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Abstract

There is a drastic geographic imbalance in available global streamflow gauge and catchment property data, with additional large

variations in data characteristics, so that models calibrated in one region cannot normally be migrated to another. Currently

in these regions, non-transferable machine learning models are habitually trained over small local datasets. Here we show

that transfer learning (TL), in the sense of weights initialization and weights freezing, allows long short-term memory (LSTM)

streamflow models that were trained over the Conterminous United States (CONUS, the source dataset) to be transferred to

catchments on other continents (the target regions), without the need for extensive catchment attributes. We demonstrate

this possibility for regions where data are dense (664 basins in the UK), moderately dense (49 basins in central Chile), and

where data are scarce and only globally-available attributes are available (5 basins in China). In both China and Chile, the TL

models significantly elevated model performance compared to locally-trained models. The benefits of TL increased with the

amount of available data in the source dataset, but even 50-100 basins from the CONUS dataset provided significant value for

TL. The benefits of TL were greater than pre-training LSTM using the outputs from an uncalibrated hydrologic model. These

results suggest hydrologic data around the world have commonalities which could be leveraged by deep learning, and significant

synergies can be had with a simple modification of the currently predominant workflows, greatly expanding the reach of existing

big data. Finally, this work diversified existing global streamflow benchmarks.
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Abstract 8 

There is a drastic geographic imbalance in available global streamflow gauge and catchment 9 
property data, with additional large variations in data characteristics, so that models calibrated in 10 
one region cannot normally be migrated to another. Currently in these regions, non-transferable 11 
machine learning models are habitually trained over small local datasets. Here we show that transfer 12 
learning (TL), in the sense of weights initialization and weights freezing, allows long short-term 13 
memory (LSTM) streamflow models that were trained over the Conterminous United States (CONUS, 14 
the source dataset) to be transferred to catchments on other continents (the target regions), 15 
without the need for extensive catchment attributes. We demonstrate this possibility for regions 16 
where data are dense (664 basins in the UK), moderately dense (49 basins in central Chile), and 17 
where data are scarce and only globally-available attributes are available (5 basins in China). In both 18 
China and Chile, the TL models significantly elevated model performance compared to locally-trained 19 
models. The benefits of TL increased with the amount of available data in the source dataset, but 20 
even 50-100 basins from the CONUS dataset provided significant value for TL. The benefits of TL 21 
were greater than pre-training LSTM using the outputs from an uncalibrated hydrologic model. 22 
These results suggest hydrologic data around the world have commonalities which could be 23 
leveraged by deep learning, and significant synergies can be had with a simple modification of the 24 
currently predominant workflows, greatly expanding the reach of existing big data. Finally, this work 25 
diversified existing global streamflow benchmarks. 26 

Key points: 27 

1. Basins in the world can be well modeled by transferring a deep network trained in the US 28 

and tuning it locally, altering common workflows 29 

2. The benefits of TL increased with the amount of data in the source dataset, and showed 30 

better performance than pre-training with a hydrologic model. 31 

3. This work greatly expands the reach of deep learning and adds to the value of existing big 32 

data, and calls for synergy of global datasets.  33 

                                                            
1 * corresponding author: Chaopeng Shen, cshen@engr.psu.edu 
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1. Introduction 34 

There is a great deal of geographic imbalance in global hydrologic datasets, especially streamflow 35 

and water quality gauges. While the US and Europe are blessed with thousands of gaging stations 36 

and open access to data, other parts of the world including Asia, Africa, South America, and Oceania 37 

have much sparser gauge networks for logistical, economic, or political reasons (Fekete & 38 

Vörösmarty, 2007; Do et al., 2017). Apart  from streamflow gauges, these regions also lack data on 39 

physiographic attributes such as geology and soil depth. Nevertheless, climate change is stressing 40 

these parts of the world, and accurate hydrologic simulations are needed for these regions just as 41 

much, or even more than for data-rich regions. 42 

Catchments across the world are often perceived as being unique from each other, requiring 43 

customized development for each basin (Teutschbein & Seibert, 2012). As a rule of thumb, when we 44 

create process-based hydrologic models, our development effort scales roughly linearly to the 45 

modeled area, computational effort scales linearly at best, and accuracy is unrelated to the number 46 

of basins modeled. It is typically difficult to apply knowledge gained from one basin to another, as 47 

parameters or experiences do not transfer easily. As a result, although there have been calls for 48 

hydrologic studies to transcend the uniqueness of places (McDonnell et al., 2007), success at 49 

modeling some basins does not in general translate into equivalent success or reduced effort for 50 

basins in other continents.  51 

Recently, data-driven hydrologic models, especially those based on the deep learning algorithm of 52 

long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997), have shown strong skills in 53 

learning streamflow dynamics for forward runs and forecasting (Feng et al., 2020; Kratzert et al., 54 

