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Abstract

Clouds cover on average nearly 70% of Earth’s surface and regulate the global albedo. The magnitude of the shortwave reflection

by clouds depends on their location, optical properties, and three-dimensional (3D) structure. Due to computational limitations,

Earth system models are unable to perform 3D radiative transfer calculations. Instead they make assumptions, including the

independent column approximation (ICA), that neglect effects of 3D cloud morphology on albedo. We show how the resulting

radiative flux bias (ICA-3D) depends on cloud morphology and solar zenith angle. Using large-eddy simulations to produce

3D cloud fields, a Monte Carlo code for 3D radiative transfer, and observations of cloud climatology, we estimate the effect of

this flux bias on global climate. The flux bias is largest at small zenith angles and for deeper clouds, while the negative albedo

bias is most prominent for large zenith angles. In the tropics, the radiative flux bias from neglecting 3D radiative transfer is

estimated to be 4.0 +/- 2.4 Wm-2 in the mean and locally as large as 9 Wm-2.
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ABSTRACT

Clouds cover on average nearly 70% of Earth’s surface and regulate the global albedo. The

magnitude of the shortwave reflection by clouds depends on their location, optical properties,

and three-dimensional (3D) structure. Due to computational limitations, Earth system models are

unable to perform 3D radiative transfer calculations. Instead they make assumptions, including the

independent column approximation (ICA), that neglect effects of 3D cloud morphology on albedo.

We show how the resulting radiative flux bias (ICA-3D) depends on cloud morphology and solar

zenith angle. Using large-eddy simulations to produce 3D cloud fields, a Monte Carlo code for 3D

radiative transfer, and observations of cloud climatology, we estimate the effect of this flux bias

on global climate. The flux bias is largest at small zenith angles and for deeper clouds, while the

negative albedo bias is most prominent for large zenith angles. In the tropics, the radiative flux bias

from neglecting 3D radiative transfer is estimated to be 4.0±2.4 W m−2 in the mean and locally

as large as 9 W m−2.
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1. Introduction23

Earth’s average albedo is roughly 29%, with clouds accounting for about half of the reflection of24

solar radiative energy fluxes back to space (Stephens et al. 2015). Accurately simulating clouds is25

crucial for modeling Earth’s albedo. However, Earth system models (ESMs) struggle to accurately26

represent the albedo’s magnitude, spatial patterns, and seasonal variability (Bender et al. 2006;27

Voigt et al. 2013; Engström et al. 2015). Simulating clouds is difficult for several reasons, but one28

major factor is their wide range of spatial scales. Clouds have complex three-dimensional (3D)29

morphologies created by turbulent motions at length scales down to tens of meters or smaller.30

However, the typical resolution of an ESM is around only 10–100 km in the horizontal and 100–31

200 m in the vertical in the lower troposphere (Schneider et al. 2017). This discrepancy means32

that clouds are not explicitly resolved in ESMs. Instead, they are represented by parameterizations33

and, for purposes of radiative transfer (RT) calculations, are approximated as broken plane-parallel34

structures within grid cells (Marshak and Davis 2005).35

The plane-parallel approximation (PPA) leads to important biases in RT calculations due to the36

nonlinear relation between optical depth and albedo (Cahalan and Wiscombe 1992). Over the37

past 20 years, RT solvers have made significant progress in the reduction of these biases, either38

by making use of semi-empirical deterministic parameterizations of cloud heterogeneity (Shonk39

and Hogan 2008) or through stochastic sampling of possible cloud states across different spectral40

intervals (Pincus et al. 2003). These approximate solvers are likely to become even more accurate41

in the future, as dynamical parameterizations provide increasingly detailed cloud statistics (e.g.,42

Cohen et al. 2020). Moreover, the PPAmay possibly be avoided in ESMs by using embedded cloud-43

resolving models (Kooperman et al. 2016), an approach known as cloud superparameterization44

(Khairoutdinov and Randall 2001).45
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This progress has led to renewed interest in another source of bias that was, until recently, shad-46

owed by biases due to the PPA: the treatment of horizontal radiative fluxes in ESMs (Cahalan et al.47

1994; Schäfer et al. 2016; Hogan et al. 2019). ESMs make the independent column approximation48

(ICA) when performing RT calculations. This approximation neglects horizontal radiative fluxes49

between neighboring grid cells, decoupling the RT calculation between atmospheric columns to50

make the problem computationally tractable. 3D radiative transfer will remain too expensive to run51

in ESMs in the foreseeable future, making the ICA a necessary simplification (Hogan and Bozzo52

2018). For this reason, it is important to quantify and document the albedo bias due to the ICA.53

In this context, the effect of cloud structure on horizontal radiative transfer has gained attention,54

enabled by advances in computation that make 3D RT feasible at high spectral resolution and over55

large domains (Mayer and Kylling 2005; Emde et al. 2016; Villefranque et al. 2019; Gristey et al.56

2019; Veerman et al. 2020). The structural differences between ICA and a full 3D RT calculation57

have been documented before (Barker et al. 2003; Marshak et al. 1995b; Barker et al. 2012), and58

many alternatives to ICA have been proposed to minimize their mismatch (e.g., Marshak et al.59

1995a; Várnai and Davies 1999; Frame et al. 2009; Hogan and Shonk 2013; Wissmeier et al.60

2013; Okata et al. 2017; Hogan et al. 2019). Nevertheless, most studies have been focused on61

theoretical cases, small spatial and temporal domains, or improving satellite retrieval algorithms.62

Some notable exceptions are Cole et al. (2005) and Barker et al. (2015), who compared 2D/3D63

and ICA RT calculations to estimate the bias present in ESMs using a superparameterized cloud64

resolving model and coarse-resolution, two-dimensional cloud fields retrieved from CloudSAT and65

CALIPSO, respectively.66

Here we discuss the magnitude of the bias that results from neglecting the 3D cloud radiative67

effects by making the ICA. We use large-eddy simulations (LES) to generate 3D cloud fields rep-68

resenting three canonical cloud regimes: shallow convection, stratocumulus, and deep convection.69
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These cloud regimes are representative of the clouds typically found in the tropics. Then we70

calculate the bias between the true reflected flux and the flux approximated by ICA using a Monte71

