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Abstract

Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) reduction co-benefits. As such,

China has aggressively incentivized EV adoption, however much remains unknown with regard to EVs’ mitigation potential,

including optimal vehicle type prioritization, power generation contingencies, effects of Clean Air regulations, and the ability

of EVs to reduce acute impacts of extreme air quality events. Here, we present a suite of scenarios with a chemistry-climate

model that assess the potential co-benefits of EVs during an extreme winter air quality event. We find that regardless of

power generation source, heavy-duty vehicle (HDV) electrification consistently improves air quality in terms of NO2 and fine

particulate matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant exposure during the infamous January

2013 pollution episode (˜1% of total premature mortality). However, HDV electrification does not reduce GHG emissions

without enhanced emission-free electricity generation. In contrast, due to differing emission profiles, light-duty vehicle (LDV)

electrification in China consistently reduces GHG emissions (˜2 Mt CO2), but results in fewer air quality and human health

improvements (145 avoided deaths). The calculated economic impacts for human health endpoints and CO2 reductions for

LDV electrification are nearly double those of HDV electrification in present-day (155M vs. 87M US$), but are within ˜25%

when enhanced emission-free generation is used to power them. Overall we find only a modest benefit for EVs to ameliorate

severe wintertime pollution events, and that continued emission reductions in the power generation sector will have the greatest

human health and economic benefits.
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Key Points: 18 

• Heavy-duty vehicle electrification in China consistently improves air quality regardless 19 
of power generation source 20 

• Light-duty vehicle electrification offers less air quality benefits but consistently reduces 21 
total CO2 emissions 22 

• Power sector emission reductions are central to achieving co-benefits from electric 23 
vehicles  24 
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Abstract 26 

Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) 27 

reduction co-benefits. As such, China has aggressively incentivized EV adoption, however much 28 

remains unknown with regard to EVs’ mitigation potential, including optimal vehicle type 29 

prioritization, power generation contingencies, effects of Clean Air regulations, and the ability of 30 

EVs to reduce acute impacts of extreme air quality events. Here, we present a suite of scenarios 31 

with a chemistry-climate model that assess the potential co-benefits of EVs during an extreme 32 

winter air quality event. We find that regardless of power generation source, heavy-duty vehicle 33 

(HDV) electrification consistently improves air quality in terms of NO2 and fine particulate 34 

matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant exposure during the 35 

infamous January 2013 pollution episode (~1% of total premature mortality). However, HDV 36 

electrification does not reduce GHG emissions without enhanced emission-free electricity 37 

generation. In contrast, due to differing emission profiles, light-duty vehicle (LDV) 38 

electrification in China consistently reduces GHG emissions (~2 Mt CO2), but results in fewer 39 

air quality and human health improvements (145 avoided deaths). The calculated economic 40 

impacts for human health endpoints and CO2 reductions for LDV electrification are nearly 41 

double those of HDV electrification in present-day (155M vs. 87M US$), but are within ~25% 42 

when enhanced emission-free generation is used to power them. Overall we find only a modest 43 

benefit for EVs to ameliorate severe wintertime pollution events, and that continued emission 44 

reductions in the power generation sector will have the greatest human health and economic 45 

benefits. 46 

Plain Language Summary 47 

Electrric vehicles (EVs) offer potential air quality and climate change co-benefits, but due to 48 

varying power generation and vehicle types, and because air pollution chemistry is nonlinear, it 49 

is not clear to what extent EVs could provide mediation, especially during extreme air pollution 50 

episodes. China is both rapidly adopting EVs and frequently experiences poor air quality. We use 51 

an air quality model that simulates the comlex interplay between weather and air quality to 52 

examine the potential co-benefits of EVs in China during a historical pollution episode. We 53 

simulate both light- and heavy-duty vehicle adoption to show their individul benefits, and 54 



manuscript submitted to Earth’s Future 

 

demonstrate the need for low-emission electricity generation to maximize co-benefits. Overall, 55 

we find that heavy-duty fleet electrification consistently improves air quality and reduces 56 

mortality, but offers little climate change benefits without enhanced emission-free electricity 57 

generation. Light-duty vehicles, however, offer large climate change benefits but few air quality 58 

improvements, highlighting the need for cross-modal adoption strategies. 59 

1 Introduction 60 

China faces the concurrent challenges of mitigating anthropogenic climate change and 61 

improving air quality. China contributes ~30% of global CO2 emissions (Boden et al., 2017) and 62 

ambient pollution accounts for ~17% of its annual deaths (Rohde et al., 2015). Mitigation 63 

strategies that simultaneously target both challenges, such as the electrification of the 64 

transportation sector, are desirable and needed (Haines, 2017; Patz, 2020). China’s transportation 65 

sector contributes ~9% of its total CO2 emissions (Zheng et al., 2018) and is responsible for 66 

~100,000+ annual air pollution related premature deaths (Anenberg et al., 2019). While electric 67 

vehicles (EVs) remove on-road CO2 and tailpipe pollutant emissions and precursors, electricity 68 

demands increase emissions from fossil fuel-based electricity generating units (EGUs), which 69 

comprise ~65% of China’s grid mix (IEA, 2017). Recent studies suggest that extreme pollution 70 

episodes will constitute a disparate share of China’s future increases in air quality-related 71 

mortality (Hong et al., 2019), and that the underlying meteorological conditions of their 72 

formation and persistence (Zhang et al., 2015) have increased in likelihood due to anthropogenic 73 

climate change (Callahan et al., 2019; Cai et al., 2017; Zou et al., 2017; Zou et al., 2020). One 74 

such extreme pollution episode occurred in January 2013, when over 600M people across China 75 

were exposed to extremely high levels of fine particulate matter (PM2.5) during a series of 76 

pollution episodes (Sheehan et al., 2014). Conditions in Beijing were particularly dire: visibility 77 

was reduced to <1 km (Sun et al., 2014), emergency room visits increased ~30% (Ferrreri et al., 78 

2018), and ~690 premature deaths occurred with health impacts totaling 250M+ US$ (Gao et al., 79 

2015). These episodes – often referred to as Airpocalypse in popular media (Beech, 2013; 80 

Kaiman, 2013) – motivated significant pollution control efforts in the transportation and energy 81 
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sectors (Zhang et al., 2019), including a strong regulatory push toward “New Energy Vehicles” 82 

like EVs (Reuters, 2020). 83 

A simple accounting of the displacement of on-road to EGU-based emissions can be used 84 

to quantify net CO2 changes due to EV adoption (e.g., Huo et al., 2015), but pollutant emission 85 

changes are heterogeneous in space and time, and the efficacy of emissions to produce pollution 86 

depends on numerous complicating nonlinear chemical and meteorological factors – unlike 87 

spatially well-mixed and nonreactive CO2. Therefore, efforts to evaluate air quality impacts of 88 

EV adoption must use a chemistry-transport model (CTM) to capture complexities of air 89 

pollution chemistry, transport, and timing. CTM-based analyses of EV adoption in China are 90 

limited despite growing widespread deployment (e.g., He et al., 2018). Moreover, comparisons 91 

are challenging due to methodological differences, and key findings can diverge. For example, 92 

