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Abstract

Geophysical granular flows exert basal forces that generate seismic signals, which can be used to better monitor and model these
severe natural hazards. A number of empirical relations and existing models link these signals’ high-frequency components to
a variety of flow properties, many of which are inaccessible by other analyses. However, the range of validity of the empirical
relations remains unclear and the models lack validation, owing to the difficulty of adequately controlling and instrumenting
field-scale flows. Here, we present laboratory experiments investigating the normal forces exerted on a basal plate by dense and
partially dense flows of spherical glass particles. We measured the power spectra of these forces and inferred predictions for
these power spectra from the models for debris flows’ seismic signals proposed by Kean et al. (2015), Lai et al. (2018), and
Farin, Tsai, et al. (2019), using Hertz theory to extend Farin, Tsai, et al. (2019)’s models to higher frequencies. Comparison
of our bservations to these predictions, and to predictions derived from Bachelet (2018) and Bachelet et al. (2021)’s model
for granular flows’ seismic signals, shows those of Farin, Tsai, et al. (2019)’s ‘thin-flow’ model to be the most accurate, so we
examine explanations for this accuracy and discuss its implications for geophysical flows’ seismic signals. We also consider the
normalisation, by the mean force exerted by each flow, of the force’s mean squared fluctuations, showing that this ratio varies

by four orders of magnitude over our experiments, but is determined by the bulk inertial number of the flow.
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Key Points:

« We conducted novel laboratory experiments to test five existing models for the
high-frequency seismic signals generated by granular flows

e The ‘thin-flow’ model of Farin, Tsai, et al. (2019) was the most accurate and
makes predictions consistent with empirical observations

e The ratio between the mean and fluctuating forces exerted by a granular flow
varies greatly, determined by an inertial number of the flow
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Abstract

Geophysical granular flows exert basal forces that generate seismic signals, which can
be used to better monitor and model these severe natural hazards. A number of
empirical relations and existing models link these signals’ high-frequency components
to a variety of flow properties, many of which are inaccessible by other analyses.
However, the range of validity of the empirical relations remains unclear and the models
lack validation, owing to the difficulty of adequately controlling and instrumenting
field-scale flows. Here, we present laboratory experiments investigating the normal
forces exerted on a basal plate by dense and partially dense flows of spherical glass
particles. We measured the power spectra of these forces and inferred predictions
for these power spectra from the models for debris flows’ seismic signals proposed by
Kean et al. (2015), Lai et al. (2018), and Farin, Tsai, et al. (2019), using Hertz theory
to extend Farin, Tsai, et al. (2019)’s models to higher frequencies. Comparison of
our observations to these predictions, and to predictions derived from Bachelet (2018)
and Bachelet et al. (2021)’s model for granular flows’ seismic signals, shows those of
Farin, Tsai, et al. (2019)’s ‘thin-flow’ model to be the most accurate, so we examine
explanations for this accuracy and discuss its implications for geophysical flows’ seismic
signals. We also consider the normalisation, by the mean force exerted by each flow,
of the force’s mean squared fluctuations, showing that this ratio varies by four orders
of magnitude over our experiments, but is determined by the bulk inertial number of
the flow.

Plain Language Summary

Landslides, like earthquakes, generate seismic signals: vibrations of the earth
that can be detected a long way away. Analysis of the most rapid vibrations could
provide information about how large a landslide is or how damaging it will be, helping
emergency services respond. But full-size landslides are complex and difficult to study,
so the generation of these vibrations is not yet sufficiently well understood for this in-
formation to be reliable. Therefore, in the place of full-size landslides, we studied
simplified, small-scale versions in the laboratory, testing previous authors’ predictions
for the seismic signals they generate. We find that one set of predictions was particu-
larly accurate and show that the corresponding predictions for full-size landslides are
consistent with previous observations. This implies that a landslide’s seismic signal
can be used to calculate its size, its speed, and the typical size of particles within it.

1 Introduction
1.1 Background

Landslides and other geophysical granular flows are a major natural hazard, caus-
ing on average 4,000 deaths worldwide each year from 2004 to 2016 (Froude & Petley,
2018) and an estimated billions of dollars of annual damage in the United States alone
(Fleming et al., 1980; National Research Council, 1985; Schuster & Fleming, 1986).
Few areas have an early warning system in place (Guzzetti et al., 2020) and a damaging
event’s magnitude and effects may remain unknown for hours or days after it happens
(Hervds, 2003; Scholl et al., 2017), hindering the response of emergency services. Mod-
elling is currently unable to remedy these knowledge gaps or to accurately identify the
hazardous areas that should be avoided, with poorly constrained parameters, such as
a flow’s basal friction coefficient, being important in determining a landslide’s runout
(van Asch et al., 2007; Lucas et al., 2014; Delannay et al., 2017; Cuomo, 2020).

Better monitoring of landslide-prone areas and better modelling of flows’ evo-
lution are therefore key to the reduction of landslide hazard, and the use of seismic
signals is a promising tool towards these aims. Geophysical flows exert forces on the



ground over which they travel, resulting in the outwards-propagating seismic waves
that Kanamori and Given (1982) first described in detail, for a rock avalanche at
Mount St. Helens. These seismic waves, which we refer to as ‘landquakes’, can be
detected by a local or regional seismic network, permitting continuous monitoring
of a wide area. This monitoring suggests the possibility of early warning systems,
analogous to those in use and development for earthquakes (e.g. Given et al., 2018).
Furthermore, landquakes encode information about a landslide’s magnitude and evo-
lution over time, and so these seismic signals can be analysed to assess damage, to
constrain model parameters, and to compare different models.

However, the low-frequency components of landquakes studied by Kanamori and
Given (1982) can typically only be detected for large landslides (> 107 m? according
to Allstadt et al. (2018)) and are predominantly generated by the accelerations of a
landslide’s centre of mass (Kawakatsu, 1989; Dahlen, 1993; Fukao, 1995). Therefore,
even when detected, they cannot provide information on many properties relevant to
landslide modelling and harm assessment, such as the size of individual particles within
the flow or the vertical profiles of flow properties.

To extract more information and infer these properties, previous authors suggest
using the high-frequency component of landquakes, generated by the rapidly fluctu-
ating forces exerted by the flow and associated with the accelerations of individual
particles within it. The spectrogram of this high-frequency component and its en-
velope have distinctive shapes (Surinach et al., 2005) which can be used to detect
landslides (e.g. Hibert et al., 2014; Dammeier et al., 2016; Fuchs et al., 2018; Lee
et al., 2019). Furthermore, the properties of this envelope can be related to those of
the landslide: the envelope’s duration to the landslide’s duration and hence its loss
of potential energy (Deparis et al., 2008; Hibert et al., 2011; Levy et al., 2015); the
envelope’s amplitude to the seismic energy emitted by the landslide and hence its
volume (Norris, 1994; Hibert et al., 2011; Levy et al., 2015), its work rate against
friction (Schneider et al., 2010; Levy et al., 2015), and its momentum (Hibert et al.,
2015, 2017); and envelope scale and shape parameters to the landslide’s geometry via
multilinear regression (Dammeier et al., 2011). Some of these relations have been
replicated in laboratory experiments on dry granular flows: Farin et al. (2018) links
seismic envelopes’ duration to potential energy loss and envelopes’ shape to flows’
varying vertical and horizontal momenta, for collapses of granular columns on angled
planes, while Farin, Mangeney, et al. (2019) proposes an expression for a collapse’s net
seismic energy emission, in terms of the column’s mass, aspect ratio, particle diameter,
and maximum centre of mass velocity.

Other laboratory experiments have investigated the dynamics by which gran-
ular flows generate high-frequency signals, in geometries including discharging silos
(Gardel et al., 2009), rotating drums (Hsu et al., 2014), and rotary shear cells (Taylor
& Brodsky, 2017). Gardel et al. (2009), calculating the power spectra of the forces
that flows exert on their boundaries, shows the amplitude of high-frequency force fluc-
tuations to increase with increasing flow rate. Hsu et al. (2014), meanwhile, shows
the typical magnitude of such fluctuations to increase with increases in flow rate and
grain size, with the mean force exerted over macroscopic flow timescales, and with the
shear-determined ‘inertial stress’ o;, as approximately o5 for flows of water-saturated
gravel. This is broadly consistent with Taylor and Brodsky (2017)’s observation that,
under constant mean pressure, granular flows’ force fluctuations induced boundary vi-
brations with squared amplitude proportional to d®I, for grain diameter d and estimate
I of the ‘inertial number’: a local, non-dimensional shear rate, with its square equal to
the ratio between the inertial stress and the mean stress, that previous authors suggest
will uniquely determine all other local, non-dimensional flow parameters (GDR MiDi,
2004; da Cruz et al., 2005; Jop et al., 2006).



However, there are discrepancies between the relations suggested by different
authors, including the difference between a landslide’s momentum and its work against
friction, and different exponents in power laws for force fluctuations’ amplitude as a
function of I. Furthermore, the relations are empirical, so both their precision and
their range of validity are unclear. Allstadt et al. (2020)’s large-scale experiments,
for example, identify no simple relations between the properties of debris flows and of
the fluctuating forces they exert, despite excellent instrumentation. To reliably link
landslides’ properties to those of the high-frequency seismic signals they generate, a
mechanistic model for landquake generation is required.

1.2 Existing Models

Models of the high-frequency component of landquakes rely on the same frame-
work: consideration of the total seismic signal as a sum of the uncorrelated signals
generated by individual, random particle impacts, with i) the properties of the im-
pacts determined by some mean properties of the particulate flow and ii) a specified
Green’s function mapping the force of an individual impact to the seismic signal ob-
served at a remote station. This stochastic impact framework arises from Tsai et
al. (2012)’s model of seismic noise generation from riverine sediment transport, and
Gimbert et al. (2019) validates it in that context using flume experiments. We discuss
its validity for landquakes in S2, showing that it will be applicable to any extensive
flows of stiff particles for which energetic impacts are more significant than other high-
frequency sources, for signal periods smaller than the timescales over which the bulk
flow varies. Examples may include avalanches, the coarse-grained fronts of debris flows,
and rockfalls involving multiple blocks.

Assuming the framework’s validity, prediction of a flow volume V’s high-frequency
landquake signal requires consideration of the locations x € V of signal generation, and
the specification of just three things at each location: 1) the number n;(x) of impacts
per unit volume and time; 2) the force F(x,t) applied by a single, typical impact over
its duration; and 3) the Green’s function G(¢,r;x) for each single-component velocity
response vy(t) to that force of the seismic station detecting the signal, located at r.
Writing ~ for Fourier transforms over time At, the landquake signal will then have
power spectral density

Po(f) = [5:(f)]2/ Mt = /V n(|Fr(x, f) - G, %) 2 dx.

1.2.1 Direct Use of Tsai et al. (2012)

Kean et al. (2015), Lai et al. (2018), and Farin, Tsai, et al. (2019) consider only
impacts at the base of a flow to be significant in signal generation, and assume 1)
that the rate of impacts is determined by the advection of particles, with the mean
flow, into basal irregularities of the same scale; 2) that the force a particle exerts
varies over timescales much shorter than the range of periods to which the seismic
station is sensitive; and 3) that the relevant Green’s function is that for Rayleigh-wave
propagation to the far field. Under these assumptions, if a representative impacting
particle has diameter d and downslope speed u, it will have collision rate u/d, so that
a bedrock-contacting flow area A in which impacting particles have a volume fraction
¢ will have an approximate integrated collision rate [, ny dx = ¢Au/d*. For all signal
periods of interest, the typical force applied by an impact will be approximable as a
Dirac delta function in time and hence constant in the frequency domain, equal to
the impulse transferred, so that F 1(f) = Apey for a representative impulse magnitude
Ap and unit vector e;. Meanwhile, the relevant frequency-space Green’s function for
a station at radius r will have magnitude |e; - G| = R(f)e~*)"/\/r, for functions
R and « related to Rayleigh-wave propagation and inelastic attenuation, respectively



(Lamb, 1904). Consequently, the signal’s power spectral density will be
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Material above the flow’s base is supposed to affect the signal only via its influence on
u and Ap.

Kean et al. (2015) suggests that u scales with the measured surface velocity and
Ap with the mean stress exerted by the flow, equal to the base-normal component
of the flow’s local weight per unit area. The authors use an empirical, piecewise-
continuous function «, and avoid consideration of scaling constants, ¢, R and d by
examining only the ratio of P, (f) to that measured during a reference debris flow in
the same channel, for which such parameters are assumed to be the same. The paper
uses this model to estimate the depths of static sediment ‘shielding’ the channel centre
from impacts, and these estimates correctly remain positive, but the paper performs
no further evaluation of the model.

Lai et al. (2018) suggests that large, flow-depth-spanning particles dominate the
signal, so that d should be the 94th percentile of the particle diameter distribution
and w should be the depth-averaged downslope velocity u of the flow. The authors
implicitly take ¢ = 1 and further assume that impacts transfer an impulse equal to
that for elastic rebounds of individual near-spherical particles at vertical velocity u,
such that Ap = mpd3@/3 for particle material density p. Equations for R(f) and a(f)
are taken from Tsai et al. (2012), Tsai and Atiganyanun (2014), and Gimbert and Tsai
(2015), and then applied to a Californian debris flow, to invert the peak frequency of
P, _(f) for r. However, this inversion relies on the model for signal generation only via
the assumption that [F;(f)| is independent of f in the frequency range of interest, so
this assumption is the only part of the model that the paper tests. Values for A, u,
and d were inferred but not measured.

Farin, Tsai, et al. (2019) generalises the model of Lai et al. (2018) to different
flow regions and regimes and to a continuous particle size distribution. The authors
calculate that the impacts of particles falling from the flow front or saltating ahead
of it are less significant for signal generation than those in the flow’s dense snout
and body. In these two regions, for ‘thin’ flows of depth h comparable to the largest
particle diameters, the paper suggests that the Lai et al. (2018) model will hold, with
slight modifications: ¢ is explicitly stated; there are extra terms in the equation for
Ap to account for inelasticity and variation in the angle and velocity of impacts; R
is adjusted to account for non-vertical e;; and d is represented by its appropriately
weighted average over the distribution of particle diameters, which is suggested to be
approximately equal to the 73rd percentile of that distribution. However, for ‘thick’
flows, where h is much larger than the particles’ diameters, the paper suggests that, in
addition to the above slight modifications, the relevant advection and impact velocity is
that of base-adjacent particles. Assuming no basal slip, in the sense that velocities tend
to zero towards the flow’s base, u is then proportional to @d/h and the representative
value of d is equal to the 86th percentile of the particle diameter distribution. The
authors tested neither of the ‘thin-flow’ and ‘thick-flow’ models.

1.2.2 Model of Bachelet et al.

In contrast to the above papers, Bachelet (2018) and Bachelet et al. (2021)
consider impacts between different layers of particles, throughout the depth of the
flow, and suppose 1) that the local impact rate is the rate at which adjacent layers
shear over each other; 2) that the force throughout an impact is described by Hertz
theory with typical impact velocity equal to the standard deviation in particle velocity



within each layer; and 3) that the Green’s function includes exponential attenuation
of the force with the impact’s distance from the flow’s base.

The use of Hertz theory to describe the contact force between impacting particles,
detailed in S3, predicts the duration of impacts and so a frequency scale for the spectral
density of the forces they exert (Hertz, 1881). For a collision at relative normal velocity
u, between two spherical particles of diameter d, consisting of material with density
p, Young’s modulus E, and Poisson’s ratio v, Hertz theory predicts a timescale for the

impact
7T2p2(171/2)2 1/5
= |— d.
[ 4E%u, ]

With this 7, the spectral density of the normal force between the particles is

wpd3uy,

A= (T2 ¢

for a non-dimensional function (7f), plotted in Figure S1b, which is approximately
equal to 1 for 7f < 1, monotonically decreases to {(7f.) = 0.5 for non-dimensional
corner frequency 7f. ~ 0.208, and is much less than 1 for 7f > 1. Impacts at higher
velocities u,, apply forces with higher spectral density, over a wider frequency range.

This spectral density doesn’t appear explicitly in Bachelet (2018) or Bachelet
et al. (2021), which instead use the integral of ¢ over all f to consider the total
seismic power generated by a flow. However, we can follow the authors’ reasoning
to derive from equation (4) a prediction for the spectral density of a flow’s high-
frequency landquake signal, in the form of equation (1). First, separating a flow with
representative particle size d and particle volume fraction ¢ into layers, and writing z;
for the vertical position of each layer and u; for the mean horizontal velocity within
it, the authors suggest that the rate of impacts is

m(x)ﬂ;’; (15 = u5-1)8(= — 2)

for Dirac delta function §. Then, writing 7} for the granular temperature in the jth
layer, equal to the variance of individual particles’ velocities, the authors take the
spectral density of the force applied by a typical impact to be given by equation (4)
with impact velocity u,, = \/ITJ . Finally, the magnitude of the frequency-space Green’s
function for an impact at height z is taken to be e_WZ/Q\C:'bL where v is an attenuation
constant and |éb|, describing a measurement station’s velocity response to vertical
basal forces, is constant due to the assumption of an incoherent, diffuse seismic field
with constant attenuation. Therefore, a flow of area A will generate a landquake signal
with power spectral density

40 A
P.(f) = 222 FIGH S0y -l e

for
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The experiments described by both Bachelet (2018) and Bachelet et al. (2021)
show this model to be consistent with measurements of the seismic signals generated
by approximately steady and uniform laboratory-scale granular flows, but the results
are not conclusive. Releasing flows of d = 2mm-diameter glass beads in a channel
inclined at angles between 16.5° and 18.1°, accelerometers were used to estimate the
total seismic power imparted to an isolated plate by overlying flows of depths between



15d and 20d, and this power was compared to the prediction of equation (6), with
flow parameters estimated using high-speed photography through the channel’s trans-
parent sidewalls. The agreement is reasonable, but is highly dependent on the fitted
parameter 7, and so the number of estimates, and their range of variation, are too
small for conclusions to be definitive. The use of Hertz theory permits predictions for
the frequency-dependence of the power spectral density, but no such predictions are
compared with experimental results. Further tests are therefore required.

1.3 Aim of Our Work

Given their insufficient validation to date, our work aims to test the above mod-
els of high-frequency landquake signal generation. Because we are concerned with the
generation of the signal, rather than its propagation, we consider models’ predictions
for the power spectral density Pp of the total base-normal force exerted by the flow,
which may be obtained by removing the Green’s function in equation (1), so by divid-
ing equation (2) by R%e=2%" /r and equation (6) by |Gy|2. Pr will be proportional to
the spectral density of the signal at a receiver, with its appropriately weighted inte-
gral proportional to the seismic power transmitted by the flow, but Pg, unlike these
measurements, is independent of the response of the base on which the flow propagates.

However, it is difficult to use field-scale granular flows to test the models’ predic-
tions for Pr. Natural geophysical flows often occur in remote locations, infrequently
and unpredictably, and so the sites of most flows are not instrumented for any mea-
surements of flow parameters. Where sites are instrumented, the destructiveness of
geophysical flows restricts which parameters can be measured, excluding most used by
the above models. Furthermore, geophysical flows are typically extremely unsteady
and heterogeneous, so that any given landquake signal may be produced by a flow
region with parameters very different from those that have been measured. Finally,
the inference from a landquake signal of the forces that generated it requires inversion
of the Green’s function, which is typically poorly constrained at the high frequencies
of interest, and to which the inversion is typically very sensitive at precisely these high
frequencies.

