% of the total water variation in a river basin despite 41 only representing 0.2% of the total surface area. We also find that current methods to estimate 42 this quantity through modeling (global river routing schemes coupled with land surface models) 43 44 are only representing this quantity within 50% of the measured value on between 19.2% to 45 23.1% of the rivers we studied. This demonstrates that this new measurement has value in assessing model proformance and advancing the way we think about how rivers function as 46 47 water storage vessals.

48 **1 Introduction**

While spaceborne sensors have revolutionized our understanding of global hydrology, some 49 terms in the global water cycle remain poorly observed (Lettenmaier et al., 2015). For example, 50 51 while the Gravity Recovery And Climate Experiment (GRACE; Tapley et al., 2004, 2019) and 52 GRACE Follow-On satellite missions have provided invaluable measurements of global water storage variability (Rodell et al., 2018), they measure the total terrestrial water storage (TWS) 53 anomaly, but do not provide information on the dynamics of individual TWS components such 54 as soil moisture, snow, ground and surface water. 55 Surface water storage (SWS) in natural and artificial reservoirs, floodplains, wetlands and river 56 channels is critical to human society and ecosystems, but a complete picture of surface water 57 58 storage dynamics from remote sensing measurements has remained elusive (Döll et al., 2012; 59 Oki & Kanae, 2006). Getirana et al. (2017) modeled SWS globally (neglecting anthropogenic impacts) and estimated that on average, SWS contributes just 8% of overall TWS variability; it is 60 thus difficult to estimate SWS by difference, i.e. by subtracting estimates of other storage terms 61 from GRACE TWS measurements (e.g., Llovel et al., 2010; Swenson et al., 2008; Syed et al., 62 2008). Remote sensing measurements have shed light on storage change in major world 63 floodplains (Papa et al., 2013; 2015), and on storage in global lakes and reservoirs (Gao et al., 64 65 2012; Tortini et al., 2020). However, an observation-based quantification of storage change in

rivers has been lacking.

A comprehensive dataset of observations of volumetric changes of water in rivers has not been
 previously presented, despite the potential value of such observations and the relative
 simplicity with which such variations can be measured. Time-varying river storage changes

would have value in understanding global water balance and within-watershed variations in 70 71 TWS. Kim et al. (2009) demonstrated that rivers are major contributors (between 0 and 70%) to 72 TWS variation by modeling river (channel and sub-surface), snow and soil moisture contributions to TWS; however, their work did not separate surface water from underground 73 flow. As noted above, Getirana et al. (2017) found that in most basins the SWS:TWS variability 74 ratio was low, but its maximum value (27%) for the Amazon basin indicated that, for some 75 regions, surface water can play a major role in storage dynamics. We hypothesize that rivers 76 77 are frequently hotspots of water storage variability, a part of watersheds where much greater water storage change tends to occur than elsewhere. E.g., major rivers typically exhibit 78 79 seasonal water level measuring several meters, while GRACE TWS seasonal changes are usually 80 < 100 mm across the entire basin. The global measurements of river storage presented in this paper let us quantify these dynamics and help validate model estimates of rivers, which 81 82 increasingly simulate global river processes (Emery et al., 2018; Getirana, Kumar, et al., 2017; 83 Yamazaki et al., 2011). Finally, storage variations of water in rivers is crucial for ecological and biogeochemical processes. Indeed, storage variations are driven by the same basic hydrologic 84 quantities that drive hyporheic exchange: variations in river depth and surface area. Because 85 86 water surface elevations (Calmant et al., 2008; Coss et al., 2020; Tourian et al., 2016) and river surface water extent (Allen & Pavelsky, 2018; Huang et al., 2012; Yamazaki et al., 2015) datasets 87 88 exist, long-term storage variations in rivers can be measured directly, by simply combining 89 water surface elevation (WSE) and width observations, both of which are measured entirely from satellite platforms. 90

91	Here, we present the first published data product of volumetric river channel water storage
92	anomaly (VCWS) over 26 of the world's largest rivers using remotely sensed river WSEs and
93	widths in the Global River Radar Altimetry Time Series 1 Kilometer Daily (GRRATS1kd, Coss et
94	al., 2019a). In the context of VCWS we define "anomaly" as the difference between a value at a
95	particular time, and some reference time, t (e.g. the first date in our dataset). Storage change
96	is the time derivative of storage, and can be calculated from the time derivative of the storage
97	anomaly. GRACE TWS is also either a storage anomaly or storage change measurement; in this
98	paper we use "TWS" to refer to storage anomaly. We use the new GRRATS1kd dataset to
99	address three questions: How large are storage variations within river mainstems compared to
100	basin storage variations measured by GRACE? What controls spatial patterns of storage
101	variations in rivers? How do measured river storage variations compare to modeled values?
102	2 Methods and Datasets
102 103	2 Methods and Datasets
	2 Methods and Datasets GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the
103	
103 104	GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the
103 104 105	GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the world's largest rivers (Coss et al., 2019a); a list of the rivers is given in Table 1. GRRATS1kd
103 104 105 106	GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the world's largest rivers (Coss et al., 2019a); a list of the rivers is given in Table 1. GRRATS1kd comprises satellite altimetry measurements of river WSE interpolated to 1 km daily resolution,
103 104 105 106 107	GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the world's largest rivers (Coss et al., 2019a); a list of the rivers is given in Table 1. GRRATS1kd comprises satellite altimetry measurements of river WSE interpolated to 1 km daily resolution, and VCWS estimates computed from interpolated WSE and width. The virtual station data
103 104 105 106 107 108	GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the world's largest rivers (Coss et al., 2019a); a list of the rivers is given in Table 1. GRRATS1kd comprises satellite altimetry measurements of river WSE interpolated to 1 km daily resolution, and VCWS estimates computed from interpolated WSE and width. The virtual station data GRRATS (Coss et al., 2019b), is further described in (Coss et al., 2020). In this section, we briefly
103 104 105 106 107 108 109	GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the world's largest rivers (Coss et al., 2019a); a list of the rivers is given in Table 1. GRRATS1kd comprises satellite altimetry measurements of river WSE interpolated to 1 km daily resolution, and VCWS estimates computed from interpolated WSE and width. The virtual station data GRRATS (Coss et al., 2019b), is further described in (Coss et al., 2020). In this section, we briefly describe the datasets and major steps used to compute VCWS.