Carlo RT code. The radiative flux bias is shown to vary with zenith angle and cloud type. Because72

the zenith angle varies with the diurnal and seasonal cycle, we quantify the effect of the 3D bias on73

these timescales. Finally, using global satellite observations of cloud climatology, we estimate the74

spatiotemporal bias that would result in global models that resolve clouds but still make the ICA.75

As stated earlier, most ESMs make the ICA and use some cloud heterogeneity parameterization to76

reduce the PPA bias, so the bias associated with only the ICA is an underestimate of the total bias.77

Because of the diversity of assumptions made by global models to account for phenomena such78

as cloud overlap, and the fundamental resolution dependence of cloud heterogeneity emulators, in79

this study we focus on the bias resulting from RT using only the ICA on fully resolved 3D cloud80

structures from LES.81

2. Methods82

a. Large-eddy simulations of clouds83

We generate three-dimensional cloud fields from high-resolution LES using the anelastic solver84

PyCLES (Pressel et al. 2015, 2017). The LES are run in three dynamical regimes to simulate85

shallow cumulus (ShCu), stratocumulus (Sc), and deep-convective clouds (Cb); details can be86

found in appendix A. ShCu clouds are convective clouds with typical cloud cover of 10–20% and87

cloud top height (CTH) around 2 km. They occur frequently over low- and mid-latitude oceans.88

In this study, ShCu are represented by two LES case studies, BOMEX and RICO, which represent89

non-precipitating and precipitating convection over tropical oceans, respectively (Siebesma et al.90

2003; vanZanten et al. 2011). Sc clouds are shallow, with CTH only around 1 km. They have near91

5



100% cloud cover and typically blanket subtropical oceans off the west coast of continents. Sc are92

represented by the DYCOMS-II RF01 LES case of a Sc deck off the coast of California (Stevens93

et al. 2005). Cb clouds are deep convective thunderstorm clouds that occur frequently over mid-94

latitude continents in summer and in the tropics, e.g., in the intertropical convergence zone (ITCZ).95

Their CTH can reach up to 15 km or higher, they often contain ice, and anvils at the top contribute96

to a cloud cover around 30%. Cb clouds are represented in this paper by the TRMM-LBA LES97

case, based on measurements of convection over land in the Amazon (Grabowski et al. 2006).98

An ensemble of snapshots is used to estimate the mean and variance of the bias for each cloud99

type. For ShCu and Sc, we take snapshots evenly spaced in time starting once the simulation has100

reached a statistically quasi-steady state, after an initial spin-up period. The snapshots are chosen101

to be at least one convective turnover time apart (1 hour for BOMEX and RICO, 30 minutes for102

DYCOMS-II RF01, and 90 minutes for TRMM-LBA). For the Cb case we take snapshots from103

an initial-condition ensemble at several time points representative of transient and fully-developed104

deep convection at 4, 5.5, and 7 hours into the simulation (10:00, 11:30, and 13:00 local time).105

We also include snapshots from an initial-condition ensemble run over a larger domain (40 km,106

compared to the original 20 km) to capture a higher degree of convective aggregation (Jeevanjee107

and Romps 2013; Wing et al. 2017; Patrizio and Randall 2019). We use only the snapshots at108

13:00 local time of fully-developed deep convection, characterized by stable liquid and ice water109

paths, for the idealized calculations, and then we use all time points to make our best estimate of110

the global flux bias. We choose ensemble sizes that capture the natural variability of morphology111

in each LES case: 10 for ShCu (BOMEX and RICO, 10 each), and 5 for Sc (DYCOMS-II RF01);112

for Cb we take 15 snapshots from each time point (45 in total) from the 20 km TRMM-LBA113

simulations and 5 snapshots of fully-developed, more aggregated deep convection from the 40 km114
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TRMM-LBA agg. simulations. The smaller ensemble is determined to sufficiently capture the115

dynamical variability for the larger domain.116

The increase in convective aggregation for the larger domain simulations can be seen in typical117

measures such as the variance of the column relative humidity or total precipitable water (Wing118

et al. 2017) (see appendix A, Fig. A1). The domain-mean cloud cover, cloud top height, and119

cloud water path from these two sets of simulations are similar, indicating that the difference in120

radiative flux bias is not being driven by a change in the mean cloud state. Although we see121

more aggregation in the larger-domain, we expect that an even larger simulation domain would122

yield more convective aggregation (Patrizio and Randall 2019); however, due to computational123

limitations, we do not consider larger domains. Furthermore, for larger scales, consideration of124

synoptic noise may become important and disrupt the self-aggregation of convection. The ShCu125

results are unchanged (not shown) for larger domain sizes, because the dynamics have already126

converged for the sufficiently large domains used. Although we do see an expected reduction in127

variance across the ensemble (#LES = 10) which is expected due to the larger dynamical variability128

captured in each snapshot of the larger domain.129

b. Radiative transfer computations130

The RT calculations were done using the libRadtran software package with the MYSTIC Monte131

Carlo solver (Mayer andKylling 2005;Mayer 2009; Emde et al. 2016). TheMYSTIC solver requires132

3D fields of liquid and ice water content and particle effective radius as input. We use MYSTIC133

to do the full 3D RT and we turn on the mc_ipa setting to do the ICA calculations. The LES134

uses bulk microphysics schemes (2-moment for liquid, 1-moment for ice) and does not explicitly135

compute the effective radius. To compute the effective radius, we follow the parameterization from136

Ackerman et al. (2009) and Blossey et al. (2013) for liquid and Wyser (1998) for ice (appendix137
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B). For the RT calculation, MYSTIC computes the scattering phase function. In the case of liquid138

droplets, which can be assumed spherical, the full Mie phase function is used. For the case of ice139

clouds, a parameterization of the habit-dependent scattering must be used. We find that the results140

are insensitive to the choice of ice parameterization (Fig. B1) because the reflected flux signal is141

dominated by the liquid droplets for the clouds simulated.142

c. Observations of cloud climatology143

The LES cloud fields allow for precise calculation of the 3D cloud radiative effect on small144

domains. To estimate the global impact of the 3D cloud radiative effect, we use the results from145

