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Abstract

The productivity of terrestrial vegetation is determined by a multitude of drivers between the land surface and atmosphere.

Water availability is critical for vegetation productivity, but the vertical dimension of soil moisture has been largely overlooked.

Here, we analyze dominant controls of global vegetation productivity represented by sun-induced fluorescence and spectral

vegetation indices at the half-monthly time scale. We apply random forests to predict anomalies of vegetation productivity from

a comprehensive set of hydro-meteorological variables including multi-layer soil moisture and quantify the variable importance.

Dominant hydro-meteorological controls generally vary with latitudes: temperature in higher latitudes, solar radiation in lower

latitudes, and soil moisture from sub-surface layers in between. We find that including vertically resolved soil moisture allows

a better understanding of vegetation productivity and reveals a broader water-related control. This is found especially for

semiarid regions, illustrating the global relevance of deep(er) rooting systems as an adaptation to water limitation.
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Key Points:9
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 Sub-surface soil moisture is particularly important for vegetation productivity in semi-14

arid regions.15
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Abstract:17

The productivity of terrestrial vegetation is determined by a multitude of drivers between the18

land surface and atmosphere. Water availability is critical for vegetation productivity, but the19

vertical dimension of soil moisture has been largely overlooked. Here, we analyze dominant20

controls of global vegetation productivity represented by sun-induced fluorescence and spectral21

vegetation indices at the half-monthly time scale. We apply random forests to predict anomalies22

of vegetation productivity from a comprehensive set of hydro-meteorological variables23

including multi-layer soil moisture and quantify the variable importance. Dominant hydro-24

meteorological controls generally vary with latitudes: temperature in higher latitudes, solar25

radiation in lower latitudes, and soil moisture from sub-surface layers in between. We find that26

including vertically resolved soil moisture allows a better understanding of vegetation27

productivity and reveals a broader water-related control. This is found especially for semiarid28

regions, illustrating the global relevance of deep(er) rooting systems as an adaptation to water29

limitation.30

1. Introduction31

Terrestrial vegetation is a key component coupling the global water and carbon cycles32

between the atmosphere and the land surface. Its productivity is determined by a multitude of33

hydro-meteorological variables (Monteith and Unsworth 1990; Nemani et al., 2003; Piao et al.,34

2020). While the underlying relationships are complex in time and space (Pearson et al., 2013;35

Cox et al., 2013; Garonna et al., 2018), the hydro-meteorological controls of anomalies in36

vegetation productivity are still not fully understood at a global scale. This knowledge gap37

contributes to uncertainties in assessing the sensitivity and resilience of ecosystems to different38

climate drivers (Seddon et al., 2016; Sakschewski et al., 2016), and in future climate projections39

(Feng et al., 2014; Novick et al., 2016; Duveiller et al., 2018).40

Previous studies investigated dominant hydro-meteorological controls of vegetation41

productivity at a global scale and across different ecosystems (Nemani et al., 2003; Beer et al.42

2010; Jung et al. 2011; Seddon et al., 2016; Madani et al., 2017; Jung et al., 2017; Walther et al.,43

2019; Li & Xiao, 2020). While these studies and recent gross primary production (GPP)44

estimates agree that vegetation in (semi-)arid area is significantly impacted by soil moisture (SM)45

(Stocker et al., 2018; Stocker et al., 2020), a corresponding global analysis including the impact46



of SM from multiple depths is lacking. Several studies have already highlighted the local47

relevance of multi-layer SM to ecosystems: root water uptake from deeper soil layers can help48

mitigate water stress and maintain plant transpiration (Schulze et al., 1996; Migliavacca et al.,49

2009); A et al., 2019 demonstrated varying relative importance of surface SM versus deeper SM50

depending on land cover types; and Schlaepfer et al., 2017 simulated an increased dryness of51

sub-surface SM compared to surface SM which largely impacted vegetation dynamics in52

temperate drylands. This way, distinguishing shallow and deep SM is expected to allow for a53

more accurate identification of global vegetation controls as the accessibility and availability of54

water for plants varies in space and time. For this purpose, the state-of-the-art ERA5 reanalysis55

provides SM estimates from multiple layers (Hersbach et al. 2019; Jing et al., 2018), and has56

been successfully applied in hydro-meteorological studies (Jing et al., 2018; Tarek et al., 2020;57