manuscript submitted to Geophysical Research Letters

113	RivWidthCloud, a Landsat processing algorithm for measuring river width based on Google
114	Earth Engine (Yang et al., 2019). We use a total of 914 GRRATS VSs spanning 1992-2018
115	leveraging seven altimeters (ERS-1, TOPEX/Poseidon, ERS-2, JASON-1, Envisat, OSTM/Jason-2,
116	Jason-3). (<u>https://doi.org/10.5067/PSGRA-SA2V1)</u> . Note that Coss et al. (2020) describes
117	version 1 of GRRATS, which included only 2 altimeters. The VSs processed by Coss et al. (2020)
118	included all locations on ocean-draining main-stem rivers with a mean width of 900m or
119	greater. The 26 rivers used for this study are those with enough data density to interpolate a
120	daily 1km resolution WSE (26 of 39). RivWidthCloud was used to process a total of 53,924
121	Landsat images in order to generate a total of 115.2 million (2.2 million after 1km averaging and
122	quality filtering) channel width measurements.
123	In GRRATS1kd, VCWS is computed as follows. First, we statistically reprocess the GRRATS VS
124	data to remove outliers using a moving window <i>t</i> -test (Coss et al., 2020). Second, we
125	interpolate VS WSEs to 1 km daily resolution, by grouping VS data by altimeter constellation,
126	bilinear interpolation of anomaly on a flow distance-time grid, smoothing, adding back a digital
127	elevation model (DEM) value to convert back to absolute WSE (DEM selection is identical to the
128	description in Coss et al., (2020)), and finally forcing WSEs to decrease downriver at each time
129	step. Third, for each 1 km location downstream, we create a piecewise-linear relationship
130	between WSE and width (W) as described in the supplemental material (S1). These piecewise
131	linear relationships between W and WSE can be represented as: $= f_x(WSE)$.
132	VCWS in units of km ³ can be calculated by integrating the W-WSE relationships at location x :

133
$$VCWS_{x,t} = \Delta_x \int_{WSE_{x,t}}^{WSE_{x,t}} f_x(WSE) dWSE,$$
(1)

134	where the x subscript indicates that these values (as well as the piecewise linear relationships
135	between WSE and W) are specific to one 1 km segment, and Δ_{χ} is the segment resolution, and
136	t_1 is the initial time in the series (typically a date in April 1992). Thus, VCWS has dimensions of
137	cubic volume, and can be thought of as the product of river cross-sectional area anomaly (the
138	integral term in Eq. 1, units of m ²) and Δ_x . When we present timeseries of river total VCWS
139	values, we simply sum $VCWS_{x,t}$ over all spatial locations x (Figure 1A). Note that reservoirs are
140	flagged and removed.
141	For model comparisons (described below)), we analyzed data from two global SWS datasets.
142	Both the Hydrological Modeling and Analysis Platform (Getirana et al., 2012; Getirana, Peters-
143	Lidard, et al., 2017) and the Catchment-based Macro-scale Floodplain model (Yamazaki et al.,
144	2011; 2014) are river routing schemes capable of simulating river and floodplain dynamics.
145	They are forced with surface runoff and baseflow simulated by land surface models. For the
146	data we analyzed, temporal resolution is daily, spatial resolution is1° (\sim 100 km) for HyMAP and
147	0.1 ° (~10 km) for CaMa-Flood, and the temporal domain is 2002-2017 for HyMAP and 2000-
148	2011 for CaMa-Flood.

149

Below, we present three separate analyses of climatologies constructed from our data. First we
 compare with GRACE long-term average TWS climatology. The GRACE data presented is from
 the Center for Space Research at the University of Texas at Austin (

153 <u>http://www2.csr.utexas.edu/grace</u>). The Data are monthly Mascon solutions spanning 2002-

154 2018, with a 0.25 degree resolution, with an 11 month gap from July of 2017- May of 2018

155 between GRACE missions (Hosseini-Moghari et al., 2020; Save et al., 2016). For each basin, we