LES along with satellite observations of cloud climatology and surface albedo to extrapolate from146

these few cases to a global picture. We find that cloud top height (CTH) is a simple, but robust,147

predictor of the flux bias. We use the International Satellite Cloud Climatology Project (ISCCP) D2148

dataset of cloud top height (Rossow et al. 1999; Rossow and Duenas 2004; Marchand et al. 2010;149

Stubenrauch et al. 2012, 2013). The ISCCP D2 cloud product is a monthly climatological mean150

with spatial resolution of 1◦ × 1◦ constructed from measurements during the period 1984–2007.151

These data are collected by a suite of weather satellites that are combined into a 3-hourly global152

gridded product at the D1 level and averaged, including a mean diurnal cycle, into the D2 product153

we use.154

We also account for the observed surface albedo that varies seasonally and spatially and affects155

the flux bias. We use observations of surface albedo from the Global Energy and Water Exchanges156

Project’s surface radiation budget product version 3.0, which is aggregated to a monthly mean157

climatology for the period 1984–2007 and gridded to 1◦×1◦.158
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3. Radiative flux bias dependence on zenith angle159

The top-of-atmosphere (TOA) radiative flux bias is measured (in W m−2) as the difference in160

reflected irradiance between the ICA and 3D RT calculations. A positive bias means that the ICA161

is reflecting more energy than the 3D truth, and the Earth system is artificially dimmed. The albedo162

bias (ΔU) is computed as the flux bias (Δ� = �ICA−�3D) divided by the total incoming solar flux163

(�in),164

ΔU =
Δ�

�in
×100%. (1)

Fig. 1 shows the flux and albedo biases (ICA−3D) for the five cases of ShCu, Sc, and Cb clouds.165

The solid lines show the ensemble mean bias and the shading denotes the combined variance (f2)166

of the ensemble,167

f2 =
1

#!�(

#LES∑
8=1

[(
f2
8,ICA +f

2
8,3D

)
+ (Δ�8 − 〈Δ�〉)2

]
(2)

where #LES is the number of ensemble members, f8,ICA and f8,3D are the standard deviations from168

the MYSTIC solver photon tracing, Δ�8 is the flux bias of each ensemble member, and 〈·〉 denotes169

a mean over the LES ensemble. This variance includes both the statistical noise from the Monte170

Carlo RT and the dynamical variability of the cloud field (which are assumed uncorrelated). The171

Monte Carlo noise is proportional to 1√
=
where = = 104 is the number of photons used for the RT172

simulation, or about 1% for these calculations. The variance between cloud scenes is much larger173

than the Monte Carlo error, by more than an order of magnitude.174

Sc show negligible deviation between ICA and 3D reflected fluxes. For convective clouds (ShCu175

and Cb), the bias from the ICA is positive, except for ShCu at very large solar zenith angles.176

At large zenith angles, ShCu show a large negative flux and albedo bias for ICA. ShCu scatter177

far fewer photons than Cb due to the low cloud cover and their small vertical extent (1–2 km).178

Cb exhibit the largest reflected irradiance and also the largest bias between the ICA and 3D RT179
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calculations. While the mean flux bias is similar, the structure of the bias with zenith angle is180

markedly different for the two domain sizes (Fig. 1). For the small-domain simulations with a181

lesser degree of aggregation, the bias is approximately linear with zenith angle. For the more182

aggregated case, the flux bias is nearly uniform up until a zenith angle of 60◦ and then decreases183

rapidly towards zero; this translates to an albedo bias that peaks at large zenith angles (around 70◦).184

The convective clouds show much more variation than the stratiform clouds between snapshots185

due to the variability in cloud cover even in a statistically steady state. The less aggregated Cb186

clouds have the largest variability, which is expected since the domain size is small relative to187

the scale of the clouds, i.e., in each snapshot we capture only approximately one deep convective188

cloud, compared to many small cumulus clouds; therefore, we are effectively averaging over fewer189

realizations even though we take our ensemble size to be larger. Similarly, for the more aggregated190

Cb clouds, since we use a four times larger domain, a smaller ensemble (#LES = 5 compared to 15)191

is large enough to capture the variability.192

In the ICA, the horizontal photon fluxes between neighboring columns are ignored. For the193

Sc clouds that uniformly cover the whole domain (Fig. 2c), this assumption has little effect: the194

flux bias is near zero for all zenith angles. However, for cumulus clouds, the ICA has two effects195

that are described in detail by Hogan et al. (2019). 1) The long-recognized effect that is present196

during 3D radiative transfer of “cloud-side illumination.” This describes how when horizontal197

photon fluxes are permitted, the photons can encounter the side of a cloud and be scattered by198

it. This effect acts to enhance cloud reflectance in 3D, and thus would appear as a negative flux199

bias in our terminology. 2) The newer effect that Hogan et al. (2019) present is of “entrapment.”200

This mechanism is similar to the “upward trapping” mechanism discussed by Várnai and Davies201

(1999). It describes how in 3D a scattered photon may be intercepted by another cloud, or the202

same cloud, higher in the domain and scattered back down to the surface. In the ICA by contrast,203
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when a photon travels through clear-sky and is scattered by a cloud, it will necessarily travel back204

through the same column of clear-sky to the TOA. The entrapment mechanism acts to decrease205

cloud reflectance in 3D, i.e., it creates a positive flux bias. The calculated 3D effects we show in206

Fig. 1 are a combination of these competing mechanisms.207

For small zenith angles, when the sun is overhead, the convective clouds (ShCu and Cb) produce208

a positive flux bias because entrapment is dominant over cloud-side illumination. For large zenith209

angles, the flux and albedo bias from ShCu is negative because cloud-side illumination becomes210

the dominant effect. In the mean, the zenith angle at which the flux bias becomes negative is211

around 70◦, but for the individual ensemble members this ranges from around 45◦ to 75◦. This212

has been seen before for ShCu by Barker et al. (2015) and Hogan et al. (2019). For Cb clouds,213

however, even at large zenith angles, the flux and albedo biases remain positive, indicating that214

the entrapment mechanism continues to dominate over cloud-side illumination. This is not the215

case for every scene in the Cb ensemble, but it is true in the mean, in agreement with the results216

from Hogan et al. (2019). This difference between ShCu and Cb is related to the aspect ratio of217

