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Abstract

Image cross-correlation techniques, such as Particle Image Velocimetry (PIV), can estimate water surface velocity (vsurf) of

streams. However, discharge estimation requires water depth and the depth-averaged vertical velocity (Um). The variability of

the ratio Um/vsurf introduces large errors in discharge estimates. We demonstrate a method to estimate vsurf from Unmanned

Aerial Systems (UASs) with PIV technique. This method does not require any Ground Control Point (GCP): the conversion

of velocities from pixels per frame into meters per time is performed by informing a camera pinhole model; the range from

the pinhole to the water surface is measured by the drone-board radar. For approximately uniform flow, Um is a function of

the Gauckler-Manning-Strickler coefficient (Ks) and vsurf. We implement an approach that can be used to jointly estimate Ks

and discharge by informing a system of 2 unknowns (Ks and discharge) and 2 non-linear equations: i) Manning’s equation ii)

mean-section method for computing discharge from Um. This approach relies on bathymetry, acquired in-situ a-priori, and on

UAS-borne vsurf and water surface slope measurements. Our joint (discharge and Ks) estimation approach is an alternative

to the widely used approach than relies on estimating Um as 0.85vsurf. It was extensively investigated in 27 case studies, in

different streams with different hydraulic conditions. Discharge estimated with the joint estimation approach showed a mean

absolute error in discharge of 19.1% compared to in-situ discharge measurements. Ks estimates showed a mean absolute error

of 3.2 mˆ{1/3} /s compared to in-situ measurements.
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Key points 13 

 Drone-borne sensors can measure stream water surface velocity and water surface slope  14 

 We developed a new method to estimate stream roughness and discharge from drone-borne 15 

water surface velocity and slope measurements   16 

 Drone-borne discharge measurements compared well with in-situ measurements in 27 17 

different field sites 18 

  19 

 20 

 21 

Abstract 22 

 23 

Image cross-correlation techniques, such as Particle Image Velocimetry (PIV), can estimate water 24 

surface velocity (vsurf) of streams. However, discharge estimation requires water depth and the depth-25 

averaged vertical velocity (Um). The variability of the ratio Um/vsurf introduces large errors in 26 

discharge estimates.  We demonstrate a method to estimate vsurf from Unmanned Aerial Systems 27 

(UASs) with PIV technique. This method does not require any Ground Control Point (GCP): the 28 

conversion of velocities from pixels per frame into meters per time is performed by informing a 29 

camera pinhole model; the range from the pinhole to the water surface is measured by the drone-30 

board radar. For approximately uniform flow, Um is a function of the Gauckler-Manning-Strickler 31 

coefficient (Ks) and vsurf. We implement an approach that can be used to jointly estimate Ks and 32 

discharge by informing a system of 2 unknowns (Ks and discharge) and 2 non-linear equations: i) 33 

Manning’s equation ii) mean-section method for computing discharge from Um. This approach relies 34 

on bathymetry, acquired in-situ a-priori, and on UAS-borne vsurf and water surface slope 35 

measurements. Our joint (discharge and Ks) estimation approach is an alternative to the widely used 36 

approach than relies on estimating Um as 0.85·vsurf.  It was extensively investigated in 27 case studies, 37 
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in different streams with different hydraulic conditions. Discharge estimated with the joint estimation 38 

approach showed a mean absolute error in discharge of 19.1% compared to in-situ discharge 39 

measurements. Ks estimates showed a mean absolute error of 3.2 m1/3/s compared to in-situ 40 

measurements.   41 

 42 

 43 

1. Introduction 44 

 45 

River flow velocity and depth are determined by the interplay between gravity, pressure and hydraulic 46 

roughness of the stream. An increase in hydraulic roughness causes deeper and slower flow, 47 

increasing flood risk, and affecting bed-material transport and aquatic ecosystems (Ferguson, 2010).  48 

For this reason, accurate observations of velocities, hydraulic roughness and discharge in streams and 49 

rivers are of major importance.   Despite a substantial effort in many countries to install and maintain 50 

gauging stations and estimate rating curves for large streams and rivers, there is a considerable data 51 

paucity for small and highly responsive streams (Blume et al., 2017; Borga et al., 2008; Gaume & 52 

Borga, 2008; Perks et al., 2016; Stumpf et al., 2016). In small streams, discharge surveys are 53 

performed once every several months or years depending on site complexity, local regulation on 54 

watercourses,  and funding availability (Tauro et al., 2017). These individual surveys are generally 55 

performed by measuring water depth and velocity with rotating propellers, or electromagnetic 56 

inductive sensors, lowered into the stream at different depths.  However, real-time monitoring of 57 

discharge remains a significant practical challenge, especially during periods of hydrological interest, 58 

such as floods and droughts. Indeed, extreme events pose a safety hazard to operators and 59 

instrumentation. To address such issues, in recent years, researchers have experimented with non-60 

invasive techniques to estimate water surface velocity. Non-invasive approaches generally involve 61 

the analysis of video frames acquired from in-situ stations  (Gunawan et al., 2012; Jodeau et al., 2008; 62 

Tauro, Petroselli, et al., 2016), helicopters or Unmanned Aerial Systems (UAS) platforms (Detert & 63 

Weitbrecht, 2015; Fujita & Kunita, 2011; Tauro, Porfiri, et al., 2016). Recent advances in UAS 64 

platforms can significantly automatize surveys and ensure UAS operations even in the challenging 65 

weather conditions occurring during extreme hydrological events.  Two popular image cross-66 

correlation approaches are Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry 67 

(PTV) (Tauro et al., 2018).  PIV, also called Large Scale Particle Image Velocimetry (LSPIV) when 68 

deployed in large scale systems such as natural rivers, is an Eulerian methodology that estimates the 69 

surface velocity of image regions,  while PTV is a Lagrangian approach that constructs the trajectory 70 

of individual particles transiting the image (Tauro et al., 2017).  Generally, PTV ensures highly 71 

accurate observations when highly resolved tracers (whose shape should be known) are visible on the 72 

water surface, while PIV can be adopted with particles of any shape and size and ensures observations 73 

that are more spatially dense than PTV. Thus in natural streams, PTV is generally less commonly 74 

adopted than PIV.  75 

To extract accurate velocity data with LSPIV,  images should be corrected for lens distortion and  76 

have to be orthorectified by an appropriate image transformation scheme (Muste et al., 2008), which 77 

generally requires a number of Ground Control Points (GCPs). The GCPs should be surveyed in the 78 

field using specialized survey equipment (total stations, differential GPS systems). However, the need 79 



for GCPs dramatically limits the possibility of conducting autonomous surveys. In the case of 80 

hydrological extreme events or wide rivers/channels, the use of GCPs may be difficult or even 81 

impossible.  To avoid the use of GCPs, Tauro, Porfiri, & Grimaldi (2014) used laser pointers that 82 

create visible dots at a known distance on the water surface. These dots could be used for assigning 83 

metric dimensions to images. Bolognesi et al. (2016) adopted a different GCP-free approach based 84 

flight altitude and a priori knowledge of focal length and sensor size. They compared LSPIV estimates 85 

obtained i) without GCPs relying solely on the flight altitude observations and ii) with four GCPs. 86 

The difference in velocity estimates between GCPs and GCP-free scenario was ca. ±6%.  The stability 87 

of the platform was suspected to be an important source of error.  88 

In order to estimate discharge, surface velocity needs to be converted into mean vertical velocity 89 

profiles.  In this regard, a velocity coefficient is generally applied. The coefficient  is dependent on 90 

the vertical velocity profile, which is affected by Froude and Reynolds numbers, flow aspect ratio, 91 

micro and macro bed roughness, and relative submergence of the large-scale roughness elements 92 

(Muste et al., 2008).  In the literature, a default coefficient of ca. 0.85 is normally used (from Rantz 93 

(1982). However, this coefficient is site-specific and is generally higher for smoother beds or higher 94 

depths (Welber et al., 2016). Indeed, in the LSPIV literature, different coefficients were observed. 95 

Jodeau et al. (2008) and Dramais et al. (2011) found values of 0.72-0.79, while Genç et al. (2015) 96 

estimated a value of 0.55 in streams: both coefficients are significantly smaller than 0.85. Le Coz et 97 

al. (2010) found a velocity coefficient value as high as 0.90 in deeper sections.  Stumpf et al. (2016) 98 

found an average value of 0.88-0.89, which is higher than expected for the shallow depth (less than 99 

0.5 m) of the surveyed stream, with authors hypothesizing that it was caused the high roughness 100 

height that impeded the formation of logarithmic velocity profiles at shallow flow depths.     Hauet et 101 

al. (2018) observed values of 0.8 with narrow dispersion (5th and 95th percentile values being about 102 

0.7 and 0.9).  The authors found that the value of this coefficient increases linearly with hydraulic 103 

radius and suggested 0.8 with an uncertainty ±15% at 95% confidence interval for water depths 104 

smaller than 2 m.  Thus, the uncertainty in this velocity coefficient can lead to uncertainty in discharge 105 

of more than 30%. 106 

In this study, we developed an innovative approach that can jointly estimate hydraulic roughness 107 