We therefore conducted laboratory experiments to link the properties of a gran-
ular flow to the seismic signal it generates. In the laboratory, flows can be fully
controlled and instrumented, allowing a wide range of parameter values to be explored
and measured. Apparatus can be designed to produce steady, fully developed, homo-
geneous flows, and the Green’s function can be well constrained over a large frequency
range by calibration. Since the models entirely neglect geophysical flows’ fluid phases
and consider normal impulses transferred between similarly sized particles, they can
be tested with the dry flows of monodisperse, spherical grains that best satisfy their
assumptions. Having established the relevant physics for simple flows, the applicability
of results to more complex, geophysical flows can be discussed.

We describe our laboratory experiments in section 2.1, our analysis of experimen-
tal data in section 2.2, and our calculation of existing models’ predictions for flows’
force signals Pp in section 2.3. Section 3.1 describes how each flow’s signal evolves
with the flow, over the course of an experiment, while section 3.2 describes the prop-
erties of Prp and section 3.3 compares those properties to the models’ predictions. We
discuss the implications of this comparison for our flows’ velocity profiles in section
4.1, and the relation between non-dimensional shear and non-dimensionalised force
fluctuations in section 4.2, while section 4.3 discusses the application of our results to
geophysical flows, including the effects of different Green’s functions, particle size and
polydispersity, and flow evolution. Section 5 concludes by summarising our results.



2 Methods
2.1 Experimental Apparatus

As the simplest possible analogue of a geophysical granular flow, we studied the
flow of spherical glass beads, d = 2mm in diameter, in an inclined channel 2.5m
long and W = 0.2m wide, shown in Figure 1. The beads were 1.7-2.1 mm Type
S glass beads produced by Sigmund Lindner GmbH and provided by MINERALEX,
with material density p = 2500 kgm 3 and Young’s modulus E = 63 GPa (Sigmund
Lindner, 2018). In each experiment, 40 kg of beads were initially stored in a plastic
reservoir of volume 0.08 m?, from which they flowed out via a rectangular opening
of width 0.18 m and adjustable height hg, controlled to within 0.06 mm by a plastic
gate which was fixed in place during each experiment. A separate plastic release gate
blocked this opening before each experiment and was manually lifted to start outflow.
On leaving the reservoir, beads entered the separately supported channel, which had
an aluminium base; transparent, 0.1 m-high acrylic walls; and an incline tan 6, which
could be adjusted by changing the heights of the braces attaching the channel to its
supports. The channel’s base was roughened with the same type of glass beads as
constituted the flow, fixed in place with extra-strong double-sided carpet tape, with
an irregular, dense pattern achieved by random pouring.

The flow of beads down the channel adapted to these conditions over a distance of
1.92 m, before reaching a rectangular, instrumented steel plate set into a corresponding
hole in the centre of the channel’s base. The plate was X = 0.18m long, ¥ = 0.1m
wide, and H = 2mm thick, with its surface flush with that of the aluminium base to
within 0.02 mm and separated from it by an isolation gap of 0.04 £ 0.01 mm, achieved
by using strips of plastic film as spacers during emplacement. The plate was supported
by a force sensor and a support piece, with the three separated by washers and held
together by a prestressing screw, the head of which was glued into a 0.5 mm-deep
recess in the centre of the plate’s underside. The support piece, in turn, was attached
to the channel’s substructure using phenyl salicyclate (salol), which was added to the
join when molten and solidifed to form a stiff connection, but could be melted with
a heat gun for removal of the plate or adjustment of its position. Before the plate’s
emplacement, we used the same salol to roughen its surface with glass beads: heating
the plate, we added salol to form a thin, liquid layer, and we poured beads on top to
form an irregular, dense pattern, before the salol solidified and fixed them in place.

After the plate, the flow of beads continued for 0.4 m, before flowing out of the
channel and into a plastic outflow tray. Plastic sheeting extended the tray’s walls, to
prevent energetic particles from escaping.

Four sets of devices took measurements of the flow: a mass balance beneath the
outflow tray; the force sensor supporting the instrumented plate; four accelerometers
attached to the plate’s underside; and a high-speed camera directed through the chan-
nel’s wall. The mass balance was a Dymo S50 digital shipping scale, which measured
in each experiment the cumulative mass that had passed through the channel. The
force sensor was a Kistler 9027C three-component force sensor and was connected to a
Kistler 5073 charge amplifier, measuring the normal, downslope, and cross-slope forces
exerted by the flow on the plate. The accelerometers were Briiel and Kjeer type 8309
accelerometers, attached with salol to randomly selected positions on the plate’s un-
derside and connected to a Briiel and Kjeser Nexus 2692-A-OS4 conditioning amplifier,
to measure the normal vibrations of the plate and hence the seismic energy imparted
to it by the flow. Settings of the force sensor and accelerometer amplifiers are de-
scribed in S4. The camera was an Optronis CR600x2, with a Sigma 17-50 mm F2.8
EX DC lense, and was level with and focussed on the inside of the channel sidewall,
directly cross-slope from the instrumented plate’s centre. The camera’s inclination
was the same as the channel’s and its field of view was 640x256 pixels, corresponding
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Figure 1. Schematic of experimental apparatus. Experiments are conducted in the channel
represented, to scale, at left, with components of the apparatus labelled in blue and relevant di-
mensions in red. Expansions at top-centre and bottom-right represent, in cutaway views and not
to scale, details of the reservoir and the instrumented plate, respectively. The glass beads used in

experiments are shown at top-right, with a mm-unit scale.

to a region 8 cm long and 3.2cm high. The sidewall was lit using a Photonlines H5
LED light, via a white sheet of paper which acted as a reflective diffuser, and we used
an exposure of 25011s and a frame rate of 2000571,

To control the measurement devices, we used an Arduino Uno R3 microcontroller
board, and we recorded measurements using a Pico Technology Picoscope 4824 oscillo-
scope connected to a Lenovo E530 laptop. Measurements from the mass balance, force
sensor, and accelerometers were recorded from the time ¢ = 0 at which the reservoir’s
release gate was lifted until the outflow stopped at ¢t = t., while the camera recorded
footage over a duration At. between 2s and 10s, after a delay time ¢4 in which the
flow developed into a steady state. Details are in S5.

We conducted experiments with six different channel inclinations between 22.8°
and 27.5° (tan 6 = 0.42, 0.44, 0.46, 0.48, 0.50 and 0.52), with this order randomised to
negate the effect of any systematic variation in atmospheric conditions or measurement
sensitivity. For each inclination, we conducted three repeats with the reservoir control
gate at each of four different heights (h, = 5mm, 10mm, 20 mm and 40 mm), with
the order of gate heights again selected at random.

At channel inclines equal to and greater than tan 6 = 0.46 (§ = 24.7°), there was
a gate height below which flows were in the gaseous regime of e.g. Borzsényi and Ecke
(2006) and Taberlet et al. (2007), with all glass beads in saltation and accelerating
downslope. We recorded no measurements of such flows, which were energetic and far
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Figure 2. Channel inclines tan6 and release gate heights hg used in experiments. o indi-

cates an experiment for which the flow was in the transitional regime, while colours indicate the

duration of time At, recorded by the camera.

from stationary, with a large number of beads escaping across the channel’s sidewalls
and with the camera’s images unusable for reliable measurements. At each such incline,
we instead recorded measurements at all gate heights resulting in dense flows and at
one gate height resulting in a ‘transitional-regime’ flow, with a dense basal flow below
a saltating layer. These gate heights are plotted in Figure 2, within the full parameter
space investigated.

2.2 Data Analysis

For each experiment within the parameter space, we analysed the experimental
data to calculate dynamic, seismic, and kinematic properties of the flow: the mass
of particles that lay over the instrumented plate and the effective friction coefficient
between the two; the mass flux of particles through the channel and their average
velocity; the power spectrum of the normal force exerted on the plate by the flow; and
the vertical profiles of particle volume fraction, velocity, and granular temperature
at a channel wall. We recall that W denotes the channel’s width and 6 its angle of
inclination; that X, Y, and H denote the length, width, and thickness of the plate; and
that ty and At. denote the delay before and the duration of the high-speed camera’s
recording, respectively. These and all other variables are listed in S1 and all code used
to perform these analyses is available at Arran et al. (2021).

To infer the mass overlying the plate and its effective friction coefficient with the
flow, we used the data from the force sensor. Averaging over successive 0.5 ms intervals,
the net downslope force F,(t) and plate-normal, downwards force F(t) applied to the
plate by the flow were calculated from the voltage output of the force sensor’s charge
amplifier, as described in S6. Then, assuming no net plate-normal acceleration of the
flow overlying the plate, over the period of steady flow recorded by the camera, we
calculated the average mass per unit area overlying the plate as

o= <Fz>Atc
XYgcosf’

where (-)a;, represents the arithmetic mean over ty < ¢t < tq + At. and g represents
gravitational acceleration. Similarly, we followed Hungr and Morgenstern (1984) and
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Roche et al. (2021) in calculating the effective friction coefficient as

_ <F:v>AtC
<Fz>Atc ’

with this calculation validated in S6, section S6.3.

To calculate the mass flux through the channel, we examined the data recorded
by the mass balance. Having the cumulative mass M (¢) that had flowed through the
channel after time ¢, we calculated the average flux per unit channel width, over the
period of steady flow recorded by the camera, as

M (tg + At.) — M(tq)
At W '

Assuming this average mass flux to be equal to that across the plate, and having
calculated the mass overlying the plate, we could then calculate the mean depth-
averaged flow velocity across the plate,

u=qjo.

To extract the power spectral density of the flow’s basal force, we processed data
from the accelerometers using Kirchhoff-Love plate theory (Love & Darwin, 1888) and
assuming perfect isolation of the plate from the channel and linear attenuation within
the plate. On the basis of the steel’s technical documentation (John Steel, 2019; Steel
SS, 2019), we took its density to be p, = 7800kgm™3, its Young’s modulus to be
E, =200 GPa, and its Poisson’s ratio to be v, = 0.29. Then, its bending stiffness was
D = E,H?/12(1—v}) and the mean gap between the resonant frequencies at which its
motion was sensitive to forcing was Ay = 2/D/XY \/ ppH ~ 400 Hz. Assuming that
the spectral density of an impact’s force varied little over this frequency scale, this
spectral density was estimated using D, the proportion of the plate’s energy P in its
steel structure’s vertical displacements, the quality factor @) describing the attenuation
of energy in the plate, and the accelerations a;(¢) measured by the four accelerometers,

as
> 2 3/2 4
pe(g) = OE & @I ATVD (5™ (1))

Jj=1

where Fourier transforms are over a time interval At = 0.2s, and (-)ay represents a
moving average over frequency, with window width Af = 2kHz. We describe in S7,
section S7.1 the derivation of this relation and the calculation of |d;|? from the voltage
output of the accelerometers’ conditioning amplifer; in section S7.2 the calibration we
performed to measure the plate parameters P = 0.25 and @ = 99 and to extend the
flat frequency range of the accelerometers to 120 kHz; and in section S7.3 the valida-
tion of this work. The gaps between the plate’s resonant frequencies limit both the
resolution and the lower limit of our Pr-measurements to 1 kHz, whilst an accelerome-
ter resonance at 125 kHz prevents measurement above 120 kHz. Measurements have a
frequency-dependent, systematic relative error of typical magnitude around 40%, due
to an imperfect attenuation model and variation in the number of resonant frequencies
within each 2kHz interval.

Finally, to extract profiles of kinematic properties at the channel wall, we anal-
ysed the images taken by the high-speed camera, using particle tracking velocimetry
and Gaussian coarse-graining. Analysing each frame in turn, we detected the posi-
tions (x;, z;) of particles at the channel walls and, tracking particles between consec-
utive frames, calculated their mean velocities over each 0.5ms interval. Calculating
the smoothed velocities u; over five frames, or 2.5ms, we estimated the downslope-
averaged and time-averaged base-normal profiles at the channel’s wall of relative vol-
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ume fraction ¢,,(z), mean velocity u,(z), and granular temperature Ty, (z) as
du(2) = (3 Clzi2)md? [ au.
J
uy(2) = (Y Clzj; 2)md’u; /4) ar. /du(2),
J

Tw(z) = <Z Czj5 2)md?| [0y — wu(2)[*/4) ar./Su(2),

J

where averages are over all frames recorded by the camera, sums are over all particles
tracked in each frame, and C' is a Gaussian weight function, localised around z and
with integral over the total spatial domain equal to 1. This process is described in
detail in section S8.

While the irregularity of the flow’s base and surface complicate the definition of
the flow thickness h, we take the base-normal co-ordinate z to be zero at the top of
the base’s fixed beads, and extract h as the value of z at which ¢,,(z) drops below half
its maximum value,

h = min{z > argmax ¢, |dw(z) < max(¢)/2}.

For a flow with constant particle volume fraction below a level surface, this exactly
corresponds to the intuitive flow depth. Whilst other reasonable definitions lead to
different values of h and of all quantities derived from it, they do not alter our conclu-
sions.

2.3 Model Predictions

For each of the models described in section 1.2, for a granular flow’s seismic signal,
we inferred predictions for the experimental seismic signal. Specifically, we expressed
a prediction Pr for the power spectrum of the base-normal force applied by the flow
to the instrumented plate, as a function of the flow properties specified in section 2.2:
the mean depth-averaged flow velocity @, the mass overburden per unit area o, the
flow depth h, and the channel-wall profiles w,,(z) and Ty, (z) of downslope velocity and
granular temperature. Since previous authors attempted to predict slightly different
seismic properties and used slightly different flow properties, no directly applicable
expressions are in the articles introducing the models (Kean et al., 2015; Lai et al.,
2018; Farin, Tsai, et al., 2019; Bachelet, 2018). We therefore worked from equations
(2) and (6); used the models’ methods of estimating those equations’ variables, as
described in sections 1.2.1 and 1.2.2; and removed Green’s functions as described in
section 1.3, to predict the basal force’s power spectrum rather than the power spectrum
of a seismic station’s response. Recalling that g cos 6 denotes base-normal gravitational
acceleration, d the particles’ mean diameter, and p their density, and approximating the
flow area generating the measured signal by the instrumented plate’s area A = XY
and the flow’s mean volume fraction by ¢ = o/ph, these predictions could then be
compared to the measured power spectra Pr.

The model introduced by Kean et al. (2015) predicts the seismic signal generated
by a granular flow covering a certain area, using its surface velocity and the base-normal
component of its weight per unit area. If the near-base velocity of the flow scales with
its surface velocity, as Kean et al. (2015) suggests, then both will scale with the depth-
averaged velocity #, so to calculate predictions we estimated the velocity u of equation
(2) with @ and the impulse Ap with ogcos 6, the measured base-normal component
of the flow’s weight per unit area. We may therefore write the model’s prediction for
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P, for signal periods 1/f well above the duration of a typical impact, as
PY = K Aii(ogcos)?/d®.

K is a free parameter, which in Kean et al. (2015)’s model is equal to the product
of a constant volume fraction; a constant of proportionality between u and the near-
base flow velocity; and a squared constant of proportionality between the mean basal
pressure and the typical impulse transferred by a basal impact. No indication is given
as to its value, so it must be found by fitting.

In contrast, the model introduced by Lai et al. (2018) requires no free parameter.
Noting that the experimental particles have a narrow diameter distribution, with 94th
percentile approximately equal to its mean d, and using the appropriate substitutions
for w and Ap in equation (2), the model’s prediction for Pg is the constant

PY = w22 Ad%u® )9,

with the implicit assumption that the volume fraction is equal to 1. Again, this
prediction is expected to be valid only for signal periods 1/f well above the duration
of a typical impact.

The two models described by Farin, Tsai, et al. (2019) are developments of this
model, with that article’s equation (16) developing the definition of the impulse de-
noted Ap in our equation (2). Within the same frequency range as in prior paragraphs,
the associated predictions for Pg(f) are the constants

PR =70’ Ad* (1 + €)*¢(v)uf /36,

where e is a constant coefficient of restitution; £(v) ~ 0.053(1 + 5.6v?) is a non-
dimensional function accounting for variation in impacts’ geometry; and v and wuy
define the velocities of base-impacting particles uy(e, + ve,), for randomly directed
unit vector e,,.

In the ‘thin-flow’ model, u;, = @, whereas in the ‘thick-flow’ model u, = xud/h
for velocity profile shape factor y, assumed constant and between 1 and 1.5. The
model-specific parameters are e, v and x, which can neither be reliably measured
in individual experiments nor individually determined via fitting. We therefore take
e = 0.9, consistent with the rebound heights of particles dropped onto the instrumented
plate; take x = 1.25, consistent with the velocity profiles measured at the channel’s wall
and introducing an error factor of at most 2; and fit the free parameter v, corresponding
to the normalised standard deviation of base-impacting particles’ velocities. Farin,
Tsai, et al. (2019)’s derivation of £ makes unphysical assumptions (e.g. that impacting
particles’ velocities differ from uye, by an exactly constant magnitude vu, and that,
for each impact velocity, all possible impact locations are equally likely), so the best-fit
value of v for an otherwise-accurate model will not exactly equal the true normalised
standard deviation, but a model cannot be said to be accurate unless this best-fit
value is a physically reasonable approximation. Specifically, the energy associated
with velocity fluctuations is drawn from the mean flow and dissipated rapidly, so that
we expect the typical magnitude of velocity fluctuations to be less than the mean
velocity, and hence a condition for model accuracy is that v < 1.

To further assess the assumptions of the ‘thick-flow’ and ‘thin-flow” models, we
extended each model to higher frequencies. Farin, Tsai, et al. (2019) assumes binary,
elastic, normal interactions during impacts, with impact velocities such that particle
deformation in our experiments will be quasistatic and the Hertz theory described in
S3 will apply. Applying this theory to the impact velocities and geometry assumed
by Farin, Tsai, et al. (2019), we therefore compute predictions for Pgr over a larger
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frequency range than that considered by the original article, as

fS2 d2€v f52/ d2€n (unen : 92)2 C(Tf)H (un) N
_ 7/6 P
2 2 2 F

sz d’e, fsi/s d“e, (une, - e.)” H (uy)

Pr

for unit sphere S2; unit spherical cap Sfr /6 with maximum polar angle 7/6; normal
impact velocity u, = up(e, + ve,) - e,; impact timescale 7(u,,) as defined by equation
(3); non-dimensional function ¢ as introduced in equation (4); and Heaviside step
function H.

Finally, the model of Bachelet et al. already predicts Pr over a large frequency
range. Substituting equations (7) into (6) and moving from the well-defined particle
layers considered in the thesis to the continuous profiles measured in our experiments,
the predicted power spectral density of the basal force is

h
Pr(f) = Goartd [ (T (ra()f) e d

where u, is the derivative of u,, with respect to z; ¢ is the non-dimensional function
in equation (4); impact timescale 7,,(z) is defined with respect to T,,(2) as 7; is to Tj
in equation (7); and constant v is a free parameter, to be determined by fitting.

We compare these predictions to the measured power spectra Pr in section 3.3,
but first we define the time period and the frequency-space properties used for the
comparison, by considering the evolution of the flow (section 3.1) and the form of the
power spectrum of the basal force (section 3.2).

