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Abstract

Inter-annual to decadal variability in the strength of the land and ocean carbon sinks impede accurate predictions of year-to-year

atmospheric carbon dioxide (CO2) growth rate. Such information is crucial to verify the effectiveness of fossil fuel emissions

reduction measures. Using a multi-model framework comprising prediction systems based on Earth system models, we find a

predictive skill for the global ocean carbon sink of up to 6 years. Longer regional predictability horizons and robust spatial

patterns are found across single models. On land, a predictive skill of up to 2 years is primarily maintained in the tropics

and extra-tropics enabled by the initialization of the physical climate variables towards observations. We further show that

anomalies of atmospheric CO2 growth rate inferred from natural variations of the land and ocean carbon sinks are predictable

at lead time of 2 years and the skill is limited by the land carbon sink predictability horizon.
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Key Points:29

• Predictive skill of the global ocean carbon sink due to initialization is up to 6 years,30

with longer regional predictability in single models.31

• Predictive skill due to initialization for the land carbon sink of up to 2 years is pri-32

marily maintained in the tropics and extra-tropics.33

• Anomalies of atmospheric CO2 growth rate are predictable up to 2 years and are34

limited by the land carbon sink predictability horizon.35
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Abstract36

Inter-annual to decadal variability in the strength of the land and ocean carbon sinks37

impede accurate predictions of year-to-year atmospheric carbon dioxide (CO2) growth38

rate. Such information is crucial to verify the effectiveness of fossil fuel emissions reduc-39

tion measures. Using a multi-model framework comprising prediction systems based on40

Earth system models, we find a predictive skill for the global ocean carbon sink of up41

to 6 years. Longer regional predictability horizons and robust spatial patterns are found42

across single models. On land, a predictive skill of up to 2 years is primarily maintained43

in the tropics and extra-tropics enabled by the initialization of the physical climate vari-44

ables towards observations. We further show that anomalies of atmospheric CO2 growth45

rate inferred from natural variations of the land and ocean carbon sinks are predictable46

at lead time of 2 years and the skill is limited by the land carbon sink predictability hori-47

zon.48

Plain Language Summary49

Variations of the natural land and ocean carbon sinks in response to climate vari-50

ability strongly regulate year-to-year variations in the growth rate of atmospheric car-51

bon dioxide (CO2). Information on the near-term evolution of the carbon sinks and CO252

in the atmosphere is necessary to understand where the anthropogenic carbon would go53

in response to emission reduction efforts addressing global warming mitigation. Predic-54

tions of this near-term evolution would thus assist policy-relevant analysis. Here we use55

a set of prediction systems based on Earth system models to establish predictive skills56

of the ocean and land carbon sinks and to infer predictability of atmospheric CO2 growth57

rate. We show predictability horizons of up to 6 years for the globally integrated ocean58

carbon sink in individual models with even higher predictive skill in some models and59

regions. Variations of the land carbon sink are predictable up to 2 years and limit pre-60

dictability of changes in atmospheric CO2 growth rate at lead time of 2 years. Our study61

demonstrates an emerging capacity of the initialized simulations for skillful predictions62

of the global carbon sink and atmospheric CO2 variations.63

1 Introduction64

On interannual to decadal time-scales, atmospheric CO2 growth rates exhibit pro-65

nounced anomalies driven by varying strengths of the land and ocean carbon sinks; these66
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anomalies are linked to climate variability (Peters et al., 2017; Friedlingstein et al., 2019;67

Landschützer et al., 2019). Variability in ocean carbon uptake is associated with major68

carbon uptake regions such as the Southern Ocean and the North Atlantic (Landschützer69

et al., 2019). Inter-annual variations of the land carbon sink are primarily driven by the70

terrestrial biosphere response to El Niño Southern Oscillation (ENSO) (Ropelewski &71

Halpert, 1987; Jones et al., 2001; Zeng et al., 2005; Kim et al., 2016). Year-to-year vari-72

ations of the air-land carbon flux are about one order of magnitude higher than varia-73

tions in the air-sea CO2 fluxes (Doney et al., 2006). Hence, predicted El Niño variabil-74

ity has been used, in combination with an average CO2 growth rate due to anthropogenic75

CO2 emissions, to predict, from a simple linear regression, the atmospheric CO2 growth76

at Mauna Loa for the subsequent year (Betts et al., 2016). Predicting changes in atmo-77

spheric CO2 growth rate beyond this horizon remains a major challenge. Such informa-78

tion will be essential for the evaluation of mitigation efforts in real-time in the presence79

of internal climate variability in support of policy-relevant analysis for the UNFCCC global80

stocktakes (UNFCCC, 2015).81

Recent initialized predictions of near-term future climate have proven successful82

(Marotzke et al., 2016; Smith et al., 2007) with predictive power of carbon sinks also emerg-83

ing. Li et al. (2019) established a predictive skill of the globally aggregated air-sea CO284

fluxes of up to 2 years assessed against an observational product. Longer predictability85

in regions like the North Atlantic and the Southern Ocean is suggested (Li et al., 2016;86

Lovenduski, Yeager, et al., 2019; Fransner et al., 2020). ESM-based initialized predic-87

tion systems also demonstrate predictability of other marine biogeochemical properties88

such as net primary production, export production, and seawater pH (Park et al., 2019;89

Séférian et al., 2014; Yeager et al., 2018; Brady et al., 2020; Fransner et al., 2020; Krumhardt90

et al., 2020). On the land side, a potential prediction skill of 2 years was established for91

terrestrial net ecosystem production (Lovenduski, Bonan, et al., 2019), but only of 9 months92

for tropical land-atmosphere carbon flux (Zeng et al., 2008). Perfect-model frameworks93

based on idealized simulations suggest analogous predictability horizons for the carbon94

sinks (Séférian et al., 2018; Spring & Ilyina, 2020). However, previous studies were ei-95

ther limited to internally consistent model environments of perfect models (Séférian et96

al., 2018; Spring & Ilyina, 2020; Frölicher et al., 2020) or single initialized models (Li et97

al., 2019, 2016; Lovenduski, Yeager, et al., 2019; Yeager et al., 2018; Fransner et al., 2020;98
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Krumhardt et al., 2020). Furthermore, they did not address predictability of variations99

in atmospheric CO2 growth.100

Here, we assess how well different ESM-based initialized prediction systems cap-101