2020; Li et al., 2020). Such performance has benefited from the availability of big data uniquely 55 

available over the conterminous United States (CONUS). In other parts of the world, however, we 56 

could not apply these same techniques, due to shortage of streamflow gauge data. Moreover, these 57 

https://www.zotero.org/google-docs/?3YEgNp
https://www.zotero.org/google-docs/?3YEgNp
https://www.zotero.org/google-docs/?Usmgdo
https://www.zotero.org/google-docs/?M8camI
https://www.zotero.org/google-docs/?cpXGwy
https://www.zotero.org/google-docs/?q42p2T
https://www.zotero.org/google-docs/?q42p2T
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techniques require uniform input variables that not only have the same physical concepts but also 58 

roughly consistent characteristics, which makes it difficult to apply outside of a unified dataset like 59 

CAMELS (Addor et al., 2017). Across different continents, climate forcing data and static attributes 60 

were collected from different sources and have different characteristics, e.g., biases. Therefore, even 61 

if we were to, despite all odds, compile a global database just like the CAMELS series, it is uncertain 62 

if a uniform global model could be trained. 63 

In data-scarce regions (relatively few streamflow gauges and/or short history of observations), there 64 

are often daily streamflow measurements that have been recorded for a few years, but not with the 65 

consistency and breadth of the CONUS data. For example, screening through the dataset of the 66 

Global Runoff Data Centre (GRDC, available at http://grdc.bafg.de), there are a large portion of 67 

basins in the world that have <3 years’ worth of daily streamflow observations and related data. In 68 

these scenarios, machine learning models have still been employed, but mostly in a small-data 69 

setting, i.e., a model is fitted to the data from one basin or a few neighboring basins, e.g., Zhu et al. 70 

(2020), Yaseen et al. (2015), Liang et al. (2018), Bowes et al. (2019), and de la Fuente et al. (2019). 71 

Shen (2018) provided a summary and an entry point into a vast body of work in this realm, with 72 

hundreds of papers attesting to the huge demand for solutions. While still effective and typically 73 

demonstrated to outperform traditional methods, there is a risk that these models may have not 74 

seen sufficient data to thoroughly inform their behavior, which could lead to unexpected 75 

performance in future scenarios.  76 

Transfer learning (TL) (Thrun & Pratt, 1998; Pan & Yang, 2010) is a method to migrate knowledge 77 

learned from one task to another.  Because some different tasks have similar mathematical 78 

principles or require similar responses, their representations in a deep learning network are similar. 79 

Therefore, it should be possible to train a model with one task and dataset and transfer it to another 80 

task, keeping part of the original model while retraining a different portion of the model. Figuratively 81 

https://www.zotero.org/google-docs/?tZM7nD
https://www.zotero.org/google-docs/?broken=I4wBjM
https://www.zotero.org/google-docs/?broken=I4wBjM
https://www.zotero.org/google-docs/?broken=fMUQ6Z
https://www.zotero.org/google-docs/?broken=fMUQ6Z
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?yQz8Hy
https://www.zotero.org/google-docs/?broken=VukHQ5
https://www.zotero.org/google-docs/?0XMgMr
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speaking, a student who has learned piano could learn to play the violin faster than a student 82 

inexperienced with any instrument, and one who has mastered roller skating may learn ice skating 83 

faster than one who has never skated. TL allows the skills extracted from a large dataset to be 84 

reused for different tasks, improving efficiency while greatly expanding the value of large datasets, 85 

and it allows some extent of procedure encapsulation. Hence, it has become a highly popular 86 

technique in the artificial intelligence community (George et al., 2017; Shen, 2018). Transfer learning 87 

has been widely used in language classification and image classification (Y. Zhu et al., 2011; Yosinski 88 

et al., 2014). In geosciences and more specifically remote sensing, it is now a popular practice to 89 

transfer models from image-recognition datasets, e.g., ImageNet, for remote sensing tasks such as 90 

land use classification (Marmanis et al., 2016; X. X. Zhu et al., 2017). Applications in other fields 91 

address specific problems where models typically perform well when sufficient source data is 92 

available, such as using migration learning for atmospheric dust aerosol particle classification to 93 

enhance global climate models (Y. Ma et al., 2015), predicting crop yields with remote sensing data 94 

(Wang et al., 2018), fault diagnosis in fog radio access networks (Wu et al., 2020), and cross-mapping 95 

cellular and clinical information between single cell and patient data in the medical field (Johnson et 96 

al., 2020). However, transferring knowledge from one region to another had not been attempted in 97 

hydrologic time series modeling problems, and it had been unclear whether such a transfer would be 98 

fruitful. 99 

In this work, we applied transfer learning to streamflow modeling to better understand if and when 100 

such knowledge transfer could be useful for hydrological time series modeling problems. Our results 101 

demonstrate that LSTM models trained over the data-rich CONUS, along with distilled knowledge 102 

stored in the form of network weights, can be transferred to data-scarce regions such as Asia and 103 

South America to mitigate the limitations of local observations and input attributes. For clarity, the 104 