Peng et al. (2018) found that coal-intensive (75%) electrification of 30% of on-road vehicles 93 

does not reduce GHG emissions but could avoid 41k+ deaths, while Liang et al. (2019) found 94 

that 27% EV adoption could reduce GHG emissions and avoid 17k+ premature deaths. Both 95 

studies (Peng et al., 2018; Liang et al., 2019) simulate electrification of multiple modal types, 96 

i.e., light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs), which prevents disentangling 97 

each mode’s co-benefits. Indeed, the impact of electrifying one mode could mask impacts from 98 

others. For example, Huo et al. (2015) used an emission accounting approach and found that in 99 

contrast to Peng et al. (2018), electrification of only LDVs could reduce GHG emissions even 100 

under coal-intensive electrification. To clarify benefits and tradeoffs of EV adoption in China, 101 

we focus on each mode’s potential to reduce CO2 emissions and mitigate extreme winter 102 

pollution events. We utilize open-source data and an emission remapping algorithm (Schnell et 103 

al., 2019) to estimate changes that result from different EV scenarios (Table 1). To constrain 104 

differing emission profile impacts of modal choice we independently assess replacement of equal 105 

electricity-demand fractions of China’s HDV and LDV fleets (i.e., 40%). We use a regional 106 

chemistry-climate model and quantify changes in CO2 and air pollutants from a baseline 107 

simulation to each EV scenario. Public health impacts and costs are calculated across seven 108 

health endpoints (Gao et al, 2015) caused by acute PM2.5 and NO2 exposure, which we compare 109 

to monetary consequences of CO2 emission changes. Further experiments investigate EGU 110 

emission rate sensitivities, potential co-benefits of renewable energy adoption, and consequences 111 

of coal-only power generation. EV adoption scenarios are simulated using meteorological 112 
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conditions from January 2013 to assess the potential for air quality remediation during an 113 

extreme pollution episode. 114 

2 Materials and Methods 115 

2.1 Electric vehicle adoption experiments 116 

Each simulation is run from December 22, 2012 to January 31, 2013, with the first 10 117 

days discarded as model spin-up. Our control simulation is referred to as BASE. Our primary 118 

electrification (HDV_2015) experiment replaces a total of 1.5M HDVs (~40% of the fleet), with 119 

~33% of these HDVs placed in cities from He et al. (2018); hence, “EV-forward cities” (Figure 120 

1). We assume an average operating efficiency of 1.3 kWh km-1, similar to the specifications of 121 

an electric bus or truck (e.g., https://www.nrel.gov/docs/fy16osti/65274.pdf; 122 

https://www.tesla.com/semi). The electricity sector emission rates reflects those from the China 123 

Statistical Yearbook (2015). To highlight the impact of recent EGU emission reductions, we 124 

perform an experiment (HDV_2010) using emission rates for coal-fired EGUs set to 2010 levels 125 

(Liu et al., 2015), as well as an experiment that only uses these coal-fired EGUs (HDV_COAL). 126 

We also simulate a scenario (HDV_REN) in which 50% of the marginal electric demand to 127 

charge the EVs comes from emission-free sources (e.g., wind, water, solar). Emission rates for 128 

all generation types except coal-fired EGUs remain the same as in HDV_2015 throughout other 129 

experiments.  130 

Table 1. Summary of modeling experiments. 

Scenario Name Scenario Description 

BASE Baseline January 2013 scenario  
HDV_* ~40% of HDV fleet electrified (1.5M vehicles)  
LDV_* ~40% of LDV fleet electrified (39.2M vehicles)  
*_COAL EVs powered by coal-fired EGUs using 2010 emission rates 
*_2010 EVs powered by EGUs with 2010 emission rates 
*_CUR EVs powered by EGUs with 2015 emission rates 
*__FUT *_CUR with electricity demand halved prior to remapping to EGUs 
*_2014 Scenario nudged to January 2014 meteorology 
NO_TRA All on-road sector emissions removed from grid cells in China 
NO_ENE All power sector emissions removed from grid cells in China 

We compare the co-benefits of e-HDV vs. e-LDV adoption by using the total electricity 131 

demand from the HDV experiments to instead electrify a fleet of LDVs. The equivalent of each 132 
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HDV* experiment is also performed for LDVs. For e-LDVs, we use operating efficiencies of 133 

0.16 kWh km-1, which represents a new compact EV (e.g., 2019 Tesla Model 3; 134 

https://www.fueleconomy.gov/feg/evsbs.shtml); these parameters lead to an equivalent LDV 135 

adoption of 39.2M vehicles (coincidently, like HDV, ~40% of the fleet; Figure 1b). To capture a 136 

greater uncertainty range for changes in CO2 emissions, we compare results using a battery 137 

efficiencies for e-LDVs of 0.12 kWh km-1 and 0.18 kWh km-1 (Huo et al., 2015), and use the 138 

same relative scaling for e-HDVs (i.e., 0.975 kWh km-1 and 1.4625 kWh km-1).  Although the 139 

total electricity demand is the same between e-HDV and e-LDV experiments, the spatial 140 

distribution of the demand differs slightly due to differing intra- and inter-province fleet 141 

distributions. In general, LDVs are more concentrated in the most economically developed 142 

regions (Figure S1); i.e., the national capital region of Beijing-Tianjin-Hebei (BTH), the Yangtze 143 

River Delta (YRD: Shanghai, Zhejiang, and Jiangsu), and the Pearl River Delta (PRD: 144 

Guangdong). In addition to January 2013, we also simulate HDV_2015 and LDV_2015 for a 145 

relatively ‘clean’ month (January 2014) to compare EV-impacts for an extreme episode month to 146 

a ‘normal’ month. 147 

  
Figure 1. Number of electric vehicles introduced at each 12 km grid cell. (a) e-HDV, (b) e-LDV. 

EV-forward cities (see Materials and Methods) are shown in green. 
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2.2 Health impact and monetary value calculations 148 

We calculate the acute health impacts and economic losses that result from surface PM2.5 149 

and NO2 exposure over the January 2013 episode following the methods of Gao et al. (2015), 150 

who apply a Poisson regression model (Guttikunda and Goel, 2013) to estimate the number of 151 

cases of mortality and morbidity over seven health endpoints, including premature mortality, 152 

respiratory and cardiovascular hospital admissions, outpatient visits (ages 0–14 and 14+), 153 

bronchitis, and asthma (Table S1). The number of cases (∆E) is estimated as equation (1):  154 

 155 

(1)   ∆𝐸 = ∑ ∆𝑃𝑂𝑃 ∗ 𝐼𝑅 ∗ *1 − -
.(0∆1)

3#	6789:
8;-  156 

 157 

where ∆POP is the population exposed to the incremental concentration ΔC in grid cell i, IR is 158 

the incidence rate of the health endpoints, and ß is the concentration-response function. For NO2, 159 

we only calculate premature mortalty and our β values come from Chen et al. (2017). For PM2.5, 160 

we use updated β values from Chen et al. (2018) for all-cause mortality, but apply the same input 161 

data and parameters as Gao et al. (2015) in our calculations for other health endpoints: we use 162 

the Gridded Population of the World v4 for the year 2015 for population data 163 

(https://sedac.ciesin.columbia.edu/data/collection/gpw-v4) and β and IRs are from a range of 164 

sources (Table S1). The ß values represent the increase in daily mortality and morbidity cases 165 

due to a 10 µg m-3 increase in two day average PM2.5 or NO2 and the IRs were converted from an 166 

annual to a daily value assuming cases are equally distributed. Like Gao et al. (2015), we also 167 

use the WHO 24-h average PM2.5 guideline value of 25 µg m-3 to obtain the incremental 168 

concentration ∆C; i.e., we assume no health impacts are incurred below this value. For NO2 we 169 

use a reference value of zero. We calculate the monetary value associated with each health 170 

endpoint using the unit loss values from Table 2 of Gao et al. (2015), which are taken from 171 