(expressed with Gauckler-Manning-Strickler coefficient) and discharge from UAS-borne 108 

measurements of water surface slope (Sw) and Water Surface Velocity (vsurf). We developed a GCP-109 

free method relying on the measured flight altitude of the UAS above the water surface, measured by 110 

the onboard radar altimeter.  This method is a fully contactless method that does not require in-situ 111 

measurement and operators. However, operators are currently needed for retrieving in-situ 112 

observations for the stream bathymetry and for seeding the streams during UAS-borne measurements.   113 

This approach was extensively validated in a large sample of Danish streams that differ for surface 114 

water conditions, width, roughness, and flow regime; furthermore, surveys were conducted during 115 

different seasons to cover variable hydrological and aquatic vegetation conditions.   116 

 117 

2. Materials and methods 118 

 119 



2.1. Approach for UAV-borne discharge measurements 120 

 121 

Figure 1 shows the workflow to obtain discharge (Q) and Gauckler-Manning-Strickler coefficient 122 

(Ks) estimates. The white boxes show the primary inputs that are required to estimate Q and Ks: a 123 

UAS-borne video, the range to the water surface from which the video was retrieved, the slope of the 124 

water surface (Sw) and water depth along the cross section.  Q and Ks estimation is based on the 125 

uniform flow assumption. 126 

 127 

 128 

Figure 1. Flowchart to estimate discharge and Gauckler-Manning-Strickler coefficient from the UAS-borne 129 
video. White boxes are the primary data inputs, blue boxes are processed data and the green box is the primary 130 
output.  131 

 132 

2.2. UAS-borne payload  133 

 134 

We developed a drone payload consisting of i) the GNSS receiver NovAtel  OEM7700 (NovAtel, 135 

Canada) connected to the DJI D-RTK GNSS antenna (DJI, China) ii) the IWR1443 radar chip from 136 

Texas Instrument (USA) iii) the RGB video-camera GoPro Hero 5 (GoPro, USA). The drone payload 137 

is shown in Figure S1 (in Supporting Information).  138 

Bandini et al. (2019) demonstrated the potential of the GNSS and full waveform radar chip IWR1443 139 

for measuring Water Surface Elevation (WSE): an accuracy of a few cm was achieved also in narrow 140 

streams overhung by riparian vegetation. In this research, the radar payload, combined with the GNSS 141 

receiver, is used to measure WSE and Sw at the measured cross section (XS). Furthermore, the radar 142 

detects the range (R) between the camera and the water surface, which is used in the conversion of 143 



velocity estimates from pixel units into metric units. The RGB camera acquires videos in 4K 144 

(3840x2160) at 25 Hz.  The gimbal Gremsy T1 (Gremsy Co., Ltd, Vietnam) is currently used to 145 

stabilize the payload and keep the radar and the camera facing nadir. 146 

   147 

 148 

 149 

2.3. Seeding and water depth measurements 150 

 151 

Woodchips were used as seeding particles in the case studies, because, in most cases, an insufficient 152 

amount of natural particles (foam, color differences due to suspended solids or sediment transport) 153 

was visible on the water surface. To ensure uniform seeding concentration over the entire stream 154 

width, ground operators released woodchips from the streambanks and, in the larger streams, also 155 

from a rubber boat positioned at the center of the stream. Water depth was measured by the pressure 156 

transducer included in the OTT MFPRO velocity probe (see section 2.9).    157 

 158 

2.4. Video acquisition, video stabilization and lens distortion removal 159 

 160 

 161 

Videos acquired from the onboard Gopro camera are trimmed to extract only a video sequence (5-10 162 

seconds) when the seeding was crossing the XS where discharge is measured.  The UAS-borne video 163 

sequence needs to be stabilized. To stabilize the video, a script was written in MATLAB ver. R2018b 164 

that effectively removes drone horizontal drift. The script requires the identification of four different 165 

stable features (e.g. rocks, bare soil, etc…) on the riverbank and stabilizes the video by realigning the 166 

video frames to remove horizontal movements. Vertical movements were not corrected with the 167 

stabilization script; however, vertical movements were limited during flight operation by keeping a 168 

constant flight altitude with an accuracy of 10-20 centimeters.  169 

The original recordings obtained with the GoPro camera show a significant fish-eye distortion. This 170 

results in a non-uniform representation of real-world dimensions by pixels, which, if uncorrected for, 171 

would cause errors in the conversion from pixel units into metric units. A lens distortion correction 172 

is applied to the imagery. The correction requires the radial (k1, k2 and k3) and tangential distortion 173 

coefficients (p1 and p2) of the lens together with camera intrinsic parameters (focal length, optical 174 

center and skew coefficient).  These camera coefficients and parameters are not provided by the 175 

manufacturer; thus, a camera calibration was performed. Photos of a checkerboard pattern of known 176 

grid size were taken from multiple angles and distances. Then the open-source software OpenCV 177 

package (OpenCV, 2019) was used to estimate the camera coefficients, which are shown in  Table S1 178 

(see supporting Information).  Subsequently, a MATLAB script was written to decrease the effect of 179 

lens distortion. A video frame, before and after distortion correction, is shown in Figure S2. 180 

 181 



 182 

 183 

2.5.  Conversion from pixel units into metric units 184 

 185 

The conversion from pixel units into metric units relies on the assumptions that i) the camera is always 186 

pointing nadir ii) that, after lens distortion correction, a simple pinhole camera model can be 187 

informed. The horizontal width (px) of each pixel in metric units, expressed in meters per pixel, is 188 

typically expressed as the ratio between the focal length (F) in metric units and the focal length (fx) 189 

expressed in pixel units. This variable px can also be expressed as the full width of the FOV in meters 190 

(FOVw) divided by the total amount of pixels over the width of the frame npw (3840 for 4K resolution), 191 

as shown in equation ( 1 ).  Equation ( 2 ) shows that FOVw is dependent on the range R and several 192 

camera settings and characteristics, which have been combined into one empirical variable Xw (which 193 

could be approximated as the ratio between the horizontal width of the sensor and focal length). 194 

Combining the two equations shows that px is a function of the object distance, Xw and npw, as shown 195 

in ( 3 ). 196 

 197 

𝑝𝑥 =
𝐹𝑂𝑉𝑤
𝑛𝑝𝑤

 
( 1 ) 

 

𝐹𝑂𝑉𝑤 = 𝑅 ∙ 𝑋𝑤 
( 2 ) 

 

                               

𝑝𝑥 =
𝑅 ∙ 𝑋𝑤
𝑛𝑝𝑤

 

  

( 3 ) 

 

 198 

 199 

To evaluate Xw, in a simple experimental setup, videos of a checkerboard with known square size 200 

were retrieved from distances ranging from 1.2 to 12 m at intervals of 1 m.  For the GoPro Hero5 201 

camera used in this study, Xw has been determined as 2.182 with a standard deviation of 0.051. The 202 

value of Xw does not depend on the range between the camera and checkerboard.  The choice of 203 

computing pixel size from the FOVw is arbitrary:  if the field of view height (FOVh) was used, the 204 

pixel size estimation would be equivalent. Indeed, the number of pixels along the vertical direction 205 

(nph) is 2160 and the value of Xh was estimated as 1.234 with a standard deviation of 0.04. The ratio 206 

between Xw and Xh is ca. 1.77, which is nearly equivalent to the ratio between npw and nph. Thus, px 207 

and py are equal (square pixels).  208 

 209 

2.6. Velocity estimation with PIVlab 210 

 211 

The surface velocity field was estimated with the image cross-correlation techniques implemented in 212 

PIVlab (Thielicke & Stamhuis, 2014b, 2014a), a freely available toolbox developed for MATLAB.  213 



PIVlab image pre-filtering algorithms, such as histogram equalization, intensity high-pass filter, 214 

intensity capping, were applied depending on the environmental scenario. A region of interest (ROI) 215 

was then drawn based on the stream portion where the surface velocity field was computed. The ROI 216 

width included the area containing visible tracers, while the ROI length was based on the seeding 217 

density, generally in the order of 3-5 m for estimating a spatial average along a few meters of river 218 

length.   In each case, four different interrogation areas of size 256, 128, 64, 32 pixels were chosen.    219 

After the PIV analysis, a velocity vector validation was performed by analyzing the vector standard 220 

deviations  (temporal standard deviation across video sequence) and discarding the few frames 221 

(generally in the order of 3-5% of analyzed frames) showing clear outliers in velocity vectors (outliers 222 

typically occur due to uncorrected abrupt UAS movements).  Finally, a velocity field was extracted 223 

by computing the mean velocity vectors over the non-discarded frames.  The velocity in pixel units 224 

was then converted into velocity in metric units using the equation ( 3 ) and the known video frame 225 

rate. Subsequently, the velocity field was converted into a surface velocity profile along the XS where 226 

discharge is estimated, as shown by Figure 2.  The XS was discretized in small intervals (25 cm wide, 227 

i.e. generally higher resolution than the resolution of the velocity probe measurements). Then each 228 

velocity vector was assigned to an interval of the XS line by nearest neighbor search.  As velocity 229 

value, the magnitude of the velocity vector was taken.    In case multiple vectors were assigned to the 230 

same interval, a median of those velocity vectors and a spatial standard deviation (representative of 231 

the spatial variation of the surface velocity vectors along the few meters of river length included in 232 

the ROI) were computed.  233 

Figure 2 shows a red and a blue dot, which indicate the position of two poles used as reference markers 234 

on the left and right sides of the stream, respectively. The two poles are not used as GCP, but indicate 235 

where the in-situ measurements of velocity and discharge were retrieved.   236 

 237 

2.7. Slope computation 238 

 239 

WSE slope (Sw)  was measured using the UAS radar payload described in Bandini et al. (2020). Sw is 240 

estimated from the UAV-borne WSE observations in a 100 m long stretch (50 m upstream and 50 m 241 

downstream the measured XS). Sw is computed from the slope of those UAV-borne observations 242 

along the 100 m stretch by fitting a linear regression. Because of the high spatial resolution (ca. 0.5-243 