Li et al., 2020).58

When considering multiple hydro-meteorological variables, the identification of global59

vegetation controls is challenged by potential high collinearity (Dormann et al., 2013) between60

some of the variables. Most previous studies did not consider more than three variables, thereby61

somewhat circumventing this problem while ignoring potentially important variables (Seddon et62

al., 2016; Garonna et al., 2018; Claessen et al., 2019; Li & Xiao, 2020). Machine learning63

methods such as random forests have no assumptions on the input data characteristics, and are64

designed to process large amounts of diverse input data (Breiman 2001; Forkel et al. 2019; Jiao65

et al. 2019). Though they are also challenged by the collinearity in the input data, they are better66

placed to deal with this than traditional statistical methods. Further, a pre-processing of the data67

can mitigate collinearity by removing potential confounding signals such as long-term trends or68

the seasonality (Jung et al., 2017).69

Aside from model-based estimates (e.g. Jung et al. 2020), reliable observation-based70

global photosynthesis proxies are only available for recent years through satellite-derived sun-71

induced fluorescence (SIF, Baker et al., 2008; Frankenberg et al., 2011; Joiner et al.,2013). SIF72

data is increasingly used to study the relationships between global vegetation productivity and73

hydro-meteorological drivers (Yang et al., 2015; Ying et al., 2015; Wagle et al., 2016; Zuromski74

et al., 2018; Jiao et al., 2019; Walther et al., 2019; Li & Xiao, 2020). Besides, spectral75

vegetation indices and biophysical parameters from multi-spectral satellite instruments such as76

the Moderate Resolution Imaging Spectroradiometer (MODIS) are widely used to study drivers77



of vegetation phenology and productivity (Forkel et al. 2015; Seddon et al., 2016; Buermann et78

al., 2018). In this study, we consider SIF alongside two spectral indices (the normalized79

difference vegetation index, NDVI; and near-infrared reflectance of terrestrial vegetation, NIRv),80

and a comprehensive set of explanatory variables representing energy (temperature; radiation;81

vapor pressure deficit, VPD) and water availability (precipitation; multi-layer SM) to revisit82

global photosynthesis and greenness controls.83

2. Data and Methods84

2.1. Vegetation Target Data85

2.1.1. Sun-Induced Fluorescence (SIF)86

SIF is a proxy for photosynthesis as it captures radiation emitted by chlorophyll87

molecules and is related to photosynthetic activity. We use one of the longest available satellite-88

derived SIF retrieval which is based on the Global Ozone Monitoring Experiment–2 (GOME-2)89

instrument and ranges from 2007 to 2018 (Köhler et al., 2015). The raw global SIF observations90

are filtered to remove data based on (i) high solar zenith angles (>70˚), (ii) large differences to91

the normal local overpass time (2 p.m-8 a.m in the next day), and (iii) large cloud cover (>50%),92

as done by Köhler et al., 2015.93

2.1.2. Vegetation Indices94

To complement the photosynthesis analysis we use NDVI and NIRv as spectral95

vegetation indices (Huete et al., 2002; Badgley et al., 2017). We obtain red and near-infrared96

reflectances from MOD13C1 v006 product (https://lpdaac.usgs.gov/products/mod13c1v006/) in97

an original 16-day and 0.05˚ resolution. NDVI and NIRv are computed from data with quality98

flags 0 and 1.99

2.2. Hydro-meteorological predictor data100

We consider a comprehensive selection of energy and water-related variables from the101

ERA5 reanalysis (Hersbach et al., 2019). Energy-related variables include air temperature at 2-m102

height (hereafter referred to as temperature), surface downward solar radiation (solar radiation)103

and VPD, and the water-related variables are total precipitation (precipitation), SM layer 1 (0-7104

https://lpdaac.usgs.gov/products/mod13c1v006/


cm), layer 2 (7-28 cm), layer 3 (28-100 cm) and layer 4 (100-289 cm). For comparison, we105

compute total SM by averaging values across the individual layers weighted by their thickness.106

It is to note that VPD is related to the relative humidity and temperature, and hence we treat it as107

an energy-related variable, while it represents the demand of the water in the atmosphere.108

To validate our findings we also use alternative SM products: (i) MERRA-2 surface and109

root-zone SM (Gelaro et al., 2017), (ii) GLEAM v3.3 surface and root-zone SM (Martens et al.,110

2017), and (iii) SoMo.ml with three layers (O and Orth, 2020). Table S1 shows the information111

of depths for all SM products that we use and classify into surface SM, shallow and deep root-112

zone SM.113

2.3. Additional data114

To evaluate the results of our analyses, we compute the aridity index for each grid cell as115

the ratio between the long-term averages of net radiation (expressed as mm potential evaporation)116

and precipitation from the respective ERA5 data. We distinguish climate regimes using long-117

term mean temperatures and aridity index. In addition, we use fractional vegetation coverage118