Huang and Zhang (2013). To calculate the avoided (or added) health and economic impacts due 172 

to fleet electrification, we subtract the impacts of the sensitivity simulation from the impacts 173 

calculated for BASE. 174 
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2.3 Air quality model description 175 

Our experiments use the two-way coupled Weather Research and Forecasting (WRF, 176 

v3.8; Skamarock et al., 2008) and Community Multi-scale Air Quality (CMAQ, v5.2; Byun et 177 

al., 2006) modeling system (WRF-CMAQ; Wong et al., 2012). WRF is run with 30 vertical 178 

levels from the surface to 50 hPa at 12 km horizontal resolution extending from 17.6°S–49.6°N 179 

and 95.8°E–134.2°E (244 x 294 grid cells). The lowest model layer is ~30 m thick, with the first 180 

~7 layers in the bottom 1 km. Initial and time-varying boundary conditions are provided by the 181 

NCEP FNL Operational Model Global Tropospheric Analyses dataset 182 

(https://rda.ucar.edu/datasets/ds083.2/). The model is run with analysis nudging above the 183 

boundary layer using Four Dimensional Data Assimilation (FDDA) with nudging coefficients of 184 

3.0 x 10-4 s-1 for temperature and winds and 1.0 x 10-4 s-1 for water vapor mixing ratio. The 185 

model physics options include the Morrison 2-moment microphysics scheme (Morrison et al., 186 

2009), version 2 of the Kain-Fritsch (KF2) cumulus cloud parameterization (Kain, 2004), the 187 

Asymmetric Convective Model version 2 (ACM2) for the planetary boundary layer (Pleim, 188 

2007ab), and the Pleim-Xiu land surface model (Xiu and Pleim, 2001) with soil moisture 189 

nudging (Pleim and Xiu, 2003; Pleim and Gilliam, 2009) during the 10-day spin-up period. We 190 

use the Rapid Radiative Transfer Model for GCMs (RRTMG) for both our shortwave and 191 

longwave radiation schemes, for which the two-way model has been developed to use. WRF is 192 

run with a 60 second time step and a 20 minute radiation time step. CMAQ is run with the CB05 193 

gas phase mechanism with version 6 of the aerosol module (AERO6) and aqueous/cloud 194 

chemistry. CMAQ is coupled to WRF at a frequency of 1:5 (i.e., CMAQ is run every 5 minutes). 195 

Sensitivity tests over our domain show only small differences in simulated PM2.5 abundances for 196 

higher frequency coupling. Initial and time-varying chemical boundary conditions are from 197 

MOZART-4/GEOS5 (https://www.acom.ucar.edu/wrf-chem/mozart.shtml).  198 

Anthropogenic emissions were generated with raw inputs from EDGAR version 4.3.2 199 

(http://edgar.jrc.ec.europa.eu/overview.php?v=432_AP, last access April 10, 2020) using the 200 

methods of Wang et al. (2014). Primary PM and VOCs are speciated to model species based on 201 

the SPECIATE 4.2 database (Hsu and Divita, 2008). Biogenic emissions are generated using the 202 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.10 (Guenther et al., 203 

2006), while open burning emissions are generated based on the Fire Inventory from NCAR 204 
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(Wiedinmyer et al., 2011). Emissions of dust and sea salt are calculated online. Although the 205 

EDGAR emissions represent year 2010, total Chinese emissions in 2013 are similar (Zheng et 206 

al., 2018). In general, transportation emissions increased and power sector emission decreased 207 

over the 2010-2013 time period. Onroad and power sector emissions were processed separately 208 

and merged after modifications for individual scenarios. The premerged processed emissions that 209 

exclude onroad and power sectors were anomalously high in some grid cells, which compounded 210 

PM2.5 simulation biases. To remedy these biases we smoothed the 50 largest anomalous values of 211 

each emitted species in each emission layer prior to merging with the unmodified onroad and 212 

power sector emissions. Anomalous values were smoothed by averaging the eight neighboring 213 

grid cells. Grid cell smoothing sensitivity tests were performed until a near-zero mean bias over 214 

Beijing was attained. 215 

2.4 Model evalution 216 

Figure S2 compares the time series of WRF-CMAQ simulated daily averaged surface 217 

temperature, relative humidity, and 10 m wind speed as compared to NOAA National Centers for 218 

Environmental Prediction Integrated Surface Database (https://www.ncdc.noaa.gov/isd/data-219 

access). Our comparisons are with observations sites closest to the U.S. Embassy locations that 220 

measure PM2.5. Overall, the model performs very well for these variables at these locations. 221 

WRF generally underestimates surface temperatures (mean bias (MB) = -0.4 to -1.5) but matches 222 

daily variability well – correlations (r) range from 0.85 to 0.97. Relative humidity performance is 223 

good over Beijing (MB = -3%, r = 0.84), though over Chengdu, WRF is biased low by over 20% 224 

(r = 0.66). Wind speed is also simulated well, with MBs ranging from -1.2 m s-1 to  0.2 m s-1 and 225 

high correlations, particularly over Shanghai and Guangzhou. 226 

Figure S3 show the hourly and daily averaged PM2.5 time series for WRF-CMAQ as 227 

compared to surface observations from United States Embassy sites in Beijing, Shanghai, 228 

Guangzhou, and Chengdu (http://www.stateair.net/web/historical/1/1.html). The model is biased 229 

high over three of the four locations, ranging from -0.7 µg m-3 (-0.4%) over Beijing to 88 µg m-3 230 

(106%) over Guangzhou. The lowest (highest) bias generally occurs during midday (evening) 231 

when PM2.5 is at a minimum (maximum). Comparing the observed timeseries to the average time 232 

series of the nine grid cells around the observation site reveals extremely pronounced spatial 233 
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variability that the emissions or model may not appropriately delineate. For example, Beijing’s 234 

bias decreases from -0.7 to -69 µg m-3; Shanghai from 65 to 21 µg m-3; Guangzhou from 88 to 67 235 

µg m-3; and Chengdu from 33 to -8.4 µg m-3. Over Beijing, Shanghai, and Chengdu, WRF-236 

CMAQ matches both the hourly (Pearson correlation, rhour = 0.51–0.74) and daily (rday = 0.64–237 

0.88) variability of PM2.5 well, but it performs poorly over Guangzhou (rday = 0.21). 238 

Comparisons with Guangzhou’s adjacent grid cells yield similarly poor agreement. We 239 

attempted to remedy the poor performance in the vicinity of Guangzhou by testing several WRF 240 

physics options (e.g., cumulus physics, stronger nudging and/or nudging in the boundary layer, 241 

number of vertical layers, time step(s), etc.). Using stronger nudging coefficients within the 242 

boundary layer and at the surface slightly improved the performance over Guangzhou in terms of 243 

matching daily variability, but doing so increased the bias in the four cities substantially, and so 244 

we retained our original parameters. We also perform a sensitivity simulation without the 245 

aerosol-radiation feedback, which reduces PM2.5 concentrations (and thus decreases the bias at 246 

three of the four sites), but it decreases the correlation at each site (orange lines in Figure S3). On 247 

the final two days of our simulation (Jan 30-31), we observe a substantial high bias in simulated 248 