CONUS dataset is called the source dataset, while the basins in the second, transferred location are 105 

https://www.zotero.org/google-docs/?dy3apX
https://www.zotero.org/google-docs/?cchdWe
https://www.zotero.org/google-docs/?cchdWe
https://www.zotero.org/google-docs/?EgGVt5
https://www.zotero.org/google-docs/?8PBQ4H
https://www.zotero.org/google-docs/?pY1QgB
https://www.zotero.org/google-docs/?sGPGor
https://www.zotero.org/google-docs/?tQFX40
https://www.zotero.org/google-docs/?tQFX40
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referred to as the target. We reveal the benefits of TL by comparing models employing TL (hereafter 106 

called TL models) with those that are trained using only data from the target region (hereafter called 107 

local models) (Section 3.1). We also investigate the impacts of data quantity in the source and target 108 

datasets (Section 3.2) and how they compare to alternative initialization methods (Section 3.3). 109 

2. Data and  Methods 110 

2.1 Data 111 

To examine the effects of TL for different data-density scenarios, we used datasets from four 112 

different countries: the original Catchment Attributes and MEteorology for Large-sample Studies 113 

(CAMELS) dataset for the contiguous United States (Addor et al., 2017; Newman et al., 2014), 114 

CAMELS-GB, a dense dataset for Great Britain based on the CAMELS framework (Coxon et al., 2020), 115 

CAMELS-CL, a moderately-dense dataset for Chile based on the CAMELS framework (Alvarez-116 

Garreton et al., 2018), and hydrological and meteorological data for the upper Min River region of 117 

China (CHINA-MR) (K. Ma et al., 2020).  118 

The datasets all included daily streamflow, precipitation, and temperature data, but specifics varied 119 

by dataset (Table S1 in Supporting Information). The CAMELS dataset, containing 671 basins with 120 

minimal anthropogenic impacts from across the conterminous United States (CONUS), was used as 121 

the source dataset. The daily meteorological data used came from the North American Land Data 122 

Assimilation System (NLDAS). CAMELS-CL also includes maximum, minimum, and mean 123 

temperatures, and potential evapotranspiration (PET) for 516 basins. For CAMELS-CL, precipitation 124 

and PET were available from multiple sources, and we used the Chilean national precipitation data 125 

and the PET obtained from MODerate resolution Imaging Spectroradiometer (MODIS). CAMELS-GB 126 

provides additional daily hydro-meteorological data including radiation and humidity. The CHINA-MR 127 

dataset contains 5 basins larger than 1720 km2. Atmospheric forcing data from The China 128 

https://www.zotero.org/google-docs/?Ze21fM
https://www.zotero.org/google-docs/?KgVUSV
https://www.zotero.org/google-docs/?rb1ZdV
https://www.zotero.org/google-docs/?rb1ZdV
https://www.zotero.org/google-docs/?ilHMpw
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Meteorological Assimilation Driving Datasets (Meng & Wang, 2018) included daily solar radiation 129 

and maximum and minimum temperatures while observations included streamflow. Attributes were 130 

mainly geographical variables, including area percentage of land use, area on different slopes, and 131 

land use landscape metrics, derived from the Harmonized World Soil Database (Fischer et al., 2008) 132 

and the Landsat Thematic Mapper and Enhanced Thematic Mapper data 133 

(https://landsat.gsfc.nasa.gov/). A complete list of forcings and attributes as inputs to models are 134 

presented in Table S1. 135 

We selected all the basins in CAMELS to train the source model (training period from 1985-Oct-01 to 136 

2015-Oct-01). For context, if we trained the model for 10 years (1985-Oct-01 to 1995-Oct-01) and 137 

tested it in the next 10 years (1995-Oct-01 to 2005-Oct-01), the median NSE for the test period was 138 

0.72, which was essentially identical to other models reported in the literature relying on NLDAS 139 

forcing data (Kratzert et al., 2020). However, when serving as the source dataset, we trained our 140 

model with all 30 years’ worth of data to maximize extraction of information from the available data. 141 

In Chile, we selected 49 basins by screening for basins in CAMELS-CL located in the moderate central 142 

Chile, between latitudes 38°S and 42°S, with less than 20% of missing streamflow data from 2000-143 

Jan-01 to 2010-Jan-01. In our preliminary tests, LSTM models were found to give poor results for the 144 

extremely dry deserts in the North (which include the driest known place on Earth) and glacier-145 

influenced cold regions in the south, a phenomenon worth future investigation. Given that the scope 146 

of this study was to improve LSTM-based modeling, we excluded these regions because the current 147 

LSTM models seem to be unsuitable. The 664 basins in the CAMELS-GB dataset, used to represent a 148 

data-rich case in the target region, were selected with the same conditions for available streamflow 149 

data. As there were only 5 basins in CHINA-MR, all were used. 150 

https://www.zotero.org/google-docs/?8m5kBR
https://www.zotero.org/google-docs/?Gecrzl
https://landsat.gsfc.nasa.gov/
https://www.zotero.org/google-docs/?iWj4ag
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2.2 Transfer Learning (TL) model based on LSTM 151 

Here we discuss TL in two senses: weights initialization and weights freezing. Deep networks such as 152 

