Societal Implications of Structural Inequities in Midstream Oil and Gas Infrastructure

Ryan E. Emanuel¹, Martina A. Caretta², Louie Rivers¹, and Pavithra Vasudevan³

¹North Carolina State University ²West Virginia University ³University of Texas

November 21, 2022

Abstract

Midstream oil and gas infrastructure comprises vast networks of gathering and transmission pipelines that connect upstream extraction sites to downstream processors, exporters, and consumers. In the United States (US), public policies and corporate decisions continue to promote the extraction and consumption of oil and gas, and they have prompted a wave of proposals for gathering and transmission pipelines in recent years. The ongoing build-out of midstream infrastructure calls for close scrutiny of associated human health risks and related societal impacts. Urgency is warranted considering that at least part of this infrastructure, the US natural gas pipeline network, is concentrated more heavily in areas of high social vulnerability than areas of low social vulnerability, highlighting inequity in the distribution of societal harms. Emerging research on ways in which midstream pipelines affect Indigenous peoples and rural communities in the US demonstrates the complex nature of potential harms. The spatial distribution of midstream infrastructure, together with the complexity of societal impacts underscore the need to clearly understand and carefully consider these impacts during infrastructure planning and permitting. We offer recommendations for scientists and decision-makers who are interested in evaluating these impacts through the lens of environmental justice.

Hosted file

geohealth supplementary material.docx available at https://authorea.com/users/528378/ articles/596855-societal-implications-of-structural-inequities-in-midstream-oil-andgas-infrastructure

1 Societal Implications of Structural Inequities in Midstream Oil and Gas Infrastructure

2 Authors: Ryan E. Emanuel^{1,2}*, Martina A. Caretta³, Louie Rivers, III¹, Pavithra Vasudevan⁴

3 Affiliations:

¹Department of Forestry and Environmental Resources, North Carolina State University.

²Center for Geospatial Analytics, North Carolina State University.

³Department of Geology and Geography, West Virginia University.

⁴Department of African and African Diaspora Studies and Center for Women's and Gender

8 Studies, University of Texas at Austin.

9 *Correspondence to: ryan_emanuel@ncsu.edu

10

11 Abstract

12 Midstream oil and gas infrastructure comprises vast networks of gathering and transmission pipelines that connect upstream extraction sites to downstream processors, exporters, and 13 14 consumers. In the United States (US), public policies and corporate decisions continue to 15 promote the extraction and consumption of oil and gas, and they have prompted a wave of 16 proposals for gathering and transmission pipelines in recent years. The ongoing build-out of 17 midstream infrastructure calls for close scrutiny of associated human health risks and related 18 societal impacts. Urgency is warranted considering that at least part of this infrastructure, the US 19 natural gas pipeline network, is concentrated more heavily in areas of high social vulnerability 20 than areas of low social vulnerability, highlighting inequity in the distribution of societal harms. 21 Emerging research on ways in which midstream pipelines affect Indigenous peoples and rural 22 communities in the US demonstrates the complex nature of potential harms. The spatial 23 distribution of midstream infrastructure, together with the complexity of societal impacts 24 underscore the need to clearly understand and carefully consider these impacts during 25 infrastructure planning and permitting. We offer recommendations for scientists and decision-26 makers who are interested in evaluating these impacts through the lens of environmental justice.

27 Plain Language Summary

28 Recent years have brought a wave of investments in oil and gas infrastructure in the United 29 States (US) and elsewhere. Research and decision-making related to human health and other 30 societal impacts of oil and gas tend to focus on upstream activities, such as hydraulic fracturing, and on downstream activities, such as refining and electricity production. However, gathering 31 32 and transmission pipelines, which connect upstream and downstream parts of the supply chain, 33 can also have major implications for nearby communities. The existing network of natural gas pipelines in the United States tends to be concentrated in places that experience high levels of 34 social vulnerability. This pattern raises concerns about the inequitable distribution of 35 environmental, health, and other burdens from pipelines and other infrastructure. We illustrate 36 37 the complicated nature of these burdens by highlighting research on the ways in which oil and 38 gas pipelines affect Indigenous peoples and rural communities more generally in the US. We 39 urge researchers and decision-makers to look closely at these types of impacts, especially in light 40 of environmental justice policy, which calls for close scrutiny of potential harm to marginalized 41 people during planning and permitting of infrastructure projects.