PM2.5 over Beijing, which accounts for nearly 30% of the total monthly deaths. 249 

2.5 Emission remapping 250 

We construct our vehicle electrification emission datasets using the methods described in 251 

Schnell et al. (2019). We slightly modify the methods due to differences in data sources and 252 

modeling system. Our electrification emissions (𝐸∗) are calculated as equation (2): 253 

 254 

(2) 𝐸:,=,>∗ = 𝐸:,=,>? − 𝐸:,=,>@AB + 𝐸:,=,>BDE  255 

 256 

where 𝐸:,=,>?  is the unmodified CMAQ-ready emissions (i.e., hourly, on the 12 km grid, and 257 

speciated to the chemical mechanism) for species s at hour t and grid cell xj, 𝐸:,=,>@AB  are the 258 

emissions associated with conventional internal combustion engine vehicles (ICEVs) 259 

transitioned to EVs, and 𝐸:,=,>BDE is the emissions from electric generating units (EGUs) that power 260 

the added EVs. 261 
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2.5.1 Emissions of replaced internal combustion vehicles 262 

We calculate the emissions of the replaced ICEVs as: 263 

 264 

(3) 𝐸:,=,>,F@ABG = ∑ 𝑓𝐸𝑉>,F ∙ 𝑓𝐸:,>,F@ABG ∙ 𝐸:,=,>KLMN
F;- + (𝑟PQ − 1)𝐸:,>,FPQ + (𝑟MQ − 1)𝐸:,>,FMQ +265 

(𝑟RQ − 1)𝐸:,>,FRQ  266 

 267 

where 𝑓𝐸𝑉>,F is the fraction of the ICE vehicles in grid cell j  and mode m converted to EVs, 268 

𝑓𝐸:,>,F@ABG  is the fraction of on-road transportation emissions from mode m, 𝐸:,=,>KLM  is the total on-269 

road emissions, and 𝑟PQ𝐸:,>,FPQ , 𝑟MQ𝐸:,>,FMQ , and 𝑟RQ𝐸:,>,FRQ  are respectively the scaled non-exhaust 270 

emissions of tire wear, road wear, and brake wear. For 𝑓𝐸:,>,F@ABG , we use province-level data from 271 

the GAINS model that is linearly interpolated to 2013 using 2010 and 2015 data. To calculate 272 

𝑓𝐸𝑉>,F, we first determine the number of vehicles of each mode in each grid cell using GAINS 273 

vehicle fleet counts, which we map onto our 12 km grid using the on-road emissions of NOx (NO 274 

+ NO2) as weights for HDVs; for LDVs, we use CO. We then choose the total number of ICEVs 275 

to transition and distribute them accordingly. First, we distribute a fraction of the total EVs to the 276 

30 cities that collectively represent over 80% of the EVs in 2015 (He et al., 2018) using their 277 

battery EV market size as a weight. To determine in which grid cells those EVs are placed, we 278 

choose the smallest box around the city center (i.e., 1, 9, 25, etc.) such that 100% of the ICEVs in 279 

the center grid cell can be replaced and no more than 75% in the surrounding cells. This method 280 

leads to an unrealistic EV adoption ‘footprint’ for the city of Lanzhou, so we do not simulate 281 

enhanced EV adoption there. Also, due to the near-overlapping proximity of Xiangtan and 282 

Zhuzhou, we combine them into a single megacity. We then proportionately distribute the 283 

remaining EVs outside the top 30 EV cities according to the  vehicle fleet (i.e., grid cells with 284 

more vehicles have greater adoption). We estimate the particulate emissions of tire, road, and 285 

brake wear using GAINS data for the fraction of total on-road emissions associated with these 286 

sources. For simplicity, we assume the EVs that replace ICEVs have the same curb weight and 287 

also regenerative braking, i.e., we adopt best-case estimates for 𝑟PQ𝐸:,>,FPQ , 𝑟MQ𝐸:,>,FMQ , and 288 

𝑟RQ𝐸:,>,FRQ  of 1.0, 1.0, and 0.0, respectively. 289 
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2.5.2 Emissions from EGUs that power EVs 290 

We calculate the EGU emissions that power EVs as: 291 

 292 

(4)   𝐸:,=,>BDE = 𝐸𝑅:,=,>BDE ∙ 𝑉=,> 293 

 294 

where 𝐸𝑅:,=,>BDE  is the average emission rate (g Wh-1 or moles Wh-1) of species s for the EGUs in 295 

grid cell xj, and 𝑉=,> is the marginal electricity generation (Wh) assigned to grid cell xj. We 296 

calculate 𝐸𝑅:,=,>BDE  by co-locating all EGUs (including emission-free EGUs: solar, hydro, wind, 297 

and nuclear) in the Global Power Plant Database [GPPD (42)] to a model grid cell. The grid cell 298 

average emission rate is calculated as the weighted average of the individual EGU emission rates 299 

with the weights equal to the EGUs’ estimated generation. Because our emissions are prescribed 300 

on an hourly basis, we are able to improve upon the methods of Schnell et al., (2019) by only 301 

allowing solar generation to be used during the day (we assume 7AM to 5PM), effectively 302 

increasing nighttime emission rates. EGU emission rates are from the China Statistical Yearbook 303 

(2015), which provides rates for NOx, SO2, total PM, the fraction of total PM that is PM2.5, PM10, 304 

and PM2.5-10, and the BC and OC fractions of PM2.5 for each province and EGU type. For model-305 

simulated species without EGU emission rates (i.e., VOCs), we assume a conservative scaling 306 

factor equal to the lowest emission increase (associated with and only applied to EGU 307 

emissions). Since PM2.5 emissions are highly speciated in the model emissions (18 species) but 308 

the EGU emission rates only provide the fraction of PM2.5 that is OC and BC, we set the 309 

emission rate of ‘PMOTHR’ (i.e., the unspeciated PM2.5 model emission species) equal to the 310 

emission rate of PM2.5 minus the emission rates of BC and OC. For some experiments (*2010), 311 

we set coal-fired EGU emission rates to those in Liu et al. (2015), leaving all other EGU types 312 

the same. We scale BC and OC emission rates by the PM2.5 rate change between the two 313 

datasets. For CO2, we use Liu et al. (2015) emission rates for coal-fired EGUs in *2010 314 

experiments, and linearly interpolate to 2013 for the *CUR experiments. For all scenarios, we 315 

use U.S. emission rates for gas-fired and oil-fired plants, which are respectively assumed to be 316 

50% of the CO2 emission rate of coal-fired EGUs and 743.4 g kWh-1 (US DOE, 2016). 317 
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2.5.3 Marginal electricity generation 318 

The marginal electricity generated at a grid cell xj required to power EVs at each of K 319 

grid cells xk is: 320 

 321 

(5)   𝑉=,> = ∑ ∑ 𝑤T,>∗U
T;- ∙N

F;- 𝑄=,T,F 322 

 323 

where 𝑄=,T  is the electricity requirement for the adopted EVs and 𝑤T,>∗  is a combination of two 324 

individual weights, which are functions of distance (𝑤T,>W , equation (6a)) and the estimated 325 

average electric load (𝑤T,>X , equation (6b)). 326 

 327 

(6a) 𝑤T,>W = Y

𝐷[-																		𝑖𝑓	]𝑥> − 𝑥T] ≤ 𝐷F8`
]𝑥> − 𝑥T]