3 Results
3.1 Evolution of the Flow

In each experiment, the flow passing a given point evolved through four stages
that could be distinguished from measurements of outflow mass M and the net normal
force on the plate F.: I) precursory saltation of particles released at the start of the
experiment; IT) arrival of the dense flow’s front; IIT) steady flow; and IV) decay of the
flow. These corresponded to different signals measured at the instrumented plate, as
illustrated for two different experiments in Figure 3.

As Figure 3 illustrates, saltating particles in stage I contributed little to the out-
flow mass M and to the net downslope and normal forces F, and F,, with an implied
number density of around one particle per cm? of plate surface, but such particles ap-
plied basal forces with significant spectral density Pr across a wide frequency range.
Similarly, the dense front’s arrival in stage II had a short duration, but was associ-
ated with an intense, broad power spectrum of basal force, as high-velocity, surficial
particles reached the front and impacted the plate. In general, as in Figure 3a, the
power spectrum at high frequencies then dropped during stages I1I and 1V, indicating
that impact velocities in the dense flow’s bulk were lower than those of high-velocity
saltating particles. For ‘transitional-regime’ flows, however, Ppr remained the same
during stages II and III, as in Figure 3b, reflecting the continued saltation within each
flow that defines this regime.

Such variation of signal properties between different experiments is summarised
in Table 1. With increasing channel incline tan ¢ and release gate height hgy, the du-
ration of stage I decreased rapidly and that of stage II decreased slightly, as the speed
of the dense flow front increased to the speed of saltating particles. Since the same
changes greatly increased the high-frequency spectral density Pr of the plate-normal
force during stage I1I, which had duration determined by the reservoir’s capacity and
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Table 1. Properties of the flow’s stages of evolution. F, and Pr are as defined in section 2.2,
while f. is the frequency at which Pr drops to half its mean value pre-maximum. Arrows (—)
indicate ranges over time in an experiment, while hyphens (—) represent the ranges over different
experiments. e indicates the value for dense flows and o for transitional-regime flows, wherever

they differed significantly.

Flow stage 1 I 11 v

Durations (s) 0—40 2-8 4 — 150 5—20

F. (N) 0(0.1) 0-(1—-10) 1-10 (1-10) — (0 —2)
¢70 — 110 70— 110

fe (kHz) > 100 >90 0>100 o> 100

[ Ppdf (N3) 0(0.1) 0.02-2 0.003—3  (0.003—3) =0

decreasing with hg, the contribution of stage I to the total generation of seismic en-
ergy decreased from around 70 % to less than 0.1 %, while the contribution of stage II
remained between around 10 % and 20 %, and the contributions of stages III and IV
increased. In contrast to this pattern of variation, the net normal force F, increased
with hy but, for each hy, decreased with increasing tan 6; the same hgy-determined flux
of particles was maintained by faster flows, which were therefore thinner. These oppos-
ing trends indicate the independence of F, and Pg(f) for f # 0, with the former the
mean force applied by the flow, and the latter associated with the force’s fluctuations
about this mean.

In this article, we restrict our attention to stage III of the flow’s evolution, in
which the flow’s steadiness ensured that all measurements were of the same flow state.
Specifically, between different At = 0.2s time intervals within the duration At. of
steady flow recorded by the camera, the per-second rate of change of outflow mass
M had a standard deviation of around 10% of its mean value, while the standard
deviations of F, and F, were around 1% and that for [ Pr df around 5%. Similarly,
we examined the profiles of kinematic properties at the channel wall, averaged in turn
over each decile of time tq + nAt./10 < t < tq + (n + 1)At./10 within the period
recorded by the camera. Within the flow, kinematic properties at the channel wall
were steady over time, in the sense that the values of ¢, (z), u,(z) and Ty, (z) varied
by at most a few percent over time, for each z satisfying ¢, (z) > max, ¢, (z)/2.

3.2 Power Spectrum of the Basal Force

Averaging over this period of steady flow, by taking At = At,. in equation (12),
we calculated the power spectrum of the base-normal force applied by the flow to the
plate and find it to be consistent with impacts of short duration. As in the example
shown in Figure 4, the power spectral density Pr(f) is approximately constant over a
large frequency range and displays the same decay beyond a given corner frequency as
Hertz theory predicts for a single impact. The high, O(100kHz) corner frequencies are
comparable to those predicted by equation (3) for the small, O(1 mm) experimental
particles, while the deviations from power spectra proportional to equation (4) are
consistent between experiments and generally consistent with the systematic errors
discussed in section 2.2, as estimated in section S7.3.

We described the power spectrum by two quantities: its low-frequency amplitude
PY and its corner frequency f.. We calculated f. as the frequency at which Pr(f) drops
to half its mean pre-maximum value, so that for errorless measurement of a Hertzian
impact it would be equal to approximately 0.208/7, for the impact timescale 7 defined
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Figure 4. Ezxample of the plate-normal force’s power spectral density during steady flow.

The measured power spectrum (blue, solid line) corresponds to the same experiment as Fig-

ure 3a, with channel incline tan§ = 0.44 (§ = 23.7°) and release gate height by = 20mm.
The dotted lines indicate the corner frequency f. = 77.5kHz and the low-frequency amplitude
P2 = 1.29mN?s. The black dashed line indicates the Hertzian power spectrum fit to these val-

ues, closely approximating the functional form predicted by the model of Bachelet et al. and by
our extensions of Farin, Tsai, et al. (2019)’s models. It was calculated from equations (3) and (4)
and corresponds to 4,000 Hertzian impacts per second, each at normal velocity u, = 0.9ms™!,
of the d = 2mm experimental particles on the plate’s surface. The blue dashed line represents a
‘corrected’ power spectrum, calculated with section S7.3’s estimate for the frequency-dependent

systematic relative error.

by equation (3). The systematic errors in Pr(f) will result in systematic error in f. of
order 20%, for which we’re unable to compensate with our uncertain error estimates..
However, our measurements of f, were sufficiently robust that we calculated PP as the
arithmetic mean value of Pg over all frequencies less than f./2, with systematic errors
in Pp cancelling out over this range. We could then compare these experimentally
measured values with the model predictions, computed as described in section 2.3.

3.3 Tests of Existing Models for Flows’ Seismic Signals

To assess the model predictions described in section 2.3, we compared their pre-
dictions pl(} for the low-frequency value of the basal force’s power spectrum to the
measured values P2. Where possible, we also inferred a prediction fc for the cor-
ner frequency of the basal force’s power spectrum, as the frequency at which [:’F( 1)
dropped to half its maximum value, and we compared this prediction with the mea-
sured value f.. Where a model had a free parameter, we used the parameter value
that minimised the sum over all experiments of In(P%/P%)?, which was equivalent to
minimising the typical logarithmic error or maximising the model likelihood under the
assumption that measurements were log-normally distributed about their predicted
values (see S9). Table 2 lists these best-fit parameter values and Figure 5 shows the
results of the comparisons.

The model introduced by Kean et al. (2015) predicts P2 poorly, due largely to
its incorrect assumption of proportionality between the pressure fluctuations relevant
to P2 and the mean pressure ogcosf used as input. To best fit the measurements,
the free parameter K had to take a value of 4.0 x 10716 m*s?, entirely unpredicted by
the model, and even then predictions often differed from measurements by an order
of magnitude (Figure 5a). Notably, the model’s predictions f’g decrease for flows at
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Comparison between models’ predictions (z-azes) and experimental measurements

(y-azxes) for the basal force’s power spectrum during steady flow. Plots f, g, and h represent pre-

dictions for the corner frequency of the basal force’s power spectrum, while all others represent

predictions for the power spectral density’s value at frequencies well below this corner frequency.

In all plots, the grey line represents perfect agreement between predictions and measurements,

colours indicate each experiment’s mass flux ¢ per unit channel width, and unfilled symbols

represent experiments for which the flow was in the transitional regime.
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Table 2. Summary of model testing. For each of the existing models described in section
1.2, we list the flow measurements defined in section 2.2 that are required to predict the flow’s
high-frequency seismic signal. We further record the equation for predictions Pg; the free param-

eter value for which such predictions best fit measurements; and the geometric standard error

€ = exp [ = ln(PIEl/PIEl)Q} of these predictions.

Model Inputs Equation Best-fit parameter €
Kean et al. (2015) a, o, 0 (17) K=40x10""%m%? 42
Lai et al. (2018) a (18) n/a 18.5
Farin, Tsai, et al. (2019) @, o, h (19)
‘thick-flow’ v=09.8 3.2
‘thin-flow’ v =0.51 2.1
Bachelet et al. o, hy Uy, Ty (21) ~y=0m"! 3.9

higher channel inclinations or in the transitional regime, for which the mean pressure
is lower, whereas such flows’ higher impact energies in fact resulted in higher pressure
fluctuations and so larger measured values P2.

In contrast, the model introduced by Lai et al. (2018) accurately predicted vari-
ation in P2 between experiments, with predictions for dense flows consistently 3 to 10
times larger than the measured values (Figure 5b). For transitional-regime flows, the
predictions’ errors are larger, due to the model’s implicit assumption that the volume
fraction is equal to one.

Of the two models described by Farin, Tsai, et al. (2019), the model derived for
flows thicker than the largest particles is less accurate than that derived for thin flows,
with the former’s fit to observations requiring an unrealistically large ratio v between
the magnitudes of velocity fluctuations and of the mean velocity. As explained in
section 2.3, realism demands that v < 1, but the ‘thick-flow’ model requires v = 9.8
for predictions 152 to be as large as measurements Pg and, in that case, the predictions
are too large for the transitional-regime flows (Figure 5¢). For the ‘thin-flow’ model,
meanwhile, the best-fit value is v = 0.51, which is physically reasonable and provides
an excellent fit of PIQ to P2 over all experiments (Figure 5d).

This difference between the ‘thick-flow’ and ‘thin-flow’ models’ best-fit values
of v is reflected in the predictions fc they implied for the corner frequency of the
basal force’s power spectrum, calculated according to our extensions of these models
using equation (20). The higher v required for the ‘thick-flow’ model results in higher
predictions f., matching the measured values f. (Figure 5f), whereas for the ‘thin-
flow” model predictions are consistently approximately 30 % smaller than the measured
values (Figure 5g). Predicted corner frequencies fc are as large as measurements f,.
only for typical impact velocities six times larger than the flows’ mean velocities,
suggesting that our measurements f. were slight, but systematic, overestimates. Such
systematic disagreement is consistent with the systematic errors in Pr discussed in
sections 2.2 and 3.2, or with 30% error in the particle properties in equation (3).

Finally, the predictions of the ‘Bachelet et al.” model followed the correct trend
but had a wide dispersion (Figure 5e). The free parameter -, representing signal
attenuation within the flow, had best-fit value 0, indicating that the unattenuated
contributions of all synthetic impacts are necessary for PIQ to be large enough to
compare to P2. Even then, the lower energies of synthetic impacts are reflected in
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predictions fc for the power spectrum’s corner frequency that are even lower than
those of our extension to Farin, Tsai, et al. (2019)’s ‘thin-flow’ model (see Figure 5h).

Overall, of the five models, the ‘thin-flow” model described in Farin, Tsai, et
al. (2019) best fits the results from our experiments. While the fit is imperfect, the
predictions PY of this model differ from the measured values P by a typical factor of
2.1, lower than that for the other models, and the model’s accuracy is approximately
equal across the entire range of experiments, including for the flows in the transitional
regime. Constructing a statistical model for each physical model, by assuming In P2
was normally distributed about In P}l with constant variance, the ‘thin-flow’ model is
also the preferred model by the Akaike information criterion (see S9), indicating that
its additional free parameter compared to the Lai et al. (2018) model is worthwhile
in an information theoretic sense. This analysis did not compare models’ predictions
to the measured corner frequencies f., due to the likelihood of systematic error in the
latter, but our extensions to the models of Farin, Tsai, et al. (2019) both predicted a
trend in fc consistent with measurements.

4 Discussion
4.1 Velocity Profiles and the ‘Thin-flow’ Model

That the ‘thin-flow’ model best predicts the experimental results is surprising,
because we do not expect the velocity profile within the flow to be consistent with
the model’s assumptions. The ‘thin-flow’ model assumes that particles at the flow’s
base move across the instrumented plate’s surface at approximately the flow’s mean
velocity, whereas previous authors suggest that the plate’s roughened surface should
impose a no-slip condition on the flow, in the sense that particles’ velocities should tend
to zero towards the flow’s base (GDR MiDi, 2004; Jing et al., 2016). Furthermore, as
the example of Figure 6 demonstrates, the velocity profiles we observe at the channel’s
wall are consistent with this no-slip condition (which we note is distinct from any
micromechanical condition on rolling or sliding at particle contacts).

We propose two possible explanations for the success of the ‘thin-flow’ model.
The first is that the instrumented plate’s flow-induced vibration reduces the effective
friction between it and the flow, leading to basal slip and a basal flow velocity closer
to the flow’s mean velocity. The second is that basal particles have low velocities, but
that impacts away from the flow’s base make significant contributions to the basal
force exerted by the flow, in such a way that the total contribution of these impacts
scales with the mean velocity of the flow.

The first explanation is supported by the literature on frictional weakening and by
measurements of the plate’s effective friction coefficient with the flow. The reduction
by vibration of a granular medium’s effective friction has been documented in discrete
element simulations (e.g. Capozza et al., 2009; Ferdowsi et al., 2014; Lemrich et al.,
2017) and experiments (e.g. Johnson et al., 2008; Dijksman et al., 2011; Lastakowski
et al., 2015; Léopoldes et al., 2020), with suggestions for the necessary vibration am-
plitude being a particle strain of order 1076 (Ferdowsi et al., 2014), a velocity of order
100pms~—! (Lastakowski et al., 2015), and an acceleration of order 0.1g (Dijksman et
al., 2011). Even in the experiments in which the plate vibration amplitudes during
steady flow were lowest, the plate had approximate root mean square normal dis-
placement 10 nm, velocity 100 pms™!, and acceleration 20ms~2 (around an order of
magnitude larger than were measured away from the plate), so a vibration-induced
reduction in friction appears viable. Furthermore, the effective friction coefficients p
that we measure between the plate and the flow are too low to prevent basal slip on
the surface of the plate, with Figure 7a showing that p < tan for all channel inclines
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Figure 6. FEzamples of kinematic properties’ steady profiles at the channel wall. Profiles are
estimates from particle tracking velocimetry of the relative volume fraction ¢,,, the downslope
velocity w., and the square root /Ty, of the granular temperature, non-dimensionalised by

V/gd = 0.14, while the dashed lines represent the flow thicknesses h inferred from the profile of
¢w. Profiles are taken from the same experiments as for Figure 3: a) a dense flow at channel
incline tan 0 = 0.44 (0 = 23.7°) with release gate height hy = 20 mm; and b) a transitional-regime
flow at channel incline tan 6 = 0.52 (6 = 27.5°) with release gate height hy = 28 mm.
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Figure 7. Complications in modelling the granular flow. a) Measurements of the effective
friction coefficient u between the instrumented plate and the flow fall consistently below the con-
dition = tan# for zero basal slip (grey line). b) The depth-averaged particle velocity measured
at the channel wall @, is poorly correlated with the mean velocity @ calculated from bulk flow
properties. Colours indicate each experiment’s mass flux ¢ per unit channel width, and unfilled

symbols represent experiments for which the flow was in the transitional regime.

tan #. This implies that basal particles accelerate across the plate’s surface, towards
the flow’s mean velocity.

On the other hand, we do not directly measure any increases in velocity associ-
ated with basal slip. Over the 8cm distance downslope captured by the high-speed
camera, averaging over each flow’s depth and each 4 cm half-window, the mean downs-
lope velocities measured at the sidewall are uniform to within 10 %. Away from the
sidewalls, Tsang et al. (2019) suggests that a granular flow will adjust to a change
in basal boundary conditions over a lengthscale of order %2 /g, for mean flow velocity
u and gravitational acceleration g. This lengthscale varies in our experiments from
0.5mm to 0.1m, so that we would expect the effects of any basal slip to become
evident at the flow’s surface within the length of the instrumented plate. However,
having conducted particle image velocimetry with images captured by an overhead
camera, for a flow at a channel incline tan 6 = 0.46 (6 = 24.7°) and with release gate
height h; = 20mm, we were unable to distinguish whether the flow’s surface’s slight
acceleration across the plate was induced by the plate, or was simply a continuation
of the flow’s acceleration towards a uniform state. Similarly, we attempted to detect
changes in the velocity of basal particles, via Jop et al. (2005)’s method of examining
soot erosion from an inserted metal plate, but our attempts were frustrated by the
energetic particles’ rapid erosion of soot during the insertion and removal of the plate.

Consequently, the second explanation remains feasible, with good reasons why
the model of Bachelet (2018) and Bachelet et al. (2021), despite being derived to de-
scribe the contributions of impacts throughout the flow’s depth, might describe such
contributions less well than the ‘thin-flow’ model. Firstly, the model of Bachelet et
al. uses profiles u,, and T,, that are measured at the channel’s wall and may not
be representative of those in the flow’s interior. In fact, the mean particle velocity
measured at the channel wall u,, correlates poorly with the mean velocity u calcu-
lated with equation (11) (see Figure 7b), while the monotonically increasing profiles
T, (z) differ from the S-shaped profiles that previous authors propose for granular
temperature profiles in the flow’s interior (Hanes & Walton, 2000; Silbert et al., 2001;
Gollin et al., 2017). Secondly, Bachelet et al. may suggest an incorrect dependence of
the seismic signal on these profiles, with a particularly strong assumption being that
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of a frequency-independent attenuation constant v. We were unable to dramatically
improve the predictions of Bachelet et al.’s model by modifying its inputs, e.g. by
multiplying the profiles wu,,(z) and /T, (2) by @/, but, under a different model for
the contributions of impacts throughout the flow, such contributions could explain
the relationship observed between the mean velocity @ and the basal force’s power
spectrum Pp.

To test which explanation accounts for the success of the ‘thin-flow’ model, we
suggest that our experimental conditions be replicated with discrete element simu-
lations. In such simulations, a suitably roughened base could be fixed in position
to prevent any vibration-induced reduction of its effective friction coefficient and any
basal slip, as records of base-adjacent particles’ velocities could verify. If the ‘thin-flow’
model continued to be accurate, then the first, ‘basal slip’ explanation would be dis-
proven. Records of particle velocities throughout the flow would then permit variants
of Bachelet et al.’s model to be tested and their assumptions examined, using base-
normal profiles of velocity and granular temperature measured within the flow’s bulk
rather than at its edge, to explain and improve on the ‘thin-flow’ model’s accuracy.
If the ‘thin-flow’ model were no longer accurate, however, then our first explanation
would be proven and the model shown to apply only to flows with basal slip. The
recorded particle velocities would then permit development of a different model, by
which a small number of flow parameters could predict the seismic signal generated
by flows without basal slip, analogous to the use of @ in the ‘thin-flow’ model, or of
the inertial number to predict a dense granular flow’s kinematic properties.