the clouds; the cloud-side illumination mechanism can only become dominant if the aspect ratio218

is close to one. Furthermore, in the case of the more aggregated Cb clouds, a greater degree of219

aggregation decreases the surface area to volume ratio of the clouds, or what Schäfer et al. (2016)220

call the length of cloud edge or “cloud perimeter.” A smaller cloud perimeter will decrease the221

cloud side illumination as well as the entrapment efficiency of the cloud (Hogan et al. 2019). The222

uncertainty in flux bias due to the degree of aggregation of deep convection is much larger than223

the spread across the LES ensembles and represents a structural error which is more challenging224

to quantify.225

These 3Dcloud effects can be understood fromFig. 2, which shows illustrations of the clouds from226

the four LES cases. The scattered shallow cumulus in the BOMEX and RICO cases have aspect227
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ratios near one, which allows for cloud-side illumination at large zenith angles to dominate over228

the entrapment mechanism. The DYCOMS-II RF01 stratocumulus clouds are quite homogeneous229

over this small domain, therefore, ICA biases are small. As discussed in Hogan et al. (2019), when230

in-cloud heterogeneity is larger, the entrapment effect is larger. Finally, for the deep TRMM-LBA231

clouds, the entrapment mechanism remains dominant even for large zenith angles because the232

clouds at higher levels can intercept and trap outgoing photons that are able to escape to TOA in233

the ICA.234

In addition to the LES ensembles described previously, we run one additional set of tests to235

quantify the dependence of the flux bias calculations on the LES resolution (Fig. 3). We take the236

original LES simulations and systematically coarse-grain the 3D fields to lower resolution. Doing237

so ensures that we do not change the dynamics of the clouds so that we can test the effect of238

resolution on only the radiative transfer. We are not able to bridge the gap all the way to ESM239

scales (10–100 km horizontal resolutions) due to computational limits on running the LES, but240

we show results across a range of horizontal scales. When coarse-graining, we keep the vertical241

resolution fixed to better represent the very large aspect ratio grid boxes found in ESMs compared242

to the relatively isotropic grid boxes in LES. The mean TOA flux bias is nearly constant across243

resolutions for the shallow clouds (Sc and ShCu). For Cb, the mean TOA flux bias decreases244

with larger grid spacing, as expected, from around 17 W m−2 at the original resolution and down245

to 6 W m−2 for 2 km horizontal resolution. Since the bias does not asymptote towards smaller246

horizontal grid spacing, we conclude that our estimated bias is a lower bound in this regard, and we247

expect that if the LES could be run at higher resolutions we would find an even larger bias between248

the ICA and 3D.249

12



4. Seasonal cycle of radiative flux bias250

To assess the climate impact of the radiation bias resulting from the ICA, we consider the flux251

and albedo bias for each cloud type as a function of day of year and latitude. This calculation is252

done by assuming that the LES-generated cloud field is present at any given latitude circle on any253

given day of the year. This exercise is done not to be realistic, but to demonstrate the impact each254

cloud type might have on Earth given the spatiotemporal variations of solar zenith angle. For any255

location and time, including a diurnal cycle, the solar zenith angle is calculated and the flux bias is256

estimated based on the results presented in Fig. 1. The flux and albedo biases are computed hourly257

and averaged to show the daily-mean bias.258

Fig. 4 shows the annual mean and seasonal cycle of TOA flux and albedo biases for each cloud259

type. Note that the color scale varies for each cloud type. To estimate the uncertainties of the260

annual mean bias, we calculate the LES ensemble spread as follows. For each hour in the year and261

each latitude, the solar zenith angle is calculated, and we interpolate between integer zenith angles262

to find the flux bias. This is done individually for each LES cloud scene in the ensemble. The263

ensemble mean for each latitude and day of the year is shown (colored contour plots in Fig. 4) as264

well as the annual mean of the ensemble (black lines on Fig. 4). The spread across the ensemble265

in the annual mean is shown as one standard deviation (gray shading on Fig. 4).266

All cloud types show zero flux bias in regions of polar night where there is no incoming solar flux.267

Both ShCu cases show similar patterns of flux bias with latitude and time (Fig. 4a and c). As seen268

in Fig. 1, these cases both have a negative bias for high solar zenith angles (> 70◦), and therefore269

the net flux (and albedo) bias during the shoulder seasons at very high latitudes is negative. At270

lower latitudes, where the diurnally averaged zenith angle is never larger than 70◦, the net flux bias271

is always positive. Sc show a very small flux (and albedo) bias for all zenith angles due to their high272
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cloud cover and optical depth, but they do exhibit a small positive flux bias (∼ 0.5 W m−2) during273

summer in high latitudes (Fig. 4e). For Cb, the flux bias is comparatively large and always positive274

(Fig. 1). In the less aggregated state, the flux bias is nearly linear in zenith angle which gives rise275

to a bias pattern that roughly mimics the insolation pattern with latitude and day of year (Fig. 4g).276

In the more aggregated state, the flux bias is nearly constant across most zenith angles, but actually277

has a slight peak near 60◦, which results in a bias that peaks during the polar summers (Fig. 4i).278

The albedo bias for Cb is largest and positive in the high-latitudes during summer, though more279

strongly so for the more aggregated convection (Fig. 4h and j). While slightly counter-intuitive,280

this is simply because we are calculating the 24-hour daily mean bias, so at lower latitudes we281

include the zero bias nighttime periods which are minimal in polar summers.282

In addition to the diurnal bias that arises from changes in zenith angle from sunrise to sunset283

over the course of the day, there is a seasonal cycle in the radiation bias resulting from Earth’s284

orbital obliquity. For instance, equatorial deep convective clouds create a TOA albedo bias that285

peaks during northern hemisphere summer and has a minimum in winter (Fig. 4h and j).286

5. Implications for Climate Models287

To make an assessment of the effect that the 3D radiative transfer through cloud fields has on288

climate simulated with ESMs, we must account for the climatological occurrence of different cloud289

types in space and time. A simple parameter that can account for much of the flux bias variability290

is cloud top height (CTH), defined as the 90th percentile height observed in the LES domain to291

exclude small, ephemeral clouds at the domain top. By regressing the flux bias against CTH for292