[-
				𝑖𝑓	𝐷F8` < ]𝑥> − 𝑥T] ≤ 𝐷Fbc

0																		𝑖𝑓	]𝑥> − 𝑥T] > 𝐷Fbc

 328 

 329 

(6b) 𝑤T,>X = 𝐿g𝑥>h 330 

 331 

where Dmin is a minimum distance parameter that prevents a singularity when xj and xk are the 332 

same grid cell (i.e., 𝑤T,>W  = ∞, which would remap all of the additional electricity required from a 333 

grid cell to itself) is set to 100 km. This means that all EGUs within a 100 km radius of the grid 334 

cell that requires electricity receive equal distance weighting. Dmax is a maximum distance 335 

parameter set to 1000 km. 336 

2.5.4 Electricity required to power EVs 337 

The electricity need for the EVs in grid cell xk is calculated as: 338 

 339 

(7)   𝑄=,T,F = (1 − 𝑇𝐿)[- ∙ 	𝐶𝐸[- 	 ∙ g𝐸𝑉.kkh
[-
∙ 𝑓𝐸𝑉>,F ∙ 𝑤lT=𝑉𝐾𝑇=,T,F 340 

 341 

where TL fractional transmission loss (assumed to be 5%), 𝐶𝐸 is the charging efficiency (85%, 342 

Huo et al., 2015; Tarroja et al., 2016), 𝐸𝑉.kk  is the efficiency (km Wh-1) of the adopted EV, 343 

𝑓𝐸𝑉>,F as above is the fraction of the ICEVs transitioned to an EV, and 𝑉𝐾𝑇=,T,F is the vehicle 344 
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kilometers traveled by mode m in grid cell xk and time t. Schnell et al. (2019) used VKT to 345 

calculate the electricity need for monthly averaged emissions; however, because our hourly 346 

emissions have an imposed diurnal profile associated with anthropogenic activities (e.g., 347 

morning rush hour), we make a slight modification (𝑤lT=), which scales the hourly VKT by its 348 

inverse (conserving total daily VKT); i.e., the diurnal cycle of EV charging (Q) and VKT are 349 

inversely proportional. The GAINS model provides province-level VKT, which we map onto our 350 

12 km grid in the same way as with the vehicle fleet. 𝐸𝑉.kk  is experiment dependent. 351 

3 Results 352 

3.1 Baseline historic extreme pollution event 353 

Simulated January 2013 average PM2.5 concentrations range from ~10 µg m-3 over 354 

remote areas of China to ~200–350 µg m-3 over the North and Central China Plain (NCP) in our 355 

baseline historic scenario (BASE; Figure 2a), consistent with observations (Wang et al., 2014). 356 

High-population, high-emission, yet geographically diverse megacities of Beijing, Shanghai, and 357 

Guangzhou are simulated as pollution hotspots, in addition to the Sichuan basin due to its 358 

confining topography. NO2, another pollutant with adverse health effects and has potential for 359 

reduction through EV adoption, is similarly elevated in megacities, throughout the NCP, and 360 

along major highways (Figure 2b). We estimate that across China acute exposure to PM2.5 and 361 

NO2 during the January 2013 episode led to ~32k premature deaths, ~1M hospital admissions, 362 

~8M outpatient visits, ~3M cases of bronchitis, and ~2M cases of asthma, with total economic 363 

losses of 14.7B US$ across seven health endpoints (Table S1).  364 

While monthly average PM2.5 concentrations were high in many locations during January 365 

2013, the core event and damages were particularly acute in Beijing (e.g., Sun et al., 2014; 366 

Ferreri et al., 2018; Gao et al., 2015). During the period of peak PM2.5 concentrations (10–15 367 

Jan), modeled PM2.5 across Beijing exhibits a strong north-south gradient, ranging from ~50 µg 368 

m-3 in the north to over 300 µg m-3 in the south (Figure 2b). Observations at the US Embassy 369 

recorded concentrations that ranged from 56–886 µg m-3, while our model simulates 370 

concentrations of 69–539 µg m-3 over the Embassy and misses the peak day magnitude (Figure 371 

2d). Across all Beijing grid cells, simulated concentrations range from 5–875 µg m-3 (Figure 2d). 372 

During the most severe days of the episode (10–15 Jan, Figure 2c-d), we estimate 122 premature  373 
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Figure 2. Summary of surface PM2.5 for the January 2013 pollution episode over China. (a) 

Modeled monthly mean PM2.5 concentrations in BASE over the model domain. The Beijing province 

is denoted by the green circle, and the orange dots are the location of coal-fired EGUs, (b) as (a) but 

for NO2, (c) Modeled peak episode (10-15 Jan) concentrations over Beijing. (d) Time series of 

hourly PM2.5 abundance observed at the U.S. Embassy (orange in (c)), the model grid cell that 

contains the Embassy, and the min/max of all grid cells inside Beijing. 
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deaths from exposure to PM2.5 and NO2 in Beijing, whereas for the month, we calculate a total of 374 

486 premature deaths, with a total economic impact of over 132M US$ summed across seven 375 

health endpoints (Table S1). 376 

3.2 Co-benefits of e-HDV and e-LDV adoption 377 

We scrutinize the benefits and tradeoffs of EV policy and implementation decisions on 378 

the mitigation of extreme pollution events using metrics that capture emission rates, public health 379 

impacts, and/or economic costs (Figure 3 & Table S2). Compared to BASE, a 40% conversion to 380 

e-HDVs (1.5M vehicles; Figure 1a) powered by 2015 electricity generation emissions rates 381 

(HDV_2015, Table 1) would have avoided 562 [95% CI: 410, 723] premature mortalities in 382 

China for the month, following an average PM2.5 reduction over China of 0.85 ± 0.82 µg m-3 and 383 

NO2 reduction of 0.58 ± 0.13 parts per billion (ppb)(Figure 4). However, such a transition would 384 

increase CO2 emissions by 2.6 Mt Jan-1 (i.e., a CO2-tradeoff). The combined monetary impacts 385 

of a CO2 increase (valued at $47 per ton CO2 (Liang et al., 2019), a loss of 121M US$) with 386 

those of seven health endpoints (a savings of 208M US$) largely offset one another such that e-387 

HDV adoption yields a total savings of 87M US$ for the month (Figure 3b).  388 

We compare the co-benefits of e-HDV adoption with a scenario that uses the total 389 

electricity demand required for 40% e-HDV adoption to instead electrify a fleet of LDVs 390 

(LDV_2015). Because of their substantially smaller per-kilometer electricity requirement, 391 

significantly more LDVs are electrified (39.2M; Figure 1b), though coincidently, this is also 392 

~40% of the existing LDV fleet. Air quality improvements for e-LDV adoption are less than for 393 

e-HDVs since HDVs contribute more to the on-road emission fraction of both NOx and primary 394 

PM2.5. e-LDV adoption avoids 145 [95% CI: 38, 333] premature deaths due to a China-averaged 395 

PM2.5 (NO2) reduction of 0.16 ± 0.27 µg m-3 (0.02 ± 0.05 ppb). The adoption of e-LDVs avoids 396 

~25% of the number of deaths as e-HDVs, however, e-LDVs dramatically reduce CO2 emissions 397 

(2.2 Mt Jan-1) such that the combined economic impacts of CO2 reductions and human health 398 

impacts yield a total savings of 156M US$ (Figure 3b). 399 

Province-level CO2, PM2.5, NO2, and associated mortality changes (Figure S4) are 400 

expectedly more variable than national averages, but can provide insight into regionally targeted 401 

cross-modal EV adoption planning. Similar to previous work (Liang et al, 2019), we find the  402 
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Figure 3. Summary of EV adoption co-benefits and tradeoffs for each e-HDV and e-LDV adoption 

and power generation scenario. (a) CO2 emission reduction (Mt Jan-1) and avoided premature 

mortality (deaths / January). Top x-axis provides the carbon intensity of the power sector that 

correspond with the bottom x-axis CO2 emission changes for combined e-HDV+e-LDV adoption. 