LSTM are defined by a basic architecture and a number of weights and nonlinear activation functions 153 

across many layers. Upon training, a lot of the information in the training data is stored in the 154 

weights, with some parts of the network self-organizing to perform certain functionalities as dictated 155 

by the architecture. For example, for a LSTM model trained for streamflow prediction, some of the 156 

cell states could be used to track accumulated snow storage. We can migrate all or part of the 157 

trained network into another network. Once migrated, we have a choice: to allow all or parts of the 158 

weights to further change during training to the target task, or to freeze these weights so that they 159 

don’t change. 160 

Retraining all the weights allows them all to adapt to the new task, which effectively amounts to 161 

weights initialization using the source dataset. Compared to training the network from a blank (or 162 

cold) initial state, this procedure allows the network to converge faster and requires fewer data 163 

points to train. If we freeze the weights, we keep parts of the functionality as is, and force the 164 

weights in other layers in the new network to adapt around the frozen part. Typically, freezing 165 

weights will allow the network to be trained faster or with less data for the new task compared to 166 

weights initialization, because it reduces the number of trainable parameters, though there may be 167 

some performance penalties due to reduced flexibility. On the other hand, if the target dataset is 168 

small, freezing more weights could reduce the chance of overfitting. A word of caution is that while 169 

we can describe what the network as a whole does, it is oftentimes difficult for humans to ascertain 170 

exactly what some of the hidden layers do. Even with some specialized visualization techniques, e.g., 171 

image reconstruction (Mahendran & Vedaldi, 2015), one could at best obtain approximate answers.  172 

https://www.zotero.org/google-docs/?q10B2o
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For this work, the TL models were based on an established LSTM architecture which was already 173 

successfully tested for predictions of streamflow (Feng et al., 2020) and soil moisture (Fang et al., 174 

2017, 2019; Fang & Shen, 2020). LSTM is a type of Recurrent Neural Network (RNN) that learns from 175 

sequential data. The difference from a simple RNN is that LSTM has “memory states” and “gates”, 176 

which allow it to learn how long to retain the state information, what to forget, and what to output. 177 

The forward pass of the LSTM model is described by the following equations: 178 

Input transformation: 179 (1) 

Input node:                180 (2) 

Input gate:                            181 (3) 

Forget gate:              182 (4) 

Output gate:                183 (5) 

Cell state:                 184 

Hidden state:            185 (7) 

Output:                               186 (8) 

where I
t represents the raw inputs for the time step , ReLU is the rectified linear unit, �t is the 187 

vector to the LSTM cell, � is the dropout operator, W’s are network weights, b’s are bias parameters, 188 

� is the sigmoidal function, ⊙ is the element-wise multiplication operator, �t is the output of the 189 

input node, it, ft, ot are the input, forget, and output gates, respectively, ht  represents the hidden 190 

states, st represents the memory cell states, and �� is the predicted output. More detailed 191 

description can be found in Feng et al. (2020). 192 

https://www.zotero.org/google-docs/?8CH5Vz
https://www.zotero.org/google-docs/?9KqJas
https://www.zotero.org/google-docs/?9KqJas
https://www.zotero.org/google-docs/?1NxSLg
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There are different forcing and attribute variables in different datasets, and even for the same 193 

variable name, variable characteristics (such as biases) are often substantially different across 194 

datasets.  Therefore, the dimensions of the input transformations will necessarily be different. To 195 

accommodate this, we always allowed weights retraining of the linear layer for the input 196 

transformation (Equation 1) before the LSTM cell. Keeping this linear layer unfrozen enabled the 197 

model to function despite different inputs between the local and source data. Weights retraining 198 

was also always allowed for the linear transformation from model hidden states to the target 199 

variable. 200 

Beyond weights initialization, we tested three different combinations of freezing some weights while 201 

allowing others to be updated in the new local training task (Figure 1). For option TL-a, we only 202 

allowed the input and output linear transformation layers to be updated. By unfreezing these layers 203 

but keeping all the LSTM unit memory mechanisms (length of memory and the hidden features that 204 

are remembered or forgotten) of the transferred model, TL-a amounts to finding a linear 205 

combination that turns the inputs in the target region into the known inputs for the source model, 206 

and applying a linear adjustment to the outputs. In the other two options (TL-b, TL-c), these LSTM 207 

units were also allowed to update in the new training step. TL-b allows some of the weights on the 208 

recurrent hidden states to be adjusted. TL-c essentially uses the source dataset only to provide 209 

weight initialization, and allows all the weights on the recurrent hidden states to be adjusted. The 210 

specific parameters unfrozen for each option are shown in Figure 1. 211 
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 212 

Figure 1. The architecture of LSTM with transfer learning (TL) options. TL-a, TL-b and TL-c add 213 
more weights to be tuned, progressively. 214 

2.3 Experiments 215 

2.3.1 The effect of source and target data quantity on TLw 216 

We hypothesized that the TL model would benefit from the wealth of knowledge accumulated in the 217 

model weights as they were pre-trained by the source dataset. To test this hypothesis and to 218 

understand how the quantity of data in the source dataset influences the effects of TL, we ran 219 

experiments where we varied the training data for the pre-trained model from CAMELS. In theory, 220 

we should see the benefits of TL increase with increasing amounts of data in the source dataset but 221 

give diminishing returns, such that eventually a point will be reached where more data isn’t useful. 222 