91 evenly spaced solar zenith angles between 0 and 90◦, constraining the regression lines to pass293

through the origin because there is no flux bias in clear-sky conditions (CTH = 0), we observe a294

robust positive correlation between CTH and flux bias (Fig. 5). The best fit line and confidence295
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intervals are estimated with Gaussian Process regression; we use a dot product kernel, with the296

intercept constrained to zero, and a constant nugget that is optimized via a grid-search to match the297

empirically calculated sample variance within 2 km bins of CTH. The positive correlation between298

CTH and flux bias, though not perfect, allows us to approximate TOA flux biases using CTH on the299

global scale. We choose CTH as our proxy for flux bias because it is robustly observed by satellite300

and, of the other cloud properties we explored, the best predictor for flux bias (Fig. C1). Despite301

the fact that the radiative flux bias certainly depends on more than just CTH, we use it here as a302

first approximation to model the flux bias.303

Using this relationship between CTH and flux bias for a series of zenith angles, we can use the304

observed climatological CTHs from ISCCP to infer the resulting flux bias that would be associated305

with using the ICA for RT calculations in place of 3D RT. The monthly temporal resolution is not306

inherently an issue for this analysis given that the relationship we use between CTH and flux bias307

is linear.308

Additionally, we may account for the variations in surface albedo. In the RT calculations, we309

assume a constant surface albedo of the ocean U$ = 0.06. The surface albedo (UB) affects the310

computed flux and albedo biases: in the extreme, if UB = 1 then there will be no bias from the311

clouds because all photons will be reflected to the TOA by the surface. The total scene albedo312

stems from scattering by the clouds and scattering by the surface. This depends on the surface313

albedo, the cloud albedo (U2), and the cloud fraction ( 52). If we ignore multiple-scattering, the314

total scene albedo is315

U = 52U2 + (1− 52)UB + 52 (1−U2)UB

= UB + 52 (1−UB)U2 .
(3)
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The first term comes from reflection from the clouds, the second from reflection by the surface316

below clear-sky, and the third from reflection from surface below clouds. The albedo bias is,317

ΔU = 52 (1−UB)ΔU2 (4)

where ΔU = UICA−U3D. Therefore, the albedo bias (and flux bias) scale with (1−UB), so we can318

correct for the effect of surface albedo by multiplying our computed flux or albedo bias by the ratio319

of the surface absorptions:320

ΔU |UB =
(

1−UB
1−U$

)
ΔU |U$ . (5)

See appendix C for justification of this assumption (Fig. C2).321

To construct the annual-mean flux bias map shown in Fig. 6, we first calculate the solar zenith322

angle for each location on Earth and each hour of the year. Then, we obtain the flux bias given323

the observed CTH from the linear regression at the given zenith angle (Fig. 5). Finally, we make a324

correction using Eq. 5, based on the ratio of the observed surface absorption to the assumed ocean325

surface absorption used in the MYSTIC RT calculations. This flux bias is an estimate of the bias326

that would be present in an ESM which is able to resolve the relevant dynamical scales for clouds,327

but makes the ICA during radiative transfer. This bias is smaller than the bias present in current328

ESMs, which must also correct the biases due to PPA using parameterizations, given their very329

coarse horizontal resolution.330

We focus on the tropics (30◦S to 30◦N, red box on Fig. 6), where our estimation of flux bias331

based on the 4 LES cases is most robust and relevant; for higher-latitudes, we do not necessarily332

capture all the relevant cloud regimes with our sample of LES clouds, and therefore do not claim333

to make a rigorous estimate of the flux bias. Shown in the left inset plot is the zonal-mean flux334

bias. The shading represents 1f error from the linear regression of flux bias on CTH shown in335

Fig. 5 (as opposed to spatial or temporal variability).336
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The largest bias occurs over the tropics in the ITCZ region (Fig. 6). It corresponds to locations337

where the tallest clouds on Earth exist and where the mean zenith angle is smallest. The region of338

maximum bias migrates seasonally following the location of the ITCZ (and maximum insolation).339

Seasonal variations in cloud cover and cloud type are also manifest in the seasonal cycle of the 3D340

flux bias. In the annual mean, the zonal-mean tropical flux bias is estimated to be 4.0±2.4 Wm−2,341

and the maximum flux bias is around 9Wm−2. The annual-mean, zonal-mean tropical albedo bias342

is 0.8±0.5%.343

Our results are of the same order as those reported in Cole et al. (2005), who employ 2D radiative344

transfer calculations in a superparameterized ESM with 4 km horizontal resolution, sufficient to345

partially resolve deep convective clouds which explain the majority of the global flux bias. They346

also found the largest flux bias occurring over the ITCZ region, with a maximum bias of 5 W m−2
347

and tropical zonal-average bias of 1.5 W m−2.348

6. Summary and conclusions349

In this paper we estimate the TOA flux and albedo biases that result from neglecting 3D radiative350

transfer through cloudy atmospheres. Although TOA radiative biases in current ESMs are pre-351

dominantly due to deficiencies of subgrid-scale dynamical parameterizations that generate cloud352

cover biases, as convection parameterizations improve and model resolution increases, the relative353

contribution of 3D radiative effects to the total model error will increase. We quantify the radiative354

flux and albedo bias that results from making the ICA by using a 3DMonte Carlo radiative transfer355

scheme applied to LES-generated cloud fields. The flux and albedo biases are assessed across356

different cloud regimes and solar zenith angles. We take our findings from the four canonical357

LES cases and apply them to observed climatological cloud occurrence to infer the spatially- and358

temporally-resolved flux and albedo biases.359
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Previous studies of the 3D effects of clouds have focused primarily on shallow cumulus clouds,360

but we find that the largest bias comes from deep convective clouds. The flux bias is large and361

positive for deep convective clouds at small zenith angles and the albedo bias is large and negative362

for shallow cumulus clouds at large zenith angles. These results quantitatively agree with previous363

studies using LES clouds to assess 3D effects (Hogan et al. 2019). There is room for future work364

considering a larger ensemble of cloud morphologies, which could be generated again by LES or365

alternatively could be retrieved from satellite observations. Our inferred global flux bias is based366

on only four tropical/subtropical LES cases and therefore does not represent the full diversity of367

cloud morphologies. This methodology cannot fully capture the effects of mid-latitude storms, for368

instance, which is why we do not emphasize our results outside of the tropics.369