Uncertainty bars for CO2 are the range of battery efficiencies; for premature mortality, the 95% 

confidence interval of β (exposure-response). Plots at right shows the change in average PM2.5 and 

NO2 over grid cells in China. (b) Monetary cost or savings (million US$ / January) of EV adoption, 

shown individually for CO2 and health/air quality, and their sum (right, filled bars). 
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major metropolitan regions of Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and 403 

the Pearl River Delta (PRD)(Figure S1) generally experience the largest air quality 404 

improvements for both e-LDV and e-HDV adoption scenarios, and thus experience larger 405 

reductions in mortality. For HDV_2015, 48% of total avoided mortality occurs in these three 406 

regions; for LDV_2015, 59%. Provinces in these regions also contribute 86% of total CO2 407 

emission reductions for LDV_2015 while for HDV_2015, only 7 of the 30 provinces in our 408 

domain decrease their CO2 emissions – three of which are in the major metropolitan regions.  409 

For a month with less extreme meteorology (January 2014), we find that e-HDV health 410 

gains are 14% less than those in 2013 due to a smaller reduction in domain-averaged PM2.5; for 411 

e-LDVs, NO2 is reduced similarly to 2013, but the average PM2.5 reduction over China is just 412 

0.01 µg m-3 (Table S2). Thus, while both e-HDV and e-LDV adoption improve air quality during 413 

an extreme meteorological set up, e-LDV adoption results in negligible PM2.5 changes during 414 

less (un)favorable/extreme meteorological conditions. 415 

Overall, we find that EV-induced PM2.5 changes and resultant avoided premature 416 

mortality due to acute PM2.5 and NO2 exposure are modest for this extreme event – a 417 

consequence of the small fraction of both primary and precursor PM2.5 emissions in the on-road 418 

sector (e.g., 13.2% of NOx emissions and 3.5% of black carbon emissions in the on-road sector; 419 

Table S3). Indeed, in an experiment that removes all on-road emissions over China (NO_TRA), 420 

average China NO2 decreases by 0.5 ppb, average PM2.5 only decreases by 3.2 µg m-3, avoiding 421 

1878 premature deaths. Over grid cells where we previously simulated EV adoption the PM2.5 422 

(NO2) reduction is 4.0 µg m-3 (0.8 ppb), and 11.2 µg m-3 (3.0 ppb) over Beijing (Figure S5; 423 

Table S2). PM2.5 reductions are also modest because reduced on-road sector emissions in our EV 424 

experiments are offset by increases in power generation emissions, which constitute a much 425 

greater fraction of PM2.5 (Table S3). Comparatively, removing all emissions associated with 426 

power generation (NO_ENE) decreases average PM2.5 (NO2) by 21.2 µg m-3 (0.3 ppb) over 427 

China, by 25.1 µg m-3 (0.4 ppb) over EV adoption grid cells, and by 32.0 µg m-3 (1.2 ppb) over 428 

Beijing, leading to 7k+ avoided premature deaths and total health impacts of 3.4B US$ (Figure 429 

S5; Table S2). 430 
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3.3 CO2 benefits and tradeoffs 431 

CO2 reduction with EV adoption is dependent on battery charging demand. For our EV 432 

adoption scenarios to be CO2-neutral, the electricity generation mix must have an average CO2 433 

emission rate less than ~480 g CO2 kWh-1 for e-HDVs and ~1015 g CO2 kWh-1 for e-LDVs, 434 

though these emission rates vary by -11% to +33% over a range of battery efficiency values (i.e., 435 

distance-per-charge; Methods). Based on these CO2-neutral rates alone, it is clear that e-LDV 436 

adoption can achieve net-negative CO2 emissions much more readily than e-HDV. Indeed, all e-437 

LDV scenarios can reduce CO2 emissions, except in a scenario when e-LDVs have low battery 438 

efficiencies and are solely powered by coal-fired EGUs prior to recent emission reductions 439 

(LDV_COAL; Figure 3a and Table S2). Conversely, for e-HDV adoption, only in the scenario 440 

that assumes a uniform 50% marginal (i.e., the newly required electricity for EVs) carbon-free 441 

power generation (HDV_REN; Table 1) are CO2 emissions reduced (5.4 Mt yr-1). Likewise, the 442 

50% decarbonized scenario for e-LDVs avoids 64.4 Mt yr-1 of CO2, 37.7 tons more than avoided 443 

by LDV_2015. 444 

Since our e-LDV and e-HDV experiments require equivalent electricity demands and 445 

both electrify ~40% of their respective fleets, we can compute that an across-the-board 40% 446 

adoption of e-LDVs and e-HDVs would require an average CO2 emission rate of ~750 g CO2 447 

kWh-1 (top x-axis in Figure 3a). By combining the CO2 emissions changes for e-LDVs plus e-448 

HDVs, we can also assess our results against recent work that electrifies multiple modes 449 

simultaneously (Peng et al., 2018; Liang et al, 2019). To be sure, our experiments are not directly 450 

comparable since Peng et al. (2018) electrify ‘all on-road vehicles’ and Liang et al. (2019) 451 

electrify modes at differing rates (greater for LDVs). In any case, we find that combined e-LDV 452 

and e-HDV adoption under the 2015 EGU infrastructure would increase CO2 emissions slightly 453 

(+0.3 Mt Jan-1, -3.7 to +2.3 over the battery efficiency uncertainty range; see Materials and 454 

Methods), which aligns with the negligible or modest GHG reductions for cross-modal 455 

electrification found previously (Peng et al., 2018; Liang et al., 2019).  456 

3.4 Air quality benefits and tradeoffs  457 

The adoption of 1.5M e-HDVs in China decreases average PM2.5 by 0.9 ± 0.8 µg m-3 458 

during an extreme pollution episode over the portion of China in our modeling domain (Figure 459 
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3a; Table S2). Reductions largely follow the pattern of average PM2.5 and occur at nearly all 460 

locations except near a cluster of coal plants (orange markers, Figure 2a) on the Shandong and 461 

Hebei border, as well as a few grid cells in western Yunnan. For grid cells that include “EV-462 

forward cities” with enhanced EV adoption (see Materials and Methods), decreases are larger (-463 