1 m) of WSE observations, ca. 150-200 WSE observations were retrieved in each stretch. This spatial 244 

resolution, combined with the high relative accuracy (ca. 1-2 cm) of each WSE observation, allows 245 

for a slope accuracy of ca. 5 cm/km (i.e. 0.5 cm in the 100 m long stretch).   The slope (1.12·10-3) of 246 

the site Grindsted Å ST12 is shown in Figure 2, together with the 99% confidence interval of the 247 

linear regression coefficients. In the figure, we also show that the hypothesized 5 cm/km error 248 

corresponds to ca. 5% percent error in slope determination: the estimated uncertainty is significantly 249 

greater than the limits of the confidence intervals, thus the 5% estimated error estimate is 250 

conservative. The results chapter shows the analysis of uncertainty propagation to evaluate the effect 251 

on discharge and Ks coefficient caused by the hypothesized 5% slope estimation error.  252 



 253 



Figure 2. Surface velocity field and slope for XS Grindsted Å ST12. (a) shows the surface velocity field 254 
estimated with PIVlab. The red line shows the discretization of the XS in 25 cm intervals. Black dots 255 
show the location of the water edge (interface between water and streambank). Red and blue dots show 256 
the two poles used as markers.  (b)  shows UAS WSE observations (in meters above mean sea level 257 
(m.a.m.s.l.)) and the WSE slope, computed with linear regression, in a stretch length of 100 m, with the 258 
XS located in the mid-point of this stretch. The 99% confidence interval of the linear regression 259 
coefficients is plotted.  Dashed lines show a hypothetical slope error of 5%, to evaluate the sensitivity of 260 
discharge to errors in slope determination.    261 

 262 

2.8. Joint estimation of discharge and Gauckler-Manning-Strickler coefficient 263 

 264 

Equation ( 4 ) shows the empirical Manning formula.  265 

 266 

 

𝑄 = 𝐾𝑠 ∙ 𝐴 ∙ 𝑅
2
3 ∙ 𝑆𝑓

1
2 

 

( 4 ) 

 

 267 

 268 

Manning formula describes the relationship between discharge (Q) and hydrodynamic variables such 269 

as the Gauckler-Manning-Strickler coefficient (Ks), flow cross-sectional area (A), hydraulic radius 270 

(R) and friction slope (Sf).   Uniform flow conditions hold in case the channel has uniform cross-271 

section, slope, and roughness at least within the vicinity of the measurement. In uniform flow 272 

conditions, WSE slope (Sw) is equivalent to the bed slope (Sb) and to the energy grade line slope (Sf). 273 

Thus, for uniform flow conditions, Sf can be substituted with Sw in Manning’s equation.   274 

The ISO-Standards (ISO 748:2007, 2007) show that the depth-averaged velocity (Um) can be 275 

calculated directly from vsurf according to equation ( 5 ),  276 

 277 

𝑈𝑚 = (
𝑚

𝑚 + 1
)𝑣𝑠𝑢𝑟𝑓 ( 5 ) 

 

 278 

In equation ( 5 ), m is a conveyance coefficient that varies over a wide range of values depending on 279 

the hydraulic roughness. Equation ( 5 ) can be derived from the integral mean value of the generic 280 

power law of the velocity profile (e.g. Cheng, 2007), in which 1/m is generally referred to as the 281 

power-law exponent or index.  282 

 283 

 284 

The ISO 748:2007 (2007) suggests that m/(m+1) is typically between 0.84 and 0.90, with the highest 285 

values usually obtained for smooth river beds.  Thus, one approach to estimate Um from vsurf is to use 286 

a 0.85 coefficient; from here on, this approach is called the 0.85 coefficient approach.   287 



Figure S3 shows that a XS can be discretized in a number of segments, each of those bound by two 288 

adjacent verticals.  According to  ISO 748:2007 (2007), the coefficient m can be parametrized as a 289 

function of the Chézy number (Ci) on each vertical. This is shown by equation ( 6 ). 290 

 291 

𝑚𝑖 =
C𝑖

√𝑔
∙ (

2√𝑔

√𝑔 + C𝑖
+ 0.3) 

( 6 ) 

 

𝐶𝑖 = 𝐾𝑠 ∙ 𝑅𝑖
1
6 

( 7 ) 

 

  

In equation ( 6 ),  g is the gravitational acceleration and Ci is the Chezy coefficient of each vertical. 292 

The Chézy coefficient on each vertical can be expressed in ( 7 ) as a function of Gauckler-Manning-293 

Strickler coefficient.   Each single ith vertical has a specific mi coefficient; indeed, although Ks is 294 

constant throughout the cross section, the hydraulic radius (Ri) of each single segment is different, 295 

thus the Chézy coefficient (Ci) differs from one vertical to another. The hydraulic radius of each ith 296 

vertical can be estimated by summing the hydraulic radius of the half segment before and the half 297 

segment after the ith vertical. 298 

The total discharge in the XS can be expressed as the sum of the discharge of each single vertical. 299 

This is shown by equation ( 8 ). 300 

𝑄 =  ∑
(𝑈𝑚,𝑖 + 𝑈𝑚,𝑖+1)

2

𝑛𝑣

𝑖=1

 (𝑏𝑖+1 − 𝑏𝑖)
(𝑑𝑖+1 + 𝑑𝑖)

2
  

( 8 ) 

 

 301 

 302 

Equation ( 8 ) shows the mean-section method to compute discharge from the depth-averaged velocity 303 

(Um,i),  depth (di) and the distance from the on-shore reference (bi) of each single vertical (nv is the 304 

total number of verticals). The depth-averaged velocity Um of each single vertical can be expressed 305 

as a function of m, as previously shown in ( 5 ). 306 

A system of two non-linear equations comprising Manning’s equation and mean-section method 307 

equation  can be informed, as shown in ( 9 ). The only unknowns in these equations are the discharge 308 

(Q) and the roughness coefficient (Ks). Please note that m depends on Ks (equations ( 6 ) and ( 7 )), 309 

thus the 2 equations are coupled. 310 

{
 
 

 
 
𝑄 =    ∑

𝑚𝑖+1

𝑚𝑖+1 + 1
𝑣𝑠𝑢𝑟𝑓,𝑖+1 +

𝑚𝑖

𝑚𝑖 + 1
𝑣𝑠𝑢𝑟𝑓,𝑖 

2
(𝑏𝑖+1 − 𝑏𝑖) 

(𝑑𝑖+1 + 𝑑𝑖−1)

2

𝑛𝑣

𝑖=1

𝑄 = 𝐾𝑠 ∙ 𝐴 ∙ 𝑅
2
3 ∙ 𝑆𝑤

1
2

 

 

( 9 ) 

 

From here on, the system of equations ( 9 ) is called “joint estimation approach” to differentiate it 311 

from the 0.85 coefficient approach. This system can jointly estimate the two unknowns Ks and Q, 312 

when uniform flow conditions are assumed. The variables bi , vsurf, and Sw are measured  with the 313 



UAS-payload,  while di, A and R are derived from the bathymetric measurements. This system of 314 

nonlinear equations (nonlinear because m is a function of Ks) is solved by iterations (with Levenberg-315 

Marquardt method), with a condition on Ks (1<Ks<100) and convergence tolerance criteria equal to 316 

10-6
.   317 

 318 

2.9. In-situ measurements  319 

 320 

In-situ measurements of water depth, vsurf, and discharge were retrieved at all the different sites with 321 

the electromagnetic flow meter OTT MF pro (OTT HydroMet, Germany), from here on abbreviated 322 

as MFpro.  323 

In most of the sites shown in this paper, we measured velocity at five different depths per vertical 324 

(only in few cases velocity was measured only at 3 different depths), with more than eight verticals 325 

for each XS and exposure time for each measurement of 30 s. In case velocity is measured in 5 points, 326 

the average vertical velocity Um is computed with a weighted average between velocity measurement 327 

at the surface (vsurf), at 0.2 (v0.2), at 0.6 (v0.6), at 0.8 (v0.8) times total depth and at the riverbed (vbed), 328 

as shown by ( 10 ).  329 

In the XSs where velocity was measured in only 3 depth points (typically XSs with shallow depth), 330 

Um is computed with the weighted average shown in equation ( 11 ).  In some sites, the velocity 331 

closest to the surface measured with MFpro is v0.2 (and not vsurf). This is considered non-critical 332 

because the MFpro probe cannot measure exactly at the surface level but needs to be fully submerged; 333 

thus, the depths at which v0.2 and vsurf are measured become nearly equivalent in shallow streams.  334 

 335 

 

𝑈𝑚𝑀𝐹𝑝𝑟𝑜 = 0.1(𝑣𝑠𝑢𝑟𝑓 + 3𝑣0.2  + 3𝑣0.6 + 2𝑣0.8 + 𝑣𝑏𝑒𝑑) 
 