We use the observed correlation between cloud top height and TOA flux bias from our LES370

ensemble to estimate the global spatiotemporal bias from neglecting 3D radiative transfer in a371

high-resolution ESM. We choose a simple linear model to map from satellite observations of372

climatological cloud top heights to TOA flux bias. The deviations in our regression fit suggest that373

there is potential for a more robust mapping from cloud properties to radiative flux bias. Future374

work is necessary to explore this path towards a parameterization of 3D radiative effects in ESMs.375

The large flux bias for Cb clouds at small zenith angles translates into a seasonal bias that peaks376

just off the equator in the summer hemisphere, tracking the position of the ITCZ. We estimate the377

annual-mean tropical-mean flux bias to be 4.0±2.4 Wm−2. The flux bias computed here is small378

compared to the TOA shortwave flux RMS error typical for CMIP5 and CMIP6 models, which379

is on the order of 10 W m−2 (Zhao et al. 2018; Hourdin et al. 2020). However, the 3D bias is380

still comparable to the signal of anthropogenic greenhouse gas emissions for the coming decades,381

which is on the order of 2.5–3.1Wm−2 (Myhre et al. 2013). These results highlight the importance382
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of considering the 3D radiative fluxes through clouds for Earth’s radiation budget and Earth system383

modeling.384
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APPENDIX A398

LES model setup399

LES are performed using the anelastic fluid solver PyCLES (Pressel et al. 2015). Subgrid-scale400

fluxes are treated implicitly by the WENO scheme used in the numerical discretization of the401

equations (Pressel et al. 2017).402

For each case, the characteristic timescale of convection is evaluated and taken to be representative403

of the dynamical decorrelation time g. Snapshots are taken at least one dynamical decorrelation404
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time apart, so that the cloud samples can be treated as independent in a statistical analysis of the405

flux biases. The decorrelation timescale is calculated as406

g =
I1;

F∗
+ 32
F̄D
, (A1)

where I1; is the mixed-layer height, F∗ =
(
I1; F

′1′
���
B

)1/3
is the Deardoff convective velocity, 32 is407

the cloud depth, and F̄D is the mean updraft velocity within the cloud.408

a. Shallow cumulus (ShCu) convection, BOMEX409

TheBOMEXLES case study is described in Siebesma et al. (2003). Surface boundary conditions,410

F′@′C |B and F′\′
;
|B are prescribed, resulting in sensible and latent heat fluxes of about 10 and411

130 W m−2, respectively. The atmospheric column is forced by clear-sky longwave radiative412

cooling, neglecting radiative cloud effects. A prescribed subsidence profile induces mean vertical413

advection of all fields, and specific humidity is further forced by large-scale horizontal advective414

drying in the lower 500 m. The liquid-water specific humidity is diagnosed through a saturation415

adjustment procedure. For BOMEX, the characteristic timescale of convection is g ≈ 40 min,416

where I1; = 500 m, F∗ = 0.66 m s−1, 32 = 1300 m, and F̄D = 0.85 m s−1, and snapshots are taken417

every 1 hour. The domain size is set to 6.4 km in the horizontal and 3 km in the vertical. Results418

are reported for an isotropic resolution of ΔG8 = 20 m.419

b. Shallow cumulus (ShCu) convection, RICO420

The RICO LES case study is described in vanZanten et al. (2011). The surface sensible and421

latent heat fluxes are modeled using bulk aerodynamic formulae with drag coefficients as specified422

in vanZanten et al. (2011), resulting in fluxes of around 6 and 145 W m−2, respectively. The423

atmospheric column is forced by prescribed profiles for subsidence and large-scale heat and424

moisture forcings that are a combination of radiative and advective forcings. The two-moment425

20



cloudmicrophysics scheme fromSeifert andBeheng (2006) is usedwith cloud droplet concentration426

set to #3 = 70 cm−3. For RICO, the characteristic timescale of convection is g ≈ 50 min, where427

I1; ≈ 500 m, F∗ ≈ 0.62 m s−1, 32 = 2500 m, and F̄D ≈ 1.2 m s−1, and snapshots are taken every428

1 hour. The domain size is set to 12.8 km in the horizontal and 6 km in the vertical. Results are429

reported for an isotropic resolution of ΔG8 = 40 m.430

c. Stratocumulus-topped marine boundary layer (Sc), DYCOMS-II RF01431

The simulation setup for DYCOMS-II RF01 follows the configuration of Stevens et al. (2005).432

The initial state consists of a well-mixed layer topped by a strong inversion in temperature and433

specific humidity, with Δ\; = 8.5 K and Δ@C = −7.5 g kg−1. Surface latent and sensible heat434

fluxes are prescribed as 115 and 15 Wm−2, respectively. In addition, the humidity profile induces435

radiative cooling above cloud-top and warming at cloud-base. As in BOMEX, the liquid-water436

specific humidity is diagnosed through a saturation adjustment procedure. For the stratocumulus437

clouds, without strong updrafts and a thin cloud layer, the characteristic convective timescale is438

taken to be just the first term of Eq. (A1), which evaluates to g ≈ 20 min, with I1; = 850 m and439

F∗ = 0.8 m s−1. Snapshots taken every 30 minutes are used in the analysis. The domain size is440

set to 3.36 km in the horizontal and 1.5 km in the vertical. Results are reported for a resolution of441

ΔI = 5 m in the vertical and ΔG = 35 m in the horizontal.442

d. Deep convection (Cb), TRMM-LBA443

Deep convective clouds are generated using the TRMM-LBAconfiguration detailed inGrabowski444

et al. (2006), based on observations of the diurnal cycle of convection in the Amazon during the445

rainy season. The diurnal cycle is forced by the surface fluxes, which are prescribed as a function of446

time. The magnitude of the fluxes maximizes 5.25 hours after dawn, with a peak latent and sensible447
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heat fluxes of 554 and 270 W m−2, respectively. The radiative cooling profile is also prescribed448

as a function of time. We use the one-moment microphysics scheme based on Kaul et al. (2015)449

with modifications described in Shen et al. (2020). Since this case study is not configured to450

reach a steady state, the simulation is run up to C = 7 hours. Deep convection is considered to be451

fully developed after 5 hours, when the liquid-water and ice-water paths stabilize (Grabowski et al.452