2.2 ± 0.9 µg m-3; Table S2). Percent reductions in PM2.5 are more homogeneous, across the 464 

country (~2%) with slightly larger reductions in EV-forward cities. NO2 changes over China (-465 

0.12 ± 0.26 ppb) follow major roadways and are largest in the major metropolitan regions and 466 

EV-forward cities (-1.29 ± 0.76 ppb). 467 

For e-LDV adoption, the magnitude of mean PM2.5 changes over all of our averaging 468 

locations and all experiments are < 1 µg m-3, with increases for LDV_COAL and decreases for all 469 

other scenarios (Table S2; Figure 4). All experiments have domain-average NO2 decreases – and 470 

e-HDV experiments have 3-5× the decrease as e-LDV. The PM2.5 decreases in LDV_2015 occur 471 

primarily in the southern half of the domain, with most of the North and Central China Plain 472 

(except Beijing and Tianjin) experiencing little change or PM2.5 increases (Figure 4).  473 

All e-HDV adoption scenarios result in improvements in air quality and thus decreases in 474 

mortality, even when the entirety of the electricity demand is powered by coal-fired EGUs. For 475 

e-LDVs, however, only after recent emission reduction policies (i.e., 2015 emission rates) does 476 

PM2.5 air quality improve, and then only slightly – NO2 decreases on average in all experiments 477 

(Figure 4). These results align well with previous findings in that cross-modal strategies improve 478 

air quality (Peng et al., 2018; Liang et al., 2019), while solely e-LDV adoption would increase 479 

air pollutant emissions unless EGU emission rates are reduced below early 2010s levels (Huo et 480 

al., 2015); i.e., the switch from AQ-tradeoffs to co-benefits for LDV_COAL/2010 to 481 

LDV_2015/REN in Figure 3a.  482 

Under scenarios with significantly higher EGU emission rates, the impact of high-483 

emitting coal-fired units becomes more apparent, and the transition from net-positive to net-484 

negative PM2.5 air quality benefits occurs for most locations. Under HDV_COAL, many regions 485 

see an increase in PM2.5 compared to the domain-wide decreases for HDV_2015, although a 486 

swath from Beijing to Chengdu and the Shandong province still experiences PM2.5 decreases. For  487 



manuscript submitted to Earth’s Future 

 

    

    

    

    
Figure 4. Mean changes PM2.5 (a-h, µg m3) and NO2 (i-l, ppb) changes for each experiment. 
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Figure 5. 95th percentile PM2.5 (a-h, µg m3) and NO2 (i-l, ppb) changes for each experiment. 
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LDV_COAL, Beijing, Tianjin, and a few grid cells in Guangxi and Shanghai experience PM2.5 488 

decreases, but the majority of the country’s average PM2.5 increases by over 2 µg m-3. 489 

While the benefits of enhanced renewable power generation are clear in terms of CO2 490 

emissions, it has a surprisingly small impact on air quality in our simulations. To be sure, 491 

emission rates from the China Statistical Yearbook (2015) that are used in the *_2015 scenarios 492 

(Table S4) are significantly lower than those used in recent analyses for ‘present-day’ rates (e.g., 493 

Huo et al., 2015), thus the difference in the emission rate of power sector pollutants between 494 

2015 and REN is relatively small compared to the change from 2010 to 2015. For HDV_REN, 495 

PM2.5 (NO2) is reduced by 1.1 µg m-3 (0.2 ppb) over EV adoption cells which leads to 575 496 

avoided deaths over China, 1.8× that compared to HDV_2010. For LDVs under 2010 emission 497 

rates, although NO2 decreases (-0.02 ppb) average PM2.5 increases (+0.63 µg m-3) resulting in 498 

mortality increases (59 deaths incurred), but slightly decreases in the REN scenario (∆PM2.5 = -499 

0.17 µg m-3, ∆NO2 = -0.03 ppb, and 310 deaths avoided). 500 

 Changes in peak PM2.5 (95P) are substantially more heterogeneous (Figure 5 and Table 501 

S5), and are predominantly affected by proximity to power generation infrastructure. Under 502 

HDV_2015, 95P PM2.5 decreases over most of the domain, and are largest in EV-forward cities (-503 

4.5 ± 2.9 µg m-3) including a 15.5 µg m-3 reduction over Beijing. However, some areas near 504 

clusters of coal-fired EGUs in the North China Plain see large increases (>10 µg m-3), 505 

demonstrating a clear example of a ‘spillover effect’ (Fang et al., 2019); i.e., the transfer of urban 506 

traffic emissions to rural power generation sites. For LDV_2015 (and further for LDV_2010 and 507 

LDV_COAL) PM2.5 hotspots near coal-fired EGUs grow in number, extent, and magnitude as 508 

they are offset by fewer on-road reductions compared to HDV_2015. 509 

4 Conclusions and discussion 510 

We have evaluated the potential co-benefits – quantified in terms of avoided acute health 511 

impacts and CO2 emissions – of hypothetical widespread EV adoption in China during an 512 

extreme pollution episode. We have compared our results across vehicle types targeted for 513 

electrification (i.e., HDVs vs. LDVs) and demonstrated the sensitivities of the actualized co-514 

benefits of EV adoption to power plant emission rates. Overall, we have shown that the air 515 

quality benefits of EV adoption during the January 2013 are modest, with e-HDVs yielding air  516 
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quality improvements for all power generation scenarios, and e-LDVs requiring emission rate 517 

reductions beyond 2010 levels (Figure 3). The reverse is true for CO2 reductions: i.e., e-LDVs 518 

reduce CO2 emissions for all power generation scenarios except when powered by all coal-fired 519 

electricity generation, while e-HDVs only reduce CO2 in a scenario that assumes 50% emission-520 

free marginal electricity generation. Co-benefits are predominately realized in high-population 521 

urban centers and industrialized provinces. 522 

A key difference between our work and others examining EV adoption in China is that 523 

we only consider acute health impacts and do not consider chronic exposure. Previous annual 524 

(i.e., considering chronic exposure) work (Liang et al., 2019) estimated that ~22% of total 525 

avoided premature mortality from EV adoption was driven by surface ozone reductions, which 526 

we do not consider here since we simulate a cold-season month when ozone is not generally 527 

elevated and thus not a health risk. Moreover, the meteorology, chemistry, and pollutant 528 

concerns of winter are vastly different than those of summer, and so modal electrification 529 

choices also would impact resultant air quality during warm months. For example, compared to 530 

e-HDVs, e-LDV adoption would favor relative VOC reductions over NOx reductions, potentially 531 

leading to larger ozone decreases than for e-HDVs in many Chinese cities that are under VOC-532 

limited regimes. 533 

China’s chemical landscape is rapidly evolving due to widespread industrialization and 534 

substantial pollutant remediation efforts at national and provincial levels. Due to policy-driven 535 

changes in energy sector emission rates alone, we find that in less than a decade the air quality 536 

benefits of e-LDV adoption switch from a net-negative to a net-positive. Further, air quality will 537 

likely continue to improve as the power generation sector decarbonizes and reduces allowable 538 

emission rates from fossil fuel-fired EGUs – indeed, an e-LDV purchased in 2013 will be 539 