 

( 10 ) 

 

𝑈𝑚𝑀𝐹𝑝𝑟𝑜 = 0.25(𝑣0.2  + 2𝑣0.6 + 𝑣0.8) 

 

 

( 11 ) 

 

 336 

ISO 748:2007 (2007) suggests that nv should be chosen so that the discharge in each segment is less 337 

than 5-10 % of the total, in order to obtain the lowest discharge uncertainty discharge. Indeed, ISO 338 

748:2007 (2007) suggests that typically a stream larger than 5 m should be surveyed with more than 339 

22 verticals, while a stream between 3 to 5 meters should be surveyed with 13-16 verticals.  However, 340 

in this research, the number of measured verticals in most of the sections is 10-15 due to time 341 

constraints, considering that 5-points multi-depth measurements require at least 3-5 minutes as 342 

measurement time per vertical. On the other hand, the 5-points method, applied to most of the XSs 343 

instead of the typical 3-points method, allowed for the best characterizations of the vertical velocity 344 

profiles, which are suspected to be the main source of uncertainty in highly vegetated streams.  345 



Indeed, together with uncertainty in velocity measurements due to velocity fluctuation, an important 346 

uncertainty factor for the MFpro ground truth observations is the systematic uncertainty in measuring 347 

velocity (uc) and depth (ud). The MFpro instrument has an accuracy of velocity and depth 348 

measurements reported by the manufacturer. The velocity (uc) has a relative uncertainty of ±2 % of 349 

the measured value and an absolute uncertainty of ±0.015 m/s (±0.015 is also defined as zero stability 350 

by the manufacturer).  This absolute uncertainty component (±0.015 m/s) can give large percentage 351 

errors at low flow.    Regarding the accuracy in depth (ud), the manufacturer reports an uncertainty of 352 

±2% ±0.015 m, which is related to the accuracy of the pressure transducer provided. Additional errors, 353 

e.g. related to the instrument rod not exactly vertical or the pressure transducer placed underneath the 354 

soft bottom constituting the riverbed, were not considered, but may affect depth measurements by a 355 

few centimeters and, consequently, discharge estimates. The overall accuracy in each velocity 356 

measurement (U95(vi)) and in the overall discharge estimation (U95(Q)) are computed according to 357 

equations contained in Appendix A. 358 

 359 

2.10. Comparison between UAS-borne and in-situ measurements 360 

 361 

We compared measurements of velocity and discharge retrieved with the MFpro and with the UAS-362 

borne videos. PIV estimates were interpolated at the spatial resolution of the in-situ MFpro velocity 363 

estimates for comparing the values. 364 

Velocity profiles were compared through the following statistics: Mean Absolute Error (MAEv), 365 

Mean Bias Error (MBEv), Root Mean Square Error (RMSEv), Mean Absolute Percent Error (MAPEv) 366 

and Mean Bias Percent Error (MBPEv), all of which are computed between the ith MFpro (vsurf,MFpro,i) 367 

measurement and the ith PIV velocity (vsurf,PIV,i) estimated at the ith vertical.  Furthermore, the bias 368 

error between the maximum value of the vsurf,PIV estimates and the maximum value of the vsurf,MFpro 369 

observations was estimated for each XS, both as absolute difference (PeakBv) and as percentage 370 

(PeakPBv). Equations to estimate these statistics are shown in Table 1. Statistics were computed 371 

without including MFpro observations that were below 0.015 m/s (i.e. the zero stability of MFpro), 372 

in order to filter out low velocity values that would make the denominator of MAPEv and MBPEv 373 

tend to zero.  374 

Discharge was estimated either with the 0.85 coefficient method or with the joint estimation approach.  375 

The water depth profile measured with MFpro was linearly interpolated at the spatial resolution of 376 

the PIV estimates. The discharge values were compared with discharge estimated by multi-depth 377 

velocity measurements, as shown in Figure 3.   378 



 379 

 380 

 381 

Figure 3. Different discharge values estimated by different measurements of velocity and assumptions 382 
on vertical profile. QMFpro,multi-depth is the discharge measured with MFPRO with multi-depth velocity 383 
measurements. QMFpro,0.85 and QMFpro,joint_est are the discharge values estimated from the surface velocity 384 
MFPro measurements (vsurf,MFpro), by applying the 0.85 coefficient or the joint estimation approach, 385 
respectively. QPIV, 0.85 and QPIV,joint_est are the discharge estimated from the surface velocity measurements 386 
from the UAS (vsurf,PIV), by applying the 0.85 coefficient or the joint estimation approach, respectively.  387 
The red box highlights the computed statistics. PB is estimating the percentage bias between the 388 
discharge estimated from surface velocity measurements and discharge estimated by retrieving multi-389 
depth velocity measurements. Ks statistics show the difference between i) Ks values estimated with the 390 
joint approach (KsMFpro,joint_est  and KsPIV,joint_est) and ii) KsMFpro,multi-depth estimated by applying Manning 391 
equation to QMFpro,multi-depth.  392 

 393 

For each discharge estimate, a percent bias error (PB) was computed to compare with discharge 394 

estimated from multi-depth velocity measurements, as shown in Table 1. Furthermore, for each site, 395 

a scaled error (SE) was computed, to scale each PB statistic by dividing it by the estimated 396 

uncertainties in the multi-depth measurements.  397 

 398 

The PB values can be averaged between all the sites to estimate i) Mean Bias Percentage Error 399 

(MBPE), ii) Mean Absolute Percentage Error (MAPE) and iii) the normalized root-mean-square 400 



deviation (NRMSD), as  shown in  Table 1. The absolute value of SE can also be averaged between 401 

the different sites to obtain the Mean Absolute Scaled Error (MASE).  402 

The joint estimation approach also provides an estimation of the Gauckler-Manning-Strickler 403 

coefficient, KsMFpro, joint_est and KsPIV, joint_est. The Ks coefficient can also be directly computed by 404 

applying Manning equation to QMFpro, multi-depth.  We refer to this last coefficient as KsMFpro, multi-depth and 405 

we consider it as the ground-truth estimate for Ks coefficient, because it is derived from the in-situ 406 

multi-depth velocity measurements. However, this Ks coefficient is still based on the uniform flow 407 

assumption, otherwise Manning equation would require measurements of the energy grade line slope 408 

instead of water surface slope. KsMFpro, joint_est and KsPIV, joint_est were compared with KsMFpro, multi-depth 409 

by computing the Mean Absolute Error (MAEks), Mean Bias Error (MBEks), Root Mean Square Error 410 

(RMSEks).   411 

Table 1. Statistics to evaluate accuracy of surface velocity and discharge estimates. nv is the number of 412 
verticals measured with MFpro.  PBx,y is the generic percentage bias, where the x stands for either 413 
MFpro or PIV and y stands for either 0.85 or joint estimation approach. The variable nr_XS is the 414 
number of sites (27 in total). 415 

Velocity statistics 

 

𝑀𝐴𝐸𝑣 =
∑ |𝑣𝑠𝑢𝑟𝑓,𝑃𝐼𝑉,𝑖 − 𝑣𝑠𝑢𝑟𝑓,𝑀𝐹𝑝𝑟𝑜,𝑖|
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Discharge percent bias (PB) for 

each specific site  

 

𝑃𝐵𝑀𝐹𝑝𝑟𝑜,0.85 =
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𝑃𝐵𝑃𝐼𝑉,𝑗𝑜𝑖𝑛𝑡_𝑒𝑠𝑡 =
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generic percentage bias, 
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 417 

2.11. Stream sites  418 

 419 

Twenty-seven sites in 6 different streams were investigated in total. Figure S4 shows the location of 420 

the 6 streams on a map.  Table S2 shows the different site names, together with the coordinates, survey 421 

dates and the aquatic vegetation conditions. Aquatic vegetation is typically rather dense in Danish 422 

streams. The dominant plant species are the sibling species of Batrachium or the two monocotyledonts 423 

Glyceria maxima or Sparganium simplex, with Helodea canadense or species of Callitriche that are 424 

subdominant (Larsen et al., 1990). The height of the vegetation is typically 0.4-0.7 times water depth 425 

during summertime; vegetation is less dense and shorter during wintertime.   426 

Table S3 shows hydraulic parameters such as the stream width, flow area, depth, wetted perimeter, 427 

hydraulic radius, bulk velocity, WSE slope, Froude number and Reynolds number. In all streams, the 428 

flow was subcritical (Froude number smaller than 1), which suggest that the flow is controlled by 429 

downstream obstacles. The flow is turbulent (Reynolds number is greater than 4000) at all sites.   430 

 431 

 432 

3. Results 433 

 434 

 435 

3.1.  In-situ measurements of stream multi-depth velocities 436 

 437 

 438 

Figure S5 plots the ratio between vsurf,i and Um,i in each of the i verticals as a function of the distance 439 

from the reference point on the left streambank (distance normalized by the total width of the stream). 440 