43 Main Text

Energy policy in the United States (US) has shifted in recent years from a focus on energy 44 independence toward so-called energy dominance (The White House, 2019). This shift coincides 45 46 with major investments in pipelines and other infrastructure to support ongoing extraction and 47 consumption of oil and gas (U.S. Energy Information Administration, 2019). Expansion of oil 48 and gas infrastructure has implications for greenhouse gas emissions, and it also affects the long-49 term health of people and ecosystems worldwide via climate change (IPCC, 2018). Besides the 50 indirect impacts of climate change, oil and gas infrastructure may pose direct risks to nearby 51 communities. At both upstream and downstream ends of the oil and gas supply chain, 52 communities experience environmental degradation and incur health and safety risks associated 53 with hydraulic fracturing, directional drilling, refining, electricity production, and other practices 54 (Bullard, 2018; Colborn et al., 2014; Davies, 2019; Olmstead et al., 2013). In the US and elsewhere, these impacts fall disproportionately on racially marginalized people, low-wealth 55 56 communities, or other vulnerable groups. 57

58 Although societal impacts of oil and gas infrastructure are well documented for upstream and 59 downstream ends of the supply chain, the impacts are not as well known for the middle, so-called 60 midstream infrastructure, which comprises gathering and transmission pipelines, pumps, 61 compressors, and storage facilities that link upstream and downstream ends of the oil and gas 62 supply chain (cf., Buse et al., 2019). A wave of proposals in recent years for midstream pipelines – some completed and others not – emphasizes an urgent need for research into societal 63 64 impacts of midstream infrastructure, including social and health-related inequities created or 65 exacerbated by these projects. The urgency is underscored by spatial patterns of natural gas

gathering and transmission pipelines and social vulnerability in the US, which reveal disparities
associated with midstream infrastructure and its societal impacts. We discuss emerging research
on the complexity of impacts to rural and Indigenous communities, which are often affected by
the construction of midstream infrastructure. Finally, we connect this work to US environmental
justice policy and discuss implications for environmental decision-making.

71

72 Emerging research from the overlooked middle

Compared to upstream and downstream ends of the oil and gas supply chain, midstream
infrastructure has received less attention from researchers and decision makers concerned about
environmental, health, or societal impacts of fossil fuel extraction and consumption (Buse et al.,
2019). The comparatively overlooked middle includes vast, continental networks of pipelines
and related equipment used to collect and transport oil and gas. For natural gas alone, the US
midstream network comprises more than 300,000 km of gathering and transmission pipelines
traversing more than 70% (2,259 of 3,142) of US counties (Fig. 1).

80

The US natural gas pipeline network exhibits an important but previously undocumented relationship with social vulnerability. Social vulnerability describes a community's ability to adapt to and recover from health crises, pollution, climate change, or negative impacts of resource exploitation (Cutter et al., 2003). For the 2,259 US counties with natural gas pipelines, the density of pipelines (pipeline km per km² of county area) is positively correlated with social vulnerability (R = 0.14, p < 0.001). As a result of this correlation, counties in the top quartile of social vulnerability (i.e., counties with the most vulnerable populations) have a pipeline density

that is 67% higher, on average, than counties in the lowest quartile of vulnerability (7.5 versus 4.5 pipeline km per 100 km² of county area; F = 45, p < 0.001).

90

91 The correlation between pipeline density and social vulnerability suggests that negative impacts 92 from the US natural gas gathering and transmission pipelines, including air and water pollution, 93 public health and safety concerns, and other burdens, fall disproportionately on communities 94 with limited resources to deal with the challenges these impacts create. The correlation neither 95 implies that vulnerable communities were targeted by pipeline developers nor that vulnerable 96 communities sprang up near pipelines. Nevertheless, it reveals a structural inequity that warrants 97 further scrutiny. Although the concentration of infrastructure in areas of high social 98 vulnerability is consistent with patterns observed at upstream and downstream ends of the oil and 99 gas supply chain (Colborn et al., 2014; Davies, 2019), emerging research suggests that 100 midstream infrastructure may pose different challenges for communities in rural areas, where 101 pipelines and related infrastructure are often located. 102 103 Decision-makers responsible for permitting midstream pipelines have justified rural routes by

Decision-makers responsible for permitting midstream pipennes have justified rular fouces by
implying that societal risk is connected to population size density, asserting, in some cases, that
societal risks are greater in urban areas than to rural areas. For example, federal regulators
eliminated an early route for the Dakota Access Pipeline partly because of its proximity to the
city of Bismarck, ND and its urban water supply. Regulators instead chose a rural route
adjoining the present-day Standing Rock Sioux reservation (Whyte, 2017).