4.2 The Inertial Number and the Seismic Signal

For given grains, the argument of e.g. da Cruz et al. (2005), that all local, non-
dimensional flow parameters should be functions of the local inertial number I, applies
as much to the fluctuating forces exerted by a flow as to the flow’s kinematic properties.
This ‘u(I)’ framework will not apply where a) the flow’s rheology is ‘non-local’, in the
sense that the internal stress depends on derivatives of the strain rate rather than
on only the strain rate’s local value (Clark & Dijksman, 2020), or b) particles are
sufficiently agitated that kinetic theory describes their motion better than a mean
shear rate (Goldhirsch, 2003), but we can use the framework to discuss our results in
the context of Hsu et al. (2014)’s and Taylor and Brodsky (2017)’s.

If the ‘u(I)’ framework applies within a two-dimensional, steady, fully developed
shear flow above a plate with incline tan #, a macroscopic force balance implies that
is constant and can be estimated from bulk measurements of the flow’s mean velocity
4, volume fraction ¢, and depth h (Jop et al., 2005), as

S5ud
2h+/dghcosB

Even if our experimental flows were fully developed, without basal slip, the local
inertial numbers within them will have differed significantly from I. Non-locality will
have been particularly significant within slow, thin flows; particles will have been
particularly agitated within transitional-regime flows; and friction at the channel’s
walls will have altered the force balance (Fernandez-Nieto et al., 2018). We nevertheless
calculated I as a descriptor for each flow, with ¢ = o/ph for flow mass per unit area
o and particle density p and with other quantities defined in sections 2.1 and 2.2. We
see in Figure 8a that the ‘u(I)’ framework applies for the dense experimental flows,
insofar as the local, non-dimensional parameter tan 6 is closely related to I.

I=

To examine the relevance to each flow’s seismic signal of this inertial number
estimate I, we define a non-dimensional parameter 67?2 expressing the mean squared
magnitude of high-frequency basal force fluctuations on the instrumented plate, nor-
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malised by the mean basal force. From the low-frequency amplitude PP and corner
frequency f. of the basal force’s power spectrum, and from gravitational acceleration
g, inclination angle 6, plate length X and width Y, and measured mass overburden o,
we calculate for each flow

2Pp fe
(XY gocosf)?

To understand this definition, we recall from equation (8) that XY go cos @ is the mean
normal force applied by the flow to the instrumented plate, over the time interval At,
of steady flow recorded by the camera. Meanwhile, as Figure 4 indicates, 2P2f.
approximates the integral of the symmetric power spectral density Pr(f) over all f
with |f] > 1kHz, this being the lowest frequency accessible to our measurements.
Recalling that F(f) is the Fourier transform over At. of the normal force applied
to the plate, Pr(f) = |F(f)|2/Atc. Combining these links and then applying the
Plancherel theorem (Plancherel & Mittag-Leffler, 1910) to move to the time domain,

SF% =

1 . 1
2P0fcz:—/ F(HPPdf = / SF(t))? dt,
i3 Al mkazl (Nl Al Atcl ()]

where 0 F is the fluctuating normal force on the plate, high-pass-filtered above 1kHz.
Assuming that pressure fluctuations are spatially uncorrelated on the lengthscale of
the plate, as discussed in S2, 2P f. will be proportional to the plate’s area XY and
§F? to 1/XY, but §F? can be thought of as a rescaling by d?/XY of a local flow
parameter, for mean particle diameter d. Systematic errors in f. will lead to error in
dF2, but this error will be systematic and of negligible magnitude compared to §.F?’s
range of variation.

Plotting 6 F2 against I for each flow, in Figure 8b, we see that this measure of the
high-frequency seismic signal is strongly correlated with the estimated inertial number.
This relationship between non-dimensional, local flow parameters is in accord with the
‘u(I) framework, with more energetic flows producing more energetic seismic signals,
even for flows to which the ‘u(I)’ framework is otherwise inapplicable.

Comparing the relation of §F2 and I to the relations proposed by previous au-
thors, our results agree more closely with Hsu et al. (2014) than with Taylor and Brod-
sky (2017). Hsu et al. (2014)’s measurements aren’t equivalent to ours, but suggest the
empirical scaling 6F2 ~ I2-0, which is a reasonable first approximation to our results
and closer than the 6F2 ~ [ relationship suggested by Taylor and Brodsky (2017)’s
observation of direct proportionality between mean squared seismic accelerations and
the inertial number. However, it is impossible to make a direct comparison without
knowing the frequency dependence of the Green’s function relating the accelerations
discussed by Taylor and Brodsky (2017) to the forces imposed by that article’s shear
flow, while any inconsistency may be due to Taylor and Brodsky (2017)’s different
procedure for estimating the inertial number. Differently estimated inertial numbers
are likely to be even more inconsistent in geophysical contexts, so any 6.F? (f ) relation
will be harder to apply to geophysical flows than our results in section 3.

4.3 The Application of Our Results to Geophysical Flows

Our results concern the fluctuating forces exerted by laboratory granular flows
upon the base on which they travel, so their application to landquake signals necessi-
tates consideration of two things: the Green’s function that determines a flow’s seismic
signal from the forces it exerts, and the differences between geophysical flows’ forces
and those that we’'ve studied. We limit ourselves to describing the importance of an
accurate Green’s function, rather than defining one, and to discussing the adjustments
involved in moving from laboratory to geophysical flows, rather than validating them,
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Figure 8. Relations between the inertial number I estimated from bulk flow parameters and
a) the channel incline tan @, b) the normalised mean squared fluctuating force on the plate 6F>.
Colours indicate each experiment’s mass flux ¢ per unit channel width, and unfilled symbols

represent experiments for which the flow was in the transitional regime.

but we nevertheless propose tentative links between our results and the empirical re-
lationships observed by previous authors.

4.3.1 The Importance of an Accurate Green’s Function

The forces exerted by a geophysical flow determine a measurable seismic signal
only via a Green’s function, so an accurate Green’s function is necessary to interpret
any landquake signal. Even the rate of seismic energy emission, which previous authors
have used to describe geophysical flows directly, depends on the response of a flow’s
base to the forces exerted upon it and hence on the Green’s function as well as the
flow. This particularly complicates comparisons such as those of Farin et al. (2018),
Farin, Mangeney, et al. (2019), and Bachelet et al. (2021), between the seismic energy
emitted by geophysical flows and by experimental flows.

Even when different landquake signals are associated with the same Green’s
function, the signals’ relative amplitudes depend on the frequency-dependence of that
Green’s function, rather than on just the relative magnitudes of the forces exerted
by the corresponding flows. Consequently, Green’s functions should be considered
when assessing landslides’ relative magnitudes from their signals’ relative amplitudes,
as in e.g. Norris (1994). We illustrate the Green’s function’s effect on seismic energy
emission and signals’ relative magnitudes, using our experimental data, in S10.

Calculation of Green’s functions will be significantly more difficult for geophysical
flows than for our laboratory-scale flows, especially since such functions will vary over
time, as a flow propagates downslope, and over a flow’s spatial extent at any given
time, as the forces exerted by different regions of the flow contribute differently to the
signal at a given receiver. However, Allstadt et al. (2020) demonstrates that empirical
Green’s functions can be used to successfully infer the forces exerted by flows from
the seismic signals they generate, and shows that a debris flow’s unsaturated, coarse-
grained front exerts rapidly fluctuating forces of much greater amplitude than those
exerted by its fine-grained, saturated tail. This agrees with previous predictions (Lai et
al., 2018; Farin, Tsai, et al., 2019) and suggests that, in the far field, the coarse-grained
front’s contribution will dominate the seismic signal.
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4.3.2 Adjustments to Forces for Geophysical Flows

That debris flows’ coarse-grained fronts are so significant in landquake generation
indicates the applicability of our results to such flows, as well as to entirely dry rock-
slides and avalanches, whenever a granular flow’s conditions match those of our dense
and partially dense experimental flows. The circumstances under which this is true
require investigation, but we believe broad applicability to be feasible. This is true
whether or not our flows exhibit the vibration-induced basal slip discussed in section
4.1, since geophysical flows will experience basal slip whenever the friction coefficient of
their base falls below its incline, and vibration-induced frictional weakening has been
proposed as an explanation for geophysical flows’ long runouts (Davies, 1982; Lucas
et al., 2014). However, the application of our results to geophysical flows involves
significant adjustments, firstly to the sizes of the flow and its constituent particles and
secondly to the flow’s evolution.

Clearly, geophysical flows of interest will be more extensive than our experi-
mental flows and will involve larger particles, but these changes will not alter the
underlying physics and simply necessitate adjustment of the values of flow area A and
particle diameter d in the models of section 2.3. According to these models, a flow
identical to those in our experiments, except with particles of radius 1m, should pro-
duce a seismic force signal with power spectral density per unit flow area pp( H/A,
of order (10? to 105) N?m~2s below a corner frequency f. of order 100 Hz. A more
difficult adjustment is required to account for the wide particle polydispersity typical
of geophysical flows (Takahashi, 1981; Nishiguchi et al., 2012), which makes d hard
to define and necessitates consideration of the segregation of particles by size that is
well-documented within granular flows (e.g. Garve, 1925; Gray, 2018). Farin, Tsai, et
al. (2019) proposes a promising approach for each given model, of dividing the flow
into a coarse-grained front and a fine-grained tail and calculating for each a percentile
of the particle size distribution that will be representative, but this proposal requires
validation.

Other necessary changes relate to the flow evolution, stemming from differences
in particles’ coefficient of restitution and in the mechanism of their release. The glass
beads in our experiments underwent collisions more elastic than are typical in geo-
physical flows (Kim et al., 2015), resulting in our observations of sustained saltation
at relatively low channel inclinations. This implies that the intense precursory saltation
of flow stage I, discussed in section 3.1, is unlikely to be significant for most geophysical
flows, though it may be analogous to rock falls at high slope inclinations. Similarly,
the energetic, saltating particles observed in the steady stage III of transitional-regime
flows are likely to be rare in geophysical flows, though the coexistence of a dense core
and a saltating layer is documented in snow avalanches (Pudasaini & Hutter, 2006).

In fact, the entirety of the experimental flows’ stage III is atypical of geophysical
flows, since particles were released from the experimental reservoir over a long period at
a constant flux, whilst the release of geophysical flows is rarely so steady or protracted.
Therefore, our results should only apply to individual stages and regions of an unsteady
and spatially varying geophysical flow, over each of which mean flow properties will
be representative and related to the local forces exerted on the flow’s base. The very
front of a flow will resemble stage II of our experimental flows more than the stage IT1
that we’ve studied in detail, and determination of quantities that are representative of
an entire flow requires further work.

4.3.3 Comparisons with Empirical Results

Nevertheless, we can tentatively link our measurements of experimental flows’
forces to the landquake signals of geophysical flows, by assuming the validity both of
certain adjustments to those forces and of certain restrictions to the Green’s function
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linking geophysical forces to landquake signals. Firstly, we assume that any precursory
saltation of a geophysical flow contributes so insignificantly to the signal as to be
negligible and that our results apply to a flow area A whose contribution dominates
the high-frequency signal. Secondly, we suppose that the release mechanism and size
distribution of geophysical particles significantly affect the signal only by determining
the flow’s duration and a representative diameter of its particles. Thirdly, we assume
that the signal’s Green’s function is constant over time and corresponds to transmission
along a single wave path, without significant dispersion in time. Finally, we consider
the signals only at frequencies lower than any force’s power spectrum’s corner frequency
fe, but high enough for the stochastic impact framework and hence our results to apply.

Under these assumptions, the landquake signal v, between times ¢, and t, + At
will only depend significantly on the forces exerted by the landslide between times ¢4
and t,+ At, for some source-receiver delay t,. —ts. Neglecting non-normal components,
these forces will have a power spectral density within the relevant frequency band that
is equivalent to those that we have studied and is well-described by the constant pre-
diction Pf% of Farin, Tsai, et al. (2019)’s ‘thin-flow’ model, for flow properties averaged
between t, and t;+At. Writing G (f) for the relevant frequency-space Green’s function
and fo and f; for the minimum and maximum frequencies under consideration, the
mean squared amplitude of the signal will be

1 R i
OB =5y [ e A= 2R [TiG7 ar

fo

Given this link, we can compare our results to the empirical relations discussed in
section 1.1. Qualitatively, the landquake signal’s envelope will have the same shape as
the envelope of the time-retarded geophysical force, as Figure 3 shows to be the case for
our experimental forces and acceleration signals. Adjusting these envelopes by exclud-
ing the precursory saltation and shortening the artificially prolonged stage of steady
flow, our results therefore predict the distinctive ‘spindle-shaped’ signal envelopes as-
sociated with geophysical granular flows (Surifiach et al., 2005). Quantitatively, our
results suggest that a flow’s duration will equal its signal’s, as in the empirical obser-
vations of e.g. Deparis et al. (2008), though our experiments are unlike those of Farin
et al. (2018) in that our release mechanism prevents comparison with the observed
empirical relationship between potential energy loss and signal duration. Similarly,
we cannot follow Farin, Mangeney, et al. (2019) in comparing our results to the ob-
servations of e.g. Norris (1994), that the flow volume is correlated with the signal
amplitude.

However, we can compare our results with other empirical relationships for the
signal amplitude. Substituting equation (19) for ]52 into equation (25) and assuming
both constant particle properties and a constant Green’s function, our results suggest
that a flow of area A in which the particle volume fraction is ¢ and the mean flow
velocity is @ will generate a signal with mean squared amplitude proportional to ¢pAu3.
Rearranging equation (22) for flow depth h and noting that the mean flow momentum
per unit area g = pohu, for particle density p, we recover that

. 3/5
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for bulk inertial number / , representative particle diameter d, gravitational acceleration

g, and slope angle . Among flows with constant I and ¢, the resulting landquake
signals will therefore have root mean squared amplitude
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Whilst the assumption of constant I is very strong, this quantity is close to those
found empirically to be approximately proportional to landquake signal amplitude:
the work rate against friction used by e.g. Schneider et al. (2010), which will be equal
to wAgcos for basal friction coefficient p, and the total low momentum used by
e.g. Hibert et al. (2015), equal to Ag. Holding all else constant, the scalings Al/?
and A correspond to spatially separated impacts’ signals being perfectly uncorrelated
and perfectly correlated, respectively, so S2 suggests that A'/2 is likely to be a better
approximation, while the scalings ¢°/'° and ¢ are unlikely to be distinguishable in the
field.

5 Conclusion

In conclusion, our experimental apparatus and data analysis permitted us to
study the normal force exerted by a granular flow upon the base over which it travels,
by measuring its high-frequency power spectral density and testing a range of existing
models that predict this spectral density from the flow’s properties. Figure 5 shows
the ‘thin-flow’ model of Farin, Tsai, et al. (2019) to best predict the spectral density
at frequencies well below its corner frequency and demonstrates that our extension of
that model to higher frequencies, using Hertz theory, systematically underestimates
the corner frequency by 30%. We’ve proposed that the success of the ‘thin-flow’ model,
despite our experimental flows’ thickness compared to their consituent particles, can be
explained either by slip at each flow’s base or by the contributions to the seismic signal
of impacts throughout each flow’s depth, and we’ve discussed the adjustments required
to apply our results to the landquake signals generated by the forces of geophysical
granular flows. Making such adjustments, under certain restrictive assumptions, the
‘thin-flow” model’s predictions are consistent with the empirical observation that a
landquake signal’s amplitude is approximately proportional to the momentum per
unit area of the flow region that generated it.

Finally, our results are also relevant to two open questions on geophysical gran-
ular flows’ dynamics: 1) the relation between the mean and fluctuating forces exerted
by a flow; and 2) the low values of effective friction inferred for many geophysical flows.
On the first question, previous authors have suggested that the typical magnitude of
fluctuations is proportional to the magnitude of the mean force (McCoy et al., 2013;
Hsu et al., 2014), but we show in Figure 8b that the ratio between the two, 6.F, varies
over two orders of magnitude between our experimental flows, dependent on a bulk
inertial number. On the second, acoustic fluidisation is one of many possible expla-
nations suggested for the low effective friction necessary to explain many geophysical
flows’ long runouts (Davies, 1982; Lucas et al., 2014), but we are not aware of it
having been previously demonstrated without the application of external forcing. As
Figure 7a illustrates, our measurements of p show the effective friction taking values
on the plate lower than the channel incline tan @, which is implied to be its approxi-
mate off-plate value by both the downslope uniformity of the flow at the sidewalls and
the saturation of flow velocity observed at the surface. Since the base’s roughness is
identical in each location, we believe it possible that this reduced friction is associated
with the strong acoustic vibrations of the plate, induced by the flow itself.

Acknowledgments

This work was primarily funded by project ERC-CG-2013-PE10-617472 SLIDEQUAKES,
with supporting funds from La Société des Amis de 'ESPCI and from IPGP. The au-
thors are aware of no conflict of interest. Experimental data are available at the
Pangaea repository (Arran et al., 2020), while computations were performed and plots
produced with the summary data and code at Zenodo (Arran et al., 2021), using
NumPy (Harris et al., 2020), Matplotlib (Hunter, 2007), and pandas (McKinney,
2010). We are grateful to Abdelhak Souilah for his construction of the experimen-

—28—



tal apparatus and to Kate Allstadt, Florent Gimbert, and two anonymous reviewers
for their detailed and constructive comments on the manuscript.