ture variations of the global land and ocean carbon sinks and their predictability. We102

make a step further and for the first time examine the resulting predictability of vari-103

ations in the growth rate of atmospheric CO2 that is driven by the response of carbon104

sinks to climate variability. As predictions of carbon sink evolution still remain a cutting-105

edge activity of only a few modeling groups, a common protocol is not yet available (Merryfield106

et al., 2020). Our multi-model framework comprises ESM-based prediction systems that107

contributed to the Decadal Climate Prediction Project (DCPP; Boer et al. (2016)) within108

the Coupled Model Intercomparison Project Phase 6 (CMIP6), as well as those which109

run with the CMIP5 forcing. This enables us to establish predictive skills in a larger num-110

ber of models, whilst performance of CMIP5 and CMIP6 model versions with respect111

to different aspects of the carbon cycle has been addressed in recent studies (Arora et112

al., 2019; Séférian et al., 2020; Kwiatkowski et al., 2020). Prediction systems follow some-113

what different initialization techniques and data assimilation methods based on the ”best114

effort” of the different modeling centers. This approach arises from the overall DCPP115

philosophy of not specifying single details of the implementation and design of the multi-116

model predictions and thereby encompass aspects of the inherent uncertainty of climate117

predictions (Boer et al., 2016).118

2 Materials and Methods119

We use a multi-model framework comprising several ESM-based prediction systems,120

including CanESM5 (Swart et al., 2019), CESM-DPLE (Yeager et al., 2018), GFDL-ESM2121

(Park et al., 2018), IPSL-CM6A-LR (Boucher et al., 2020), MIROC-ES2L (Watanabe122

et al., 2020), MPI-ESM-LR (Giorgetta et al., 2013), MPI-ESM1.2-HR (Mauritsen et al.,123

2019), and NorCPM1 (Counillon et al., 2016). Details of each prediction system are given124

in Supporting Information. Simulations with CanESM5, IPSL-CM6A-LR, MIROC-ES2L,125

MPI-ESM1.2-HR, and NorCPM1 contributed to CMIP6 DCPP following historical forc-126

ing until 2014 and climate change scenario SSP2-4.5. Simulations with CESM-DPLE,127

GFDL-ESM2, and MPI-ESM-LR were performed under CMIP5 historical forcing un-128

til the year 2005 and followed either RCP4.5 (GFDL-ESM2, MPI-ESM-LR) or RCP8.5129

(CESM-DPLE) climate change scenario thereafter.130
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The ensemble size in single prediction systems ranges between at least 10 members131

for most of the models up to 40 for CESM-DPLE (Table S1), enabling us to demonstrate132

the added value of a larger ensemble. For NorCPM1, we merged the two decadal hind-133

cast products with 10 members each, producing one ensemble of 20 members. In the MPI-134

ESM based systems, only the lower resolution MPI-ESM-LR included both the land and135

the ocean biogeochemistry components. MPI-ESM1.2-HR was configured with a higher136

resolution in the atmosphere and ocean, but did not integrate the land biogeochemistry137

component.138

In all models the carbon cycle components are only indirectly initialized with the139

data assimilative physics. Hence, we assess observed variability in carbon sinks captured140

through initialization of prediction systems by the observed state of the physical climate.141

All simulations ran with prescribed evolution of atmospheric CO2 concentrations and142

land use change.143

We present three types of simulations. Reconstruction simulations include observed144

signals of climate variability introduced by assimilative observed and reanalysis prod-145

ucts over a hindcast period. Uninitialized simulations are based on continuous histor-146

ical simulations following CMIP6 or CMIP5 forcing (not the observed signals), i.e. the147

model physics evolves independently and the resulting climate variability does not nec-148

essarily match the observed one. Initialized simulations are retrospective prediction sim-149

ulations that start from a respective reconstruction simulations and develop internal cli-150

mate variability that may be out of phase with observed climate variability. We com-151

pare the initialized simulations against the uninitialized ones to assess predictive skill152

that is established due to initialization. This predictive skill is characterized by the anomaly153

correlation coefficients (ACC) between the model simulations and different reference data154

products. The anomalies are calculated by removing the climatological mean for the re-155

construction and uninitialized simulations, and for the initialized simulations with ad-156

ditionally respect to the lead time. Note that we present the improved predictive skill157

due to initialization based on the comparison of ACC in the initialized predictions rel-158

ative to that in the uninitialized simulations. We use a bootstrapping resample method159

to quantify the significance of the improved predictive skill (Li et al., 2019). The spa-160

tial map of predictive skill and the corresponding significance is generated by the cen-161

tral evaluation system MurCSS, which is a commonly used evaluation tool in decadal162

predictions (Illing et al., 2014). The focus time period of this study is from 1982-2013,163
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when the global carbon cycle experienced large internanual to decadal variations. The164

time series are all linearly detrended to emphasize the predictability in interannual to165

decadal variability. The global time series are integrated based on the original model grid.166

For the spatial pattern of ACC calculation, the variables are conservatively interpolated167

into 5 degree.168

For land carbon uptake, direct observational estimates capturing the regional and169

global temporal variability are not available, hence we use the Global Carbon Budget170

2019 (GCB; Friedlingstein et al. (2019)) carbon sinks estimate as a benchmark. Under-171

going annual updates, GCB offers a comprehensive and temporally consistent time-series172

of stand-alone land and ocean carbon cycle model simulations forced with observed cli-173

mate data or climate reanalysis and additional observational products (atmospheric CO2,174

land cover change, etc.). For ocean carbon uptake, we additionally use the SOM-FFN175

(Landschützer et al., 2015) observationally based product. In addition, the HadISST data176

(Rayner et al., 2003) is used to compare with model simulations of sea surface temper-177

ature and to calculate the ENSO index.178

3 Variations of ocean and land carbon sinks in initialized simulations179

First we examine the ability of reconstructions and initialized predictions to sim-180

ulate observed interannual variations in carbon sinks. Both reconstructions and initial-181

ized predictions at lead time of 2 years appropriately capture multi-year variations of the182

anomalous air-sea flux of CO2 represented in the GCB and data-based SOM-FFN es-183

timates (Fig.1 left). The uninitialized simulations mostly capture only ocean carbon sink184

increases in response to rising carbon emissions and thus follow a smoother temporal evo-185

lution. Furthermore, reconstructions suggest stronger multi-year variations in the ocean186

carbon sink and outperform the uninitialized simulations in GFDL-ESM2, MIROC-ES2L,187