156	create a 26 year VCWS climatology (VCWSC) summed over the length of the river (Figure 2B).
157	We then measure the amplitude of VCWSC (VCWSCA). Some analyses below present VCWSCA
158	normalized by basin drainage area (i.e. we divide the VCWSC amplitude value by the basin
159	drainage area); we refer to this quantity as channel water storage (CWS) following the
160	definition for GRACE TWS, CWS is presented with units of mm, and is comparable to GRACE.
161	Figure 1 for example, shows the Mississippi VCWSCA is 7.12 km ³ while the drainage are is
162	3,244,506 km ² . Dividing VCWSCA by drainage area results in a CWS of ~2.2mm. Basin areas are
163	from the United Nations Chief Executive Officer Water Mandate (2016) and World Bank Major
164	River Basins (2017)datasets.
165	In our discussion of the relationship of CWS to GRACE we reference mean slope data from
166	(Coss et al., 2019b, 2020) and calculate an aridity index from net radiation from Clouds and the
167	Earth's Radiant Energy System (CERES; Loeb et al., 2018; Wielicki et al., 1996) and Global
167 168	Earth's Radiant Energy System (CERES; Loeb et al., 2018; Wielicki et al., 1996) and Global Precipitation Climatology Project (GPCP; Adler et al., 2003).
168	Precipitation Climatology Project (GPCP; Adler et al., 2003).
168 169	Precipitation Climatology Project (GPCP; Adler et al., 2003). Second, we relate VCWSCA, mean river width, and basin area at 1km resolution and test if
168 169 170	Precipitation Climatology Project (GPCP; Adler et al., 2003). Second, we relate VCWSCA, mean river width, and basin area at 1km resolution and test if different basin area groups have different CWSA/width relationships. To compare VCWSCA
168 169 170 171	Precipitation Climatology Project (GPCP; Adler et al., 2003). Second, we relate VCWSCA, mean river width, and basin area at 1km resolution and test if different basin area groups have different CWSA/width relationships. To compare VCWSCA regimes, we relate our VCWSCA data to basin drainage area from Frasson et al., (2019). We first
168 169 170 171 172	Precipitation Climatology Project (GPCP; Adler et al., 2003). Second, we relate VCWSCA, mean river width, and basin area at 1km resolution and test if different basin area groups have different CWSA/width relationships. To compare VCWSCA regimes, we relate our VCWSCA data to basin drainage area from Frasson et al., (2019). We first distinguished groups by large increases in flow accumulation to avoid comparison across large
 168 169 170 171 172 173 	Precipitation Climatology Project (GPCP; Adler et al., 2003). Second, we relate VCWSCA, mean river width, and basin area at 1km resolution and test if different basin area groups have different CWSA/width relationships. To compare VCWSCA regimes, we relate our VCWSCA data to basin drainage area from Frasson et al., (2019). We first distinguished groups by large increases in flow accumulation to avoid comparison across large tributaries. We then re-assimilate any divisions that did not achieve a change in basin drainage
168 169 170 171 172 173 174	Precipitation Climatology Project (GPCP; Adler et al., 2003). Second, we relate VCWSCA, mean river width, and basin area at 1km resolution and test if different basin area groups have different CWSA/width relationships. To compare VCWSCA regimes, we relate our VCWSCA data to basin drainage area from Frasson et al., (2019). We first distinguished groups by large increases in flow accumulation to avoid comparison across large tributaries. We then re-assimilate any divisions that did not achieve a change in basin drainage area>10%. Finally, we plot VCWSCA and mean width by 1 km section and perform a simple least

GRRATS1kd data up to the model grid resolution (1 or 0.1 degrees), by summing all of our 1 km VCWS data points that fall within each model grid cell. We then examine two criteria: 1) The VCWSCA for all cells overlapping measured channel; 2) Correlation coefficient of each model cell, with the average measured VCWSCA from those measured sections that fell within the cell.

182 **3 Results and Discussion**

3.1 The magnitude of main stem CWS as it relates to GRACE TWS 183 CWS ranges from 0.02 mm to 21.9 mm (on the Zambezi and Ayeyarwada rivers, respectively), 184 185 with a mean value of 5.36 mm (Figure 2). As expected, the largest values are primarily from tropical basins. Table 1 shows the ratio of CWS compared with GRACE TWS (CWS:TWS ratio 186 hereafter) climatology data constructed from Save et al. (2016) for each of the study river 187 188 basins Note that for GRACE comparison the Ganges and Brahmaputra basins have been combined. CWS:TWS ratio ranges from 0.05% to 13.8% (on the Zambezi and Uruguay Rivers 189 190 respectively), with an average of 3.5 % of GRACE TWS being measured in river main stems. That 191 the main stem river contribute an average of several percent of all basin storage variability is perhaps surprising when considering that mainstem rivers constitute on average just 0.2% of 192 193 total basin area (Table 1). This analysis highlights rivers as storage hotspots, parts of major drainage basins where an oversized fraction of storage variation takes place. 194 195 CWS:TWS varies over two orders of magnitude on study rivers, evincing tremendous diversity 196 across global basins in rivers' role in overall basin storage. As the mainstem combines both 197 upstream hydrologic processes and river hydraulics, we explored the role of basin aridity index (AI, defined as the ratio of long-term average potential evaporation to precipitation; see 198 (McMahon et al., 2013) and mainstem slope in the CWS:TWS. We hypothesized that basins with 199