(FVC) data from the AVHRR vegetation continuous fields products (VCF5KYR,119

https://lpdaac.usgs.gov/products/vcf5kyrv001/) from 2007 to 2016 to classify the percentages of120

tree canopy, short vegetation and bare ground (Song et al., 2018). We distinguish vegetation121

characteristics using the fraction of vegetation cover (the sum of the fractions of tree canopy and122

short vegetation), and the fraction of tree cover in vegetation cover.123

2.4. Methods124

2.4.1. Data Pre-processing125

The data pre-processing is illustrated in Figure S1. All vegetation indices and hydro-126

meteorological data are aggregated to 0.5° spatial and half-monthly temporal resolution where127

SIF is available, and 16-day original NDVI and NIRv are linearly interpolated to half-monthly128

resolution. The study time period is 2007-2018, limited by the availability of SIF. In all SIF-129

based analyses we focus on data with SIF > 0.5 mW/m2/sr/nm to filter out sparse or dormant130

vegetation. This filtering is also applied in the NDVI and NIRv analyses, where additionally131

negative NDVI and NIRv values are filtered out. Grid cells are only considered in the analysis if132

more than 15 data points are left after filtering, and if the vegetation cover from the FVC data133

exceeds 5%. For all target and predictor variables, we obtain half-monthly anomalies by134

https://lpdaac.usgs.gov/products/vcf5kyrv001/


subtracting the mean seasonal cycles. We remove long-term trends for each grid cell which are135

determined by a locally weighted smoothing filter (Cleveland et al., 1979) with a smoothing136

span of 0.4.137

2.4.2. Identification of main controls138

Random forests (RF) is a non-parametric regression-based method requiring no139

statistical assumptions on predictor and target variables (Breiman 2001). In this study, all hydro-140

meteorological anomalies are used as predictor variables, and anomalies of SIF and vegetation141

indices are employed as target variables per each grid cell, respectively (Figure S1). RF training142

is done using information from each grid cell together with the surrounding grid cells (forming143

3x3 grid cell matrices) to yield robust model performance while including data with similar144

climatic and landscape characteristics. After training, the performance of the RF model is145

evaluated at each grid cell by computing the R2 between the modeled and observed target146

variable for out-of-bag (OOB) data that was not used for training (hereafter referred as R2). Grid147

cells with R2 lower than or equal to 0 are filtered out.148

The relative importance of each predictor variable is inferred from the decrease in R2149

related to a temporal permutation applied to the particular variable (Cutler et al., 2012; Gómez-150

Ramírez et al., 2019). To validate our findings we additionally employ two more methods in this151

context: (i) Spearman correlation between each predictor variable and SIF, NDVI or NIRv152

(Zwillinger & Kokoska, 2000) and (ii) SHapley Additive exPlanations (SHAP) feature153

importance which is based on the average marginal contribution of each predictor to the154

modeled target variable (Lundberg et al. 2017; Sundararajan et al., 2019).155

In addition to the determination of the most relevant hydro-meteorological controls we156

study the sensitivity of the vegetation response to each predictor variable. The sensitivity is157

determined by the slope from fitted linear quantile (median) regression between the SHAP158

dependence of a target variable and a predictor variable, as SHAP dependence enables to159

measure the marginal effect each predictor variable has on the target variable for individual and160

global explanations (Lundberg et al. 2017; Forkel et al., 2019). While the magnitude of the161

sensitivity is usually similar to the identification of feature importance, the sign of sensitivity162

complements the information in importance identification. All data-processing and analyses are163

done with Python 3.7 by using the NumPy 1.16.1 (Oliphant 2006), Statsmodels 0.11.1 (Skipper164



& Perktold, 2010), Scikit-learn 0.22.1 (Pedregosa et al., 2011), Matplotlib (Hunter 2007) and165

shap 0.35.0 packages (Lundberg et al. 2017).166

167



3. Results and Discussion168

3.1. Model performance169

Two experiments are performed with RF models differing in how SM is accounted for170

(i.e. total versus multi-layer SM), while precipitation, VPD, solar radiation, and temperature are171

used consistently in both experiments. Results show that the performance of the RF model in172

predicting SIF anomalies is higher using multi-layer SM than that with total SM (Figure 1).173