MPI-ESM1.2-HR, and in NorCPM1 (only in comparison to SOM-FFN data). Lower cor-188

relations of reconstruction simulations as opposed to the uninitialized ones in CanESM5,189

IPSL-CM6A-LR, and MPI-ESM-LR can be related to two aspects of the design of our190

analysis. First, the assimilation techniques may not be optimally calibrated to represent191

ocean biogeochemistry in reconstruction (Park et al., 2018; Li et al., 2019). Second, GCB192

and SOM-FFN estimates chosen as the reference here are prone to their own uncertain-193

ties. GCB estimates are essentially an average of various stand-alone hindcast model sim-194

ulations. The neural network approach of SOM-FFN is limited by spatial and tempo-195
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ral gaps in observations. While the different model outputs show a large spread in air-196

sea CO2 flux, they overall fall within the range of the SOCOM data products (Rödenbeck197

et al., 2015). The weakening ocean carbon sink captured in the SOM-FFN data prod-198

uct in the 1990s is revealed by the stronger negative trends in the reconstruction and ini-199

tialized simulations vs. the uninitialized ones, which are more pronounced in some pre-200

dictions systems (in MPI-ESM-LR, MPI-ESM-HR, MIROC-ES2L, and partially in GFDL-201

ESM2). Other models (CanESM5, CESM-DPLE, NorCPM1, IPSL-CM6A-LR) capture202

a lower amplitude of the weakened ocean carbon sink, more consistent with the GCB203

estimate. Starting from the beginning of the 21st century, reconstruction simulations show204

an enhancement of the ocean carbon uptake with a stronger increase in the ocean car-205

bon sink at the beginning of the 21st century as compared to the uninitialized ones. This206

decadal shift in evolution of the ocean carbon sink at the onset of the 21st century is at-207

tributable to climate modulated variability and is consistent with the SOM-FFN data208

estimate (Landschützer et al., 2015).209

The fewer land carbon reconstruction simulations available to us all outperform the210

uninitialized simulations in capturing the major year-to-year variations as indicated by211

higher correlations with GCB (Fig.1 right). This correlation skill with the GCB estimates212

is maintained at lead year 2. Unsurprisingly, uninitialized simulations do not capture the213

timing of air-land CO2 flux variations. Response to the warm and cold episodes of ENSO,214

the major driver of year-to-year variability of the air-land carbon fluxes, is clearly man-215

ifested in the GCB estimates and reconstructions (Fig. S1). It is notable that air-land216

CO2 flux in CanESM5 has the highest correlation with GCB in reconstruction simula-217

tion, supported by the highest of all models correlation in the uninitialized simulation218

(Fig.1d). For NorCPM1 and MPI-ESM-LR assimilation data helps to establish corre-219

lation in reconstruction simulations. While there has been some progress in global mod-220

els over the past decades (Bellenger et al., 2014), representing ENSO still remains a ma-221

jor challenge. Yet, a major improvement in the reconstruction simulations with respect222

to air-land CO2 flux, gives us confidence that initialized prediction systems capture the223

important processes that link the land carbon cycle to ENSO. The reconstruction sim-224

ulations produce a distinct weakening of the land carbon uptake in response to major225

El Niño events, followed by a strong increase in the land carbon sink during La Niña events.226

These variations are not captured in the uninitialized simulations as they are not in phase227

with the observed climate variability.228
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4 Predictability of carbon sinks and atmospheric CO2 growth rate229

We next examine effects of the global land ocean carbon sink variations on the in-230

ferred variability and predictability of atmospheric CO2 growth rate (Fig.2). Note that231

all prediction systems available to us are forced with prescribed evolution of atmospheric232

concentrations of CO2 (rather than with prescribed emissions of CO2) and so the atmo-233

spheric compartments of those models do not respond to land or ocean CO2 fluxes. Here,234

the detrended sum of the global land and ocean carbon fluxes serves as a diagnostic of235

variations in the temporal evolution of the atmospheric CO2 growth driven by climate236

modulated variability of carbon sinks. These variations of a few PgC in the reconstruc-237

tion simulations generally follow the evolution inferred from the GCB estimate (Fig.2a).238

We find predictability of variations in atmospheric CO2 growth at lead times of 2239

years in most models, as indicated by higher correlations with GCB of the initialized sim-240

ulations in comparison to the uninitialized ones (Fig.2 b, c). Given the higher amplitude241

of interannual air-land CO2 flux variability, atmospheric carbon growth rate anomalies242

predominantly follow the land carbon sink evolution, and the ocean carbon sink acts to243

dampen the land modulated interannual variations of atmospheric CO2 (Doney et al.,244

2006; Lee et al., 1998). Indeed, the improved correlation skill of air-land CO2 fluxes with245

the GCB estimates is maintained at lead year 2 and outperforms the uninitialized sim-246

ulations in all models except MIROC-ES2L (Fig.1f).247

We further assess predictability horizons of the global ocean and land carbon sinks,248

as well as of the diagnosed changes in atmospheric CO2 growth represented by the lead249

years with improved predictive skill due to initialization (Fig.3). Predictive skill of the250

ocean carbon sink significantly improves with initialization up to lead year 5 against the251

SOM-FFN data product in MPI-ESM1.2-HR and up to lead year 6 in CESM-DPLE and252

NorCPM1, respectively (Fig.3a). The predictive skill of CESM-DPLE is higher than re-253

ported in a previous study (Lovenduski, Yeager, et al., 2019) mainly because we focus254

on a different time period and use the SOM-FFN observationally based estimates rather255

than reconstruction here. A larger ensemble size of CESM-DPLE relative to the outputs256

from the other prediction systems maintains the predictive skill significance. Consider-257

ing fewer ensemble members degrades its predictive skill significance (as indicated by the258

p-value dependence on ensemble size; Fig. S2). A previous study (Li & Ilyina, 2018) sug-259

gests that a large ensemble size is needed to capture decadal variations in the ocean car-260
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bon sink. Therefore, an increased ensemble prediction size could enhance the predictive261

skill of global carbon fluxes in other prediction systems, as well as in a multi-model en-262

semble.263

Predictive skill due to initialization up to lead year 2 for land carbon sink verified264

against GCB estimates is found in CanESM5, IPSL-CM6A-LR, MPI-ESM, and NorCPM1265

(Fig.3b). This skill, supported by higher coherence between GCB estimates and initial-266

ized simulations at lead time of 2 years in most models (Fig.1f), goes well beyond a sea-267

sonal skill attainable in previous studies. A slightly lower and insignificant skill was found268

for CESM-DPLE because of the initialization of atmosphere and land from a random269

ensemble member of CESM-LE (see Materials and Methods and Lovenduski, Bonan, et270

al. (2019)).271

The atmospheric CO2 growth rate changes induced by land and ocean carbon sink272

variations show predictive skill to lead year 2 (Fig.3) in the same models which have sig-273

nificant 2 year predictive horizons for the land carbon sink (i.e. in CanESM5, IPSL-CM6A-274