high AI would have a lower total runoff, and thus a lower CWS:TWS ratio, and that basins with 200 201 low slope would likely have slower flow velocities, longer channel residence times, and thus larger CWS:TWS ratios. Note AI is presented for only 18 of the 25 basins due to data availability. 202 Overall, we found that these hypotheses bear out in generally, but a predictive relationship was 203 204 not identified. Specifically, we found that all three rivers with a CWS:TWS ratio above 5.5% were both low slope (<2727 cm/km) and low AI (<0.88). Similarly, 6 of the 8 rivers with a 205 CWS:TWS ratio below 2% had a relatively high AI (>1). Neither slope nor AI correlated linearly 206 207 with the CWS :TWS ratio, however. For example, the Tocantins and St Lawrence rivers have low AI (< 1), but still have a but still have a low CWS:TWS ratio (approximately 1%). We speculate 208 209 that other factors such as spatiotemporal variability of precipitation patterns and snow storage 210 also play a role; the Congo, for instance has a two peak hydrograph due to its position under the inter-tropical convergence zone (e.g., Alsdorf et al., 2016)), limiting the predictive power of 211 212 the AI on basin hydrology (e.g. McMahon et al., 2013).). The human influence due to dams, and 213 storage of water in large floodplains likely also play a role. As a final effort to understand CWS:TWS ratio, we hypothesized simply that basins with larger proportion of their surface area 214 represented by the mainstem would similarly also have a larger CWS:TWS ratio. A linear 215 relationship was identified between these quantities (see Table 1), with $R^2 = 0.54$ and p = 0, but 216 this is in part due to the Uruguay river, which can be considered an outlier, with CWS :TWS of 217 nearly 14%. Excluding the Uruguay, $R^2 = 0.1717$ and p = 0.042. This result means that the 218 correlation between measured area and CWS:TWS ratio is only significant, when the Uruguay is 219 included. In summary, rivers are storage hotspots within major drainage basins, manifesting 220 orders of magnitude larger storage variability than on average. There is significant variability 221

manuscript submitted to Geophysical Research Letters

- among river basins in how large a role the mainstem plays in basinwide storage dynamics,
- however, it is unclear what factors drive this variability.
- 3.2 VCWSCA Regimes

While we might expect VCWSCA to increase monotonically with distance downstream, this is 225 frequently not the case. As we can see from the Congo (Figure 2) we sometimes see the 226 opposite, and most frequently find that VCWSCA hotspots occur in a variety of locations on the 227 228 mainstem of a river (Amazon, Mississippi). Controls on spatial patterns of VCWSCA in rivers are diverse and complex. The Amazon, for example, has large flood plain lakes that suppress 229 surface elevation variation (Bonnet et al., 2008). In an effort to quantify this phenomenon, we 230 compare the relationship between VCWSCA and mean channel width, and basin drainage area 231 232 at 1 km resolution for 19 of the rivers for which drainage area data are available from Frasson 233 et al. (2019). Generally, as width increases, the VCWSCA increases as well (Figure 4). This is not a uniformly applicable principle, however. Relative Amplitude (e.g. Figure 1a) does not increase 234 uniformly in all rivers as they widen downstream. This means consideration of variation in 235 space is critical for understanding individual rivers' VCWS signature. However, some rivers 236 further show distinct relationships that can be explained by drainage area. Because of the river 237 238 sections being analyzed, only 15 of the 19 rivers can be subdivided into 2 or more distinguishable (drainage area difference > 10%) groups. For these 15 rivers, we are able to 239 isolate two distinct patterns in the relationship between VCWSCA, mean width, and drainage 240 area. For the first pattern (exemplified by Figure 4a), the slope of the VCWSCA: width 241 relationship does not change with drainage area; for the second pattern (e.g. Figure 4b), the 242 243 slope changes significantly. We find that 9 rivers show significant changes their VCWSCA: width

244	relationship with variation in drainage area (Table 1). While the basins with changing slope are
245	broadly geographically distributed, all but one of the non-changing slope basins (Columbia) are
246	near-equatorial (within 30°N of the equator). One possible explanation for this result is that as
247	noted above, large floodplain lakes and floodplain-mainstem interaction in many equatorial
248	basins control water level variation so dramatically, that changes in drainage area downstream
249	produce no distinct change in the spatial patterns of storage variations.
250	3.3 Model Comparisons
251	While comparison of GRRATS1kd with HyMAP and CaMa-flood reveals promising similarity
252	between model and measured data on some rivers (Figure 3), HyMAP and CaMa-flood
253	reasonably approximate VCWSCA in 23.1% and 19.2% of the rivers respectively. We define
254	"reasonable" as having a climatology amplitude within $\pm 50\%$ (Wrzesien et al., 2017). We show
255	the cumulative distribution function of these amplitude comparisons for all rivers in Figure 3D
256	(amplitude ratios<4) to provide a more comprehensive view of these data. With few
257	exceptions, the model and measurements are generally in phase; Figure 3c is an exception. To
258	assess the capabilities of the models to represent spatial patterns in VCWSCA, we also
259	compared the Spatial Normalized VCWSCA, that is the spatial series of measured and modeled
260	VCWSCA, after gridding GRRATS1kd onto the model grid. In general, we found that the models
261	represent the seasonal amplitude better than spatial patterns. At the grid cell level, we
262	compared seasonal amplitude from the models and our measurements. For CaMa-flood we find
263	that 50% of rivers (26.9% that were statistically significant) have an average cell correlation >0
264	(12% >0.5), with a maximum value of 0.8. HyMAP results show 62% of rivers (12.5% that were
265	statistically significant) with an average cell correlation >0 (15% >0.5), with a maximum value of

0.9. Overall these results demonstrate that while models often represent the magnitude of this 266 267 signal well, they tend to misrepresent the location of the water. Variation in scaling and model precipitation inputs could be responsible for many of the differences we see between the 268 models and measured values. In some extreme cases, we looked at the VCWS components 269 270 (width and height variation) from the model in greater depth and found that the standard deviation of height is often much higher than measured. It is possible that overestimation of 271 height variation and simplified width variation heavily impact where this variation happens in 272 273 the models.