The figure clearly depicts i) the scattering of the ratio between verticals in the same XS at different 441 

distances from the streambank; ii) the variability of the mean ratio values between different XS, which   442 



falls in the range between 0.52 and 1.1, with most values between 0.65-0.9. These variabilities of the 443 

ratio between vsurf,i and Um,i make it hard to find a unique coefficient to convert vsurf into Um in small 444 

and vegetated rivers.  445 

 446 

 447 

3.2. UAS-borne velocity results 448 

 449 

Velocity estimation from UAS-borne videos involves different steps according to the flowchart in 450 

Figure 1.   451 

3.2.1. GCP approach versus GCP-free approach 452 

Table S4 shows the px  values estimated with the GCP-free approach, from equation ( 3 ), compared to 453 

a px estimated using two GCPs.  Some of the XSs (the six XSs that were surveyed in 2018) were not 454 

included in this comparison, because those surveys were conducted with a different camera.  The px 455 

estimated with the GCP-free approach showed a mean bias of 2.4% and a mean absolute error of 456 

3.1%. This error is probably caused by residual lens distortion. However, uncertainty in the exact 457 

sensor size and focal length measurements, together with the variability of the lens parameters in 458 

different environmental conditions (e.g. Smith & Cope, 2010), also contribute to both systematic and 459 

random errors. The positive bias could potentially be corrected; however, we assume that this error 460 

is negligible given the other uncertainties.  The GCP coordinates have an accuracy of ±3 cm, and the 461 

elevations of the two GCPs often differed for up to 40 cm (because the GCPs were arbitrarily 462 

positioned one on each streambank), which indicates that the px value computed with GCPs cannot 463 

be considered exact either.   464 

3.2.2. Velocity estimates 465 

Figure 4 shows the ROI and the masks for site Grindsted Å, ST12. All portions of the XS that are not 466 

covered by seeding (e.g. typically the stream edges) are excluded from the velocity analysis. Figure 467 

4 also shows the surface velocity profile estimated with PIVlab for site Grindsted Å, ST12. The PIV-468 

estimates are compared with the velocity observations of the MFpro, retrieved at the surface (vsurf, 469 

MFpro) and 0.2 times depth (v0.2, MFpro).  The red error bars show U95(vi) of the MFpro-borne 470 

measurements retrieved at the surface level.  The grey shaded area shows the spatial standard 471 



deviation of the PIV estimates (standard deviation of the PIV estimates contained by each of the 25 472 

cm discretization intervals, which were shown in Figure 2). 473 

 474 

 475 

 476 

Figure 4. Region of interest (ROI), surface velocity profile and error plot for XS Grindsted Å, ST12. In 477 
(a), the blue rectangle shows the ROI (area included in the PIV analysis).  The red and the green masks 478 
are excluded from the velocity estimation: the red region masks out the areas covered by the 479 
streambanks, while the green region is the area on the water surface that is not covered by seeding.   The 480 
red and blue dots indicate the position of a reference pole on the left side and on the right side, 481 
respectively. (b) compares between UAS-borne surface velocity estimates and ground-truth (MFpro) 482 
observations. MFpro velocity measurements are shown both at the surface level (with error bars 483 
showing the U95(vi)) and at 0.2 times of depth. The black line shows the median of the vsurf,PIV at each XS 484 
discretization interval, with the shaded grey showing the spatial standard deviation (Std Dev). (c) shows 485 
the percent error (BPEv) between the PIV-estimates and the surface velocity measurements retrieved 486 
with MFpro. The error bars showing MFpro velocity uncertainty (U95(ui)), together with MAPEv and 487 
MBPEv, are also represented. 488 

 489 

Figure 4 shows the complex flow of this stream, with horizontal velocity distribution that does not 490 

follow a hyperbolic pattern, but presents two peaks. Furthermore, the ratio between vsurf and v0.2 is 491 



different for each interval.  Figure 4 shows that vsurf,PIV is in relatively good agreement with the MFpro 492 

observations, with the MFpro measurements (and the corresponding error bars) typically lying in the 493 

grey shaded area of the PIV-estimates. PIV estimates show a significantly higher spatial resolution 494 

(25 cm) than in-situ measurements (ca. 1 m). The resolution of in-situ measurements is typically 495 

limited by survey time constraints; thus, the higher spatial resolution of the PIV estimates can better 496 

characterize the spatial variability of vsurf. Plots comparing the PIV-estimates and the in-situ velocity 497 

measurements for all sites are available in the Supporting Information.  498 

The statistics to compare PIV-estimates and measured surface velocity values are shown in Table S5 499 

for each specific XS, while Table 2 shows the statistics averaged over all sites. Statistics are computed 500 

according to the equations shown in Table 1. Table S5 highlights that there are some cross sections 501 

showing a significant Mean Absolute Error (MAEv), with errors up to 0.10-0.15 m/s. Similarly, 502 

MAPEv typically shows values between 15-40%.  This error can be due to i) varying wind conditions 503 

affecting the comparison between MFpro and UAS-estimates, ii) non-uniform seeding distribution 504 

over the river width, iii) heterogeneous light and shadow conditions and other noise sources on the 505 

water surface (e.g. superficial aquatic plants), and also iii) uncertainty of the MFpro estimates 506 

(U95(vi)). Table 2 shows the mean value (over all 27 sites) of the velocity statistics. MAPEv, which 507 

typically shows values between 15-40%. The positive mean bias (mean PeakBv) suggests that the PIV 508 

estimates tend to slightly overestimate the maximum velocity value, while the mean value of MBEv 509 

shows there is no significant bias considering the entire surface velocity profiles and not only the 510 

maximum values.  511 

In many sites, |PeakBv| shows values lower than MAEv and |PeakPBv| shows values lower than 512 

MAPEv. This suggests that the PIV-estimates produce the largest errors at low velocity values.      This 513 

is also shown in Figure 4, containing the error plots for the site Grindsted Å ST12.  In Figure 4, the 514 

error bars indicate the uncertainty in vsurf,MFpro (U95(vi)).  In the error plot, the MAPEv and MBPEv 515 

errors are also indicated. The larger error at low velocity might be due to insufficient seeding density 516 

and significant velocity fluctuations where lower values of vsurf occur, furthermore the percent 517 

uncertainty in MFpro observations (U95(vi)) is also larger at low velocities. Error plots for the other 518 

sites, which are available in the Supporting Information, show similar error patterns in most cases. 519 

3.2.3. Velocity extrapolation at the edges 520 

The areas at the edges of the XS, where seeding density was low and non-uniform, were not included 521 

in the PIVlab ROI (as shown in Figure 4). For discharge computation, the velocity at the edges is 522 

estimated by applying equation ( 5 ) in a slightly modified version, where the first or last measured 523 

vsurf value are used to perform a horizontal extrapolation to estimate the vsurf at the edge (instead of 524 

the original formulation in which vertical extrapolation is performed to estimate Um). The coefficient 525 

m for the horizontal extrapolation is assumed to be the same value as for the vertical extrapolation of 526 

the last and first vertical and is either i) derived from the estimated Ks by the system of equations ( 9 527 

) for the joint estimation approach or ii) set to 0.85 for the 0.85 coefficient approach.  528 

 529 

3.3.   In-situ discharge estimates  530 

 531 

Table S6 reports the discharge value measured with the MFpro through multi-depth velocity 532 

measurements along with their uncertainty.  Table S6 also shows the discharge estimated from the 533 



velocity closest to the surface measured with MFpro, either vsurf,MFpro or v0.2 (in the few sites where 534 

vsurf,MFpro was not measured). Discharge was estimated with i) 0.85 coefficient method (QMFpro, 0.85) or 535 

ii) applying the joint estimation approach (Q MFpro, joint_est).  Table S6 shows that these discharge 536 

estimates have an accuracy (PB value) that is site-dependent and varies significantly depending on 537 

the approach (0.85 coefficient or joint estimation approach).  538 

The error statistics averaged between all sites are shown in Table 2. Table 2 shows that the joint 539 

estimation approach gives a MBPE, MAPE, MASE and an NRMSD that are significantly lower than 540 

the 0.85 coefficient approach. MAPE shows an improvement of ca. 4%. The largest difference 541 

between the two methods is in NRMSD statistics with an improvement of 5.6%, because large 542 

discharge estimation errors with the 0.85 approach significantly increase the NRMSD. The mean bias 543 

values also show that the 0.85 coefficient approach overestimates discharge, while the joint estimation 544 

approach slightly underestimates it.  There are a few sites that significantly increase the average error 545 

of discharge estimated with the joint estimation approach, in particular Grindsted Å ST310357, 546 

Grindsted Å ST1 and Vejle Å XS1.    In all these XS, the discharge computed with the joint estimation 547 

approach deviates by more than ±30% from the measured discharge. These statistics should be 548 

considered together with the uncertainty in the ground-truth multi-depth measurements of discharge 549 

(QMFpro, multi-depth), which is in the range ±5-15%, as shown by the U95(Q) values reported in Table S6. 550 

 551 

 552 

3.4. UAS estimates 553 

 554 

 555 

Table S7 compares the measured discharge with discharge estimated from vsurf,PIV through both i) 0.85 556 

coefficient ii) joint estimation approach.  Table S7 shows that there are some XSs where the error in 557 

discharge estimation is rather large (greater than 30%). Two sites show a large overestimation of 558 

discharge when vsurf,PIV is used: Åmose Å XS1 and Værebro Å Veksø bro. In both cases, the error of 559 

the 0.85 coefficient approach is larger than the error of the joint estimation approach.  The site Åmose 560 