‘cleaner’ in 2020 than when it was new. Moreover, if reduced fossil fuel-fired energy generation 540 

projections are actualized (IEA, 2017), by 2030 the CO2 reduction potential from e-LDV 541 

adoption will more than double compared to 2015. In terms of the extreme winter pollution 542 

episode mitigation potential of EVs, we find a notable but modest role for widespread EV 543 

adoption; however, the long-term benefits are likely at least an order of magnitude greater based 544 

on similar pollutant reductions in other EV studies (Peng et al., 2018; Liang et al., 2019). We 545 

estimate that acute PM2.5 and NO2 exposure during the January 2013 extreme pollution episode 546 
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led to ~32k premature deaths and economic losses of 14.7B US$ across seven health endpoints. 547 

Our simulations demonstrate that widespread (40%) e-HDV adoption would reduce just ~1-2% 548 

of these premature deaths, while removal of all on-road transportation sector emissions leads to 549 

an ~6% reduction in deaths. Removal of all energy sector emissions however, produces an ~24% 550 

drop in premature deaths. Clearly then, carbon- and pollutant-free energy generation is central to 551 

the actualization of air quality and climate co-benefits of vehicle electrification in China. 552 
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size limitation, specific model output requests can be made to the corresponding author.  569 
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Figure S1. Major industrialized regions. 
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Figure S2. Meteorological comparison of WRF-CMAQ (red) against surface observations sites 
(NOAA NCEP Integrated Surface Database (https://www.ncdc.noaa.gov/isd/data-access)) 
nearest the sites where PM2.5 is measured. 
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Figure S3. Comparison of WRF-CMAQ to U.S. Embassy observations. Purple lines are the single 
grid cells over the observation sites for BASE, orange is the simulation without shortwave 
aerosol-radiation feedback. 
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Figure S4. Province co-benefits for each experiment. Colored, large markers are provinces in 
major industrialized regions (Fig. S1). 
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Figure S5. Mean (a, c) and (b, d) 95th percentile changes for (a, b) NO-TRA and (c, d) NO-ENE. 
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Health 
endpoints 

β (per 10 µg m-3, 
95% CI) (%) References IRs (‰) References Unit Loss 

(US$/case) # BASE 

Mortality 0.22 (0.15, 0.28) Chen et al. (2017) 0.022377 BMBPH 
(2012) 273,513.36 67914 

Respiratory 
hospital 
admission 

2.0 (1.33, 2.67) 
Aunan and Pan 
(2004), Zhang et 
al. (2007) 

0.051925 BMBPH 
(2012) 2761.04 503402 

Cardiovascular 
hospital 

1.17 (0.5, 1.83) 
Aunan and Pan 
(2004), Zhang et 
al. (2007) 

0.093509 BMBPH 
(2012) 2761.04 581086 

Outpatient 
visits—internal 
medicine (15 +) 

0.57 (0.32, 0.82) 
Xu et al. 
(1995), Zhang et 
al. (2007) 

2.92083 Zhang et al. 
(2007) 83.86 8671799 

Outpatient 
visits—
pediatrics (0–14) 

0.65 (0.23, 1.07) 
Xu et al. 
(1995), Zhang et 
al. (2007) 

0.811925 Zhang et al. 
(2007) 83.86 256173 

Acute bronchitis 
9.17 (3.15, 15.18) 

Jing et al. 
(2000), Zhang et 
al. (2007) 

0.140377 Zhang et al. 
(2007) 407.03 3467216 

Asthma 2.1(1.45, 2.74) Xie et al. (2009) 0.215982 Zhang et al. 
(2007) 299.61 2175469 

 
Table S1. Parameters, references, and number of cases for BASE for seven health endpoints. Parameters 
and references are a reproduction of Tables 1 and 2 from Gao et al. (2015). 
 
 
 
 

Experiment 
∆PM2.5 ∆NO2 

∆CO2 Avoided 
Mortality 

106 US$ 
Saved China EV grid 

cells 
e-forward 

cities China EV grid 
cells 

e-forward 
cities 

HDV_COAL -0.14 -0.20 -0.88 -0.11 -0.18 -1.24 62 314 -141 
HDV_2010 -0.29 -0.37 -1.05 -0.11 -0.19 -1.25 36 355 -21 
HDV_CUR -0.85 -1.04 -2.18 -0.12 -0.20 -1.29 31 562 87 
HDV_REN -0.87 -1.07 -2.25 -0.12 -0.20 -1.29 -5 575 235 

LDV_COAL 0.51 0.60 0.66 -0.02 -0.04 -0.38 3 -90 -60 
LDV_2010 0.38 0.46 0.51 -0.02 -0.04 -0.39 -22 -59 48 
LDV_CUR -0.16 -0.20 -0.62 -0.03 -0.05 -0.43 -27 145 155 
LDV_REN -0.17 -0.21 -0.61 -0.03 -0.06 -0.43 -64 152 306 

HDV_CUR (2014) -0.56 -0.70 -1.70 -0.13 -0.21 -1.33 31 485 54 
LDV_CUR (2014) -0.01 -0.04 -0.46 -0.04 -0.06 -0.46 -27 108 137 

NO_TRA -3.21 -3.95 -7.42 -0.46 -0.75 -2.97 n/a 1878 715 
NO_ENE -21.15 -25.13 -40.85 -0.30 -0.39 -1.15 n/a 7687 3394 

aHealth impact only 
 
Table S2. Summary of EV co-benefits: mean changes in PM2.5 (µg m-3) and NO2 (ppb), CO2 emission 
changes (Mt yr-1), avoided mortality (deaths/January, and economic valuation (CO2 + seven health 
endpoints) for each experiment. 
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 NOx SO2 BC PMOTHR CO HCHO 
On-road 13.3 0.2 3.5 0.2 9.7 25.0 
Energy 35.3 27.0 1.4 11.4 0.8 0.0 

 
Table S3. Fraction of total emissions in the on-road and energy generation sectors. 
 
 

Experiment CO2 SO2 NOx PM2.5 
COAL/2010 905.6 2.48 2.67 0.27 
2015/FUT 861.0 0.42 0.35 0.10 

 
Table S4. Average coal-fired EGU emission rates. 
 
 
 
 

Experiment 
∆PM2.5 ∆NO2 

China EV grid 
cells 

e-forward 
cities China EV grid 

cells 
e-forward 

cities 
HDV_COAL -0.25 -1.53 -1.52 -0.37 -4.21 -4.26 
HDV_2010 -0.62 -2.19 -2.20 -0.38 -4.23 -4.28 
HDV_CUR -1.86 -4.58 -4.53 -0.40 -4.29 -4.35 
HDV_REN -1.94 -4.79 -4.73 -0.41 -4.28 -4.34 

LDV_COAL 1.25 1.72 1.57 -0.08 -1.32 -1.46 
LDV_2010 0.96 1.47 1.26 -0.10 -1.33 -1.47 
LDV_CUR -0.26 -1.07 -1.07 -0.12 -1.40 -1.54 
LDV_REN -0.32 -1.26 -1.42 -0.12 -1.41 -1.56 

HDV_CUR (’14) -1.49 -4.37 -4.33 -0.42 -4.28 -4.37 
LDV_CUR (’14) -0.08 -0.94 -1.11 -0.13 -1.41 -1.59 

NO_TRA -6.87 -15.20 -15.38 -1.41 -8.62 -9.62 
NO_ENE -48.63 -91.84 -88.70 -0.81 -1.86 -3.62 

Table S5. 95th percentile PM2.5 changes (µg m-3) for each experiment. 
 