References

Akaike, H. (1971). Determination of the number of factors by an extended maximum
likelihood principle (Tech. Rep.). Inst. Statist. Math.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, 19(6), 716-723. Retrieved from https://link
.springer.com/content/pdf/10.1007%2F978-1-4612-1694-0.pdf

Akaike, H.  (1978). On the likelihood of a time series model. Journal of the Royal
Statistical Society. Series D (The Statistician), 27(3/4), 217-235. Retrieved
from http://www. jstor.org/stable/2988185

Allstadt, K. E., Farin, M., Iverson, R. M., Obryk, M. K., Kean, J. W., Tsai, V. C.,
... Logan, M. (2020). Measuring basal force fluctuations of debris flows using
seismic recordings and empirical green’s functions. Journal of Geophysical Re-
search: Earth Surface, 125(9), €2020JF005590. Retrieved from https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020JF005590
(e2020JF005590 2020JF005590) doi: 10.1029,/2020JF005590

Allstadt, K. E., Matoza, R. S., Lockhart, A. B., Moran, S. C., Caplan-Auerbach,

J., Haney, M. M., ... Malone, S. D. (2018). Seismic and acoustic sig-
natures of surficial mass movements at volcanoes. Journal of Volcanol-
ogy and Geothermal Research, 364, 76-106. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0377027317306261 doi:
10.1016/j.jvolgeores.2018.09.007

Arran, M. 1., Mangeney, A., de Rosny, J., Farin, M., Toussaint, R., & Roche, O.
(2020). IPGP laboratory data on granular flows’ high-frequency seismic sig-
nals [data set].  PANGAEA.  Retrieved from https://doi.org/10.1594/
PANGAEA.924870 doi: 10.1594/PANGAEA.924870

Arran, M. 1., Mangeney, A., de Rosny, J., Farin, M., Toussaint, R., & Roche, O.
(2021). Laboratory landquakes, v1.0. Zenodo. doi: 10.5281/zenodo.4044233

Babic, M. (1997). Average balance equations for granular materials. Inter-
national Journal of Engineering Science, 35(5), 523-548. Retrieved from
http://wuw.sciencedirect.com/science/article/pii/S0020722596000948
doi: 10.1016,/S0020-7225(96)00094-8

Bachelet, V.  (2018). Etude expérimentale des émissions acoustiques générées par
les écoulements granulaires (Doctoral dissertation, Institut de Physique du
Globe de Paris). Retrieved from https://hal.archives-ouvertes.fr/
tel-03104582

Bachelet, V., Mangeney, A., Toussaint, R., DeRosny, J., Farin, M., & Hibert,

C. (2021). Acoustic emissions of nearly steady and uniform granular
flows: a proxy for flow dynamics and velocity fluctuations. Journal of
Geophysical Research: Earth Surface, (Under review). Retrieved from

https://arxiv.org/pdf/2101.04161.pdf

Borzsonyi, T., & Ecke, R. E. (2006, December).  Rapid granular flows on a rough
incline: phase diagram, gas transition, and effects of air drag. Physical Review
E, 74(6 Pt 1), 061301. Retrieved from https://doi.org/10.1103/PhysRevE
.74.061301 doi: 10.1103/physreve.74.061301

Capozza, R., Vanossi, A., Vezzani, A., & Zapperi, S. (2009). Suppression of friction
by mechanical vibrations. Physical Review Letters, 103, 085502. doi: 10.1103/
PhysRevLett.103.085502

Ciarlet, P. G.  (1997). Chapter 1 - linearly elastic plates. In P. G. Ciarlet (Ed.),
Mathematical elasticity (Vol. 27, p. 3-127). Elsevier. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0168202497800070 doi: 10
.1016/S0168-2024(97)80007-0

—20—



Clark, A. H., & Dijksman, J. A. (2020). Editorial: Non-local modeling and diverging
lengthscales in structured fluids. Frontiers in Physics, 8, 18. Retrieved from
https://www.frontiersin.org/article/10.3389/fphy.2020.00018 doi: 10
.3389/fphy.2020.00018

Cuomo, S. (2020). Modelling of flowslides and debris avalanches in natural and engi-
neered slopes: a review. Geoenvironmental Disasters, 7(1).

da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., & Chevoir, F. ~ (2005). Rheo-
physics of dense granular materials: Discrete simulation of plane shear flows.
Physical Review E, 72, 021309. Retrieved from https://link.aps.org/doi/
10.1103/PhysRevE.72.021309 doi: 10.1103/PhysRevE.72.021309

Dahlen, F. A. (1993). Single-force representation of shallow landslide sources.
Bulletin of the Seismological Society of America, 83(1), 130. Retrieved from
http://dx.doi.org/

Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., & Loew, S.  (2016). Au-
tomatic detection of alpine rockslides in continuous seismic data using hidden
markov models. Journal of Geophysical Research: FEarth Surface, 121(2),
351-371. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1002/2015JF003647 doi: 10.1002/2015JF003647

Dammeier, F., Moore, J. R., Haslinger, F., & Loew, S.  (2011).  Characterization
of alpine rockslides using statistical analysis of seismic signals. Journal of Geo-
physical Research: Earth Surface, 116(F4). Retrieved from https://agupubs
.onlinelibrary.wiley.com/doi/abs/10.1029/2011JF002037 doi: 10.1029/
2011JF002037

Davies, T. R. H. (1982). Spreading of rock avalanche debris by mechanical fluidiza-
tion. Rock mechanics, 15, 9-24.

Delannay, R., Valance, A., Mangeney, A., Roche, O., & Richard, P. (2017). Gran-
ular and particle-laden flows: from laboratory experiments to field obser-
vations. Journal of Physics D: Applied Physics, 50(5), 0563001.  Retrieved
from https://doi.org/10.1088%2F1361-6463%2F50%2F5%2F053001 doi:
10.1088/1361-6463/50/5/053001

Deparis, J., Jongmans, D., Cotton, F., Baillet, L., Thouvenot, F., & Hantz, D.

(2008, 08). Analysis of Rock-Fall and Rock-Fall Avalanche Seismograms in
the French Alps. Bulletin of the Seismological Society of America, 98(4),
1781-1796.  Retrieved from https://doi.org/10.1785/0120070082 doi:
10.1785/0120070082

Dijksman, J. A., Wortel, G. H., van Dellen, L. T. H., Dauchot, O., & van Hecke,

M. (2011). Jamming, yielding, and rheology of weakly vibrated gran-
ular media. Physical Review Letters, 107, 108303. Retrieved from
https://link.aps.org/doi/10.1103/PhysRevLett.107.108303 doi:
10.1103/PhysRevLett.107.108303

Farin, M., Mangeney, A., de Rosny, J., Toussaint, R., & Trinh, P.-T. (2018).
Link between the dynamics of granular flows and the generated seismic
signal: Insights from laboratory experiments. Journal of Geophysical
Research: Earth Surface, 123(6), 1407—-1429. Retrieved from https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JF004296  doi:
10.1029/2017JF004296

Farin, M., Mangeney, A., de Rosny, J., Toussaint, R., & Trinh, P.-T. (2019). Re-
lations between the characteristics of granular column collapses and resultant
high-frequency seismic signals. Journal of Geophysical Research: Farth Sur-
face, 124(12), 2987-3021.  Retrieved from https://agupubs.onlinelibrary
.wiley.com/doi/abs/10.1029/2019JF005258 doi: 10.1029/2019JF005258

Farin, M., Tsai, V. C., Lamb, M. P., & Allstadt, K. E. (2019). A physical
model of the high-frequency seismic signal generated by debris flows. Earth
Surface Processes and Landforms, 44(13), 2529-2543. Retrieved from
https://onlinelibrary.wiley.com/doi/abs/10.1002/esp.4677 doi:

—30—



10.1002/esp.4677

Ferdowsi, B., Griffa, M., Guyer, R., Johnson, P., & Carmeliet, J. (2014).  Effect
of boundary vibration on the frictional behavior of a dense sheared granular
layer. Acta Mechanica, 225, 2227-2237.

Fernandez-Nieto, E., Garres-Diaz, J., Mangeney, A., & Narbona-Reina, G. (2018).
2d granular flows with the p(4) rheology and side walls friction: A well-
balanced multilayer discretization. Journal of Computational Physics, 356,
192-219. Retrieved from https://www.sciencedirect.com/science/
article/pii/S0021999117308823 doi: 10.1016/j.jcp.2017.11.038

Fleming, R., Taylor, F., & (U.S.), G. S.  (1980).  Estimating the costs of landslide
damage in the united states.  U.S. Department of the Interior, Geological Sur-
vey. Retrieved from https://books.google.fr/books?id=DGnlhwP6h8cC

Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004
to 2016. Nat. Hazards Earth Syst. Sci., 18, 2161-2181.

Fuchs, F., Lenhardt, W., Bokelmann, G., & the AlpArray Working Group.  (2018).
Seismic detection of rockslides at regional scale:examples from the eastern alps
and feasibilityof kurtosis-based event location. FEarth Surface Dynamics, 6.
doi: 10.5194/esurf-6-955-2018

Fukao, Y. (1995, 07). Single-force representation of earthquakes due to landslides or
the collapse of caverns. Geophysical Journal International, 122(1), 243-248.
Retrieved from https://doi.org/10.1111/3.1365-246X.1995.tb03551.x
doi: 10.1111/j.1365-246X.1995.tb03551.x

Gardel, E., Sitaridou, E., Facto, K., Keene, E., Hattam, K., Easwar, N., &

Menon, N. (2009). Dynamical fluctuations in dense granular flows.
Philosophical Transactions of the Royal Society A: Mathematical, Phys-

ical and Engineering Sciences, 367(1909), 5109-5121. Retrieved from
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2009.0189
doi: 10.1098/rsta.2009.0189

Garve, T. W. (1925). Segregation in bins. J. Amer. Ceram. Soc., 80, 666.

GDR MiDi. (2004, August 01). On dense granular flows. The FEuropean Physical
Journal E, 14(4), 341-365. Retrieved from https://doi.org/10.1140/epje/
12003-10153-0 doi: 10.1140/epje/i2003-10153-0

Gimbert, F., Fuller, B. M., Lamb, M. P., Tsai, V. C., & Johnson, J. P. L. (2019).
Particle transport mechanics and induced seismic noise in steep flume exper-
iments with accelerometer-embedded tracers. Earth Surface Processes and
Landforms, 44 (1), 219-241.  Retrieved from https://onlinelibrary.wiley
.com/doi/abs/10.1002/esp.4495 doi: 10.1002/esp.4495

Gimbert, F., & Tsai, V. C.  (2015). Predicting short-period, wind-wave-generated
seismic noise in coastal regions. Earth and Planetary Science Letters, 426,
280-292. Retrieved from http://www.sciencedirect.com/science/article/
pii/S0012821X15003738 doi: 10.1016/j.epsl.2015.06.017

Given, D. D., Allen, R. M., Baltay, A. S., Bodin, P., Cochran, E. S., Creager, K.,

... Yelin, T. S. (2018). Revised technical implementation plan for the shakeal-
ert system—an earthquake early warning system for the west coast of the
united states (Tech. Rep.).  U.S. Geological Survey Open-File Report.  doi:
10.3133/0fr20181155

Goldhirsch, I.  (2003). Rapid granular flows. Annual Review of Fluid Mechanics,
35(1), 267-293.  Retrieved from https://doi.org/10.1146/annurev.fluid
.35.101101.161114 doi: 10.1146/annurev.fluid.35.101101.161114

Gollin, D., Berzi, D., & Bowman, E. (2017). Extended kinetic theory applied to in-
clined granular flows: role of boundaries. Granular Matter, 19(56).

Gray, J. M. N. T. (2018). Particle Segregation in Dense Granular Flows. Annual Re-
view of Fluid Mechanics, 50(1), 407-433.  Retrieved from https://doi.org/
10.1146/annurev-fluid-122316-045201  doi: 10.1146/annurev-fluid-122316
-045201

—31—



Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, 1.,

Rossi, M., & Melillo, M. (2020). Geographical landslide early warn-
ing systems. Earth-Science Reviews, 200, 102973. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0012825219304635
doi: 10.1016/j.earscirev.2019.102973

Hanes, D. M., & Walton, O. R.  (2000).  Simulations and physical measurements
of glass spheres flowing down a bumpy incline. Powder Technology, 109(1),
133-144. Retrieved from http://www.sciencedirect.com/science/article/
pii/80032591099002326 doi: 10.1016/S0032-5910(99)00232-6

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
napeau, D., ... Oliphant, T. E. (2020, September). Array programming with
NumPy.  Nature, 585(7825), 357-362.  Retrieved from https://doi.org/
10.1038/541586-020-2649-2 doi: 10.1038/s41586-020-2649-2

Hertz, H. R. (1881). Uber die ber uhrung fester elastischer k orper. Journal fur die
reine und angewandte Mathematik, 92, 156-171. Retrieved from https://home
.uni-leipzig.de/pwm/web/download/Hertz1881.pdf

Hervés, J. E. (2003). Lessons learnt from landslide disasters in europe. eur 20558 en
(Tech. Rep.). Ispra, Italy: European Commission.

Hibert, C., Ekstrom, G., & Stark, C. P. (2017). The relationship between bulk-mass
momentum and short-period seismic radiation in catastrophic landslides. Jour-
nal of Geophysical Research: Earth Surface, 122(5), 1201-1215. Retrieved
from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
2016JF004027 doi: 10.1002/2016JF004027

Hibert, C., Mangeney, A., Grandjean, G., Baillard, C., Rivet, D., Shapiro, N. M.,

... Crawford, W.  (2014).  Automated identification, location, and volume
estimation of rockfalls at piton de la fournaise volcano. Journal of Geophys-
ical Research: Earth Surface, 119(5), 1082-1105. Retrieved from https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JF002970  doi:
10.1002/2013JF002970

Hibert, C., Mangeney, A., Grandjean, G., & Shapiro, N. M.~ (2011).  Slope insta-
bilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall
characteristics. Journal of Geophysical Research: Earth Surface, 116(F4). doi:
10.1029/2011JF002038

Hibert, C., Stark, C. P., & Ekstrom, G. (2015). Dynamics of the oso-steelhead
landslide from broadband seismic analysis. Natural Hazards and Earth System
Sciences, 15(6), 1265-1273. Retrieved from https://www.nat-hazards-earth
-syst-sci.net/15/1265/2015/ doi: 10.5194/nhess-15-1265-2015

Hsu, L., Dietrich, W. E., & Sklar, L. S.  (2014). Mean and fluctuating basal forces
generated by granular flows: Laboratory observations in a large vertically
rotating drum. Journal of Geophysical Research: Earth Surface, 119(6),
1283-1309. Retrieved from https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1002/2013JF003078 doi: 10.1002/2013JF003078

Hungr, O., & Morgenstern, N. R.  (1984).  Experiments on the flow behaviour of
granular materials at high velocity in an open channel.  Géotechnique, 34(3),
405-413. Retrieved from https://doi.org/10.1680/geot.1984.34.3.405
doi: 10.1680/geot.1984.34.3.405

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science
& Engineering, 9(3), 90-95. doi: 10.1109/MCSE.2007.55

Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in
small samples. Biometrika, 76(2), 297-307. Retrieved from https://doi.org/
10.1093/biomet/76.2.297 doi: 10.1093/biomet/76.2.297

Jing, L., Kwok, C. Y., Leung, Y. F., & Sobral, Y. D.  (2016). Characterization of
base roughness for granular chute flows. Physical Review E, 94, 052901. Re-
trieved from https://link.aps.org/doi/10.1103/PhysRevE.94.052901 doi:
10.1103/PhysRevE.94.052901

—32—



John Steel. (2019). Fiche technique acier s355 (Tech. Rep.). Author. Retrieved
from https://www.john-steel.com/fr/acier/29-plaque-d-acier-decape
-et-graisse.html

Johnson, P. A., Savage, H., Knuth, M., Gomberg, J., & Marone, C. (2008).  Ef-
fects of acoustic waves on stick—slip in granular media and implications for
earthquakes. Nature, 451, 57-60.

Jop, P., Forterre, Y., & Pouliquen, O. (2005). Crucial role of sidewalls in granular
surface flows: consequences for the rheology. Journal of Fluid Mechanics, 541,
167-192. doi: 10.1017/S0022112005005987

Jop, P., Forterre, Y., & Pouliquen, O. (2006, June). A constitutive law for
dense granular flows. Nature, 441(7094), 727-730. Retrieved from
http://www.nature.com/nature/journal/v441/n7094/suppinfo/
nature04801\_S1.html (10.1038/nature04801) doi: 10.1038/nature04801

Kanamori, H., & Given, J. W. (1982). Analysis of long-period seismic waves excited
by the may 18, 1980, eruption of mount st. helens—a terrestrial monopole?
Journal of Geophysical Research: Solid Earth, 87(B7), 5422-5432.  Retrieved
from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
JB087iB07p05422 doi: 10.1029/JB087iB07p05422

Kawakatsu, H. (1989). Centroid single force inversion of seismic waves gener-
ated by landslides. Journal of Geophysical Research: Solid Earth, 94(B9),
12363-12374. Retrieved from https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/JB094iB09p12363 doi: 10.1029/JB094iB09p12363

Kean, J. W., Coe, J. A., Coviello, V., Smith, J. B., McCoy, S. W., & Arattano, M.
(2015). Estimating rates of debris flow entrainment from ground vibrations.
Geophysical Research Letters, 42(15), 6365-6372. Retrieved from https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL064811 doi:
10.1002/2015GL064811

Kim, D. H., Gratchev, 1., Berends, J., & Balasubramaniam, A. (2015). Calibration
of restitution coefficients using rockfall simulations based on 3d photogram-
metry model: a case study. Natural Hazards, 78, 1931-1946. Retrieved from
https://doi.org/10.1007/s11069-015-1811-x

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Ann. Math.
Statist., 22(1), 79-86. Retrieved from https://doi.org/10.1214/aoms/
1177729694 doi: 10.1214/aoms/1177729694

Lai, V. H.,, Tsai, V. C., Lamb, M. P., Ulizio, T. P., & Beer, A. R. (2018, 06). The
seismic signature of debris flows: Flow mechanics and early warning at mon-
tecito, california. Geophysical Research Letters, 45(11), p5528-5535. doi:
10.1029/2018GLO77683

Lamb, H.  (1904).  On the Propagation of Tremors over the Surface of an Elastic
Solid. Philosophical Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, 203(359-371), 1-42. Retrieved from
http://rsta.royalsocietypublishing.org/content/203/359-371/1  doi:
10.1098 /rsta.1904.0013

Lastakowski, H., Géminard, J.-C., & Vidal, V. (2015). Granular friction: Triggering
large events with small vibrations. Scientific Reports, 5, 13455.

Lee, E.-J., Liao, W.-Y., Lin, G.-W., Chen, P., Mu, D., & Lin, C.-W.  (2019). To-
wards automated real-time detection and location of large-scale landslides
through seismic waveform back projection. Geofluids.  doi: 10.1155/2019/
1426019

Lemrich, L., Carmeliet, J., Johnson, P. A., Guyer, R., & Jia, X. (2017). Dynamic
induced softening in frictional granular materials investigated by discrete-
element-method simulation. Physical Review E, 96, 062901. Retrieved
from https://link.aps.org/doi/10.1103/PhysRevE.96.062901 doi:
10.1103 /PhysRevE.96.062901

Levy, C., Mangeney, A., Bonilla, F., Hibert, C., Calder, E. S.; & Smith, P. J. (2015).

—33—



Friction weakening in granular flows deduced from seismic records at the
soufriere hills volcano, montserrat. Journal of Geophysical Research: Solid
Earth, 120(11), 7536-7557. Retrieved from https://agupubs.onlinelibrary
.wiley.com/doi/abs/10.1002/2015JB012151 doi: 10.1002/2015JB012151

Love, A. E. H., & Darwin, G. H. (1888). Xvi. the small free vibrations and
deformation of a thin elastic shell. Philosophical Transactions of the
Royal Society of London. (A.), 179, 491-546. Retrieved from https://
royalsocietypublishing.org/doi/abs/10.1098/rsta.1888.0016 doi:
10.1098 /rsta.1888.0016

Lucas, A., Mangeney, A., & Ampuero, J. P. (2014). Frictional velocity-weakening in
landslides on earth and on other planetary bodies. Nature Communications, 5,
3417. doi: 10.1038/ncomms4417

Léopoldes, J., Jia, X., Tourin, A., & Mangeney, A. (2020, Oct). Triggering granu-
lar avalanches with ultrasound.  Phys. Rev. E, 102, 042901. Retrieved from
https://link.aps.org/doi/10.1103/PhysRevE.102.042901  doi: 10.1103/
PhysRevE.102.042901

McCoy, S. W., Tucker, G. E., Kean, J. W., & Coe, J. A. (2013). Field mea-
surement of basal forces generated by erosive debris flows. Journal of
Geophysical Research: Earth Surface, 118(2), 589-602. Retrieved from

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrf.20041
doi: 10.1002/jgrf.20041

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In
S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science
Conference (p. 56-61). doi: 10.25080/Majora-92bf1922-00a

McLaskey, G. C., & Glaser, S. D.  (2010). Hertzian impact: Experimental study of
the force pulse and resulting stress waves. The Journal of the Acoustical Soci-
ety of America, 128(3), 1087-1096.  Retrieved from https://asa.scitation
.org/doi/abs/10.1121/1.3466847 doi: 10.1121/1.3466847

Michlmayr, G., & Or, D. (2014, October 01).  Mechanisms for acoustic emissions
generation during granular shearing.  Granular Matter, 16(5), 627-640. Re-
trieved from https://doi.org/10.1007/s10035-014-0516-2 doi: 10.1007/
$10035-014-0516-2

Miller, G. F., & Pursey, H. (1954). The Field and Radiation Impedance of
Mechanical Radiators on the Free Surface of a Semi-Infinite Isotropic
Solid. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 223(1155), 521-541. Retrieved from
http://rspa.royalsocietypublishing.org/content/223/1155/521 doi:
10.1098 /rspa.1954.0134

National Research Council. (1985). Reducing losses from landsliding in the united
states. The National Academies Press.