109

110 Although population density may help predict the severity of certain impacts (e.g., a gas pipeline 111 explosion may harm more people in an urban area than an equivalent explosion in a rural area), 112 we contend that rural pipeline impacts, in general, are not simply diffuse or less intense versions 113 of urban impacts. Instead, a body of emerging research suggests that gathering and transmission 114 pipelines pose distinct cultural, economic, and other challenges for rural areas (Caretta & 115 McHenry, 2020; Donnelly, 2018; Emanuel & Wilkins, 2020; Whyte, 2017). The recent wave of 116 oil and gas pipeline development in the US and elsewhere highlights the need for more nuanced 117 review of such impacts during planning and permitting and, more broadly, during discussions 118 about the societal costs of public policies that promote the expansion of infrastructure networks 119 in rural areas. We highlight two areas of research, in particular, that illustrate the complexity of 120 societal impacts associated with rural pipeline infrastructure. They include the unique impacts to 121 Indigenous peoples and their territories, and impacts related to pipeline easements through rural, 122 private lands.

123

124 Several oil and gas transmission pipelines proposed or built in recent years have major 125 implications for Indigenous peoples. The Dakota Access, Keystone XL, Trans Mountain 126 Expansion, Enbridge Line 3, and Atlantic Coast pipelines are major, midstream projects that 127 traverse present-day or ancestral territories of Indigenous peoples in the US and Canada. Some 128 Tribes and First Nations oppose these projects not only because of concerns over pollution or 129 risks to human health, but also because of the pipelines' potential to cause irreparable cultural 130 harm by damaging or destroying landscapes that have religious, historical, or cultural significance. 131

132

133 Despite the high stakes for Indigenous peoples, few culturally-oriented pipeline assessments 134 exist. Those that do are commissioned mainly by affected Tribes or First Nations in response to 135 regulatory processes that fail to address concerns they deem important (e.g., Honor the Earth, 136 2020; Tsleil-Waututh Nation, 2015). These assessments describe how pipeline construction and 137 operation may disrupt, for example, the ability of Indigenous peoples to maintain place-based 138 food traditions or cultural practices. They also highlight ways in which regulatory proceedings 139 renew or exacerbate longstanding ethical and legal issues surrounding the participation of 140 Indigenous peoples in decision-making about their own lands and communities (Emanuel & 141 Wilkins, 2020; Honor the Earth, 2020; Tsleil-Waututh Nation, 2015; Whyte, 2017). Beyond 142 negative impacts on the ground, this work explains how planning and permitting exclude 143 Indigenous perspectives, weaken sovereignty, or otherwise undermine Indigenous self-144 determination. Such societal impacts, which are independent of population density, are rarely 145 considered in pipeline planning and permitting.

146

147 A second area of emerging research suggests that pipeline easements on privately-owned lands 148 may catalyze transformation of rural landscapes and communities. Easements are property rights 149 obtained through landowner negotiation or through eminent domain, a legal process that requires 150 landowners to relinquish certain property rights to pipeline builders and operators. The societal 151 implications of easements, however, extend far beyond delineated and compensated boundaries. 152 Easements place practical restrictions on adjacent land use, they affect nearby property value, 153 and – in some cases – they increase the risks of fire or catastrophic explosions in areas far away 154 from easement boundaries. Research from rural Appalachia confirms that easements through 155 privately-owned lands facilitate drastic alteration of communities, quickly transforming rural

landscapes into sprawling, industrial settings (Caretta & McHenry, 2020; Donnelly, 2018). The
societal implications of these relatively rapid changes, including the implications for rural public
health, are not well known.