Å XS1 showed a PBPIV, joint_est of +69.8%, which is slightly lower than the PBPIV, 0.85 of +77.6%. In 561 

this site, the estimates from vsurf,PIV show a significantly higher error than discharge estimated from 562 

vsurf,MFpro, indeed PBMFpro, joint_est was +23.7%  and PBMFpro, 0.85 was +34.6%: PIV-observations 563 

overestimate vsurf, probably because of the windy conditions when the UAV was flown.   The site 564 

Værebro Å Veksø bro also shows an overestimation of discharge, especially with the 0.85 coefficient, 565 

with PBPIV, 0.85 of +52.8% and PBPIV, joint_est of 43.2%. Also in this case, the error when estimating 566 

discharge from vsurf,MFpro is lower (PBMFpro, joint_est =3.9%), thus the error mostly due to inaccurate vsurf 567 

observations.  568 

Three sites show large underestimation of discharge when vsurf,PIV is used: Usserød Å ST7, Usserød 569 

Å ST9 and Grindsted Å ST1.  Usserød Å ST7 also shows a large negative PBPIV, joint_est (and similarly 570 

a negative PBPIV, 0.85). For this XS, the underestimation of discharge is mainly caused by the 571 

underestimation of vsurf in the portion of the stream close the left edge. Usserød Å ST9 also shows a 572 

large error. For this XS, we hypothesize that the uniform flow conditions did not hold because the XS 573 

was positioned downstream of a meander; furthermore, the profiles show an underestimation of 574 



velocity in a portion of the stream close to the left edge.  Grindsted Å ST1 shows a large bias, 575 

especially with the joint estimation approach: we hypothesize that the uniform flow conditions did 576 

not hold because of dense submerged vegetation, visible from the UAS-borne video in a portion of 577 

the XS.  578 

Among the remaining sites, most show a slight underestimation of discharge with the joint estimation 579 

approach, and an overestimation with the 0.85 coefficient approach, as shown by the BP values.  An 580 

average of the error statistics over all sites is shown in Table 2. The absolute value of MBPE is 581 

significantly reduced with the joint estimation approach (-6.6% compared to 11.1%).  The NRMSD 582 

is better (ca 1.5 % better) with the joint estimation approach, because the largest errors are reduced. 583 

However, the MAPE is slightly worse (ca. 1%) when the joint estimation approach is used. This is 584 

not in agreement with Q estimated from the velocity closest to the surface measured with MFpro, 585 

which showed significantly better MAPE results when joint estimation method is used. Thus, we can 586 

conclude that the errors in vsurf,PIV make the joint estimation approach less effective.  587 

These results should be considered together with the uncertainty in the ground-truth multi-depth 588 

measurements of discharge (QMFpro, multi-depth), which is typically in the range ±5-15%, as shown by 589 

the U95(Q) values reported in Table S7. Figure S33 shows the discharge values, estimated from vsurf, 590 

MFpro or vsurf, PIV using the 0.85 coefficient and joint estimation approaches, in a plot with the in-situ 591 

MFpro discharge measurements (QMFpro,multidepth) and the corresponding uncertainty (U95(Q)).  592 

Figure 5 shows the discharge estimates from vsurf,PIV  compared to the multi-depth discharge 593 

measurements and the histogram of the PB errors of the PIV estimates. A Student's t-test conducted on 594 

the PBPIV values is used to check if the two methods provide systematically different results (null 595 

hypothesis is that the PB values are the same).   The two-tailed Student’s test at 0.05 significance 596 

level conducted on QPIV, 0.85 showed rejection of the null hypothesis (p value of 0.02), while the 597 

equivalent test conducted on the QPIV, joint_est showed acceptance of the null hypothesis (p value of 598 

0.16). Thus, the bias of the joint estimation approach is not statistically significant at 0.05 significance 599 

level. Figure 5 shows a scatter plot for the PIV-discharge estimates obtained with the two different 600 

approaches. The regression lines (with zero intercept) show a slope of 1.11 for the 0.85 coefficient 601 

approach and of 0.90 for joint estimation approach.   602 

 603 

 604 

 605 



 606 

Figure 5. (a) Scatter plot with regression lines for the PIV-estimate of discharge. X-axis shows Q from 607 
multi-depth MFpro measurements; Y-axis shows Q from PIV technique, with both 0.85 coefficient and 608 
joint estimation approach.  (b) Histogram of the discharge bias error (PBPIV). Blue and red columns are 609 
the discharge estimated with joint estimation approach and with 0.85 coefficient approach, respectively. 610 

 611 



 612 

 613 

3.5. Relation between discharge errors and stream hydrological conditions 614 

 615 

We evaluated if the absolute error of the discharge estimated from UAS-borne PIV with joint 616 

estimation method (│PBPIV, joint_estim│) is correlated with hydraulic variables such as stream width 617 

(W), depth (dmax), discharge magnitude (QMFpro,multi-depth), uncertainty in measured discharge (U95(Q)) 618 

and aquatic vegetation density. Both Pearson and Spearman’s rank correlation coefficients were 619 

estimated, as shown in Table S8. To compute correlation for the vegetation status, an integer was 620 

assigned depending on the three vegetation density classes: 0 in case of “no vegetation, clean bottom”, 621 

1 in case of “vegetation patches”, 2 in case of “high density vegetation”.  622 

 With a sample size of 27, the critical value, at 0.10 significance level, for a significant Spearman 623 

coefficient is ca. 0.32 and for a significant Pearson coefficient is 0.31. Depth, bulk velocity and slope 624 

show no significant correlation with the discharge error.  Flow magnitude (QMFpro,multi-depth) shows a 625 

weak negative correlation for Pearson number (but not for Spearman coefficient): this may suggest 626 

that the largest flow magnitudes are slightly easier to estimate with PIV technique.  Stream width 627 

shows a negative weak correlation, with the largest stream widths resulting in the smallest errors: 628 

most likely discharge estimation in the largest rivers is the least sensitive to the discharge occurring 629 

near the streambank, where low velocity occurs and PIV typically fails. On the other hand, this trend 630 

may only be valid up to a certain maximum width: if the width of the stream is very large, uniform 631 

seeding of the water surface is difficult to achieve. The uncertainty in in-situ discharge U95(Q) shows 632 

a weak positive correlation according to Spearman: i.e. errors of PIV-estimates of discharge may be 633 

caused also by inaccuracies in in-situ measurements. Finally, aquatic vegetation density shows a weak 634 

negative correlation with Pearson coefficient and non-significant correlation coefficient according to 635 

Spearman. Weak negative correlation may be caused by the large errors (overestimation) occurring 636 

with “no vegetation, clean bottom” and with “vegetation patches” conditions. This suggests that the 637 

ISO equation ( 6 ), which hypothesizes an empirical relationship between the factor m and the Chézy 638 

number, could be adjusted for specific stream conditions such as aquatic vegetation. For instance, if 639 

results from many survey sites were available, an empirical correction factor could be adopted, as 640 

described in section 4.3.  641 

 642 

 643 

3.6. Estimates of Gauckler-Manning-Strickler coefficient 644 

 645 

Tables S6 and S7 show the Gauckler-Manning-Strickler coefficient, Kssurf, MFpro and Ksvsurf, PIV, 646 

estimated by applying the joint estimation approach to vsurf, MFpro and vsurf, PIV, respectively. In Figure 647 

6, these Ks values are compared with KsMFpro, multi-depth coefficient, which is directly computed by 648 

applying Manning equation to QMFpro, multi-depth.   649 

 650 



 651 

Figure 6. Scatter plot showing the Ks coefficient estimated from vsurf observations, retrieved either with 652 
UAS-borne PIV or with the MFpro, and the Ks coefficients computed applying Manning equation to 653 
the multi-depth velocity measurements. Dashed lines are the linear regression lines (zero intercept).  654 

 655 

Figure 6 shows that the Ks values estimated with the joint estimation approach follow a regression 656 

line nearly overlapping the 1:1 line. Thus, the joint estimation approach provides a reliable method 657 

for estimating Ks.  From the figure, it is visible that the largest absolute errors occur for the highest 658 

Ks values. As visible in the plot, the Ks coefficient shows values between 4 and 35 m1/3/s, in some of 659 

the streams. According to the lookup tables for Ks provided by Chow (1959), values around 5-10 660 

m1/3/s are typical of very weedy reaches and floodplains. Coon (1998) also showed that the n 661 

coefficient (reciprocal of Ks), which is typically derived from these lookup tables or empirical 662 

formulas, increases with meandering and channel cross section shape irregularities. This is a typical 663 

situation in lowland streams, such as Danish streams, which are shallow, narrow, with high degree of 664 

meandering, and with vegetation height reaching up to 0.5-0.8 times the water depth. The estimated 665 

Ks values are in agreement with Bering Ovesen et al. (2015), who showed the measured Ks 666 

throughout different seasons in the surveyed streams (e.g. Vejle Å  and Grindsted Å): the authors 667 

found values around 5 m1/3/s in summertime and 20 m1/3/s in wintertime. Table 2 shows the statistics 668 

comparing the different Ks values. In general, the joint estimation approach provides estimates of Ks 669 

that are very similar to the Ks computed from the multi-depth velocity measurements. MAE, MBE 670 

and RMSE show errors in the order of few Ks units (m1/3/s).   671 

 672 

 673 

 674 



Table 2, velocity, discharge and Ks statistics. Definition of statistics in Table 1 675 