Nishiguchi, Y., Uchida, T., Takezawa, N., Ishizuka, T., & Mizuyama, T. (2012).
Runout characteristics and grain size distribution of large-scale debris flows
triggered by deep catastrophic landslides. International Journal of Erosion
Control Engineering, 5(1), 16-26. doi: 10.13101/ijece.5.16

Norris, R. D. (1994). Seismicity of rockfalls and avalanches at three cascade range
volcanoes: Implications for seismic detection of hazardous mass movements.
Bulletin of the Seismological Society of America, 84(6), 1925. Retrieved from
http://dx.doi.org/

Plancherel, M., & Mittag-Leffler, G. (1910). Contribution a I’étude de la
représentation d’une fonction arbitraire par les intégrales définies.  Rendiconti
del Clircolo Matematico di Palermo, 30(1), 289-335.

Pudasaini, S., & Hutter, K. (2006). Avalanche dynamics: Dynamics of rapid flows of
dense granular avalanches. Springer. Retrieved from https://books.google
.co.uk/books?id=gri6NAEACAAJ

Roche, O., van den Wildenberg, S., Valance, A., Delannay, R., Mangeney, A., Corna,

—34—



L., & Latchimy, T. (2021). Experimental assessment of the effective friction at
the base of granular chute flows on smooth incline. Physical Review E, (Under
review). Retrieved from https://arxiv.org/abs/2103.01154

Schneider, D., Bartelt, P., Caplan-Auerbach, J., Christen, M., Huggel, C., &
McArdell, B. W.  (2010). Insights into rock-ice avalanche dynamics by com-
bined analysis of seismic recordings and a numerical avalanche model. Journal
of Geophysical Research: Earth Surface, 115(F4). Retrieved from https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JF001734  doi:
10.1029/2010JF001734

Scholl, H. J., Ballard, S., Carnes, S., Herman, A., & Parker, N.  (2017). Informa-
tional challenges in early disaster response: The massive 0so/sr530 landslide
2014 as case in point. Proceedings of the 50th Hawaii International Conference
on System Sciences.

Schuster, R. L., & Fleming, R. W. (1986). Economic losses and fatalities due
to landslides. Bulletin of the Association of Engineering Geologists, 23(1),
pl1-28.

Sigmund Lindner.  (2018).  Product data sheet. — Retrieved online.  Retrieved
from https://www.sigmund-lindner.com/en/products/glass-beads/
dispersing-beads/

Silbert, L. E., Ertag, D., Grest, G. S., Halsey, T. C., Levine, D., & Plimpton, S. J.
(2001).  Granular flow down an inclined plane: Bagnold scaling and rheology.
Physical Review E, 64, 051302. Retrieved from https://link.aps.org/doi/
10.1103/PhysRevE.64.051302 doi: 10.1103/PhysRevE.64.051302

Steel SS. (2019). Data table for carbon steel s855mce (Tech. Rep.). Author. Retrieved
from https://www.steelss.com/Carbon-steel/s355mc.html

Surinach, E., Vilajosana, 1., Khazaradze, G., Biescas, B., Furdada, G., & Vilaplana,
J. M. (2005). Seismic detection and characterization of landslides and other
mass movements. Natural Hazards and Earth System Sciences, 5(6), 791-798.
Retrieved from https://www.nat-hazards-earth-syst-sci.net/5/791/
2005/ doi: 10.5194 /nhess-5-791-2005

Taberlet, N., Richard, P., Jenkins, J. T., & Delannay, R. (2007). Density inversion in
rapid granular flows: the supported regime. Eur. Phys. J. E, 22(1), 17-24. Re-
trieved from https://doi.org/10.1140/epje/e2007-00010-5 doi: 10.1140/
epje/e2007-00010-5

Takahashi, T. (1981). Debris flow. Annual Review of Fluid Mechanics, 13(1), 57-77.
Retrieved from https://doi.org/10.1146/annurev.£1.13.010181.000421
doi: 10.1146/annurev.fl.13.010181.000421

Taylor, S., & Brodsky, E. E.  (2017).  Granular temperature measured experimen-
tally in a shear flow by acoustic energy. Physical Review E, 96, 032913. Re-
trieved from https://link.aps.org/doi/10.1103/PhysRevE.96.032913 doi:
10.1103/PhysRevE.96.032913

Tsai, V. C., & Atiganyanun, S. (2014, 09). Green’s Functions for Surface Waves in
a Generic Velocity Structure. Bulletin of the Seismological Society of America,
104(5), 2573-2578.  Retrieved from https://doi.org/10.1785/0120140121
doi: 10.1785/0120140121

Tsai, V. C., Minchew, B., Lamb, M. P., & Ampuero, J.-P. (2012). A physical model
for seismic noise generation from sediment transport in rivers. Geophysical
Research Letters, 39(2). Retrieved from https://agupubs.onlinelibrary
.wiley.com/doi/abs/10.1029/2011GL050255 doi: 10.1029/2011GL050255

Tsang, J. M. F., Dalziel, S. B., & Vriend, N. M. (2019). The granular Blasius prob-
lem. Journal of Fluid Mechanics, 872, 784-817. doi: 10.1017/jfm.2019.357

van Asch, T., Malet, J., van Beek, L., & Amitrano, D. (2007). Techniques, advances,
problems and issues in numerical modelling of landslide hazard. Bulletin de la
Société Géologique de France, 178(2), p65-88.

—35—



JOURNAL OF GEOPHYSICAL RESEARCH

Supporting Information for “Laboratory Landquakes: Insights
from experiments into the high-frequency seismic signal
generated by geophysical granular flows”

M. I. Arran®*, A. Mangeney', J. De Rosny?, M. Farin?, R. Toussaint?*, O. Roche®
1 Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
2Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005 Paris, France
3Université de Strasbourg, CNRS, Institut Terre et Environnement de Strasbourg, UMR 7063, F-67084 Strasbourg, France
4SFF PoreLab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
5Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France.
*Corresponding author: Matthew Arran, arran@ipgp.fr

Contents of this file

1. Text S1 to S10

2. Figures S1 to S6

3. Table S1
Additional Supporting Information (Files uploaded
separately)

1. Captions for Movies S1 to S2

Copyright 2021 by the American Geophysical Union.
0148-0227/21/$9.00



X-2

Introduction

To supplement the text of “Laboratory Landquakes”, we
gather here a collection of appendices to the text; figures
and a table associated with these appendices; and descrip-
tions of two videos that provide supplementary illustration.
In section S1, we list and define the notation used in the
article’s text. Section S2 describes and justifies conditions
for the validity of the ‘stochastic impact’ framework that’s
described in section 1.2, for predicting a granular flow’s seis-
mic signal, while section S3 reviews the use of Hertz theory
to describe binary, elastic, quasistatic, normal interactions
between spheres. We describe in sections S4 and S5, re-
spectively, the amplifier settings used in experiments and
the experimental control system, while sections S6 and S7
describe the derivation, calibration, and validation of rela-
tions linking experimental measurements to i) the net force
applied by each flow to the instrumented plate and ii) the
power spectrum of this force’s normal component. Section
S8 describes the processing of high-speed camera images to
extract base-normal profiles of flow properties at the chan-
nel wall, S9 describes the statistical tools used to analyse
our experimental results, and section S10 demonstrates the
importance of the Green’s function in the interpretation of
landquake signals.

Figure S1 is associated with section S3, Figure S2 with
section S5, Figure S3 with section S6, and Figures S4 and S5
with section S7. Table S1 is associated with section S9 and
Figure S6 with section S10. Finally, the mp4 videos avail-
able as supplementary material illustrate section S8 and are
described at Movie S1 and Movie S2.

S1. Notation

f,t,x: Frequency, time, source position

P.: The power spectral density of a quantity -

*: The Fourier transform of - over time interval At
(-Yas: The arithmetic mean of - over the interval At
()ay: The moving average of * over a frequency window

vy: The landquake velocity signal at a receiver at r, ra-
dius 7 from the source

nr: The number of impacts per unit volume and per unit
time

F: The force exerted by a representative impact

G: The Green’s function linking F; to vy

A, ¢: The area and particle volume fraction of a granular
flow

p,d,u: The density, diameter, and downslope speed of a
representative particle

Ap,er: The magnitude and direction of the impulse of
a representative impact

h,u: The depth and depth-averaged mean velocity of a
flow

E,v: The Young’s modulus and Poisson’s ratio of a par-
ticle’s material

7(un): The timescale of a Hertzian impact at normal
velocity un,

¢: The normalised, non-dimensional spectral density of
the normal force betwen particles undergoing a Hertzian im-
pact

uj, Tj, z;: The mean velocity, granular temperature, and
base-normal position of particles in a flow’s jth layer

hg: The experimental flow’s depth at its point of outflow
from the reservoir

W, 0: The width and inclination angle of the experimen-
tal channel

X,Y, H: The length, width, and thickness of the instru-
mented plate
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F., F,: The downslope and base-normal forces exerted
by the flow on the plate

g: The magnitude of gravitational acceleration

ta, Atc: The time delay before, and the duration of, the
high-speed camera’s recording

o: The average mass per unit area overlying the instru-
mented plate, over time At,

p: The effective friction between the instrumented plate
and the overlying flow

M: The cumulative mass outflow through the channel,
as measured by the mass balance

q: The average mass flux through the channel, per unit
width, over time At,

pp, Ep, vp: The density, Young’s modulus, and Poisson’s
ratio of the instrumented plate

D, Ay: The plate’s bending stiffness and the mean fre-
quency gap between its resonances

P: The proportion of the plate’s energy in its measur-
able vertical motion

Q: The quality factor for the attenuation of the plate’s
energy

aj: The acceleration measured by the instrumented
plate’s jth accelerometer

xj,2;,u;: The downslope position, base-normal height,
and velocity of a particle tracked at the channel’s sidewall

C(; z): A normalised coarse-graining function, localised
around z

dw(2), uw(2), Tw(z): Depth-profiles of the mean relative
volume fraction, velocity, and granular temperature of par-
ticles tracked at the channel’s sidewall

Uw, Uyw: The downslope component of u,, and its depth-
averaged value

Pr: The power spectral density of the normal force ex-
erted by a flow on its base

P2: The amplitude of Pr at signal periods much larger
than the timescale of individual impacts but less than that
of the flow’s evolution

fe: The corner frequency of Pr, at which it falls below
half its maximum value

% A model’s prediction for the quantity -

K: An unspecified prefactor in the model of Kean et al.
(2015)

e: The coefficient of restitution of particles’ impacts in
the model of Farin, Tsai, Lamb, and Allstadt (2019)

v: The normalised standard deviation of base-impacting
particles’ velocities

&(v): A non-dimensional prefactor accounting for varia-
tion in impacts’ geometry in the models of Farin et al. (2019)

x: A shape factor for basal particle’s mean downslope
velocity, in the ‘thick-flow’ model

~v: A constant of attenuation, with an impact’s base-
normal height, for the squared impulse it transfers to the
base, in the model of Bachelet et al.

e: The typical factor of error in a model’s predictions of

Py

1, I: The inertial number within a flow and a bulk esti-
mate for its value

0F: The high-frequency fluctuating force exerted by the
flow on the instrumented plate

§F?: The ratio between i) the mean of 6F? and ii) the
squared mean force

IT;: The total high-frequency seismic power transferred
by the flow to the plate

pg,Cs: The density and shear wave velocity of an ide-
alised Earth

t, —ts: The source-receiver delay of an idealised Green’s
function



ARRAN ET AL.: LABORATORY LANDQUAKES

S2. The Stochastic Impact Framework
Here, we discuss the ‘stochastic impact’ framework: con-
sideration of the total seismic signal as a sum of the uncorre-
lated signals generated by individual particle impacts, with
the properties of the impacts determined by mean proper-
ties of the flow and with a specified Green’s function map-
ping the force of an individual impact to the seismic signal
observed at a remote station. By doing so, we hope to indi-
cate its range of validity, by making clear the assumptions
on which it rests: that the signal originates mainly from
particle impacts; that materials are sufficiently stiff for the
total signal to be the sum of signals from individual impacts;
that the area considered is sufficiently extensive or the fre-
quencies considered sufficiently high for impacts’ signals to
be uncorrelated; and that the spatial and temporal intervals
between impacts are much smaller than the length and time
scales of variation both of the flow and of the Green’s func-
tion for signal propagation, so that a single impact force and
Green’s function may be used to represent all impacts.

S2.1.
Signal

Impacts Must be the Dominant Source of the

Most obviously, for a model of individual impacts to de-
scribe the seismic signal generated by a geophysical granular
flow, other sources (e.g. those described by Michlmayr and
Or (2014)) must be less significant. For example, we would
not expect the model to apply to rockslides, for which basal
friction is expected to be the dominant source, or to soil
creep, for which the rupture of soil fibres would be more
significant.

S2.2. The Signal Must be a Sum of Individual Impact
Signals

Next, we must be able to consider impacts separately,
with negligible interactions between them and hence a total
signal equal to the sum of the individual signals. This will be
the case if the deformation due to one impact at the site of
a second is small compared to the local deformation due to
that second impact. Or, writing €(x,x1) for deformation at
x due to the impact at x1, we require €(x2,x1) < €(X2,X2).
Since ||x2 —x1]| is at least a particle radius, this will be the
case if deformation is limited to within a particle radius, so
if the impacted material is sufficiently stiff. It will not be
the case for, for example, rockfalls onto sandbeds, for which
the crater caused by one rock’s impact will affect the impact
of another.

S2.3. Impact Signals Must be Uncorrelated

For the framework to work, we next require that the sig-
nals from different impacts must be uncorrelated in Fourier
space. If, in frequency space, F; is the force applied by an
impact and G; is the seismic station’s response function, we
require that, over j # k,

e ) (moa) 0w

where we write E for the expectation of a random variable.
We describe two scenarios in which this will not be true and
two methods for ensuring that it is.

First, we note that signals will, in general, be correlated
at the low frequencies that correspond to the timescales of
variation of the bulk flow. For example, if T is a time inter-
val over which a flow runs into a southern valley wall and
turns north, impacts during the turn will apply forces on
the bedrock that, averaged over T, are directed southwards
more often than northwards. At frequencies less than 1/27T,
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the Fourier transforms of these forces will therefore tend to
have the same sense, and so these impacts will - barring
large phase differences in a seismic station’s response - gen-
erate correlated signals. Similarly, signals will be correlated
if impacts occur at regular intervals; a particle undergoing
similar impacts at constant time intervals At; will generate,
at a seismic station with similar response functions to such
impacts, correlated signals from the impacts at all frequen-
cies that are multiples of 1/At;.

In both cases, the correlation can often be avoided by
considering the total signal generated by a sufficiently large
spatial and temporal extent. If the time over which the
frequency-space signal is measured is longer than the time
over which impacts are correlated (so that e.g. northwards-
directed forces contribute to the total signal as much as
southwards-directed ones) and the region considered extends
beyond the lengths over which impacts are correlated (so
that e.g. the total signal has contributions from other parti-
cles with the same At; interval between impacts, but differ-
ent phases), then correlations between close impacts will be
cancelled out by anticorrelations between distant impacts,
and the total correlation will be close to zero. However, con-
sideration of larger spatial and temporal extents decreases
resolution and makes the mean properties of the flow less
representative of the local flow properties that determine
individual impacts.

These problems can be avoided by considering the sig-
nals at higher frequencies. Informally, high-frequency sig-
nals can only be correlated if patterns in impact properties,
such as the above examples, hold to an improbably high de-
gree of precision in time. Formally, we can write the Fourier-
space signal for the jth impact as ¥;(w)e” "% for angular
frequency w, with ¢; the time at which the impact starts and
with differences in v; linked only to differences in the physics
governing each impact signal. If, for two impacts, the joint
probability distribution of v}, ¥ and t; —tx is fp(v,t), then
the expected correlation between two different signals will
be

B 55 (=] = [

C2 xR

vivee™ fp (v, t)dviduadt.

(2)
Now, we write T' for the time over which mean flow proper-
ties vary and oa; for the standard deviation of the interval
between consecutive correlated impacts. For w > 1/oa;
and w > 1/T, impacts will occur at a constant rate be-
tween t and ¢ + 1/w and the same physics is expected to
apply to each impact, so fp(v,t) will vary little over the
timescale 1/w. However, e** will have a mean value of zero
over the same timescale, and consequently the integral in (2)
will vanish, in the spirit of the Riemann-Lebesgue lemma.
Therefore, we expect signals at periods much less than the
timescales of flow variation or impact-time co-ordination to
be uncorrelated. Such signals will be non-negligible if the
duration of impacts is much less than these timescales and
this will be the case if the materials involved in an impact
are sufficiently stiff.

S2.4. Mean Properties Must Determine Impact
Signals

Finally, for some mean properties of the flow to be linked
via individual impacts’ properties to the seismic signal ob-
served at a remote station, we require the flow to be divisible
into spatial and temporal domains that satisfy two proper-
ties. The domains must be a) large enough for the law of
large numbers to apply to the signals from individual im-
pacts within them, which can therefore be predicted using
mean properties of each flow domain, but b) small enough
that there is little variation in the magnitude of the remote
station’s response function to those signals, so that the same
Green’s function can be used for all such signals. Such do-
mains will exist if the spatial and temporal intervals between
impacts are much smaller than the length and time scales
of variation of the flow or the Green’s functions for signal
propagation.
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S3. Hertz Theory

We consider binary, elastic, quasistatic, normal interac-
tions between spheres, which is the axisymmetric case of
the problem introduced and solved by Hertz (1881). This
is a strong set of assumptions, but we expect the derived
results to be reasonable approximations, since the energetic
collisions between glass beads which contributed most to
the seismic signal exhibit a) short collision durations, so
that a binary approximation is not unreasonable; b) resti-
tution coefficients close to one, so that collisions are ap-
proximately elastic; ¢) impact speeds much less than the
materials’ speeds of sound, so that materials’ internal defor-
mation adjusts rapidly to changes of particle positions; and
d) low friction coefficients, so that the normal forces between
particles are much larger than the tangential forces. For ho-
mogeneous spheres with radii 71 and r2, Young’s moduli £
and Fs, and Poisson’s ratios v1 and vz, with centres sepa-
rated by r1 + ro — §, Hertz (1881) derives that the normal

force between the particles is

Fp = k6°/2, (3)

for k related to harmonic means of the particles’ properties

by
4/1—v2 13\ "' 1 1\
== = . 4
& 3( E1 + E2 7"1+7’2 ()

If the first particle has density p, the second particle is fixed,
and the initial normal impact velocity is uy, then § satisfies

for m = 47rpr%/3 the Newtonian system of equations
6(0) =0,
5(0) = un, (5)
md(t) = —kd(t)*>.