LR, MPI-ESM, and NorCPM1). Given the longer predictive horizons of the ocean car-275

bon sink, our results indicate that predictability of the atmospheric CO2 growth in these276

models is limited by the land carbon sink predictability. Analogously, a previous study,277

based on a perfect model framework (Spring & Ilyina, 2020), demonstrates that the pre-278

dictive skill of atmospheric CO2 concentration of 3 years is dampened by land.279

5 Spatial patterns of predictability horizons of CO2 fluxes280

The prediction systems use different initialization techniques and data assimilation281

methods, but do they establish robust spatial patterns of predictability horizons in the282

carbon cycle? To address this question we examine predictability horizons due to added283

value of initialization, represented by the lead years when correlations of the initialized284

simulations are larger than those in the uninitialized ones. We find overall rather con-285

sistent CO2 flux predictability horizons established due to initialization in the different286

prediction systems (Fig.4).287

In some ocean regions, the improved skill is retained for up to 9-10 years, thereby288

going beyond the predictability horizons of the physical climate variables (Séférian et289

al., 2014; Li et al., 2016). We find regional improvements in air-sea CO2 flux predictabil-290

ity due to initialization (as indicated by the difference between the initialized and unini-291
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tialized simulations and consistent spatial patterns of predictive skill at lead year 2 across292

models shown in Fig. S3-S4). These improved regions differ across the models and when293

assessing them vs. the GCB estimates or the SOM-FFN (Fig. S3) and the reconstruc-294

tions (Fig. S4), highlighting the importance of high-quality reference for skillful predic-295

tions of the ocean carbon sink. The air-sea CO2 flux dynamics is regulated by the tem-296

poral gradient of surface ocean pCO2. Because of the fast equilibration of CO2 between297

atmosphere and surface ocean in most areas, pCO2 tracks atmospheric CO2 evolution.298

This feature is fairly well captured in ocean biogeochemical models (Roy et al., 2011).299

Furthermore, our previous findings (Li et al., 2019) suggest that temperature variations300

largely control shorter-term (<3 years) predictability of the ocean carbon sink, while longer-301

term (>3 years) predictability is associated with nonthermal drivers. Coherent repre-302

sentation of the spatial patterns of the air-sea CO2 flux in the different prediction sys-303

tems may be driven by the robust representation of SST variations in the initialized pre-304

dictions considered here (Fig. S5).305

On the land side, statistically significant improvements due to initialization (in CanESM5,306

IPSL-CM6A-LR, MPI-EMS-LR, and NorCPM1) are suggested in regions of the trop-307

ics (e.g. Amazon, West Africa) and extra-tropics (e.g. Middle East, US Great Plains,308

Eastern Russia). These prediction systems represent land carbon fluxes improved due309

to initialization at lead time of 2 years. Less pronounced predictive skill of land carbon310

fluxes is found in CESM-DPLE due to the initialization of atmosphere and land from311

a random ensemble member; see Materials and Methods and Lovenduski, Bonan, et al.312

(2019)).313

6 Conclusions314

One major requirement related to the goal of the Paris Agreement of ”limiting warm-315

ing to well below 2◦C, and pursuing efforts to 1.5◦C”, is to discern the pathways of an-316

thropogenic carbon in the Earth system in order to verify the effectiveness of fossil fuel317

emissions reduction measures. A major scientific challenge in this context will be to pre-318

dict the inter-annual and decadal variations of the natural carbon sinks and the related319

variations in the growth rate of atmospheric CO2, as well as their susceptibility to on-320

going climate change. Thus, predictability of variations of the global carbon cycle is a321

crucial emerging topic requiring fast advance as it relates to the global stocktaking re-322

quirements of the Paris Agreement.323
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Here we provide a first multi-model assessment of the initialized carbon cycle pre-324

dictions, which is an important step towards skillful near-term predictions of the evo-325

lution of the land and ocean carbon sinks and the resulting variations in atmospheric CO2326

growth in response to climate variability and changes in anthropogenic carbon emissions.327

We find improved predictive skill due to initialization in both ocean and land carbon sinks.328

Predictive skill due to initialization for the global air-sea CO2 flux is up to 6 years. There329

is indication of even higher regional skill in single models and regions. Representation330

of air-land CO2 flux improved due to initialization in all models considered in this study.331

We demonstrate predictive horizons of up to 2 years in 4 out of the 6 models considered332

in this study. As year-to-year variations in atmospheric CO2 are largely determined by333

variations of the land carbon sink, the predictability horizon of 2 years found for the at-334

mospheric CO2 growth rate is maintained by predictability of air-land CO2 flux.335

Ongoing challenges in predictions of the global carbon cycle include a lack of ob-336

servationally based products suitable to initialize the ESMs and to verify prediction skill,337

the unavailability of standardized multi-model simulations that include prognostic car-338

bon cycle components, and the insufficient prediction ensemble size that impairs signif-339

icance assessment. Despite these challenges, our analysis provides clear indications that340

further advancement of the physical and biogeochemical components of prediction sys-341

tems and larger ensembles could timely address some of these challenges as new predic-342

tion simulations and updated observational products become available. Our analysis demon-343

strates an emerging capacity of the initialized simulations for skillful predictions of the344

carbon cycle. Thus, such multi-model initialized predictions would offer a powerful tool345

in support of governmental and economical decisions related to verification and efficiency346

assessment of near-term carbon emission reduction pathways.347
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Frölicher, T. L., Ramseyer, L., Raible, C. C., Rodgers, K. B., & Dunne, J. (2020).409