2006). The ensemble of cloud snapshots is formed by sampling after C = 4, 5.5, and 7 hours from453

a set of simulations with different initial conditions. For the idealized case (Figs. 1 and 4) only the454

15 snapshots from C = 7 hours are used. The characteristic convective timescale is given by just455

the second term of Eq. (A1), g =
∫ I2C

0
3I
FD
≈ 80 min, where I2C and FD are the cloud-top height and456

updraft vertical velocity averaged over the last two hours, respectively. The random perturbations457

used in the initialization ensure that all cloud snapshots in the ensemble are uncorrelated. The458

domain size is set to 20 km in the horizontal and 22 km in the vertical. Results are reported for a459

resolution of ΔI = 50 m in the vertical and ΔG = 100 m in the horizontal.460

For the large-domain simulations, we double the domain-size to 40 km in the horizontal and461

run a smaller ensemble of #LES = 5 simulations. The mean cloud cover, cloud top heights, and462

cloud water path in the large and small domain ensembles are comparable at 0.30 and 0.32, 11.2463

and 9.4 km, and 0.11 and 0.09 g m−2, respectively. The large-domain simulations show a higher464

degree of aggregation as measured by the variance in total precipitable water, 4.3 mm2, compared465

to 3.7 mm2 in the original 20 km domain. Fig. A1 shows histograms of the total precipitable water466

for each of the TRMM-LBA simulations at 7 hours (#LES = 15 for the 20 km domain, and #LES = 5467

for the 40 km domain). The wider histograms for the large-domain simulations illustrate the larger468

variance in this field, which is indicative of a higher degree of convective aggregation.469

APPENDIX B470
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Radiative transfer details471

We use the libRadtran MYSTIC Monte Carlo solver for the 3D and ICA radiative transfer cal-472

culations. The MYSTIC radiative transfer calculations are done using = = 104 photons sampled473

from the kato2 correlated-: parameterization of the solar spectrum (Kato et al. 1999; Mayer and474

Kylling 2005). The Monte Carlo error scales as 1√
=
, so is on the order of 1%. The surface albedo475

was set to UB = 0.06 for all RT calculations. The observed surface albedo is accounted for through476

the scaling described in the main text.477

The MYSTIC solver from libRadtran requires 3D fields of liquid and ice water content and478

particle effective radius as input. The LES uses bulk microphysics schemes and does not explicitly479

compute the effective radius. For liquid-only clouds, the parameterization from Ackerman et al.480

(2009) and Blossey et al. (2013) with assumed droplet number of #3 = 108 m−3 is used. The full481

Mie scattering phase function is taken from the libRadtran lookup tables. Because the lookup482

tables are only valid for droplets with radius greater than 1 `m, smaller calculated effective radii483

were rounded to this minimum value.484

For ice clouds, the parameterization fromWyser (1998) is used. The hey parameterization from485

Yang et al. (2013) and Emde et al. (2016) with habit type set to ghm (general habit mixture) is486

used. The hey parameterization uses the full Mie phase function and does not employ the Henyey-487

Greenstein approximation, which has been shown to be another source of error in RT (Barker et al.488

2015). The results are not dependent on the exact choice for ice crystal shape or roughness (Fig.489

B1). Note that the hey ice parameterization is only valid for radii less than 90 `m, and larger490

calculated effective radii were rounded to this maximum value.491

Deep convective clouds, reaching upwards of 10 km, nearly always contain ice crystals in addition492

to liquid water. Optical properties of ice crystals depend on their size, shape (or habit), and surface493
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smoothness. Two different parameterizations, with three and four habit choices, respectively,494

were tested. The differences between these parameterization variants are negligible; they are495

much smaller than the variability stemming from the cloud dynamics (statistical spread between496

snapshots) and also much smaller than the magnitude of the 3D effects (Fig. B1).497

The hey parameterization with general habit mixture (ghm) is used in the main text (Yang et al.498

2013; Emde et al. 2016). This parameterization is valid for a spectral range from 0.2−5`m, and499

for ice effective radii from 5−90`m. hey assumes smooth crystals and allows for four choices of500

habit: ghm, solid column (col), rough aggregate (agg), and plate.501

The other parameterization tested was baum_v36 (Heymsfield et al. 2013; Yang et al. 2013;502

Baum et al. 2014). This parameterization is valid over a wider spectral range (0.2−99`m), but a503

narrower effective radius range (5−60`m). Particles with effective radius outside of the accepted504

range were rounded to the maximum allowed value. The baum_v36 parameterization assumes505

severely roughened particles. It allows for three choices of habit: ghm, solid column (col), and506

rough-aggregate (agg).507

These seven variants are compared in Fig. B1 for one cloud snapshot from the TRMM-LBA508

case and they show very similar results. Shown is the TOA reflected flux bias across zenith angles.509

Also shown in Fig. B1 is a RT calculation done on the same cloud field, but only including the510

liquid droplets and ignoring the ice particles. We use the full Mie scattering phase function without511

any parameterization for the liquid portion of the cloud in all cases. The difference between the512

liquid-only and liquid + ice TOA fluxes can be up to 20% depending on the parameterization used,513

but the flux bias (ICA - 3D) is very similar for the liquid-only and all ice parameterizations.514

APPENDIX C515

Estimating the global flux bias using observations of cloud climatology516
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a. Cloud property proxy for flux bias517