274 **5 Conclusions**

Here we use a new remote sensing dataset (VCWS) to explore the role of major world rivers in 275 276 the global water cycle. We find that rivers are storage hotspots, parts of major drainage basins 277 where an exceptionally large fraction of total storage variation takes place. Specifically, by 278 comparing our dataset with GRACE, we showed that the mainstem river accounted for a highly 279 variable percentage (0.05%-13.8%) of all water storage changes within the basin, among the drainage basins analyzed. We hypothesize that a complex array of factors, including basin 280 hydrology and river hydraulics, govern the ratio of river to total water storage change among 281 282 basins; our preliminary results show that basic factors such as basin-averaged aridity index and 283 river slope do not explain these variations. We find that within-river spatial patterns in channel water storage climatology anomaly are 284 highly complex, and do not simply increase monotonically with distance downstream as we 285

hypothesized they would. Frequently the opposite pattern emerges, though highly variable

hotspot patterns are most common. We find that while the width and channel water storage

climatology relationship generally changes with flow accumulation (expected behavior), this is 288 289 not always the case (40% do not). The expected behavior generally occurs in near equatorial basins, highlighting that complex hydraulics (tributary backwater, ice jams etc.) might be a 290 much more significant cause of storage variation in rivers at higher latitudes. Third, we find 291 global river routing schemes tend to capture the amplitude of river storage variations more 292 successfully than they represent the spatial nature of how rivers store their water. We find that 293 models represent channel water storage climatology anomaly reasonably (±50%) in only 19.2% 294 295 and 23.1% of rivers considered (by model). We also find that model cells significantly correlate spatially with measured data on just 26% and 12.5% of rivers (by model). We did not diagnose 296 the cause of these discrepancies, but hypothesize that effects of anthropogenic management 297 298 (not simulated by the models) play an important role. Future work should explore assimilation of channel water storage into such models, as well as integration with existing datasets 299 300 measuring floodplains and reservoirs. Such work is even more important, given recent and 301 future datasets that represent improved height and inundated area measurements from sensors such as Planet, Sentinel -2, Landsat 8+9 and the upcoming SWOT mission (Boshuizen et 302 al., 2014; Drusch et al., 2012; Fu et al., 2009; MarkhamM et al., 2019; Roy et al., 2014). 303

304 Acknowledgments and Data

305 The authors report no conflicts of interest.

```
The data used in this study (DOI: 10.5067/PSGRA-DA2V2) is available on the NASA
```

307 PO.DAAC

310

This work was supported by a NASA FINESST award (GRT00054946).

 ^{308 (}https://podaac.jpl.nasa.gov/dataset/PRESWOT_HYDRO_GRRATS_L2_DAILY_VIRTUAL_S
 309 <u>TATION_HEIGHTS_V2?ids=&values</u>=).

313 **References**

- Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. *Science*, *361*(6402),
 585. https://doi.org/10.1126/science.aat0636
- Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O'Loughlin, F., et al. (2016).
- Opportunities for hydrologic research in the Congo Basin. *Reviews of Geophysics*, 54(2),
 378–409. https://doi.org/10.1002/2016RG000517
- Bonnet, M. P., Barroux, G., Martinez, J. M., Seyler, F., Moreira-Turcq, P., Cochonneau, G., et al.
- 320 (2008). Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí).

```
Journal of Hydrology, 349(1), 18–30. https://doi.org/10.1016/j.jhydrol.2007.10.055
```

- Boshuizen, C., Mason, J., Klupar, P., & Spanhake, S. (2014). Results from the planet labs flock
 constellation.
- Calmant, S., Seyler, F., & Cretaux, J. F. (2008). Monitoring continental surface waters by
 satellite altimetry. *Surveys in Geophysics*, 29(4–5), 247–269.
- 326 CEO Water Mandate. (2016). Retrieved April 22, 2020, from
- 327 http://ceowatermandate.org/riverbasins.
- Coss, S., Durand, M., Lettenmaier, D., Yi, Y., Jia, Y., Guo, Q., et al. (2019a). Pre SWOT
- 329 Hydrology GRRATS Daily River Heights and Storage Version 2. *PO.DAAC*.
- 330 https://doi.org/10.5067/PSGRA-DA2V2
- Coss, S., Durand, M., Lettenmaier, D., Yi, Y., Jia, Y., Guo, Q., et al. (2019b). Pre SWOT
- 332 Hydrology GRRATS Virtual Station River Heights Version 2. NASA Physical
- 333 Oceanography DAAC. https://doi.org/10.5067/PSGRA-SA2V2
- Coss, S., Durand, M., Yi, Y., Jia, Y., Guo, Q., Tuozzolo, S., et al. (2020). Global River Radar
- Altimetry Time Series (GRRATS): new river elevation earth science data records for the