Statistics Abbreviation Unit Value 

Velocity statistics (each value represents the 

average  of the corresponding statistic  

between all sites) 

MAEv [m/s] 0.11 

MBEv [m/s] -0.02 

RMSEv [m/s] 0.14 

MAPEv [%] 37.6 

MBPEv [%] 3.9 

PeakBv [m/s] 0.05 

│PeakBv│ [m/s] 0.08 

PeakPBv [%] 12.6 

│PeakPBv│ [%] 17.4 

Discharge statistics: 

discharge estimated from 

multi-depth velocity 

measurements  

compared with discharge 

computed from vsurf, MFpro 

0.85 

coefficient 

MBPEMFPRO, 0.85 [%] 13.1 

MAPEMFPRO, 0.85 [%] 21.0 

NRMSDMFPRO, 0.85  [%] 26.4 

MASEMFPRO, 0.85  [-] 2.2 

Joint 

estimation 

MBPEMFpro, joint_est [%] -5.7 

MAPEMFpro, joint_est [%] 17.0 

NRMSDMFpro, joint_est  [%] 20.8 

MASEMFpro, joint_est  [-] 1.8 

Discharge statistics: 

discharge estimated from 

multi-depth velocity 

measurements  

compared with discharge 

computed from vsurf, PIV 

0.85 

coefficient 

MBPEPIV, 0.85 [%] 11.1 

MAPEPIV, 0.85 [%] 18.1 

NRMSDPIV, 0.85  [%] 25.6 

MASEPIV, 0.85 [-] 1.9 

Joint 

estimation 

MBPEPIV, joint_est [%] -6.6 

MAPEPIV, joint_est [%] 19.1 

NRMSDPIV, joint_est  [%] 24.1 

MASEPIV, joint_est  [-] 2.0 

Statistics comparing Ks 

values estimated with joint 

estimation approach and Ks 

from multi-depth velocity 

measurements (each value 

represents the average 

 of the corresponding statistic  

between all sites) 

Joint 

estimation 

from vsurf, MFpro 

MBEKs,Mfpro [m1/3/s] -0.8 

MAEKs,Mfpro [m1/3/s] 2.4 

RMSEKs,Mfpro [m1/3/s] 2.9 

Joint 

estimation 

from vsurf, PIV 

MBEKs,PIV [m1/3/s] -0.9 

MAEKs,PIV [m1/3/s] 3.2 

RMSEKs,PIV [m1/3/s] 4.6 

 676 

 677 



 678 

3.7. Propagation analysis of slope uncertainty 679 

 680 

An error propagation analysis was conducted to evaluate the effect of the water surface slope 681 

uncertainty on discharge estimation. Figure 2 (a) show the slope for the XS Grindsted Å, ST12 682 

(measured slope was 112 cm/km). An error in slope determination of 5 cm/km corresponds to ca. 683 

±4.55% error in slope. A -5% underestimation of slope would cause a 0.48% error in QMFpro, joint_est,  684 

and a 2.88% error in KsMFpro, joint_est, while a +5% slope overestimation would cause an error of 685 

ca. -0.47% in QMFpro, joint_est and -2.6 % in KsMFpro, joint_est. Similarly, in the site with the mildest slope 686 

(Vejle Å XS2, with a slope of 24 cm/km), a -20% underestimation (corresponding to 5 cm/km) in 687 

slope determination would cause a 2.2% QMFpro, joint_est change and a 14.2% error in KsMFpro, joint_est 688 

change. Thus, the Ks coefficient shows mild sensitivity to water surface  slope, while discharge shows 689 

low sensitivity.  It is evident that the accuracy of the measured water surface slope is not a significant 690 

factor causing discharge errors, especially for sites with slope values greater than 10-20 cm/km, which 691 

is a very mild slope for a river (Buffington & Montgomery, 2013; Rosgen, 1994).  692 

 693 

 694 

 695 

4. Discussion 696 

 697 

4.1. PIV estimates 698 

 699 

Kim et al. (2008) and Muste et al. (2008) identified a large number of separate error sources that 700 

affect PIV measurements. The errors are generated in all different PIV processing steps, i.e., 701 

illumination conditions, seeding, camera recording, image transformation, and processing. An error 702 

propagation analysis conducted by Muste et al. (2008)  indicated that the relative contribution to the 703 

overall uncertainty was mostly affected by (listed in order): seeding density, identification of the 704 

GCPs, accuracy of flow tracing by the seeding particles, and sampling time.   We analyzed each error 705 

source separately.   706 

In our case, the seeding density was a significant factor affecting accuracy of the velocity results. 707 

High and uniform seeding density, together with diffused illumination conditions, generally lead to 708 

the most accurate velocity estimations (Hauet et al., 2008).  Obtaining uniform seeding density over 709 

the entire river width was generally difficult; indeed, the seeding often converged or in some cases 710 

diverged, depending on the current. Streams that are more than 5-7 m wide require seeding from 711 

multiple locations (e.g. streambanks and center of the stream) and, for rivers wider than 15-20 m, 712 

artificial seeding is impracticable because uniform seeding density in the ROI is difficult to achieve.  713 

Furthermore, operator-based seeding is a significant limitation against survey automation. If streams 714 

presented visible natural floating particles (e.g. foam, material transported by the flow), or visible 715 



surface waves and color differences generated by water flow, advanced PIV-based algorithms could 716 

be deployed (e.g. Leitão et al., 2018; Streßer et al., 2017).  717 

The GCP-free method provided reasonable accuracy when compared to the method with GCPs. We 718 

assume that uncertainties in camera calibration and lens parameter stability were the main factors 719 

affecting the accuracy of the GCP-free scenario, together with the remaining uncorrected lens 720 

distortion.  Furthermore, gimbal performance can affect the accuracy of the results. 721 

The vsurf measured with the MFpro is not exactly at the surface level (as the PIV estimates) but a few 722 

cm below, because the instrument has to be fully submerged.  De Schoutheete et al. (2019) defined 723 

an empirical bias correction coefficient (0.86) to account for this effect.  High wind (higher than 3-4 724 

m/s) significantly affects the magnitude and direction of vsurf; furthermore, wind affects the stability 725 

of the UAS, introducing errors in PIV estimates. The days with the highest wind speed conditions 726 

may provide the poorest comparison between measured and estimated vsurf.  In the deeper XS, velocity 727 

measured at 0.2 times depth is less sensitive to wind variation. For this reason, the vsurf,PIV should be 728 

compared both to vsurf and v0.2 as shown in Figure 4.   However, in the first measured XSs, the standard 729 

3-points method was applied: in these XSs the velocity closest to the surface was at 0.2 (vsurf was not 730 

measured).  731 

Sampling time was a critical factor. The sampling time should be adjusted to include only the 732 

sequence when the seeding is uniformly crossing the ROI.   Furthermore, the frame rate of many 733 

commercial low-grade cameras is not constant and especially settings such as “auto low light” can 734 

affect the frame rate stability.  In general, a camera should be tested for frame rate stability, because 735 

instability in frame rate is translated into inaccuracy of velocity estimates. This evaluation of frame 736 

rate stability was performed by acquiring a video of a watch with a digital screen at 0.1 milliseconds 737 

resolution, both on a white and then on a black background to test both saturation and low light 738 

conditions. The camera chosen for the study showed no visible temporal variation in frame resolution 739 

over time; however, other camera models, initially chosen for the study, were discarded because of 740 

instability in frame rate.   741 

4.2. Uniform flow assumption and Gauckler–Manning–Strickler coefficient  742 

 743 

The uncertainty of UAS-borne discharge estimates is significantly affected by the assumption of 744 

uniform flow, which is a theoretical condition that can be considered valid only when streams are 745 

straight with uniform cross-section and slope near the measured XS. However, Danish streams are 746 

not the ideal monitoring target: their high degree of meandering, mild slopes, shallow depths, and 747 

especially dense aquatic vegetation severely limit the validity of assumption of i) uniform flow and 748 

ii) power law. Uniformness in slope and cross-section should be evaluated to choose the ideal XS 749 

where to measure flow. The method could be tested in streams with simpler hydrodynamics to 750 

evaluate the full potential of the joint estimation approach.   The advantage of the joint estimation 751 

approach is that i) A hypothetical velocity coefficient (e.g. 0.85) is not required to convert from vsurf 752 

to Um ii) both Ks and Q can be estimated.  Ks is an essential parameter because it is also a primary 753 

input for river hydrodynamic/hydraulic models. Ks is generally estimated by calibrating the model 754 

against water level measurements (Jiang et al., 2020; Schneider et al., 2018). Our joint estimation 755 

approach can estimate Ks under the assumption that Ks is constant throughout the river width at the 756 

measured XS. This assumption is also formulated in common river hydrodynamic models, such as 757 



HEC-RAS (United States Army Corps of Engineers, USA) or MIKE HYDRO (DHI, Denmark), 758 

which simulate one-dimensional flow (Andrei et al., 2017). However, in natural streams, hydraulic 759 

roughness might differ at the edges of the XS compared to the center, where near-streambank 760 

vegetation might cause lower conveyance.   761 

In our research, the areas at the stream edges without uniform seeding were masked out from the PIV 762 

estimation. In those areas, the velocity was horizontally extrapolated using an equation equivalent to 763 