159

Both research areas undermine the idea that midstream pipelines have negligible societal impacts in rural areas simply because populations are less dense than in urban areas. Moreover, the correlation between pipeline density and social vulnerability (Fig. 1) suggests a pressing need to reconsider whether it is in the public interest to maintain or reinforce existing structural inequities that place a disproportionately large share of burdens on vulnerable populations.

165

166 <u>Recommendations for researchers and decision-makers</u>

167 Environmental justice (EJ) offers a policy framework for contextualizing pipeline impacts on 168 communities and for evaluating the broader societal implications of US energy dominance. In the US, federal EJ policy already requires inclusion of socioeconomic analyses in pipeline 169 170 regulatory reviews to help identify and address adverse environmental and subsidiary impacts 171 that could fall disproportionately on vulnerable populations as a result of permitted activities 172 (e.g., Emanuel & Wilkins, 2020). Federal guidance includes tools for identifying disparities in 173 impacts by race or income status, but agencies have wide latitude to choose or develop their own 174 analyses. Decades of research has improved the ability of decision-makers to identify disparities 175 with respect to vulnerable populations, but EJ policy implementation has also been criticized as 176 methodologically unsound, procedurally rote, or ineffective at preventing or minimizing negative 177 impacts disproportionately imposed on socially vulnerable populations (Bullard, 2018; Davies, 178 2019; Emanuel & Wilkins, 2020). In some cases, EJ assessments involve only cursory

demographic screenings, which can mask racial disparities or other social inequities in pipeline
routing (Emanuel & Wilkins, 2020). Moreover, the two emerging areas that we highlight show
that demographic data alone are unlikely to capture the complexity of concerns held by
Indigenous, low-wealth, or racially marginalized communities. Scientists and decision-makers
must re-envision screening tools and follow-up analyses to more fully incorporate the societal
costs of pipelines and related infrastructure into planning and permitting.

185

186 Research has brought clarity to socioeconomic, cultural, and other impacts of midstream 187 pipelines, yet much of this work has not been integrated into decision-making. For example, 188 Indigenous peoples are often well-equipped to assess pipeline impacts to their own territories and 189 communities, but they often have limited opportunities to participate meaningfully in decision-190 making (e.g., Emanuel and Wilkins, 2020). To remedy the situation, corporations and regulators 191 must commit to early, good-faith efforts to incorporate Indigenous perspectives into decision-192 making. In other areas, scientists can help close gaps by partnering with communities to 193 describe and quantify impacts related to environmental degradation, health and safety, and other 194 issues. For rural areas, this work could include quantifying the value of property or assets lost 195 through eminent domain for the construction of pipelines and related infrastructure, and 196 identifying the extent to which midstream infrastructure increases societal tensions or desires to 197 relocate from rural communities. Opportunities also exist for scientists and others to hold 198 regulators to high standards when they design and implement EJ analyses.

199

Scientists and decision-makers should also pay closer attention to the cumulative impacts of colocated pipelines, compressors, and other equipment in rural communities. Regulatory analyses

202 focus on the implications of newly-proposed infrastructure and – with few exceptions – disregard 203 impacts associated with the gradual accumulation of infrastructure in a community. Yet people 204 nearby do not experience newly-proposed facilities in isolation; they are exposed to the 205 cumulative effects of all surrounding infrastructure on air quality, noise, explosion risks, and 206 more. Moreover, because much oil and gas infrastructure pre-dates environmental policies 207 aimed at avoiding or minimizing societal impacts, the build-up of pipelines and other facilities in 208 these communities may reinforce historic practices of oppression imposed upon Indigenous, 209 racially marginalized, and low-wealth communities. Developers cite economic or technical 210 advantages to co-locating pipelines and other facilities with existing midstream infrastructure; 211 the potential downsides of accumulated infrastructure warrant similar scrutiny and consideration. 212 213 As research emerges on the impacts of oil and gas infrastructure in rural communities, synthesis 214 work is needed to determine the extent to which the ongoing build-out of midstream pipelines

and related infrastructure adds to environmental, public health, and other burdens already experienced by vulnerable populations. Such work complements current research on societal burdens associated with the oil and gas supply chain by acknowledging the often-overlooked middle ground between upstream and downstream infrastructure. A more complete view of the supply chain can inform decision-makers and the general public about the larger societal costs of US energy dominance, including the extent to which vulnerable rural communities subsidize this policy through inequitable exposure to environmental, health, and other risks.