- 336 hydrologic community. *Earth Syst. Sci. Data*, *12*(1), 137–150.
- 337 https://doi.org/10.5194/essd-12-137-2020
- Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A., Rodell, M., et al. (2012).
- 339 Impact of water withdrawals from groundwater and surface water on continental water
- 340 storage variations. *Journal of Geodynamics*, 59–60, 143–156.
- 341 https://doi.org/10.1016/j.jog.2011.05.001
- 342 Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012).
- 343 Sentinel-2: ESA's optical high-resolution mission for GMES operational services.
- 344 *Remote Sensing of Environment*, 120, 25–36.
- Emery, C. M., Paris, A., Biancamaria, S., Boone, A., Calmant, S., Garambois, P.-A., & da Silva,
- J. S. (2018). Large-scale hydrological model river storage and discharge correction using a satellite altimetry-based discharge product. *Hydrology and Earth System Sciences*,
- 348 22(4), 2135.
- 349 Frasson, R. P. de M., Pavelsky, T. M., Fonstad, M. A., Durand, M. T., Allen, G. H., Schumann,
- 350 G., et al. (2019). Global relationships between river width, slope, catchment area,
- 351 meander wavelength, sinuosity, and discharge. *Geophysical Research Letters*, 46(6),
- 352 3252–3262.
- 53 Fu, L.-L., Alsdorf, D., Rodriguez, E., Morrow, R., Mognard, N., Lambin, J., et al. (2009). The
- 354 SWOT (Surface Water and Ocean Topography) mission: spaceborne radar interferometry
- 355 for oceanographic and hydrological applications. Presented at the OCEANOBS'09
- 356 Conference, Citeseer.

- Gao, H., Birkett, C., & Lettenmaier, D. P. (2012). Global monitoring of large reservoir storage
 from satellite remote sensing. *Water Resources Research*, 48(9).
- 359 https://doi.org/10.1029/2012WR012063
- 360 Getirana, A., Boone, A., Yamazaki, D., Decharme, B., Papa, F., & Mognard, N. (2012). The
- 361 hydrological modeling and analysis platform (HyMAP): Evaluation in the Amazon basin.
 362 *Journal of Hydrometeorology*, *13*(6), 1641–1665.
- Getirana, A., Kumar, S., Girotto, M., & Rodell, M. (2017). Rivers and Floodplains as Key
- 364 Components of Global Terrestrial Water Storage Variability. *Geophysical Research*

365 *Letters*, 44(20), 10,359-10,368. https://doi.org/10.1002/2017GL074684

- 366 Getirana, A., Peters-Lidard, C., Rodell, M., & Bates, P. D. (2017). Trade-off between cost and
- 367 accuracy in large-scale surface water dynamic modeling. *Water Resources Research*,

368 53(6), 4942–4955. https://doi.org/10.1002/2017WR020519

- 369 Hosseini-Moghari, S.-M., Araghinejad, S., Ebrahimi, K., Tang, Q., & AghaKouchak, A. (2020).
- 370 Using GRACE satellite observations for separating meteorological variability from
- anthropogenic impacts on water availability. *Scientific Reports*, *10*(1), 15098.
- 372 https://doi.org/10.1038/s41598-020-71837-7
- Huang, S., Li, J., & Xu, M. (2012). Water surface variations monitoring and flood hazard
- analysis in Dongting Lake area using long-term Terra/MODIS data time series. *Natural Hazards*, 62(1), 93–100. https://doi.org/10.1007/s11069-011-9921-6
- Kim, H., Yeh, P. J., Oki, T., & Kanae, S. (2009). Role of rivers in the seasonal variations of
- terrestrial water storage over global basins. *Geophysical Research Letters*, *36*(17).

- Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., & Wood, E. F. (2015).
- Inroads of remote sensing into hydrologic science during the WRR era. *Water Resources Research*, *51*(9), 7309–7342.
- Llovel, W., Becker, M., Cazenave, A., Crétaux, J.-F., & Ramillien, G. (2010). Global land water
 storage change from GRACE over 2002–2009; Inference on sea level. *Comptes Rendus*
- *Geoscience*, *342*(3), 179–188.
- 384 Loeb, N. G., Su, W., Doelling, D. R., Wong, T., Minnis, P., Thomas, S., & Miller, W. F. (2018).
- 5.03 Earth's Top-of-Atmosphere Radiation Budget. In S. Liang (Ed.), *Comprehensive*
- 386 *Remote Sensing* (pp. 67–84). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-
- 387 409548-9.10367-7
- Major River Basins Of The World. (2017, July 24). Retrieved January 1, 2018, from
 https://datacatalog.worldbank.org/dataset/major-river-basins-world
- MarkhamM, B., Barsi, J., Donley, E., Efremova, B., Hair, J., Jenstrom, D., et al. (2019). Landsat
- 391 9: Mission status and prelaunch instrument performance characterization and calibration
- 392 (pp. 5788–5791). Presented at the IGARSS 2019-2019 IEEE International Geoscience
- and Remote Sensing Symposium, IEEE.
- McMahon, T., Laaha, G., Parajka, J., Peel, M., Savenije, H., Sivapalan, M., et al. (2013).