Potential predictability of marine ecosystem drivers. Biogeosciences, 17 , 2061-410

2083.411

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M.,412

. . . others (2013). Climate and carbon cycle changes from 1850 to 2100 in413

MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5.414

Journal of Advances in Modeling Earth Systems, 5 (3), 572–597.415

Illing, S., Kadow, C., Oliver, K., & Cubasch, U. (2014). Murcss: A tool for stan-416

dardized evaluation of decadal hindcast systems. Journal of Open Research417

Software, 2 (1).418

Jones, C. D., Collins, M., Cox, P. M., & Spall, S. A. (2001). The carbon cycle re-419

sponse to ENSO: A coupled climate–carbon cycle model study. Journal of Cli-420

–14–



manuscript submitted to Geophysical Research Letters

mate, 14 (21), 4113–4129.421

Kim, J.-S., Kug, J.-S., Yoon, J.-H., & Jeong, S.-J. (2016). Increased atmospheric co2422

growth rate during El Niño driven by reduced terrestrial productivity in the423

CMIP5 ESMs. Journal of Climate, 29 (24), 8783–8805.424

Krumhardt, K. M., Lovenduski, N. S., Long, M. C., Luo, J. Y., Lindsay, K., Yeager,425

S., & Harrison, C. (2020). Potential predictability of net primary production426

in the ocean. Global Biogeochemical Cycles, 34 , e2020GB006531.427

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian,428

J. R., . . . others (2020). Twenty-first century ocean warming, acidification,429

deoxygenation, and upper-ocean nutrient and primary production decline from430

CMIP6 model projections. Biogeosciences, 17 (13), 3439–3470.431

Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C.,432
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Figure 1. Time series of the global anomalous CO2 flux relative to the climatological mean

in each modeling system into the ocean (left) and land (right) from reconstruction (top), unini-

tialized simulation, (middle) and initialized retrospective prediction (bottom) simulations at

lead time of 2 years. The long-term linear trends are removed for all the time-series. Left panels

include available observation-based estimates from SOM-FFN. Numbers on the legends show

the correlations relative to GCB and correlations relative to SOM-FFN data based estimates

of the CO2 flux into the ocean (shown in brackets). Outputs for air-land CO2 fluxes from the

reconstruction simulation were not available from IPSL-CM6A-LR and CESM-DPLE.
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Figure 2. Time series of the anomalous atmospheric carbon growth rate due to natural vari-

ations of the ocean and land carbon sinks, represented by the reverse sign of the detrended land

and ocean carbon sinks from reconstruction (top), uninitialized simulation, (middle) and ini-

tialized retrospective prediction (bottom) simulations at lead time of 2 years. Numbers on the

legends show the correlations relative to GCB. Outputs for air-land CO2 fluxes from the recon-

struction simulation were not available from IPSL-CM6A-LR and CESM-DPLE, preventing the

computation of the anomalous atmospheric carbon growth rates in these systems.
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Figure 3. Predictive skill of the detrended CO2 flux into the ocean (a), CO2 flux into the

land (b), and variations in the inferred atmospheric CO2 growth (c). Predictive skill is quantified

as anomaly correlation coefficients of the model simulations with the SOM-FFN observation-

based product for the air-sea CO2 fluxes (a), and with GCB2019 for the air-land CO2 flux and

anomalous atmospheric CO2 due to carbon sinks. Significantly improved predictive skill at 95%

level for initialized over uninitialized simulations are marked with filled dots, p-values given in

Table S2. Note that GFDL-ESM2 and MIROC-ES2L hindcasts start earliest from year 1980, so

from lead year 4 the time period is shorter than 1982-2013.
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Figure 4. Predictability horizon of the detrended CO2 flux into the ocean and the land, rep-

resented by the lead years with improved predictive skill due to initialization, i.e., when correla-

tions in the initialized simulations are larger than 0 and also larger than those in the uninitialized

simulations. Skill is quantified with anomaly correlation coefficient for the period 1982-2013.

Predictive skill of the air-sea CO2 flux gained due to initialization is assessed against SOM-FFN,

whereas for the air-land CO2 flux it is assessed against GCB. Crosses show significance at 95%

level for the first 2 years. Note that GFDL-ESM2 and MIROC-ES2L hindcasts start earliest from

year 1980, so from lead year 4 the time period is shorter than 1982-2013.
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Séférian14, R. Sospedra-Alfonso10, M. Watanabe15, S. Yeager5

11Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany

2International Max-Planck Research School of Earth System Modelling, Bundesstraße 53, 20146, Hamburg, Germany

3LMD-IPSL, CNRS, Ecole Normale Supérieure / PSL Res. Univ, Ecole Polytechnique, Sorbonne Université, Paris, France
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1. Description of prediction systems

Details of the predictions system used in this study are given below. Additionally,

the Earth system models and corresponding initialization techniques are summarized in

Table S1. Note that the models use different initialization and data assimilation designs.

Prediction system followed CMIP5 (historical extended by RCP4.5) or CMIP6 (historical

extended by SSP2-4.5) forcing. Details on individual prediction systems are given below.

1.1. CanESM5

The Canadian Earth System Model version 5 (CanESM5, Swart et al. (2019)) devel-

oped at the Canadian Centre for Climate Modelling and Analysis couples version 5 of the

Canadian Atmospheric Model (CanAM5) and the CanNEMO ocean component adapted

from Nucleus for European Modelling of the Ocean (NEMO) version 3.4.1. CanAM5 in-

corporates version 3.6.2 of the Canadian Land Surface Scheme (CLASS) and the Canadian

Terrestrial Ecosystem model (CTEM), whereas CanNEMO represents ocean biogeochem-

istry (BGC) with the Canadian Model of Ocean Carbon (CMOC). Sea ice is simulated

within the NEMO framework with the LIM2 model. CanAM5 is a spectral model with

a T63 triangular truncation leading to a horizontal resolution of approximately 2.8◦, and