Noting that we have three parameters x, m, and u, in
the three dimensions mass, length, and time, we can by
the Buckingham 7 theorem (Bertrand, 1878; Buckingham,

L 0.5
-1 4
T 0.0
0 2 4
T
Figure S1. Non-dimensional evolution of a Hertzian

impact. a) Evolution of the normal deformation A (red)
and normal force F,, (black). b) Shape function ¢ for the
power spectral density |Fn|? = 4¢ of normal force, with
the corner frequency f.7 indicated (dotted line).
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1914) define typical length and time scales for the impact

= (mui>2/5
K

2 1/5
2 2 4 1—V% 1—1/22 1
= 1+ — 6
[Wpun( TR o i, (6)
__ m2 1/5
T\ K2un,
2 2 2 2\ 2 1/5
T™p 1 -7 1—13 1
= 14 2+
|: Un ( El + E2 ) < Jr TQ) r17 (7)

and can switch to a non-dimensional system of equations for
A =0/X as a function of T = t/7:

A(0) =0,
A'0) =1, (8)
A" (T) = —A(T)*>.

We solve these equations numerically, with Figure Sla indi-
cating the evolution over time of the non-dimensional nor-
mal deformation A and force F,, = Fn~/lﬁ)\3/2, and Fig-
ure S1b showing the power spectrum |F,|*> of that non-
dimensional normal force.

We note that since the impact is elastic and of finite dura-
tion, the first particle’s non-dimensional post-impact veloc-
ity is limr 0o A'(T) = —1, and so the zero-frequency limit
of the basal force’s Fourier spectrum is

Fn(0) :/:,o —A"(T) dT
=2 (9)

We therefore define a non-dimensional function ((f7) =
| Fn(f7)|?/4, and note from the numerical solution (or else
by the integrability, non-negativity, and symmetry of F,)
that ( is approximately equal to 1 for fr < 1, monotonically
decreases to ((f.7) = 0.5 for a non-dimensional corner fre-
quency that we calculate to be approximately f.7 = 0.208,
and is much less than 1 for fr > 1.

Re-dimensionalising, we note that the spectral density of
the normal force has units kg? m?s~2 and so that

T pd3 Un

5 ) cn. o

Fu (1) = (mun)?| Fn(fr)? = (

while for beads with equal diameters d, Young’s moduli F,
and Poisson’s ratios v,

1/5
S L O R (11)
4F2u, ’
For disparate particles, as in section S7.3, we can re-
dimensionalise using mass m and the length and time scales
defined in equations (6) and (7).

S4. Amplifier Settings

Before the first experiment, we uploaded settings for
the Kistler 5073 charge amplifier via an RS232 interface
with the laboratory laptop, using the Python program
kistler_control.py in the GitLab repository for this paper
(Arran et al., 2021). With this program, we set the ampli-
fier sensitivity to its maximal value of 0.1 VpC~! and the
amplifier bandwidth filter was turned off.
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For each channel inclination and reservoir gate height,
we set the settings of the Briiel and Kjaser Nexus 2692-
A-OS4 conditioning amplifier using its manual user inter-
face. The nominal sensitivity of the accelerometers was set
to s, = 0.006pC/(ms™2) and the nominal sensitivity of
the amplifier to the highest value s4 among 3.16, 10, and
31.6mV / (ms™2) for which the amplifier’s output remained
below 10 V. We define A = s4/s, for the true amplification.
We set the corner frequencies of the amplifier’s bandpass fil-
ter to their minimal and maximal values, respectively, of
10Hz and 100 kHz.

S5. Experiment Control

We used a variety of programs to control the experi-
ment and record data. At each channel inclination and
release gate height, the program run_experiment.ino was
uploaded to the microcontroller, with a defined experiment
duration Te, camera delay Ty, and camera footage duration
Te. Then, before each experiment, three programs started
running in order to record data: Optronis’ TimeViewer soft-
ware to record camera footage at frame rate 2kHz, subject
to an external trigger and over duration 7.; the program
record_picoscope.exe to record data from the oscilloscope
at sample rate 250kHz, with an external trigger and du-
ration T, set by settings file exp_settings.txt; and the
program record_balance.py to record data from the mass
balance at 5 Hz and over duration T, starting after a three-
second beeped countdown and a ‘go’ beep. All programs are
available on a GitLab repository associated with this paper
(Arran et al., 2021).

Signals sent between the apparatus synchronised mea-
surements. The record_balance.py program emitted a ‘go’
beep to mark the start of the experiment, upon which the
experimentalist manually lifted the reservoir’s release gate
and pressed a start switch. This switch completed a circuit,
increasing the voltage at the Arduino microcontroller’s ana-
logue input pin. The microcontroller responded by sending
a digital signal to the force sensor amplifier and to the os-
cilloscope, and by starting a delay timer of duration T,. In
turn, the force sensor amplifier responded to the signal by
switching to ‘Measure’ mode, amplifying the plate-normal,
downslope, and cross-slope signals from the force sensor and
transmitting them to the oscilloscope, for which the micro-
controller’s signal was the external trigger to start recording
the signals from both the force sensor amplifier and the ac-
celerometer amplifier, sending them to the Lenovo laptop.
While the oscilloscope was recording data, the microcon-
troller reached the end of its time delay T,; and sent a digital
signal to switch a relay, which in turn sent a trigger signal
to the high-speed camera to initiate its recording, with data
again sent to the laptop. Figure S2 is a schematic of this

control system.

i Accelerometers
Start switch Force sensor
Yt=0 Y Al t All t
Arduino t =0 [ Force sensor Accelerometer
microcontroller| t=7, amplifier amplifier
Yt=T, t=0 VYO<t<T, Y Al t
| High-speed | | Oscilloscope |
camera
Ty<t<Ty+ T, YOo<t<T,

t>0
Mass balance
t<Te

Figure S2. Schematic of experimental control and mea-
surement system. The experiment is controlled and mea-
surements recorded via signals sent between the labelled
devices. Arrows indicate the signals sent between devices,
with labels indicating the times at which they are sent.

Lenovo laptop |

S6. Calculation of the Net Force on the
Instrumented Plate

Here, we describe our derivation, calibration, and valida-
tion of a relation between a) the net force applied by the
flow to the instrumented plate, and b) the voltage outputs
of the force sensor’s charge amplifier.

S6.1.

The three voltage outputs from the force sensor’s charge
amplifier, after being downsampled to 200 Hz by averaging
over 5ms intervals, were each the sum of three components:
a zero offset following the switch to the ‘Measure’ mode; an
approximately linear drift over time due to charge build-up;
and a signal from the sensor that was linear in the forces ap-
plied to the plate by the flow, but with cross-talk between
the different components of force and with unknown coeffi-
cients. Writing the downsampled voltage and force as V(tg
and F(t), there existed varying offset and drift vectors V
and «, and a constant response matrix 3, such that

Derivation

V(t) =~ V° +at + BF(t). (12)
To recover the downslope and plate-normal forces applied to
the plate, under the assumption that the contribution of the
cross-slope force was negligible, we considered the two corre-
sponding voltage outputs; directly removed the effect of the
zero offset VO; subtracted the expected linear drift E [&] ¢, as
calibrated from preliminary measurements; and multiplied
by the inverse of the relevant 2-by-2 response sub-matrix
B, as calibrated from measurements taken between experi-
ments. Specifically, we took

F(t) =57 [V(t) = V(to) —E[a] (t — to)],  (13)
with o = 0.8 s, at which time the zero offset had stabilised
and there was no external force on the instrumented plate,
and with estimates for E [&] and 8 from calibration.

S6.2. Calibration

To estimate the mean drift vector E [&], we took 10 zero-
load recordings, for each of which the force sensor’s output
was recorded over 110 s with no external force on the instru-
mented plate. Dividing by 100 the change in Vj over the
100s after to, we calculated the & for each recording, and
recovered

E[ds] = (121 £ 7)pVs™ " and E[4.] = (225 £ 18) pVs ™',
(14)
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with each error being the standard error in the sample mean,
as described in S9. R

To estimate the response matrix 3, we took four static-
load recordings before each set of experiments at a given
channel incline tan @ and release gate height hy, and four
after. For each recording, we attached a cradle to the cen-
tre of the instrumented plate with double-sided tape, then
recorded the force sensor’s output over 5s, adding to the
cradle, 1s to 2s after starting, 10 metal plates with com-
bined mass M. = 442.3g. Calculating, for each recording,
over all ¢t between 3s and 4s, the average voltage response
V" = (V(t) - V(to) — E[a] (t — t0))at, we calculated over
all such V" the least-squares best-fit matrix 3 for the linear
model V" = BM_g(sin 6, cos ), with gravity g = 9.81ms™2.
The result was

Bew Bo-\ [ 0.83102 —0.03522 o
(Bzw B..)  \—~0.13462 0.35345 VN, (15)

with the fit achieved by the linear model plotted in Figure
S3.

1.6
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Figure S3. The force sensor’s response to static loads.
Points represent the voltage response of the downslope
(red) and plate-normal (blue) outputs of the force sen-
sor’s charge amplifier, to an M.g = 4.34 N vertical load
on the plate’s centre, at different channel inclines tan 6.
Lines represent the theoretical response, for a best-fit re-

sponse matrix /3’ Scatter arises from variations in & from
its expected value and from imperfections in the center-
ing of the load.

S6.3. Validation

Since the measured effective friction on the plate p is
the ratio of time averages of the two inferred force compo-
nents, it is particularly sensitive to this calibration, so we
performed tests to validate the use of equation (13) and of
the above values of E [@] and .

To test the measurement of the static friction between a
volume of glass beads and the instrumented plate, we closed
off the channel at its end and filled it with beads, record-
ing the force sensor’s voltage response to the resulting static
load and calculating . To reduce the effect of &’s variability
around its expected value, we repeated this measurement of
u three times and took the average, at each of a range of
channel inclines 6 between 15° and 25°. The resulting aver-
ages agreed with the theoretical values tan 6 to within both
two mean standard errors and 10 %.

To test the measurement of dynamic friction, we released
weighted sledges from rest at the top of the instrumented
plate, inferring their accelerations from high-speed-camera
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footage and comparing the implied friction coefficients be-
tween the sledges and the plate to those measured with the
force sensor. If i is the true, constant friction coefficient
between a sledge and the plate, it will be linked to the time
T for the front of the sledge to cross the instrumented plate
by X = g(sin6 — ficos§)T?/2, so we manually extracted T
from the camera footage, calculated the implied value of i,
and compared it to the effective friction measured over the
4s after top. We repeated the test three times for each of
three sledges, with bases of printer paper, plastic mesh, and
wetted tissue paper, and corresponding implied friction coef-
ficients 1 = 0.227+0.002, 0.340+0.008, and 0.46840.010, re-
leased at channel inclines tan § = 0.3648, 0.5609, and 0.6852,
respectively, and in each case the average value of u agreed
with /i to within two mean standard errors and 15 %, despite
significant variation of the instantaneous value of F,/F..

S7. Calculation of the Power Spectrum of
the Basal Force Applied by the Flow

Here, we describe our derivation, calibration, and valida-
tion of a relation between a) the power spectrum of the basal
force applied by the flow to the instrumented plate, and b)
the measurements of the accelerometers on the bottom of
the plate.

S7.1.

To derive such a relation, we consider the deformation of
the instrumented plate in response to a single impact’s force;
calculate the contribution of that response to the mean seis-
mic energy within the plate; consider the total mean seismic
energy, due to multiple impacts; and link that energy to the
measurements of accelerometers.

Since the steel structure of the plate is thin, stiff, and
elastic, we may assume that linear Kirchhoff-Love plate the-
ory applies in calculation of its deformation (Love & Dar-
win, 1888; Ciarlet, 1997). We further assume isotropy and
homogeneity of the steel. Writing pp, Ep, vp, X, Y, and
H for the steel’s density, Young’s modulus, Poisson’s ratio,
length, width, and thickness, and defining its bending stiff-
ness D = E,H?/12(1 — 1), then its normal displacement w
satisfies

Derivation

DV*V?w = —p, HO;w + p, (16)
for p the normal force per unit area to which the plate is
subject. The relevant boundary conditions in our case are
a clamped centre and free edges forming a rectangle. Now,
on the set of functions satisfying these conditions, the left-
hand-side operator in equation (16) is self-adjoint, so that
we may define an orthonormal basis of eigenfunctions ¥;(x)
with corresponding positive, real eigenvalues 472 p, H ff , and
may write w;(t) for the components of w with respect to this
basis. Substituting into equation (16), the orthonormality
of the basis functions allows us to recover the ordinary dif-
ferential equation

d? 1
(51w =t [ wwaxam

If we impose w = 0 for ¢t < —T, and suppose p repre-
sents an impact, so is a point force at x¢ with support
[—T,0], then we can solve this equation using the Green’s
function for the left-hand differential operator, G(t;7) =
sin(2w f;[t — 7]) /27 f;. Writing p(x,t) = §(x — x0) Fi(t) for
Dirac delta function é and plate-normal impact force Fj,
and writing the sine function as a sum of exponentials, we
recover that for ¢t > 0

t
X _ d)J (XO) 2mifi(t—7) _ —2mif;(t—T) 3
wj(t) = /oo Trip HXYT; (e e ) Fi(r) dr

b g [ R

1
2mpp HXY f; (18)
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where © denotes a Fourier transform and 3] the imagi-
nary component, and we assume that F; is real, so that
Fi(=f) = Fi(f)"

We calculate the expected contribution of this response
to the plate’s mean seismic energy by assuming that the
impacts are equally likely anywhere on the plate, and that
energy is linearly attenuated, with quality factor Q > 1.
We note that each eigenfunction component w;1; behaves
like a simple harmonic oscillator and that the eigenfunc-
tions’ orthogonality allows the energy of each component to
be considered separately. Therefore, writing (-);,¢, for time
averages over the modes’ cycles, the expected mean seismic
energy in the plate, per unit area, due to the impact and
immediately after it, will be

1 .
&(0) = W/ dXO/ dxzppH<w32'w]2’>l/fj
XY XY j
_Z E)P
2ppHX2Y2’

where again we have used the orthonormality of the basis
functions. Linear attenuation will result in the exponential
decay of this energy over time, with the jth mode’s contri-
bution having decay constant 27 f;/Q. For any time interval
At starting before ¢ = 0 and lasting until ¢ > Q /27 min(f;),
the mean seismic energy in the plate over this time interval
will therefore be

(19)

QIE:(f)?
Z Amp, HX2Y2 f; At (20)

We note that only for f;T > Q/2r will a) attenuation af-
fect the response during the interval [-T7,0], and b) this
interval be significant in the averagmg, and we ignore such
high frequencies, at which |F;(f;)|* will be negligible: for a
Hertzian impact with @ = 100, f;T > Q/2m implies that
|E5(fi)?/|E3(0) < 107°.

To consider the plate’s total energy rather than the con-
tributions of individual impacts, we also restrict our atten-
tion to frequencies at which both individual impacts’ forces
and the responses to those forces are uncorrelated, as dis-
cussed in S2. Consequently, we can relate the total normal
force on the plate F' and the plate’s total energy per unit
area &£, over time At, to the contributions F; and &; of indi-
vidual impacts within At:

= IR

with cross terms making no net contribution and Fourier
transforms taken over At. We can therefore sum equation
(20) over all impacts to recover an expression for the plate’s
total energy in terms of the power spectrum |F(f)|? of the
total force applied on the plate. _

To link this power spectrum |F'(f)|* to the measured ver-
tical acceleration of the plate’s steel structure, we assume
that a) a proportion P of the plate’s energy is associated
with the steel’s vertical deformation and b) |F(f)| varies
sufficiently slowly that we can estimate its values away from
the plate’s resonant frequencies f;. The relevant frequency
scale is the mean bandgap between eigenvalues of equation
(16) in the case of simply supported boundaries, for which
the eigenfunctions v, and eigenvalues f;, are

(E)ar =) (E)ar,

i

(21)

| 2

- (] . (k
Yik(z,y) =4sin (%) sin (%) , (22)
2 2
fe=T (L ) [P
Fir =3 (X2+Y2) I (23)
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Noting that the number of eigenvalues less than 7 R?v/D /2+/ppH

may be approximated by the area of a quarter-ellipse with
major and minor axes X R and Y R, this mean bandgap is

2 | D
Xy \ p,H’

Ap= (24)

which will be equal to the corresponding asymptotic mean
bandgap of the eigenvalues f; for our problem, on the same
domain. We use this to approximate the discrete spectrum
on the right-hand side of equation (20) with a continuous
spectrum; we approximate the left-hand side’s mean seis-
mic energy (€)a: using a moving average (|a(f)|*)ay, over
a frequency scale Af > Ay, of the mean spectral density of
the steel’s vertical acceleration. Recalling that the vertical
acceleration accounts for only a proportion P of the total
energy, we recover

L g lal))ars QIF(N)I?
pi |t e = | (25‘)““

X2Y2fAf AL
for both Fourier transforms restricted to the interval At.
Consequently, noting that a(t) is real and so |a(f)|* is sym-
metric, and approximating its value with the measurements
ar, of the four accelerometers, our estimate of the power
spectrum of the basal force applied by the flow to the in-
strumented plate is

po() — FDE

(o) PXY VD o
At TPQfAL Z

Qg

(26)

With the accelerometers’ calibrated sensitivities si taken
from their calibration sheets, and the accelerometers’ con-
ditioning amplifier having amplification A, as defined in S4,
the power spectral densities |ax|? of the measured acceler-
ations were calculated from the amplifier’s output voltages
Vi as

AN AP (27)

where I'(f) = 14 (f/fm)™ is a high-frequency correction for
the accelerometers’ non-contant frequency response and for
the amplifier band-pass filter mentioned in S4, with fs and
n determined by the calibration described in section S7.3.

S7.2. Calibration

To calibrate the values of P and @, and to extend the fre-
quency range in which |ax |2 could be measured correctly, by
calibrating far and n in I', we used the impacts of individual
2-mm-diameter glass beads, dropped onto random positions
on the instrumented plate from a height of h; = 1 m, with
the channel inclined at § = 0°. The use of ball impacts to
calibrate sensors is suggested in e.g. McLaskey and Glaser
(2010), and allows calibration over frequency and force scales
directly relevant to our experiments.