395 Prediction of annual runoff in ungauged basins.

- Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. *Science*,
 313(5790), 1068–1072.
- Papa, F., Frappart, F., Güntner, A., Prigent, C., Aires, F., Getirana, A. C. V., & Maurer, R.
- 399 (2013). Surface freshwater storage and variability in the Amazon basin from multi-

manuscript submitted to Geophysical Research Letters

400	satellite observations, 1993–2007. Journal of Geophysical Research: Atmospheres,
401	118(21), 11,951-11,965. https://doi.org/10.1002/2013JD020500
402	Papa, F., Frappart, F., Malbeteau, Y., Shamsudduha, M., Vuruputur, V., Sekhar, M., et al.
403	(2015). Satellite-derived surface and sub-surface water storage in the Ganges-
404	Brahmaputra River Basin. Groundwater Systems of the Indian Sub-Continent, 4, 15–35.
405	https://doi.org/10.1016/j.ejrh.2015.03.004
406	Paternoster, R., Brame, R., Mazerolle, P., & Piquero, A. (1998). Using the correct statistical test
407	for the equality of regression coefficients. Criminology, 36(4), 859-866.
408	Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., &
409	Lo, MH. (2018). Emerging trends in global freshwater availability. Nature, 557(7707),
410	651-659. https://doi.org/10.1038/s41586-018-0123-1
411	Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C., Allen, R. G., Anderson, M. C., et al.
412	(2014). Landsat-8: Science and product vision for terrestrial global change research.
413	Remote Sensing of Environment, 145, 154–172.
414	Save, H., Bettadpur, S., & Tapley, B. D. (2016). High-resolution CSR GRACE RL05 mascons.
415	Journal of Geophysical Research: Solid Earth, 121(10), 7547–7569.
416	Swenson, S., Famiglietti, J., Basara, J., & Wahr, J. (2008). Estimating profile soil moisture and
417	groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water
418	Resources Research, 44(1).
419	Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of
420	terrestrial water storage changes from GRACE and GLDAS. Water Resources Research,
421	44(2).

422	Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and
423	climate experiment: Mission overview and early results. Geophysical Research Letters,
424	31(9).
425	Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., et al.
426	(2019). Contributions of GRACE to understanding climate change. Nature Climate
427	<i>Change</i> , 9(5), 358–369.
428	Tortini, R., Noujdina, N., Yeo, S., Ricko, M., Birkett, C. M., Khandelwal, A., et al. (2020).
429	Satellite-based remote sensing data set of global surface water storage change from 1992
430	to 2018. Earth System Science Data, 12(2), 1141-1151. https://doi.org/10.5194/essd-12-
431	1141-2020
432	Tourian, M., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., & Sneeuw, N. (2016).
433	Spatiotemporal densification of river water level time series by multimission satellite
434	altimetry. Water Resources Research.
435	Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., III, Smith, G. L., & Cooper, J. E.
436	(1996). Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing
437	System Experiment. Bulletin of the American Meteorological Society, 77(5), 853–868.
438	https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
439	Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Howat, I. M., Margulis, S. A., & Huning, L. S.
440	(2017). Comparison of methods to estimate snow water equivalent at the mountain range
441	scale: a case study of the California Sierra Nevada. Journal of Hydrometeorology, 18(4),
442	1101–1119.

- 443 Yamazaki, D., Kanae, S., Kim, H., & Oki, T. (2011). A physically based description of
- floodplain inundation dynamics in a global river routing model. *Water Resources*

445 *Research*, 47(4). https://doi.org/10.1029/2010WR009726

- 446 Yamazaki, D., Sato, T., Kanae, S., Hirabayashi, Y., & Bates, P. D. (2014). Regional flood
- 447 dynamics in a bifurcating mega delta simulated in a global river model. *Geophysical*

448 *Research Letters*, *41*(9), 3127–3135. https://doi.org/10.1002/2014GL059744

- 449 Yamazaki, D., Trigg, M. A., & Ikeshima, D. (2015). Development of a global ~ 90 m water body
- 450 map using multi-temporal Landsat images. *Remote Sensing of Environment*, 171, 337–
- 451 351. https://doi.org/10.1016/j.rse.2015.10.014
- 452 Yang, X., T. M. Pavelsky, G. H. Allen, & G. Donchyts. (2019). RivWidthCloud: An Automated
- 453 Google Earth Engine Algorithm for River Width Extraction From Remotely Sensed Imagery.
- 454 *IEEE Geoscience and Remote Sensing Letters*, 1–5. https://doi.org/10.1109/LGRS.2019.2920225

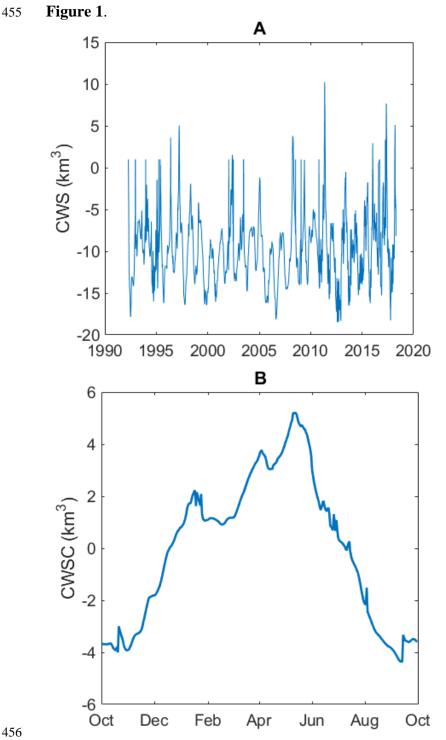
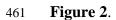