49 hybrid vertical coordinate levels extending from the surface to 1hPa. CanNEMO is

configured on the ORCA1 C-grid with 45 vertical levels ranging from about 6 meters

thickness near the surface to about 250 meters in the abyssal ocean. The horizontal reso-

lution is based on a 1 degree isotropic Mercator grid which is refined meridionally to 1/3

of a degree near the Equator, and includes a tripolar configuration to avoid the coordinate

singularity in the Northern Hemisphere.
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The CanESM5 ensemble of decadal hindcasts (Sospedra-Alfonso & Boer, 2020) is ini-

tialized each January 1st during 1961 to 2017 and run for 10 years. The ensemble members

are initialized from separate data constrained coupled assimilation runs that span 1958

to 2016 and are started from consecutive years following a 80-year spinup run that assim-

ilates repeating 1958-1967 data. For the ocean, the assimilation runs are nudged to 3D

potential temperature and salinity from ECMWF’s ORAS5 reanalysis, whereas sea surface

temperature is relaxed to values interpolated from NOAA’s OISSTv2 during November

1981 to 2016, and NOAA’s ERSSTv3 prior 1981. Sea ice concentration is relaxed to values

interpolated from HadISST.2 and the Canadian Meteorological Centre (CMC) analysis,

whereas sea ice thickness uses assimilation of the SMv3 statistical model of Dirkson,

Merryfield, and Monahan (2017). Atmospheric full-field temperature, horizontal wind

components and specific humidity are nudged toward values from ERA-Interim during

1979 to 2016, and to ERA40 anomalies added to ERA-Interim climatology prior 1979.

Land physical and BGC variables are initialized through response of CLASS-CTEM to

the data-constrained atmosphere, whereas oceanic BGC variables are initialized through

response of CMOC to data-constrained physical ocean variables and surface atmospheric

forcing. CanESM5 uninitialized predictions are historical simulations extended after 2014

with SSP2-4.5 forcing scenario. Although CanESM5 incorporates CTEM and CMOC to

simulate land and ocean carbon exchange with the atmosphere, initialized and uninitial-

ized predictions have prescribed atmospheric CO2 concentrations and thus ocean and land

CO2 are purely diagnostic without feedback onto the simulated physical climate.
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1.2. CESM-DPLE

The CESM (Community Earth System Model) Decadal Prediction Large Ensemble

(DPLE) is a collection of 40-member decadal hindcasts/forecasts using CESM version 1.1,

run with prognostic ocean biogeochemistry (Yeager et al., 2018). The component models

include: CAM5 atmosphere (nominal 1◦ with 30 vertical levels); POP2 ocean (nominal 1◦

with 60 vertical levels); CICE4 sea ice (nominal 1◦, same horizontal grid as ocean); and

CLM4 land (nominal 1◦, same horizontal grid as atmosphere). The ocean biogeochemistry

model used in CESM-DPLE has been described in detail elsewhere (Yeager et al., 2018;

Lovenduski et al., 2019). The corresponding uninitialized historical simulations comprise

the CESM Large Ensemble (CESM-LE; Kay et al. (2015)), 34 members of which include

the biogeochemical fields of interest here.

The CESM-DPLE hindcasts are initialized on each November 1 between 1954-2015 and

integrated for 122 months. The initial conditions for ocean and sea ice fields (including

ocean biogeochemical fields) come from a coupled ocean-sea-ice historical reconstruction

simulation forced with atmospheric reanalysis data combined with satellite-based flux

data (Yeager et al., 2018). There is no assimilation of ocean or sea-ice observations in

this reconstruction. Initial conditions for the atmosphere and land come from a randomly

selected, single member of the CESM-LE. Full-field initialization is used, necessitating a

drift correction step prior to analysis.

1.3. GFDL-ESM2

GFDL-ESM2 developed at the Geophysical Fluid Dynamics Laboratory builds on the

fully coupled GFDL-CM2.1 atmosphere-land-sea ice-ocean model. The resolution of the
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atmosphere and land models is 2.5◦ longitude x 2◦ latitude with 24 hybrid sigma/pressure

vertical layers in the atmosphere. The resolution of ocean and ocean biogeochemical

model is 1.0◦, with telescoping to 1/3◦ near the equator, with 50 vertical levels with

varying thickness ranging from 10 m near the surface to 400 m in the deep ocean. The

physical ocean model incorporates the ocean biogeochemistry component, the GFDL’s

Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) marine biogeochemical

model that simulates 33 tracers to resolve global-scale biogeochemical cycles.

The ESM prediction system using GFDL-ESM2 comprises 3 sets of simulations: i)

An ensemble of 12-member uninitialized historical simulations, ii) assimilation run con-

strained by 3-D ocean in situ data and atmospheric reanalysis product, and iii) an en-

semble of 10 year-long with 12 ensemble retrospective prediction runs initialized from the

assimilation during the period 1961-2017. The initial conditions of ensemble prediction are

taken from the GFDL ensemble coupled data assimilation (ECDA) system coupled with

COBALT (Park et al., 2018, 2019). The ECDA system employs an ensemble Kalman filter

(EKF) assimilation scheme. The ocean in the ECDA is constrained by satellite-retrieved

surface temperature from NOAA optimum interpolation sea surface temperature v2 and

in situ ocean temperature/salinity from World Ocean Database (WOD) and Argo profiles

since 2000. The atmosphere in the ECDA is constrained by the 6 hourly temperature

and winds from National Centers for Environmental Prediction, Department of Energy

(NCEP-DOE) Reanalysis 2 product. The ocean and atmosphere data constraints in the

assimilation run are optimally calibrated to reduce spurious equatorial upwelling and the
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subsequent biogeochemical biases caused by assimilation-driven momentum imbalances

(Park et al., 2018).

1.4. IPSL-CM6A-LR

The IPSL (Institut Pierre Simon Laplace) decadal prediction system used here is based

on the IPSL-CM6A-LR version of the climate model described extensively in (Boucher

et al., 2020). The component models include: LMDZ6 atmosphere (average 157km, 79

levels ), NEMOv3.6STABLE ocean on the ORCA1 grid (nominal 1◦ with 75 vertical

levels), LIM3 sea ice (on the same grid as the ocean) and ORCHIDEE (Cheruy et al.,

2019) land (same grid as the atmosphere). The ocean biogeochemistry model used in

IPSL-CM6A-LR is based on PISCESv2 (Aumont et al., 2015).