174



175
Figure 1. Model per formance (R2) in predicting Sun-Induced Fluorescence (SIF) in (a) the176

total soil moisture (SM) exper iment and (b) the multi-layer SM exper iment (SM layers 1-4).177

The panel (c) is the difference between (b) and (a), and (d) summar izes their differences178

across climate regimes (i.e. Temperature and Aridity).179



The spatial patterns of model performance are similar between both experiments with180

higher R2 (> 0.3) in the central North America, central Eurasia, southern and eastern Africa,181

central Asia, and eastern Australia. The predictive performance is improved in most regions182

across the globe when using multi-layer instead of total SM. Improvements are particularly183

found in semi-arid regions such as Australia, central North America and central Asia (Figure 1c,184

d). Since multi-layer SM may experience different dynamics across time and space (Schlaepfer185

et al., 2017; Berg et al., 2016; Zhang et al., 2016; Lian et al., 2020), plant rooting systems can186

develop to adapt for localized water deficits (Fan et al., 2017), such that vertical SM information187

can be especially useful in semi-arid regions to predict the vegetation productivity.188

Though the performance of SIF prediction is improved with multi-layer SM, the R2189

values are still relatively low in many regions. There are even some regions that show R2 lower190

than 0 in South America and central Australia, indicating a worse model performance than a191

constant mean value prediction. Such limited reliability of SIF predictions may relate to the192

noise of satellite-derived SIF, for example, large regions in South America are located near to193

the known South Atlantic Anomaly, which disturbs the satellite-based SIF retrievals (Joiner et194

al., 2013; Köhler et al., 2015). This disturbance is less relevant for the NDVI and NIRv195

retrievals such that RF model performance is better (Figure S2). Despite the weak model196

performance in the case of SIF we believe that our methodology is robust to infer main hydro-197

meteorological controls of vegetation productivity, because (i) the employed R2 of out-of-bag198

anomaly data is a challenging metric where information cannot be derived from e.g. seasonal199

variations or trends, and also other studies found similarly low values (Kraft et al., 2019); and (ii)200

main hydro-meteorological controls on SIF anomalies identified by RF model resemble global201

patterns reported in previous studies about main climatic drivers to absolute variations of202

vegetation productivity (Figure 2) (Nemani et al., 2003; Seddon et al., 2016; Madani et al.,203

2017).204

205

206



207

Figure 2. Main hydro-meteorological controls on sun-induced fluorescence (SIF) by applying (a)208

total soil moisture (SM) alongside all other predictor var iables, and (b) multi-layer SM alongside209

all other predictor var iables. (c) Shifts between the energy and water controls from (a) to (b).210

Propor tions of global land area where each var iable is the most impor tant controlling factor are211

shown in (d) and (e). In (d) and (e), TP denotes precipitation; TSM denotes total soil moisture;212

SM1, 2, 3, 4 denote soil moisture in layers 1, 2, 3, 4 respectively; TEM denotes temperature; SSRD213

denotes solar radiation; And VPD denotes vapor pressure deficit. As shown in Table S1, SM layer214

1 in ERA5 belongs to surface SM, SM layer 2 and 3 belong to shallow root-zone SM, and SM layer215

4 belongs to deep root-zone SM.216



We perform further RF model experiments to investigate if the added skill in the case of217

the multi-layer SM is related to the increased number of predictor variables, and therefore an218

increased flexibility of the model, or to the additional information contained in the individual219

layers compared with the total SM. First, the experiment of multi-layer RF (4 variables)220

preforms better than the experiment of 5 SM variables, showing that the enhanced performance221

is not exclusively due to the increased number of variables and related to increased flexibility of222

the RF model (Figure S3). Second, regionally enhanced performance can be found when223

replacing total SM with individual layers (Figure S4), indicating that additional information can224

be explored by the RF model from SM from individual layers.225

3.2. Main hydro-meteorological controls on global vegetation productivity226

The global patterns of main SIF controls are clearly different between the analyses with227

total SM and with multi-layer SM (Figure 2); Total SM does not provide sufficient information228

to the RF model to detect all water-controlled regions while these regions are actually covering229

the majority of the Earth’s land in the analysis with multi-layer SM. Overall, temperature is230

identified as the main driver of SIF in the higher northern latitudes, solar radiation dominantly231

controls SIF in most tropical regions, and VPD emerges as a main control on SIF in parts of the232

western Amazon forests, eastern North America, northern Eurasia and eastern Asia. In between233

the tropics and the higher latitudes, where mostly semi-arid climate regimes are prevailing,234

water-related variables play the dominant role in controlling SIF. Precipitation and surface SM235

control SIF in central India, western Sahel and transition regions between central and southern236