We set the number of basins used in the source data to 10, 50, 100, 300, 500, and all 671, and 223 

randomly sampled the CONUS CAMELS basins. We defined the groups with fewer basins as subsets 224 
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of the larger ones, so results shouldn’t fluctuate between the basin number groups based on which 225 

basins were included.  226 

Apart from sparse gauges, the target data-scarce regions may only have observations from a limited 227 

period of time, and thus one might be concerned about the quality of the model. To validate the 228 

effects of TL when we have different lengths of training data in the target region, we ran a multi-year 229 

training scenario and a 1-year training scenario, to emulate regions with a shorter or longer history 230 

of observations. For the multi-year training scenario, CAMELS-CL and CAMELS-GB were trained for 231 

five years (2000-Jan-01 to 2005-Jan-01) and tested for five years (2005-Jan-01 to 2010-Jan-01), while 232 

due to dataset limitations, CHINA-MR models were trained for four years (2009-Jan-01 to 2013-Jan-233 

01), and tested for three years (2013-Jan-01 to 2016-Jan-01). For the 1-year training scenario, China-234 

MR, CAMELS-CL, and CAMELS-GB basins were trained in 2009-Jan-01 to 2010-Jan-01, 2004-Jan-01 to 235 

2005-Jan-01, and 2004-Jan-01 to 2005-Jan-01, respectively. Their testing periods were the same as 236 

for the multi-year training scenario.  237 

2.3.2 Comparison of TL to pre-training by a process-based model  238 

It has been suggested that pre-training a machine learning model (determining an improved 239 

initialization of the network weights) using outputs from a process-based model could improve the 240 

model (Jia et al., 2019; Read et al., 2019). The idea is that the process-based model outputs, even if 241 

imperfect or downright flawed, could teach the basic hydrologic inputs and responses and reduce 242 

the data demand. Would TL essentially serve the same purpose as a process-based model? To test 243 

this, we included such an experiment for comparison. 244 

We created a Soil Water Assessment Tool (SWAT)(Arnold et al., 1998) model for the Min River in 245 

China, without any calibration. Note that for the purpose of testing the benefit of physics encoded in 246 

SWAT, the SWAT model could not be calibrated, as it would otherwise contain information from the 247 

https://www.zotero.org/google-docs/?LogZPg
https://www.zotero.org/google-docs/?Xmmh5B


 

12 

local observations, which would defeat the purpose of the test. The model was fed with data from 248 

2008-Jan-01 to 2013-Jan-01 with a warm-up period of one year, and the SWAT simulation provided 249 

streamflow for the basins from 2009-Jan-01 to 2013-Jan-01 (Arnold et al., 2013; K. Ma et al., 2020), 250 

which was then used to train the LSTM model. We then further trained outputs of the warmed-up 251 

model on the observed streamflow data from the Min River, which is referred to as SWAT-MR.  252 

Parallel to pretraining the model with process-based model outputs, some have shown that using 253 

the output of a process-based model as one of the inputs to LSTM could improve the robustness of 254 

the model. We concur, and have found such effects before (Fang et al., 2017), although somewhat 255 

minor. However, training a model like that would entail creating the process-based model for all the 256 

basins in the source dataset. Hence, we did not explore this option. 257 

2.4 Evaluation metrics 258 

The main metric we used for model evaluation is the Nash–Sutcliffe model efficiency coefficient (NSE) 259 

(Nash & Sutcliffe, 1970). Performance evaluations for test periods are reported from an ensemble of 260 

five simulations, each with a different random seed.  261 

2.5. Hyperparameters 262 

We manually adjusted the hyperparameters by sensitivity analysis, and they were selected such that 263 

each model had optimal performance, for more fair comparison. We tried many combinations, with 264 

table S2 listing all the tested hyperparameters and the final values that were chosen. We used a 265 

training-instance length of 365 days for all models. The local model's hyperparameters include 266 

hidden size and batch size, which are set by sensitivity analysis of the test period performance for 267 

different datasets. The batch size chosen for the TL model was the same as for the local model, and 268 

the hidden size in TL was consistent with that for the corresponding source model.   269 

https://www.zotero.org/google-docs/?Ix2ye1
https://www.zotero.org/google-docs/?TG1djK
https://www.zotero.org/google-docs/?LgtDuo
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3. Results and Discussion 270 

3.1 Performance of TL models in each region 271 

Our results suggest TL is an effective strategy to significantly improve streamflow predictions (Table 272 

1 & Figure 2). For each region, the optimal TL model had better metrics than the local model, and 273 

the advantages tended to be larger for smaller target datasets. The 1-year training models of 274 

CAMELS-CL showed the highest benefits, with the optimal TL model improving the mean and median 275 