To record and analyse data, we used automatic triggers
to record the voltage outputs of the accelerometers’ condi-
tioning amplifier throughout and after each of 25 impacts,
at 250 kHz over 0.06s, with amplification A = 1.67V pC™1.
We divided these voltages by A and by the accelerom-

eters’ documented sensitivities s;1 = 6.75fC/(ms™?),
s2 = 5.61fC/(ms™?), s3 = 5.38fC/(ms™?), and s4 =
6.58fC / (ms™?), to recover the band-pass-filtered acceler-

ation measurements ax(t). To consider individual frequency
components of these accelerations at maximum precision in
both the frequency and time domains, we calculated their
wavelet transforms using unit Gabor wavelets with centre
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frequencies fo between 256 Hz and 125kHz and standard
deviations in frequency space oy, = fo/4m:

2 1/4 ) f2(t—t )2 .
Wlak](fo,to) = (%) / ap(t)e A 2mifolt=to) gy
(oo}

(28)
We then calculated the corresponding spectral density, lo-
cally averaged around each fo, of the plate’s steel struc-
ture’s vertical-displacement-associated seismic energy per
unit area:

4

1
(aEP

for pp = 7800kgm ™ and H = 2mm. To extract the en-
ergy spectral density \I/?co immediately after each impact,
and the decay rate ky, of the spectral density over time, we
performed a linear regression of In Wy, against ¢, over the
time following the impact for which the signal was above the
level of noise. An example for a single impact and wavelet is
shown in Figure S4a, while Figure S4b shows the resulting
average decay rates (kg,), over all 25 impacts, and Figure
S4c shows the similarly averaged post-impact energy spec-
tral densities (U},).

poHWlar] (fo, t)|?
(27 fo)? ’

(29)

a b -~
(ks,) =2nfo/Q 7=
10710 4 T o
o 10° P
— '
© -,
21071 4 = .
T 1024 -7
& T T
£10712 4 c 103 10* 10°
~ o 1070 =
310713 4 [} " N
= \
TE 10710 4 v
- - \
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21071 \
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- = \
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Figure S4. The accelerometers’ response to individual
impacts of glass beads. a) The plate’s steel structure’s
vertical-displacement-associated seismic energy density
] o, localised around fy = 8.1kHz, as inferred from un-
calibrated accelerometer measurements for a single im-
pact, decays exponentially. The dashed line indicates
the linear regression of In Wy, against ¢, allowing extrac-
tion of the post-impact energy spectral density \f/(;o, and
the decay rate kz,. b) Points represent the mean decay
rates (kg,) over 25 impacts. The dashed line indicates
the theoretical relation, for best-fit quality factor Q. c)
Points represent the mean measured post-impact energy
spectral densities (\il?c()), over 25 impacts. The solid line
indicates the theoretical value (\I/(}O) for a flat accelerom-
eter response and for fitted P = 0.25; the solid area its
theoretical standard error; and the dashed line the the-
oretical relation for the best-fit high-frequency response
correction I'(f) = 1+ (f/fm)™. In both b and c, verti-
cal and horizontal errorbars indicate the mean standard
error over different impacts and the wavelet standard de-
viation in frequency space, respectively.

We used these data to perform the calibration, recovering
the quality factor @ = 99 + 12 as the mean of 27 fo/(ky,),
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and cahbratlng P, fm and n by comparing the measured
values <\I/ ,) to the theoretical values of the plate’s total
post- 1mpact energy spectral density (¥ f0> /P predicted by
equation (19) and the Hertz theory described in S3. Specifi-
cally, we noted that each dropped glass bead impacted, ver-
tically, a glass bead attached to the plate in an approxi-
mately hexagonal packing, and we calculated the resulting
random distribution of the angle 8; between the vertical and
the normal between impacted and impacting beads. To sim-
ulate an impact, we pulled 6; from this distribution and took
the spectral density of the applied plate-normal force to be

[P(f)P = |Fu(f; cos 0:y/2gh0)|? cos® 0,

for F,(t; un) the Hertzian normal force between two spheres
colliding at normal velocity u, and with the glass beads’
material properties: density p = 2500kgm >, diameter
d = 2mm, Young’s modulus £ = 63 GPa, and Poisson’s
ratio v = 0.23. By S3, this spectral density varies over fre-
quency scales f./7 ~ 100kHz > 07, so equation (19) im-
plies that the impact imparts energy with expected spectral
density around fo

(30)

Vi . F(o)P
P T 4p, HX?Y2A;'

(31)

for mean bandgap Ay given by equation (24) using the steel
structure’s material properties: density p, = 7800kg m™3,
length X = 0.18 m, width ¥ = 0.1 m, thickness H = 2mm,
and bending stlffess D = E,H?/12(1—v7) for Young’s mod-
ulus F, = 200 GPa and Poisson’s ratio v, = 0.29. We cal-
Culated (W(}O)/P as the average of U} /P over 25 simulated
impacts, and noted that the dominant source of systematic
error in its value was the varying number of resonant fre-
quencies in each wavelet’s frequency range, approximated
as the 95% confidence interval fo £ 205,. We therefore es-
timated the error by supposing this number had a Pois-
son distribution with mean 4o, /Ay. Finally, we calculated
P = 0.25 for consistency between measured <\If ) and theo-
retical (\Il ) at low fo, and the least-squares best fit values
fm = 60kHz and n = 6 for the correction to the high-
frequency response of the accelerometers and accelerometer
amplifier:
<\I’(}0>/<\ij0>

T(fo) = 14 (fo/fm)". (32)

S7.3. Validation

We performed a different set of impact experiments to
verify 1) the acoustic isolation of the instrumented plate
from the rest of the channel - that only impacts on the
plate made significant contributions to its normal displace-
ment - and 2) the validity of equation (26) for the vertical
basal force’s spectral density |F|?, with equation (27) for
the measured accelerations and with P = 0.25, Q = 99,
fm = 60kHz, and n = 6. With the channel flat, we
dropped steel ball bearings of diameter (3.125 £ 0.007) mm
from a metal plate (100.68 £ 0.02) mm above the channel
bed, onto a) 10 random positions on the plate, and b) 10
random positions off the plate, 10 mm from its edge. Hav-
ing used automatic triggers to record the voltage output of
the accelerometers’ conditioning amplifier throughout and
after the impact, at 250 kHz over 0.04s, with amplification
A =0.527VpC~" in case a and 16.7VpC~" in case b, we
calculated in each case the inferred spectral density |F|? of
the basal force. This is plotted, and in case a compared to
its theoretical value, in Figure S5.
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Figure S5. The inferred spectrum of the vertical basal
force applied by a ball bearing’s impact. Using appropri-
ate material parameters and calibrated P, @, fa and n,
the spectral density calculated using equations (26) and
(27) for an on-plate impact (blue) is consistent with the
theoretical spectral density (black) at all frequencies at
which the accelerometers’ signal is distinguishable from
noise. Under the same conditions, the contributions from
an off-plate impact (green) are less than 1 % of those from
an on-plate impact. All error regions represent the mean
standard errors over different impacts.

Figure S5 shows that 1) the plate is acoustically isolated
from the rest of the channel, and 2) equations (26) and
(27) are valid for P = 0.25, Q = 99, fm = 60kHz, and
n = 6. The contributions of off-plate impacts to |F|* are
less than 1% of the contributions of on-plate impacts, and
the values of |E'|? inferred using sections S7.1 and S7.2 are
consistent with the theoretical values |Fi|?, calculated us-
ing the Hertz theory that is described in S3, for the im-
pact of a spherical steel ball bearing (p1 = 7800kg m~3,
di = 3.125mm, E; = 200GPa, v1 = 0.29) on a spheri-
cal glass bead (p2 = 2500kg m~3, dy = 2mm, Es = 63 GPa,
vo = 0.23), with impact normal an angle 0; from the vertical
(taken from a random distribution for uniformly distributed
impacts of a di-diameter particle on a hexagonal packing of
do-diameter particles) and normal velocitzy cos 0;1/2gh; (for
gravitational acceleration ¢ = 9.81ms™" and drop height
h; = 0.1m). Discrepancies between theory and observations
indicate systematic relative error, due to errors in our atten-
uation model and variability in the density of the plate’s res-
onant frequencies, which can be estimated as |F|*/|Fg|?>—1.

S8. Sidewall Image Processing

To extract profiles of the flow’s kinematic properties at
the channel wall, we performed five stages of image process-
ing: calibration, particle detection, particle tracking, veloc-
ity smoothing, and coarse graining.

Firstly, at each channel incline tanf, following camera
alignment, we calibrated distances on camera images by cap-
turing an image of a calibration sheet, attached to the inside
of the channel wall and covered with a 10 mm chequered
pattern. We convolved the greyscale image matrix with
an ideal corner pattern; identified corner locations as the
weighted centroids of above-threshhold regions of the con-
volution product; and calculated the mean number of pixels
between corners horizontally and vertically to determine the
correspondance between distances on the channel wall and
in its images. The inferred resolution was approximately
8pxmm ™',

Secondly, within each image captured during steady flow,
we identified the locations of particles by convolving the
greyscale image matrix with a ‘typical’ particle pattern from
a calibration image. The pattern was selected by hand-
labelling 25 particles in one image at each channel inclina-
tion, and taking the average of their 18 x 18 greyscale image
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matrices. Each peak of the Gaussian-smoothed convolution
product was taken to correspond to a particle, located at
the local peak of the unsmoothed convolution product. We
achieved sub-pixel resolution by fitting Gaussian curves to
the local horizontal and vertical variation of the convolu-
tion product, about the pixel-resolution peak. This method
identified the correct locations of around 90 % of particles
visible at the channel wall, robust to specular reflections and
variations in lighting.

Thirdly, we tracked particles from one frame to the next
by associating each particle identified in each image with
the closest particle identified in the previous image, under
the conditions that a) the association was not many-to-one,
with closer particles having priority, and b) the implied ve-
locity was lower than a 1.2ms~! limit. This velocity limit
corresponded to displacement per frame of one third of a
particle diameter, and was more than two standard devia-
tions above the root mean square particle velocity even for
the fastest flows.

Fourthly, for each tracked particle, we adjusted for the ef-
fect of varying specular reflections on its location estimates,
by smoothing the particle velocity over a moving, five-frame
window, using a robust weighted least-squares local linear
regression. The use of sub-pixel location estimation permit-
ted the use of the robust method, assigning lower weight to
outliers, while the linear regression corresponded to finding
the best-fit constant acceleration within each 2.5 ms window.

Finally, we used coarse-graining to infer continuum pro-
files from the point distributions of particle velocities. From
the particles’ base-normal positions z; and smoothed ve-
locities u;, we estimated the downslope-averaged and time-
averaged base-normal profiles, at the channel’s wall, of rela-
tive volume fraction ¢, (z), mean velocity u,(z), and gran-
ular temperature Ty, (z) as

Pw(2) = <Z C (255 2)md” [4) ac. (33)

uy(2) = (Z C(zj; 2)mdu; [4) ar. [ du(2) (34)

Tw(z) = <Z C(zs5 2)md’|[uj —u(2)[]*/4) are /du(z)  (35)

J

for averages (-)at. over all frames recorded by the camera,
sums > ;- over all particles detected in each frame, and
weighting function C localised around z, with integral over
the total spatial domain equal to 1. This process is discussed
for general C' in Babic (1997), but we took Gaussian profiles

1 (z—2')?

D(z/0.)Ax/2m02 P {_ 202

for 0. = d/2 the coarse-graining width, Az the downslope
extent over which images were captured, and ® the cumu-
lative distribution function of the standard normal distribu-
tion, accounting for the impossibility of detecting particles
below the base’s surface.

C(Z';2) =

| oo

S9.
S9.1.

In sections S6.2, S6.3, S7.2, and S7.3, the standard error
in the sample mean (or mean standard error) over repeated
measurements (y;)j—1, with mean 7, is defined by

Statistical Tools

Standard Errors
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Considering measurements as independent and identically
distributed random variables, no;, is an unbiased estima-
tor for the variance of the distribution from which they are
taken, provided the latter is finite, and so o2, is an unbiased
estimator for the variance of g, consuiered as a random vari-
able. Under this model, assuming certain regularity condi-
tions, the central limit theorem implies that 7 is taken from
an approximately normal distribution, with true expecta-
tion p equal to the expectation of y;. Consequently, oy, is
a typical error for the estimation of p by g, in the sense
that it’s the scale by which confidence intervals for p can be
derived from the percentage points of the standard normal
distribution. For example, § &+ o, is an approximate 68 %
confidence interval for p, while § + 20, is an approximate
95 % confidence interval.

S9.2. Fitting a Model’s Free Parameters

In seeking the free parameter values for which a model’s
predictions PF best fit our observations P2, we are con-
cerned with the ratio between predictions and observations,
and wish to penalise underestimates by a given factor as
much as overestimates by that factor. Rather than consid-
ering the arithmetic error Pg — P2, which places excessive
weight on predictions’ agreement with large values Pp, or
the fractional error 1 — Pp/Pg, which penalises overesti-
mates more than underestimates, we therefore consider the
logarithmic error In(Pg2/Pg). To penalise large errors more
than small errors, we take a quadratic loss function, and
seek to minimise

€ = exp [\/Jif Zan (Plﬂl/ﬁl(})

the geometric standard error over the N = 57 predictions.
This may be interpretted as a typical factor by which pre-
dictions are greater or lesser than observations.

To understand this parameter fitting within a statistical
framework, and to make rigorous the sense in which ¢ is
‘typical’, we note that our measurements are subject to a
large number of approximatela/ independent multiplicative
errors, so that observations Pr may be expected to be ap-
proxunately log-normally distributed about the predictions
P2(60) of an accurate model with accurate free parameter
value 6p. Under this statistical model, the likelihood may
be written as a function of the free parameter 6§ and the
log-normal distribution’s shape parameter o as

1n2<P2/152<9>>} . (39)

202

(38)

1
£(9,0'|11’1Pg) ZHWEXP |:

By considering In £, we can see that choosing the parame-
ter value that minimises Ine, and so ¢, is equivalent to us-
ing the maximum likelihood estimator for 0 Similarly, the
maximum likelihood estimator for o? is In¢, equal to the
mean square value of In(Pp/Pg). Under thls model, with
these parameters, ¢ will be the typical geometric error in
the same sense that o, is typical in section S9.1: consider-
ing the percentage points of the normal distribution, 68 %
of observations Py will be within ' P, while 95 % will be
within €2 P2.

S9.3. The Akaike Information Criterion

To compare physical models with differing numbers of
free parameters, we use the Akaike information criterion.
For each model predlctlng PF7 we consider the statistical
model discussed in section 59.2, in which In P2 1s normally
distributed about In PF with constant variance o2. We note
that if the physical model has a number k of free parame-
ters, the associated statistical model has k£ 4+ 1 free param-
eters, due to the additional free parameter 0. Considering
the likelihood £ for this model, as defined in equation (39),

ARRAN ET AL.: LABORATORY LANDQUAKES

the value of the Akaike information criterion is therefore
(Akaike, 1971)
AIC =2(k+1—In(max L)). (40)

The Akaike information criterion balances each of the five
models’ goodness of fit against the number of parameters
varied to achieve that fit, with AIC'/2 a good estimator for
the information lost in describing the true data-generating
process by the model under consideration. Akaike (1974)
makes this rigorous, for the Kullback-Liebler sense of infor-
mation (Kullback & Leibler, 1951), but in brief the model
minimising AIC' is preferred in an information theoretic
sense, with RL = exp[(min AIC — AIC)/2] the relative
likelihood of any other model (Akaike, 1978).

Of the existing models for a flow’s seismic signal, as de-
scribed in section 1.2 and implemented in section 3.3, the
‘thin-flow’ model of Farin et al. (2019) is strongly preferred
by the Akaike information criteria. All models’ AIC and
RL values are listed in Table S1. Results are identical when
using Hurvich and Tsai (1989)’s correction to the Akaike in-
formation criterion, which avoids bias for finite sample sizes,
under certain regularity conditions.

S10. The Green’s Function’s Effect on
Signals’ Energy and Relative Amplitude

Here, we use our experimental seismic signals to show
that a signal’s Green’s function affects certain seismic prop-
erties that previous authors have used to describe geophys-
ical flows directly: the rate of seismic energy emission and
the relative amplitudes of different landquake signals with
the same source and receiver locations.

For our experiments, the Green’s function appears via
equation (12) of the main text, which relates the basal forces
exerted by the flow to the accelerations they caused and in-
dicates that, on a larger, denser, stiffer, or more lossy plate,
the same force would result in smaller accelerations and
hence a smaller seismic signal. Similarly, working from the
derivation of this equation in S7, the total high-frequency
seismic power transferred by the flow to the plate is given
in terms of the basal force’s power spectral density Pr by

f) df, (41)

4\/ppHD /1kHL

dependent on plate density pp, thickness H, and bending
moment D. The proportion of flow energy dissipated by
seismic emission is therefore a function of basal properties
rather than of flow properties alone.

Furthermore, the Green’s functions for seismic signals will
depend differently on frequency f, so that basal properties

Table S1. Model comparison with the Akaike information
criterion. For each of the existing physical models described
in section 1.2, we list the number k of free parameters in its
implementation in section 3.3; the value AIC of the Akaike
information criterion for its associated statistical model; and
this model’s relative likelihood RL.

Model k AIC RL
Kean et al. (2015) 1 204 6x10717
Lai, Tsai, Lamb, Ulizio, and Beer (2018) 0 284 3 x 10734
Farin et al. (2019) ‘thick-flow’ 1 181 7x10712
Farin et al. (2019) ‘thin-flow’ 1 129 1
Bachelet et al. 1 199 8x 107!
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Figure S6. Comparison between the mean squared seis-
mic velocities (vJ2> observed in our experiments and the

mean squared velocities (v2) that would be observed in
an idealised geophysical context. For the latter, we took
pg = 2500kgm 3, ¢s = 1kms™!, and 7 = 1m in equa-
tion (42), but other values would change only the prefac-
tor. Colours indicate each experiment’s mass flux g per
unit channel width, and unfilled symbols represent exper-
iments for which the flow was in the transitional regime.

will affect even the relative signal amplitudes of different
flows with the same Green’s function. For illustration, we
consider the vertical velocity response of a surficial receiver
to a vertical, surficial point force, on an isotropic, homoge-
neous, perfectly elastic half-space with Poisson ratio 0.25,
material density p, and shear wave velocity c,. For large
source-receiver separation r, at leading order, Miller and
Pursey (1954) showed the power spectral density P,, of this
response to be related to the power spectral density Pr of
the vertical basal force by

3
P (f) = 1.20f

Pr(f), (42)

2.5
pacar

which we compare to the mean velocity power spectral den-
sity over the accelerometers in our experiments,

b ()= LS |5L.7'(f)>2N PQ
ij(f) = 4Atz< o f ~ 167r(ppH)3/2XY\/5f

Jj=1

(43)
The mean squared velocity at the receiver, being the inte-
gral of P, (f) over all f, will clearly be more sensitive to
the corner frequency f. of Pr than were the mean squared
velocities observed in our experiments. Figure S6 shows the
consequence: approximating mean squared velocities by in-
tegrating (42) and (43) between 1kHz and f., there is no
constant conversion factor between the mean square veloc-
ities observed in our experiments and those that would be
observed if the same flows applied the same forces in an
idealised geophysical context. Even among signals with the
same source and receiver locations, the Green’s function de-
termines the ratios between different signals’ amplitudes,
so that a signal must be properly deconvolved to infer the
properties of a flow’s forces.

Movie S1.

Example of footage captured by the high-speed camera at
the channel wall, as described in section 2.1. Footage was
captured during the period of steady flow of an experiment
at a channel incline tan § = 0.44, with a release gate height
hg = 5mm. The movie is a 0.5s excerpt, vertically cropped
and slowed by a factor of 20.

Movie S2.

Illustration of particle tracking velocimetry. Footage was
captured during the period of steady flow of an experiment
at a channel incline tan § = 0.48, with a release gate height
hg = 20mm. Superposed red dots indicate the particle cen-
tres located by the algorithm described in S8, while blue
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lines indicate particle trajectories reconstructed after that
algorithm’s particle tracking and velocity smoothing.
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