The uninitialized historical simulations comprises 32 members. The hindcasts are ini-

tialized from a global century long simulation in which anomalies of global EN4 sea sur-

face temperature and Atlantic sea surface salinity presented by Reverdin et al. (2019)

have been nudged into the climate model. The nudging procedure is described by Estella-

Perez, Mignot, Guilyardi, Swingedouw, and Reverdin (2020). There is no assimilation of

subsurface ocean, sea ice or atmospheric observations. Hindcasts start each December 1

during 1961-2014 and integrated for 10 years; 10 members are launched for each start

date.

1.5. MIROC-ES2L

MIROC-ES2L (Hajima et al., 2020) is an ESM developed for CMIP Phase 6. The phys-

ical core of MIROC-ES2L is MIROC5.2 (Tatebe et al., 2018). The ocean biogeochemical

component is OECO2, and the land biogeochemical component is VISIT-e, which has
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the same horizontal grid as atmosphere. Details of OECO2 and VIST-e are described in

Hajima et al. (2020). The horizontal resolution of the atmospheric component has T42

spectral truncation (i.e., approximately 300 km) with 40 vertical levels up to 3 hPa. The

oceanic component has a horizontal tripolar coordinate system. In the spherical coordi-

nate portion south of 63◦N, the longitudinal grid spacing is 1◦, while the meridional grid

spacing varies from approximately 0.5◦ near the equator to 1◦ in mid-latitude regions.

There are 62 vertical levels in a hybrid σ–z coordinate system, the lowermost of which is

located at the depth of 6300 m.

Using MIROC-ES2L, we conducted three sets of experiments, namely, uninitialized

historical runs in 1850–2014, data assimilation runs in 1960–2016, and retrospective pre-

dictions starting from 1 January, every year from 1980 to 2017 with 10-yr-duration. All

the experiments have ten ensemble members. In the assimilation run, the monthly ob-

jective analysis of ocean temperature and salinity (Ishii & Kimoto, 2009) at the depths

between the sea surface and 3000 m are assimilated. The assimilation procedure is the

same as that used in Tatebe et al. (2012) and Watanabe et al. (2020), but a full-field

assimilation is adopted. In addition to that, absolute values of monthly sea-ice concen-

tration based on satellite observations of Armstrong, Knowles, Brodzik, and Hardman

(1994) are assimilated with the same procedure for ocean temperature and salinity. The

atmosphere is constrained by full-field assimilation with the 6 hourly temperature and

winds from the JRA55 reanalysis (Kobayashi et al., 2015). With an initial condition at 1

January 1960 taken from a certain member of the historical runs, the spinup run for the

assimilation run is conducted over a few hundred years with the fixed CMIP6 external

September 4, 2020, 2:10pm



: X - 9

forcings at the year 1960 until the air–sea and air–land carbon fluxes reach a quasi-steady

state. Initial conditions for ten member ensemble of the assimilation runs are taken from

arbitrary years of the spinup run.

1.6. MPI-ESM-LR

MPI-ESM-LR is a low-resolution configuration of the Max Planck Institute Earth Sys-

tem Model (MPI-ESM1.1; Giorgetta et al. (2013)), on which the coupled model inter-

comparison project phase 5 (CMIP5) simulations are based. The resolution of the ocean

model MPIOM is about 1.5◦ with 40 vertical levels. The resolution of the atmosphere

model ECHAM is T63 ( 200km) with 40 vertical levels. The ocean biogeochemistry com-

ponent of MPI-ESM is represented by HAMOCC (Ilyina et al., 2013), and the land and

vegetation component is represented by JSBACH.

The decadal prediction system comprises 3 set of simulations, i.e., i) an ensemble of

10-member uninitialized historical simulations extended to the RCP4.5 scenario; ii) as-

similation run by nudging the ocean 3-D temperature and salinity anomalies from the

ECMWF ocean reanalysis system 4 (ORAS4) and the atmospheric 3-D full-field temper-

ature, vorticity, divergence, and surface pressure ECMWF Re-Analysis ERA40 during

the period 1960-1989 and ERA-Interim during the period 1990-2014; iii) An ensemble of

10-member retrospective prediction simulations initialized from the assimilation which is

close to the observations, the initialized prediction simulations run for 10 years starting

annually from 1st January for the period 1961-2014. There is no assimilation of ocean

biogeochemical data due to the limit of available data.
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1.7. MPI-ESM1.2-HR

MPI-ESM1.2-HR is based on a latest MPI-ESM model version 1.2 (Müller et al., 2018;

Mauritsen et al., 2019), which is used for CMIP6 simulations. The major model devel-

opment in the physical climate components relative to the CMIP5 model versions is the

new radiation and aerosol parameterizations (Mauritsen et al., 2019). The representation

of the land vegetation component is extended by including wild fires, multi-layer soil hy-

drology scheme, and nitrogen cycle. A major development to the ocean biogeochemistry

is the implementation of cyanobacteria as additional phytoplankton specie for prognos-

tic representation of nitrogen fixation, improved detritus settling and a number of other

refinements. MPI-ESM1.2-HR is configured with grid spacings of 40 km in the ocean

and 100 km (T127) in the atmosphere, with 40 ocean vertical levels and 95 atmospheric

vertical levels, respectively. The assimilation in the MPI-ESM1.2-HR decadal prediction

system is in general the same as in the MPI-ESM-LR prediction system for the atmo-

sphere and the ocean, the difference for nudging is the inclusion of assimilation of sea-ice

area fraction from the National Snow and Ice Data Center (NSIDC) satellite observations.

In addition, we run a pre-assimilation to spinup the ocean biogeochemistry for about 50

years before the assimilation so that the ocean biogeochemical processes slowly adjust to

the new assimilated physical climate states (Li et al., 2019). The ensemble member for

the initialized predictions and uninitialized historical of MPI-ESM1.2-HR simulations is

10. Note that the initialized 10-year long predictions of MPI-ESM1.2-HR system start

annually from November 1 for the period 1961-2014.
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1.8. NorCPM1

The latest version of the Norwegian Climate Prediction Model (NorCPM1) builds on

NorCPM (Counillon et al., 2014, 2016; Wang et al., 2016, 2017), with the inclusion of an

ocean biogeochemical component, atmospheric aerosol and cloud chemistry, an update to

CMIP6 forcing, a retuning and some minor bug-fixes. The ESM in NorCPM1 is based on

the CMIP5 version of the medium resolution Norwegian Earth System Model NorESM1-

ME (Bentsen et al., 2013; Tjiputra et al., 2013), where the atmospheric, ocean physical,

ocean biogeochemical, sea ice and land components are represented by CAM4-OSLO,

NorESM-O, HAMOCC, CICE4 and CLM4, respectively. CAM4-OSLO has a 1.9x2.5 ◦

latitude-longitude resolution and 26 vertical layers. The ocean component NorESM-O has

a 1◦ horizontal resolution and consists of 51 isopycnic layers, where the two uppermost

layers represent the mixed layer.