NSEs by 0.118 (0.587 to 0.705) and 0.128 (0.597 to 0.725) compared to the local model, respectively. 276 

For CHINA-MR, the mean NSE was elevated by 0.039 (0.564 to 0.603) for 1-year training models. 277 

With the multi-year training scenario, CHINA-MR also showed the highest TL benefit, where the TL-a 278 

improved the mean NSE by 0.068 (0.666 to 0.734) (Because CHINA-MR only had 5 basins, we put 279 

more focus on the mean NSE). The TL benefits for CAMELS-GB were smaller, as was expected for a 280 

larger target dataset, but were nonetheless non-trivial. The optimal TL models for CAMELS-GB 281 

improved the median by 0.033 (0.794 to 0.827) and merely 0.008 (0.853 to 0.861) for 1-year and 282 

multi-year training models, respectively.  283 

For both CAMELS-CL and CHINA-MR, the benefits from TL should be substantial enough to be of 284 

interest to most modelers. The benefit was less pronounced for CAMELS-GB, but might still be 285 

attractive to those who want to have the best possible performance. These results agree with our 286 

hypothesis that TL more prominently benefits target regions with smaller datasets:  re-training on 287 

the local target region fine-tuned the network weights and adapted them to local conditions, but 288 

when there was a small target dataset, the model needed to heavily rely on knowledge obtained 289 

from the source dataset. The more data were available for the target region, the more adjustments 290 

were applied to the network weights, until the amount of data was comparable to the source 291 

dataset and the benefit of TL was almost negligible, as with CAMELS-GB. 292 
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All the multi-year training models performed better than the corresponding 1-year training models, 293 

and the TL benefits for the 1-year training scenario tended to be greater than the multi-year training 294 

scenario, although there were exceptions. Across all the regions, multi-year training of the local 295 

models improved the median NSE by an average of 0.151 (ranging between 0.059 and 0.233) 296 

compared to 1-year training models, while multi-year training of the TL models improved the median 297 

NSE by an average of 0.100 (ranging between 0.024 and 0.183). The exception to this trend was that 298 

the multi-year training TL models benefited even more than 1-year TL models for CAMELS-GB: the 299 

mean NSE of CAMELS-GB models were enhanced by 0.024 (0.769 to 0.794) and 0.043 (0.726 to 0.770) 300 

for multi-year and 1-year models, respectively. 301 

The optimal TL options differed for each dataset, but they seemed to be the same for each region 302 

regardless of training length.  Table 1a shows that the optimal TL options for were TL-c (all weights 303 

unfrozen) for CHINA-MR, TL-a (just input and output transformation layers unfrozen) for CAMELS-CL, 304 

and TL-b (many, but not all weights unfrozen) for,CAMELS-GB. The difference between different 305 

options was substantial for CHINA-MR and CAMELS-CL, but relatively minor for CAMELS-GB. These 306 

findings suggest it will be difficult to find the best option a priori.  307 

It turned out to be difficult to anticipate the best TL option for different datasets. TL-b was the best 308 

option for CAMELS-GB by a very small margin over TL-c, which was largely consistent with our 309 

intuition that more local data can be better exploited by models with larger complexity. TL-a was 310 

found to be better for CAMELS-CL, which suggests central Chile may be climatologically and 311 

hydrologically similar to some basins in CONUS and was sufficient to only perform linear 312 

transformations of inputs and outputs. However, TL-c, which was the equivalent of only a weight 313 

initialization, was found to be the best option for all CHINA-MR experiments, which countered our 314 

intuition that a smaller target dataset would benefit from a partially-frozen model. One potential 315 

explanation is that CHINA-MR contains larger basins than the CONUS source basins, which could 316 
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have made the routing process comparably more important, and thus obtaining optimal results 317 

required the retraining of all the LSTM weights to sufficiently alter the model’s memory dynamics. 318 

On a side note, the good performance with CHINA-MR and CAMELS-CL suggests that the forcing 319 

information for CHINA-MR is potentially of a quality similar to NLDAS.  320 

  321 
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Table 1. The NSE values of the 5-member ensemble-mean discharge for different training scenarios. 322 
Local models were trained only with data from the target region. TL options include TL-a (just input 323 

and output transformation layers retrained), TL-b (many, but not all weights retrained), and TL-c (all 324 
weights retrained). Bold numbers indicate the best performing model for each category. (b) 325 

Comparison between the TL model originally trained over the CONUS (option TL-c), the TL model 326 
initialized with SWAT model outputs, and the locally-trained models for CHINA-MR. Because CHINA-327 