Africa. Root-zone SM mainly controls SIF in southern North America, southern Europe, and237

many parts of Eurasia, India and Australia. In general, shallow-root zone SM emerges as the238

most relevant SM reservoir for vegetation productivity, while deeper SM is particularly239

important in the transitional zones and temperate dry regions, such as central North America and240

southern South Europe.241

Key drivers of NIRv and NDVI present similar global patterns to those of SIF (Figure242

S5), while they show extended SM-controlled regions. Walther et al., 2019 also found243

inconsistent values of tree cover fraction with shifting relationships between SM and SIF or244

vegetation indices, relating to the fact that spectral greenness signals are somewhat influenced245

by moisture-related changes in the soil reflectivity or plant water content. Further, for the246



respective main controlling hydro-meteorological variables identified across space, we typically247

find highly positive associated sensitivities of SIF to the respective control, which supports248

positive relationships between the identified main controls and SIF (Figure S6).249

Next, we analyze the main controls with respect to climate regimes. Figure 3a shows that250

the SM variables dominantly control SIF in arid regions, energy-related variables dominantly251

control SIF in humid regions. In transitional regions water-related variables tend to be more252

important at warmer temperatures, while energy-related variables dominate for colder253

temperatures. Overall, the pattern is in line with first-order constraints for evapotranspiration254

from Seneviratne et al., 2010, and with findings on energy- versus water-dominated vegetation255

by Denissen et al. 2020 in Europe. Across all considered hydro-meteorological variables,256

shallow-root zone SM is identified as the most important variable in (semi-)arid regions. Among257

the energy variables temperature is the most relevant, while solar radiation also plays a role258

particularly in warm regions. Similar patterns are found for NDVI and NIRv with SM controls259

extending more beyond arid regions (Figure 3b, c).260

261



262

263

Figure 3. Main hydro-meteorological controls on (a, d) sun-induced fluorescence SIF, (b, e)264

Near-Infrared reflectance vegetation indices (NIRv) and (c, f) normalized difference265

vegetation indices (NDVI) across climate regimes and vegetation character istics. Most266

impor tant control var iables are indicated by the color of the temperature-ar idity and tree-267

vegetation boxes, respective second most impor tant control var iables are denoted by the268

color of the inner square, where the size indicates the relative impor tance compared to the269

most impor tant control var iable. Temperature-ar idity and tree-vegetation boxes270

containing less than 10 available data are shown in gray. The ar idity index and the fraction271

of vegetation cover are visualized by non-linear sequences in terms of skewed distr ibutions272

of the data.273

Main controls also differ with vegetation types (Figure 3d, e, f), mostly varying along a274

gradient in the fraction of tree cover while they are more similar between different fractions of275

vegetation cover. Regions dominated by grass or shrubs are most water-controlled, regions with276

intermediate tree cover are temperature-controlled, and regions with the highest tree cover and277

presumably wet or temperate climate conditions are mostly radiation-controlled. Such main278

energy controls involve a relatively lower vulnerability of tree ecosystems to droughts than other279

ecosystems (Huang & Xia, 2019), as droughts are typically associated with above-average solar280



radiation and newly developing leaves that can compensate photosynthesis (Orth & Destouni,281

2018; Yan et al., 2019; Hutyra et al., 2007; Wu et al., 2016; Li et al., 2018b). Moreover,282

consistent with the previous findings, NDVI and NIRv show extended significant water-related283

controls to tree-grass mixed biomes compared with the SIF results (Walther et al., 2019). This is284

more pronounced for NDVI, potentially due to larger confounding effects of background285

brightness in NDVI, while NIRv contains enhanced information about the proportion of286

vegetation in reflectance and partly overcomes this issue (Badgley et al., 2017; Badgley et al.,287

2019). Changes in main controls across vegetation characteristics are not simply an artifact of288

the correspondingly different climate regimes, as Figure S7 shows that the main hydro-289

meteorological controls change in response to both vegetation type and climate.290

3.3. Main water-related controls on global vegetation productivity291

Focusing exclusively on water-related controls reveals that the most important soil layer292

varies across climate and vegetation characteristics (Figure 4). Shallow-root zone SM is most293

relevant in semi-arid conditions and for grass or shrubs, indicating that plants can adapt to294

water-scarce conditions at the surface with deeper-reaching rooting systems (Fan et al., 2017).295