Weexplored several different cloud properties to use as a proxy for the flux bias. Our limited study518

concluded that the cloud top height (CTH) was the best proxy because it shows a strong positive,519

linear correlation with flux bias. Other cloud scene properties we examined included cloud depth,520

cloud cover (cc), and the geometric mean of covered area and uncovered area,
√

cc(1− cc). The521

linear regression fits are shown in Fig. C1 for the sun at zenith. The RMS error for CTH is the522

smallest. Although cloud depth is also a reasonable proxy, and possibly more physical, it is more523

difficult to measure from satellite, and therefore we use CTH in this study. An important extension524

to this work would be to allow for multiple cloud properties and a more complex model than a525

linear fit to describe the flux bias. However, with our limited data from only four LES cases in this526

present study, we do not feel justified to use a more complex model.527

b. Surface albedo correction528

As described in the main text, we make a correction to account for the observed surface albedo529

using Eq. 5 when estimating the global flux bias. This correction is derived by assuming multiple-530

scattering within the cloudy scene can be ignored and that the baseline surface and cloud albedos531

are independent of zenith angle. Justification for these assumptions is demonstrated in Fig. C2 by532

the good agreement between the computed albedo bias and the predicted albedo bias.533
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Fig. 1. Bias (ICA-3D) in (a) TOA reflected flux and (b) albedo as a function of zenith angle for ShCu (BOMEX

and RICO), Sc (DYCOMS-II RF01), and Cb (TRMM-LBA and TRMM-LBA agg.). For each cloud type, average

fluxes (with shaded 1f error bars) are computed over the individual snapshots. Positive bias means the ICA
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clouds. (d) Deep convective clouds. Note that the domain sizes vary between the cases. At high zenith angles,

cloud shadowing becomes important for ShCu because the individual clouds can shadow a large portion of the

domain and scattering from the cloud sides becomes dominant due to the low angle of the incoming photons.

772

773

774

775

776

38



0 250 500 750 1000 1250 1500 1750 2000
Horizontal grid spacing (m)

0

5

10

15

20

M
ea

n 
TO

A 
flu

x 
bi

as
, I

CA
-3

D 
(W

 m
2 )

BOMEX
DYCOMS-II RF01
RICO
TRMM-LBA

Fig. 3. Mean TOA reflected flux bias across all solar zenith angles computed for different resolutions of the

same cloud fields. The horizontal axis shows the horizontal resolution; the vertical resolution is kept fixed. The

four cases of ShCu, Sc, and Cb are shown in the same colors as Fig. 1. For each case, three snapshots from the

original ensemble are used and the spread is shown by the shading.

777

778

779

780

39



-1 0 1
Annual mean 

 flux bias (W m 2)

90

60

30

0

30

60

90

La
tit

ud
e

a

50 100 150 200 250 300 350
Day of Year

Flux bias, ICA-3D (W m 2)
BOMEX

-0.5 0
Annual mean 

 albedo bias (%)

90

60

30

0

30

60

90 b

50 100 150 200 250 300 350
Day of Year

Albedo bias, ICA-3D (%)
BOMEX

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

-4.0

-2.7

-1.3

0.0

1.3

2.7

4.0

-2 0 2
Annual mean 

 flux bias (W m 2)

90

60

30

0

30

60

90

La
tit

ud
e

c

50 100 150 200 250 300 350
Day of Year

RICO

-1 -0.5 0
Annual mean 

 albedo bias (%)

90

60

30

0

30

60

90 d

50 100 150 200 250 300 350
Day of Year

RICO

-5.0

-3.3

-1.7

0.0

1.7

3.3

5.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

0 0.2
Annual mean 

 flux bias (W m 2)

90

60

30

0

30

60

90

La
tit

ud
e

e

50 100 150 200 250 300 350
Day of Year

DYCOMS-II RF01

0.05 0.1 0.15
Annual mean 

 albedo bias (%)

90

60

30

0

30

60

90 f

50 100 150 200 250 300 350
Day of Year

DYCOMS-II RF01

-1.0

-0.7

-0.3

0.0

0.3

0.7

1.0

-1.0

-0.7

-0.3

0.0

0.3

0.7

1.0

0 3 6 9
Annual mean 

 flux bias (W m 2)

90

60

30

0

30

60

90

La
tit

ud
e

g

50 100 150 200 250 300 350
Day of Year

TRMM-LBA

0 0.5 1
Annual mean 

 albedo bias (%)

90

60

30

0

30

60

90 h

50 100 150 200 250 300 350
Day of Year

TRMM-LBA

-10.0

-6.7

-3.3

0.0

3.3

6.7

10.0

-2.0

-1.3

-0.7

0.0

0.7

1.3

2.0

6 9 12
Annual mean 

 flux bias (W m 2)

90

60

30

0

30

60

90

La
tit

ud
e

i

50 100 150 200 250 300 350
Day of Year

TRMM-LBA agg.

1 1.5 2
Annual mean 

 albedo bias (%)

90

60

30

0

30

60

90 j

50 100 150 200 250 300 350
Day of Year

TRMM-LBA agg.

-19.0

-12.7

-6.3

0.0

6.3

12.7

19.0

-4.0

-2.7

-1.3

0.0

1.3

2.7

4.0

Fig. 4. Daily mean bias (ICA-3D) as a function of latitude and day of year assuming the globe is covered

by (a-d) ShCu (BOMEX and RICO), (e-f) Sc (DYCOMS-II RF01), (g-h) Cb (TRMM-LBA), and (i-j) more

aggregated Cb (TRMM-LBA agg.). Left column shows flux bias, and right columns shows albedo bias. Note

the color scales vary between LES cases. Inset panels on the left show annual average biases with shaded error

bars that denote the spread across the LES ensembles as described in the text.
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Fig. 5. Scatter plot of 90th percentile cloud top height (CTH) from LES domain against flux bias at zenith
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show the 68% and 95% confidence intervals. The RMS error of the regression is indicated at the top.
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Fig. A1. Normalized histogram of total precipitable water from the TRMM-LBA simulations in a 20 km

domain vs. 40 km domain, which we use as a less and more-aggregated case of deep convection. The variance

across the ensemble, shown by the width of the histogram, is representative of the degree of convective

aggregation.
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Fig. B1. TOA reflected bias across zenith angles for different ice parameterizations in one TRMM-LBA

cloud snapshot.
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Fig. C1. Regression of flux bias on several different cloud properties (a) cloud top height, (b) cloud depth, (c)

cloud cover, and (d)
√

cc(1− cc). All panels show the flux bias for a zenith angle of 40◦. (a) is the same as

Fig. 5b. The RMS error is shown for each panel and is smallest for the cloud top height case (a).
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Fig. C2. Predicted albedo from Eq. 5 compared to the computed albedo from Monte Carlo RT simulation

with different surface albedo UB in two ShCu cases. The black line shows the 1:1 ratio for reference.
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