MR has only 5 basins, we focus more on the mean. 328 

(a) 329 

 
Model 

NSEmean NSEmedian 

CHINA-MR CAMELS-CL CAMELS-GB CHINA-MR CAMELS-CL CAMELS-GB 

1-year 
training  

Local 0.564 0.587 0.726 0.571 0.597 0.794 

TL-a 0.597 0.705 0.765 0.609 0.725 0.824 

TL-b 0.593 0.650 0.770 0.620 0.657 0.827 

TL-c 0.603 0.636 0.767 0.624 0.645 0.822 

Multi-year 
training 

Local 0.666 0.810 0.769 0.733 0.830 0.853 

TL-a 0.706 0.845 0.789 0.708 0.868 0.847 

TL-b 0.718 0.820 0.794 0.698 0.840 0.861 

TL-c 0.734 0.801 0.796 0.749 0.823 0.859 

 330 
      (b) 331 

Model NSEmean NSEmedian 

1-year training 

Local 0.564 0.571 

TL (SWAT-MR) 0.580 0.603 

TL-c (CONUS) 0.603 0.624 

Multi-year 
training 

Local 0.666 0.733 

TL (SWAT-MR) 0.693 0.748 

TL-c (CONUS) 0.734 0.749 
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 332 

Figure 2. Performance of local and optimal TL models (selected based on Table 1) pre-trained with 333 
different numbers of CONUS (source) basins for (a) 1-year training and (b) multi-year training. All the 334 
metrics were calculated for the five-member ensemble mean discharge during the test period. Plus 335 
symbols indicate mean values. For CHINA-MR, there are only five basins, so the two “whiskers”, the 336 
two edges of the boxes, and the median line each represent performance for one basin. 337 
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3.2 The effect of source data amount on TL 338 

In general, the performance of TL was enhanced as the number of basins in the source dataset 339 

increased, though some inherent randomness did exist. We evaluated both 1-year training and 340 

multi-year training models (Figure 2). For one year of training,  both the mean and median NSE of 341 

the TL model trained only on 10 CONUS basins were still higher than those of the local models for 342 

CAMELS-CL and CAMELS-GB, suggesting that a relatively small  source dataset can already be 343 

beneficial. In the multi-year training models, all TL models showed optimal performance when the 344 

number of basins was maximized, and the model performance progressively improved with the 345 

number of basins. This supports our hypothesis: the increase in the number of training basins 346 

enriches the knowledge extracted into the source model, which translates into better model 347 

performance in the target region.  348 

As expected, there were diminishing returns, and the gain resulting from increasing the source 349 

dataset size became smaller and smaller as the dataset became larger: the initial 50 basins showed 350 

the most notable benefit, raising median NSE from 0.629 to 0.720. As the source dataset continued 351 

to increase, the benefit per added basin became smaller and smaller, albeit still non-zero if we 352 

discount some stochastic results. This is consistent with other results from big data machine 353 

learning: the marginal benefit of a larger dataset gradually decreases toward very large sample size, 354 

but may be non-zero even for a very large dataset (Sun et al., 2017).  355 

3.3 Comparison with model initialization using a process-based hydrologic model 356 

Our experiments showed that the benefits of TL were larger than what would have been contributed 357 

by weights initialization using outputs from SWAT. The initialization by SWAT outputs raised the 358 

mean NSE from 0.564 to 0.580 in one year training and from 0.666 to 0.693 for multi-year training, 359 

suggesting this approach is useful (Table 1b). Nevertheless, the optimal TL model had higher mean 360 

https://www.zotero.org/google-docs/?50SOMN
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NSE values of 0.603 for 1-year training and 0.734 for multi-year training. A possible explanation is 361 

that the source LSTM model is a more accurate hydrologic model than many process-based models, 362 

which has been illustrated in papers cited earlier.  363 

Because initialization can only be done once, the two different approaches cannot accommodate 364 

each other. We must also consider the cost of process-based model initialization, which is very high 365 

in this case, because we need to create process-based models for each target basin of interest. We 366 

cannot possibly implement this method for CAMELS-CL and CAMELS-GB within the scope of this 367 

work. Hence, when possible, the process of transferring a model trained in a data-rich region and 368 

partially retraining to better fit the local region seems to be a more valuable and efficient approach 369 

than initialization by the tested hydrologic model.  370 

4. Conclusion 371 

We introduced a transfer learning scheme to leverage information from data-rich regions to mitigate 372 

the limitations of small data sets and incomplete input attributes in data-scarce regions on different 373 

continents. Trained on the CAMELS dataset over the CONUS, our LSTM model was transferred to 374 

data-scarce regions in Asia, Europe, and South America to provide high-accuracy streamflow 375 

predictions. There is tremendous value in the transfer learning procedure, as a huge number of 376 

basins around the world with only a few years’ worth of local observations are now amenable to 377 

accurate modeling with deep learning.  378 

These results suggest that hydrologic dynamics around the world, while often perceived as unique, 379 

have commonalities that could be leveraged by modelers across different continents. It also means 380 

that enticing rewards in terms of model performance are “right at the fingertips” of the steadily-381 

rising amount of streamflow forecasters in data-scarce regions who employ LSTM on small datasets. 382 

Multiple transfer learning options are possible, and the choices need to be evaluated for each target 383 
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region’s use cases. This work suggests modelers across the world can and should look beyond their 384 

watersheds or even their continents for useful data. Efforts such as the Global Runoff Data Center 385 

and the CAMELS dataset series are highly meritorious, and could be leveraged for these efforts. A 386 

global synergy, which was not envisioned before, is now possible with deep learning frameworks.  387 
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Supporting Information 517 