( 5 ). The assumption is that the estimated factor m (obtained from Ks) at the edge, which is estimated 764 

as riverbed roughness (in the vertical velocity profiles), can be considered also as streambank 765 

roughness (for the horizontal surface velocity profiles). However, this assumption is not significantly 766 

affecting the discharge estimates, because of the low velocity and depth generally occurring at the 767 

edges.  768 

 769 

 770 

4.3. A calibration factor for correction of biased discharge estimates to account for e.g. 771 

vegetation conditions 772 

 773 

Discharge observations with both joint estimation approach and 0.85 coefficient approach show a 774 

bias, which is statistically significant only for the 0.85 coefficient. However, the joint estimation 775 

approach also shows a visible bias for discharge in some of the sites. The joint estimation approach 776 

relies on equations ( 6 ), which is an empirical equation reported in the ISO 748:2007 (2007), that 777 

hypothesizes a relationship between Chézy coefficient and m in natural streams. However, as 778 

explained in Cheng (2007), the coefficient m is a function of the Reynolds number as well as the 779 

relative roughness height. For this reason, it is reasonable to adapt equation ( 6 ) to the specific site 780 

conditions (e.g. different vegetation conditions) in case a very large dataset was available. Another 781 

possibility is to introduce an empirical multiplier α in equation ( 5 ) to account for specific conditions:  782 

𝑈𝑚 = 𝛼 ∙ (
𝑚

𝑚 + 1
)𝑣𝑠𝑢𝑟𝑓 ( 12 ) 

 

 783 

The size of our datasets (27 sites) does not allow for a reliable determination of the coefficient α. 784 

Calibration typically requires partition of a dataset in two thirds as the calibration set and one third as 785 

the validation set. Our experiments showed that determination of the coefficient α was significantly 786 

affected by the sites chosen for calibration and the sites used for validation. However, if a large sample 787 

of cross sections are available, a coefficient α could be introduced. Similarly, the coefficient 0.85 can 788 

be calibrated to adapt to specific site conditions.  789 

 790 

4.4. UAS-borne bathymetry measurements and seeding for a fully contactless method 791 

 792 

The developed method is not yet fully contactless because water depth was not retrieved with the 793 

UAS platform and because in-situ operators are needed for seeding. Stream bathymetry can be 794 



acquired with UAS through spectral signature-depth correlation based on passive optical imagery 795 

(Flener et al., 2013; Lejot et al., 2007) or through digital elevation model generation using 796 

stereoscopic techniques from through-water pictures (Tamminga et al., 2014; Woodget et al., 2015). 797 

However, these passive methods are limited to very shallow and clear water. Innovative UAS-borne 798 

LIDAR systems (Kinzel & Legleiter, 2019; Mandlburger et al., 2016) can be deployed with UAS, but 799 

these systems are highly expensive and can penetrate only to 1-1.2 times the Secchi depth. Bandini 800 

et al. (2018) show the possibility to use a UAS-tethered sonar to retrieve bathymetry in lakes and 801 

streams, but the solution is still not fully autonomous, as it requires an operator near the UAS platform 802 

to ensure flight safety. Thus, UAS-borne bathymetry estimation remains a research challenge. When 803 

time series of discharge need to be acquired, and the bathymetry is known from previous surveys and 804 

considered invariant,  water depth can be estimated with a UAS-borne solution such as the WSE radar 805 

solution presented in Bandini et al. (2020).  806 

Furthermore, to make the method fully contactless, seeding operations need to be automatized in the 807 

locations where seeding is required. Seeding could be ideally performed by a secondary UAS 808 

platform that could release seeding along a diagonal direction relative to the shore to ensure a uniform 809 

seeding at the XS where velocity is measured. 810 

 811 

 812 

5. Conclusion 813 

We presented a new method to jointly estimate discharge (Q) and Gauckler-Manning-Strickler 814 

coefficient (Ks). This method relied on UAS-borne measurements of water surface slope and water 815 

surface velocity, while water depth was measured with in-situ surveys. 816 

The method does not require GCPs, but simply relies on the range to water surface measured by the 817 

on-board full waveform radar altimeter.   Two approaches for estimating Q were developed: i) a 818 

method relying on the 0.85 coefficient and ii) a joint estimation approach based on a system of 819 

equations, which includes Manning’s equation and the mean-section method equation to estimate 820 

discharge from Um, expressed as a function of Ks and vsurf. Surface velocity and discharge were 821 

estimated in 27 different sites, showing the following results: 822 

 The comparison between GCP-free and GCP methods showed a mean absolute error of 3.1%    823 

in the conversion from pixels into meters.    824 

 An error propagation analysis showed that the accuracy of UAV-borne WSE slope 825 

measurements is suitable for the joint estimation approach.  826 

 The vsurf estimated with the PIV technique was compared with vsurf measured with the in-situ 827 

velocity probe MFpro. This showed a mean absolute error (MAEv) of 0.11 m/s and a mean 828 

bias error (MBEv) of -0.02 m/s.  829 

 Discharge was estimated using the multi-depth velocity observations obtained with MFpro. 830 

The estimated uncertainty at 95% confidence interval of these discharge observations was in 831 

the range ±6-16% (with most of the observations near ±10% uncertainty). 832 

 When discharge is estimated from in-situ MFpro measurements of surface velocity, the joint 833 

estimation approach showed error statistics significantly better than the standard 0.85 834 



coefficient approach:  the MAPE decreases by ca. 4% and NRMSD decreases by ca. 5.6% 835 

using the joint estimation approach. 836 

 The KsMFpro, joint_est coefficients, which are estimated from vsurf,MFpro, show a MAE of 2.4 m1/3/s 837 

and a MBE of =-0.8 m1/3/s   when compared with the in-situ Ks estimates obtained from 838 

multi-depth velocity measurements. 839 

 When discharge is estimated with vsurf, PIV, the joint estimation approach method showed an 840 

underestimation of discharge, while the 0.85 coefficient showed an overestimation. Joint 841 

estimation approach showed a MAPE of 19.1%, a MBPE of -6.6% and the NRMSD of 842 

24.12%. These MBPE and NRMSD values were considerably better than 0.85 coefficient 843 

approach.  844 

 The KsPIV, joint_est coefficients, which are estimated from vsurf, PIV with joint estimation 845 

approach, showed a MAE of 3.2 m1/3/s and a MBE of =-0.9 m1/3/s  when compared with the 846 

in-situ Ks estimates obtained from multi-depth velocity measurements. 847 

 The join estimation approach is preferable over the 0.85 coefficient approach because i) it 848 

jointly estimates Ks and Q ii) it is based on the physical principles of hydraulics, being 849 

related to uniform flow assumption, instead of a priori assumptions on the relationship 850 

between vsurf and Um.   851 

 The hydraulic characteristics of the surveyed streams, which are a typical sample of 852 

lowland streams at medium-high latitudes, are not an ideal monitoring target, because of 853 

their mild slopes, shallow depths, high degree of meandering and high vegetation density, 854 

which all limit the validity of the power-law and uniform flow assumption.  855 

6. Appendix A 856 

 857 

ISO 748:2007 (2007) shows that the uncertainty in discharge measurements with velocity probes 858 

depends on a large number of factors which include: i) the uncertainties in the width (up), depth (ud) 859 

and depth-averaged velocity (u(Um,i)) at each vertical, ii) uncertainty (us) due to variable 860 

responsiveness of the current-meter, width measurement instrument and depth sounding instrument,  861 

iii) uncertainty (um) due to the limited number (nv) of measured verticals in each cross section, iv) 862 

uncertainty (up) due to the limited number (nd) of depths at which velocity is measured, v) uncertainty 863 

(uc)  in the velocity at a particular measuring point in vertical due to lack of repeatability of the 864 

current-meter, e.g. due to random errors of the velocity meter (as shown in chapter 2.9) and vi) 865 

uncertainty  (ue) due to fluctuation of the velocity during the measurement.   866 

Equation (A 1) shows how to compute the uncertainty (percentage relative standard deviation) on the 867 

single velocity measurement (u(vi)), while equation (A 2) shows the uncertainty of the depth-averaged 868 

velocity of each vertical (u(Um,i)).  Equation (A 3) shows how to compute the uncertainty in discharge 869 

(u(Q)) from the single uncertainty components. If the measurement verticals are placed so that the 870 

segment discharges (bi, Um,i, di) are approximately equal and if the component uncertainties are equal 871 

from vertical to vertical, equation (A 3) can be simplified with an expression not dependent on the 872 

single vertical measurements.  873 

 874 

     875 
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The expanded uncertainties at the 95 % confidence level, U95(vi) and U95(Q) are obtained by applying 879 

a factor of 2 to u(vi) and u(Q), respectively. 880 

In the surveyed vegetated rivers, uncertainties in discharge measurements tend to be significant, 881 

especially in case the number of points at which velocity is measured is not sufficient to observe the 882 

horizontal and vertical velocity variability, or if the meter exposure time is not sufficient to capture 883 

velocity fluctuation.    De Doncker, Troch, & Verhoeven (2008) reported that electromagnetic 884 

devices, such as the MFpro, are significantly preferable to acoustic instruments or propeller flow 885 

meters in vegetated rivers.  886 
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