222

223 References

- 224 Bullard, R. D. (2018). *Dumping in Dixie: Race, class, and environmental quality*. Routledge.
- 225 Buse, C. G., Sax, M., Nowak, N., Jackson, J., Fresco, T., Fyfe, T., & Halseth, G. (2019).
- 226 Locating community impacts of unconventional natural gas across the supply chain: A
- scoping review. *The Extractive Industries and Society*, 6(2), 620–629.
- 228 https://doi.org/10.1016/j.exis.2019.03.002
- 229 Caretta, M. A., & McHenry, K. A. (2020). Perspective Appalachia: A perspective on the

everyday lived experiences of rural communities at the frontline of energy distribution
networks development. *Energy Research & Social Science*, *63*, 101403.

- 232 Colborn, T., Schultz, K., Herrick, L., & Kwiatkowski, C. (2014). An exploratory study of air
- quality near natural gas operations. *Human and Ecological Risk Assessment: An International Journal*, 20(1), 86–105.
- Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental
 hazards. *Social Science Quarterly*, 84(2), 242–261.
- Davies, T. (2019). Slow violence and toxic geographies: 'Out of sight' to whom? *Environment and Planning C: Politics and Space*, 2399654419841063.
- 239 https://doi.org/10.1177/2399654419841063
- Donnelly, S. (2018). Factors influencing the location of gathering pipelines in Utica and
 Marcellus shale gas development. *Journal of Geography*, 6(1), 1–10.
- 242 Emanuel, R. E., & Wilkins, D. E. (2020). Breaching Barriers: The Fight for Indigenous
- 243 Participation in Water Governance. *Water*, *12*(8), 2113.
- Honor the Earth. (2020, May 12). Anishinaabeg Cumulative Impact Assessment. Retrieved from
- 245 https://www.mnchippewatribe.org/impact_assessment.html

- 246 IPCC. (2018). IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts
- 247 of global warming of 1.5°C above pre-industrial levels and related global greenhouse
- 248 gas emission pathways, in the context of strengthening the global response to the threat
- 249 of climate change, sustainable development, and efforts to eradicate poverty [Masson-
- 250 Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W.
- 251 Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou,
- 252 *M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)].*
- 253 Intergovernmental Panel on Climate Change.
- 254 Olmstead, S. M., Muehlenbachs, L. A., Shih, J.-S., Chu, Z., & Krupnick, A. J. (2013). Shale gas
- development impacts on surface water quality in Pennsylvania. *Proceedings of the National Academy of Sciences*, *110*(13), 4962–4967.
- 257 The White House. (2019, May 14). Fact Sheet: President Donald J. Trump Is Unleashing

258 American Energy Dominance. The White House. Retrieved from

- 259 https://www.whitehouse.gov/briefings-statements/president-donald-j-trump-unleashing-
- american-energy-dominance/
- 261 Tsleil-Waututh Nation. (2015). Assessment of the Trans Mountain Pipeline and Tanker

262 *Expansion Proposal*. Retrieved from https://twnsacredtrust.ca/wp-

- 263 content/uploads/2015/05/TWN-Assessment-Summary-11x17.pdf
- 264 U.S. Energy Information Administration. (2019). *Financial Review: Third-Quarter 2019*.
- Retrieved from https://www.eia.gov/finance/review/pdf/financial_q32019.pdf
- Whyte, K. (2017). The Dakota Access Pipeline, environmental injustice, and US colonialism. *Red Ink*, *19*(1).

269 Acknowledgments

- 270 The authors received no external funding to support this work. Supplementary materials include
- 271 methods and datasets used to generate Figure 1 and to compute statistics. These materials can be
- accessed at https://doi.org/XX.XXX/zenodo.XXXXXX.

273 Figures

Figure 1: Natural gas gathering and transmission pipelines in the conterminous US, with social

vulnerability index shown for each US county. Alaska and Hawaii are included in statistical

analyses but are not shown. See supplementary materials for a description of methods.