NorCPM1 applies an Ensemble Kalman Filter to assimilate monthly anomalies of sea

surface temperature (SST) and temperature and salinity depth profiles. For 1950-2010

and 2011-2018, SST from the HadISST2 (HadISST2.1.0.0) and OISSTV2 (Reynolds et al.,

2002) datasets, respectively, are used. The temperature and salinity depth profiles come

from the EN4.2.1 dataset (Good et al., 2013). Based on Fransner et al. (2020), who showed

that the biogeochemical initial conditions have a minor impact on the predictability of

ocean biogeochemistry on interannual to decadal timescales, no assimilation of ocean

biogeochemistry is done within NorCPM1.

For the CMIP6 DCPP two sets of decadal hindcasts have been produced with Nor-

CPM1. Both sets consist of 10 members each and have been initialized on October 15th
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every year from 1959 to 2017. They are thereafter run for ten years plus three months.

The two sets have been initialized from two different reanalysis products that have been

integrated between 1950 and 2019. The first one uses 1980-2010 as reference climatology

and applies weakly coupled assimilation, meaning that only the ocean state is updated

during assimilation. The second one uses 1950-2010 as a reference climatology and uses

strongly coupled data assimilation, implying that also the sea ice is updated during the

assimilation. Note that a discontinuity in the atmospheric CO2 in the years of 2015 and

2016 was discovered after all the simulations had been performed, which had arisen when

merging the historical and the future atmospheric forcing. The effect of this on the pre-

diction skill is avoided if benchmarking the skill of the predictions against the historical

(uninitialized) runs. However, this does not affect the current study which stretches until

the year of 2013.
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Figure S1. Time series of Nino3 index and the air-land CO2 flux (NBP) from model recon-

struction. The Nino3 index from HadISST is shown with black dash line, and the GCB2019

NBP is shown with black solid line. The numbers behind the legend show the correlation with

HadISST Nino3 index.
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Figure S2. Significance P-values of air-sea CO2 flux predictions evolving with ensemble size.

The significance of skill of CESM-DPLE air-sea CO2 flux predictions at lead time of 3 years

relative to the corresponding reconstruction simulation is shown in black. The colors indicate

results relative to different reference data, i.e. GCB (red) and SOM-FFN (blue).
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Figure S3. Correlation for air-sea and air-land CO2 flux at lead time of 2 years relative to

SOM-FFN for ocean and GCB2019 for land, respectively. The skill is quantified with anomaly

correlation coefficient. Shown are the correlations of the initialized retrospective predictions

(left) and the difference between initialized and uninitialized simulations(right). The crosses

show significance at 95% level.
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Figure S4. Same as Fig. S3, but based on correlation with the reconstruction simulation.
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Figure S5. Predictive skill of sea surface temperature for the initialized simulation at lead

time of 2 years and the difference between the the initialized and uninitialized simulations for

the period from 1982-2013. Observations are HadISST.
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Table S2. Significance P-values for predictive skills of the detrended CO2 flux into the ocean,

CO2 flux into land, and variations in the inferred atmospheric CO2 growth presented in Figure

3. LY1 to LY10 refer to lead years 1 to 10, respectively.

Model LY1 LY2 LY3 LY4 LY5 LY6 LY7 LY8 LY9 LY10

air-sea CO2 flux
CanESM5 0.97 0.94 0.57 0.11 0.12 0.01 0.73 0.73 0.64 0.90
CESM-DPLE 0.03 0.00 0.00 0.01 0.02 0.02 0.19 0.05 0.09 0.64
GFDL-ESM2 0.00 0.01 0.09 0.61 0.79 0.57 0.81 0.80 0.78 0.63
IPSL-CM6A-LR 0.34 0.29 0.32 0.21 0.10 0.10 0.16 0.23 0.11 0.14
MIROC-ES2L 0.01 0.04 0.08 0.19 0.26 0.29 0.30 0.31 0.89 0.93
MPI-ESM-LR 0.13 0.09 0.26 0.12 0.06 0.12 0.12 0.03 0.09 0.28
MPI-ESM1-2-HR 0.00 0.00 0.00 0.00 0.00 0.10 0.04 0.16 0.05 0.07
NorCPM1 0.00 0.00 0.01 0.00 0.05 0.05 0.12 0.38 0.34 0.34

air-land CO2 flux
CanESM5 0.00 0.00 0.47 0.86 0.82 0.91 0.61 0.97 0.82 0.70
CESM-DPLE 0.24 0.07 0.62 0.77 0.71 0.80 0.87 0.76 0.82 0.89
IPSL-CM6A-LR 0.00 0.00 0.13 0.23 0.40 0.19 0.27 0.21 0.31 0.14
MIROC-ES2L 0.01 0.56 0.35 0.39 0.63 0.73 0.50 0.36 0.56 0.80
MPI-ESM-LR 0.00 0.03 0.35 0.59 0.79 0.48 0.21 0.59 0.35 0.48
NorCPM1 0.00 0.01 0.74 0.46 0.25 0.46 0.48 0.27 0.26 0.21

atmospheric CO2 growth
CanESM5 0.00 0.00 0.55 0.86 0.77 0.92 0.66 0.97 0.83 0.73
CESM-DPLE 0.33 0.07 0.57 0.70 0.61 0.81 0.88 0.76 0.82 0.90
IPSL-CM6A-LR 0.00 0.01 0.12 0.24 0.46 0.22 0.31 0.28 0.39 0.19
MIROC-ES2L 0.01 0.65 0.42 0.41 0.65 0.69 0.40 0.32 0.52 0.71
MPI-ESM-LR 0.00 0.05 0.46 0.67 0.80 0.51 0.19 0.53 0.31 0.44
NorCPM1 0.00 0.00 0.70 0.40 0.23 0.38 0.48 0.28 0.31 0.25
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