This is in line with previous but smaller-scale studies: A et al., 2019 found the strongest296

relationship between evapotranspiration and SM between 10-100 cm depth for site-scale297

experiments in a transitional zone; further, in dry surface soils in (semi-)arid regions, plants298

could easily alter rooting depth distribution and root morphology to utilize water from deeper299

soil layers (Schulze et al., 1996), for instance in local Mediterranean grass (Barkaoui et al., 2016)300

or savannas ecosystems (Hoekstra et al., 2014; Nippert & Holdo, 2015). For even drier climate301

conditions, shallower soil layers become more relevant, probably because the low water supply302

does not sustain the development of deep(er) rooting systems such that intermittent vegetation303

growth mostly benefits from rainfed surface SM. Interestingly, towards humid climate304

conditions our analysis shows a dominant role of surface SM and precipitation, while at the305

same time these regions are characterized by high tree cover with deep roots. This could be due306

to frequent precipitation keeping surface soil layers wet such that plants can extract significant307

fractions of their water demand from there, while the dependence on deeper layers for trees308

during short drought periods is not reflected. Furthermore, we note that these regions are309

controlled by temperature or solar radiation (see Figure 3) such that the results here could also310



be an artifact as precipitation and partly also surface SM are expected to co-vary more strongly311

with the dominant energy variables than deeper-layer SM.312

313

Figure 4. Main water -related controls on sun-induced fluorescence (SIF) across (a) climate314

regimes, (b) vegetation character istics, and (c) classes of fraction of tree covers and ar idity.315

Similar to Figure 3 but focusing on SIF and water -related controls only. The gray hatching316

indicates that temperature, solar radiation or VPD are identified as main controls on SIF317

in these boxes in Figure 3.318

To illustrate the robustness of our results, we repeat the previous analyses with different319

setups: (i) we use Spearman correlation (Figure S8) and SHAP feature importance (Figure S9)320

as alternative ways to estimate the importance of the considered predictor variables for SIF321

dynamics, and find similar results as for the permutation importance approach, and (ii) we use322

alternative SM products, namely GLEAM, MERRA-2 and SoMo.ml (Figure S10), all of which323

lead to similar results as found with the ERA5 SM.324

We acknowledge, however, that our analyses do not consider seasonal compensation325

effects, memory effects and irrigation effects when illustrating main hydro-meteorological326

controls on vegetation productivity. Memory effects are found occurring particularly in327

transitional water-driven biomes and sub-tropical regions (Kraft et al., 2019). Precipitation from328

wet seasons can serve as subsurface water storage in subsequent dry seasons (Guan et al., 2015),329

and water transport in roots and stems might be slow or delayed for tree ecosystems, affecting330

energy- or water-control characteristics across biomes. Besides, warm springs benefit331

photosynthesis in the early stage of the growing season, while induce water deficits in the later332

seasons in northern energy-limited ecosystems (Buermann et al., 2018). Finally the main hydro-333

meteorological controls which we determine for the entire growing season may vary between the334



early, mid and later parts of this period. We further note that our analyses is based on specific335

spatial and temporal scales, while vegetation-climate relationships can differ between short-term336

and long-term scales (Linscheid et al., 2019), and contrasting signals from nearby regions could337

lead to inconclusive results (Jung et al., 2017).338

339



4. Conclusions340

This study illustrates that the information of vertically resolved SM improves the341

understanding and modeling of anomalies of vegetation productivity. Thereby, vegetation relies342

on water from different depths while these characteristic depths vary with climate and vegetation343

type. In particular, we show at the global scale that vegetation in semi-arid regions is adapted to344

dry conditions through deep(er) rooting systems ensuring more continuous water supply from345

deeper soil layers. This complexity was not sufficiently acknowledged in previous studies;346

future research should account for vertical SM dynamics by considering multiple layers. The347

development of hydrology, land surface, and vegetation models should focus on a reliable348

representation of soil layers and vertical soil water transport.349

Further, we compare the hydro-meteorological controls of vegetation productivity350

obtained with different respective proxy metrics. SIF is more strongly related to photosynthesis,351

and eventually the carbon cycle, compared with NDVI and NIRv, but SIF data is only available352

for recent years. Our results show that NDVI and NIRv, which are available from the early353

1980s, yield similar patterns except for a consistent overestimation of water controls, probably354

induced by changes of soil background reflectance as a response to soil moisture changes.355

Overall, our study contributes to advanced process of understanding within the role of356

soil moisture on vegetation productivity by benefiting from the ever-growing suite of global357

eco-hydrological data streams.358

359
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