Figure 1. Mississippi VCWS time series. Panel A is the complete record, while panel B shows 457

constructed climatology (VCWSC). The Mississippi climatology amplitude (VCWSCA) is 7.1245 458 km³ while the drainage area is 3,244,506 km². Dividing VCWSCA by drainage area results in a

459 CWS of ~2.2mm. 460



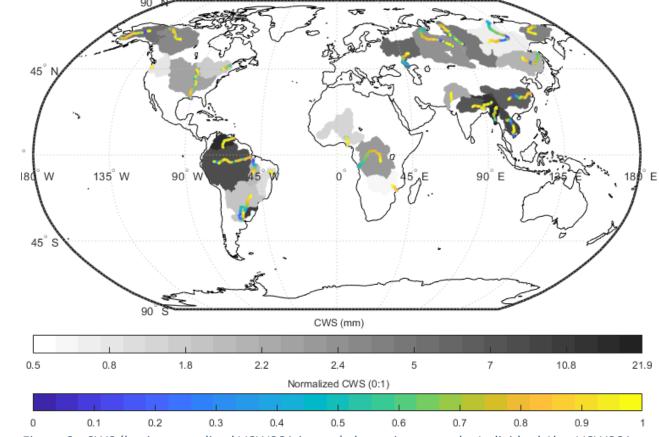
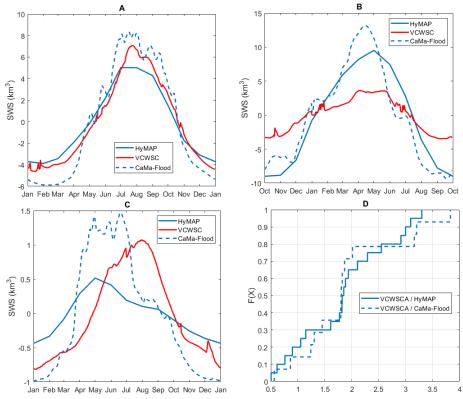


Figure 2. CWS (basin normalized VCWSCA in mm) shown in greyscale. Individual 1km VCWSCA
segment data shown in blue-yellow color scale rescaled between zero and 1 (following formula
S1) to highlight where rivers store their water. Every 100th point shown.

467 **Figure 3**.



469 Figure 3 Storage change climatology plots for the Brahmaputra (A), Mississippi (B), and Indus (C)

470 Rivers. HyMAP data is shown in solid blue, CaMa-flood is shown in dashed blue, and Measured

471 VCWSCA is shown in red panel D shows the CDF of amplitude ratio comparisons from both

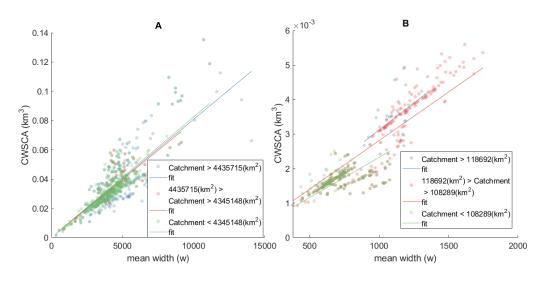
472 models (amplitude ratios<4).

473

468

474 **Figure 4**.

475



476 477

478 Figure 4. VCWSCA and mean width plots for the Amazon (A) and Uruguay (B) basins. Data is

479 plotted by drainage area and fit with a least squares regression line per catchment regime. Data

480 is grouped by large increases in in flow accumulation to avoid comparison across large

- tributaries. We then re-assimilated any divisions that did not achieve a change in basin drainage
 area>10 %.
- 483
- 484

485 **Table 1.**

486 Table 1 Percentage of GRACE TWS measure in main-stem CWS

River	% GRACE TWS	Basin drainage area (km^2)	CWS measured area (km^2)	GRWL inundated area (km^2)	CWS/ Width slope change with drainage area
Amazon	2.50	5,888,268	12,702	60,673	No
Amur	5.69	2,101,598	3,808	10,194	Yes
Ayeyarwada	5.29	385,438	1,449	3,199	No
Columbia	0.21	712,035	634	4,543	No
Congo	2.19	3,689,187	8,362	18,813	Yes
Ganges- Brahmaputra	3.02	1,792,035	5,293	15,160	No
Indus	2.20	864,062	935	4,330	-
Kolyma	2.43	657,254	1,928	5,150	-
Lena	0.51	2,467,695	9,507	20,836	-
Mackenzie	2.57	1,805,884	2,559	14,749	-
Mekong	2.89	773,231	2,244	18,197	Yes
Mississippi	1.69	3,244,506	2,709	17,002	Yes
Niger	0.45	2,115,246	642	7,019	-

manuscript submitted to Geophysical Research Letters

Ob	1.71	2,929,051	4,757	15,176	-
Orinoco	4.96	937,352	2,899	7,537	No
Parana	1.12	2,639,954	6,096	20,843	Yes
SaoFrancisco	0.30	634,842	1.132	4,088	Yes
StLawrence	1.15	1,055,756	1,531	6,606	-
Tocantins	0.41	769,445	2,000	6,914	-
Uruguay	13.81	265,786	1,872	2,183	Yes
Volga	3.24	1,410,756	4,787	17,857	-
Yangtze	7.62	1,908,837	4,460	15,550	Yes
Yenisei	2.50	2,518,211	4,305	23,558	-
Yukon	1.42	1,373,188	2,067	6,687	-
Zambezi	0.05	1,373,188	504	7,186	Yes
	0.00				