Table S1 Summary of the forcing and attribute variables from CAMELS, CAMELS-GB, 518 

CAMELS-CL, and CHINA-MR datasets. Because of the long-list of attributes from CAMELS-GB 519 

and CAMELS-CL, we refer the readers to their respective publications for explanations of 520 

variable names. 521 

Dataset Forcing Attributes 

CAMELS 

PRCP, SRAD, 

Tmax, Tmin, Vp, 

Dayl 

  

elev_mean, slope_mean, area_gages2, frac_forest, lai_max, 

lai_diff, dom_land_cover_frac, dom_land_cover, 

root_depth_50, soil_depth_statsgo, soil_porosity, 

soil_conductivity,  max_water_content, geol_1st_class, 

geol_2nd_class, geol_porostiy, geol_permeability, p_mean, 

pet_mean, p_seasonality, frac_snow, aridity, high_prec_freq, 

high_prec_dur, low_prec_freq, low_prec_dur 

CAMELS-GB 

precipitation, 

temperature, 

humidity, 

shortwave_rad, 

longwave_rad, 

windspeed 

p_mean, pet_mean, aridity, p_seasonality, discharges, 

inter_high_perc, q_mean,  runoff_ratio, stream_elas, 

baseflow_index, Q5, Q95, dwood_perc, ewood_perc,  

grass_perc,  shrub_perc, crop_perc, urban_perc, 

inwater_perc, bares_perc, sand_perc, silt_perc,  clay_perc, 

organic_perc, bulkdens, tawc, porosity_cosby, 

porosity_hypres,  conductivity_cosby, conductivity_hypres, 

root_depth, soil_depth_pelletier, gauge_lat,  gauge_lon, 

gauge_elev, area, dpsbar, elev_mean, elev_min 

CAMELS-CL 

precip_cr2met, 

tmax, tmin, pet 

_8d_modis 

area, elev_mean, slope_mean, nested_inner, 

geol_class_1st_frac, geol_class_2nd_frac, crop_frac, nf_frac, 

fp_frac, grass_frac, shrub_frac, wet_frac, imp_frac, lc_barren, 

snow_frac, lc_glacier, fp_nf_index, forest_frac, 

dom_land_cover_frac, land_cover_missing, p_mean_cr2met, 

pet_mean, aridity_cr2met, p_seasonality_cr2met, 

frac_snow_cr2met, high_prec_freq_cr2met, 

high_prec_dur_cr2met, low_prec_freq_cr2met, 

low_prec_dur_cr2met, big_dam, p_mean_spread, q_mean, 

runoff_ratio_cr2met, stream_elas_cr2met, slope_fdc, 

baseflow_index, hfd_mean, Q95, Q5, high_q_freq, 

high_q_dur, low_q_freq, low_q_dur, zero_q_freq, 

sur_rights_n, interv_degree. 

CHINA-MR 

precipitation, 

solar_radiation, 

tmax, tmin 

area, lat, lon, latitude, p_mean. Area percentages of slopes 

from 0 to 20, 20 to 40, 40 to 80. Area percentages of 

cultivated land, mixed forest, range shrubland, other forest, 

pasture, grassland, hay, urban area, rural area, water, bare 

land*. Largest patch index, area-weighted mean patch fractal 

dimension, interspersion and Juxtaposition index, 

Shannon's diversity index, Simpson's diversity index*. 
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* The area percentage of land use and its landscape metrics are calculated based on the 522 
classification of land use for 2000, with the classification and metrics referenced in Ma et al. 523 
(2020). 524 

Table S2. Hyperparameter values (chosen/tested) for all models. For the tested values, 525 

square brackets indicate the range of values tested, while curly braces indicate the 526 

discrete values that were tested. 527 

Model 
Length of 
training 

instances 

LSTM 
dropout rate 

Mini-batching size 
LSTM hidden 

size 
Number of 

training epochs 

Local 
model 

CHINA-MR 

365/{100,200,
365} 

0.5/{0, 0.3, 
0.5} 

2/{2,5} 64/{32,64,128} 210/[100,300] 

CAMELS-CL 16/{8,16,32} 64/{32,64,128} 150/[100,300] 

CAMELS-GB 128/{64,128,256} 256/{128,256} 200/[100,500] 

Source 
model 

CAMELS 100/{50,100,200} 256/{128,256} 300/[100,500] 

CAMELS 
(10-500) 

5,10,20,60,100/{5,10
,20,60,100} 

256/256 
240,240,240,30
0,240,270/[100,

500] 

SWAT-MR 2/{2,5} 64/{32,64,128} 300/[100,300] 

TL 
model 

TL for 
CHINA-MR 

2/{2,5} 256/256 240/[100,300] 

TL for 
CAMELS-CL 

16/{8,16,32} 256/256 250/[100,300] 

TL for 
CAMELS-GB 

128/{64,128,256} 256/256 280/[100,500] 

 528 
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Figure S1. Maps of catchment datasets across the world used in this study 529 

 530 


