Morphology of Jupiter's Polar Auroral Bright Spot Emissions via Juno-UVS Observations

Kamolporn Haewsantati¹, Bertrand Bonfond², Suwicha Wannawichian³, Randy Gladstone⁴, Vincent Hue⁴, Maarten Versteeg⁴, Thomas Greathouse⁴, Denis Grodent¹, Zhonghua Yao⁵, William Dunn⁶, Jean-Claude GERARD¹, Rohini Giles⁴, Joshua Kammer⁴, Ruilong Guo⁷, and Marissa Vogt⁸

¹LPAP, STAR Institute, Université de Liège, Liège, Belgium
²LPAP
³Department of Physics and Materials Science
⁴Southwest Research Institute
⁵Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
⁶Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Dorking, UK
⁷Université de Liège
⁸Boston University

November 22, 2022

Abstract

Since 2016, the Juno-UVS instrument has been taking spectral images of Jupiter's auroras during its polar fly-bys. These observations provide a great opportunity to study Jupiter's auroras in their full extent, including the nightside, which is inaccessible from Earth. We present a systematic analysis of features in Jupiter's polar auroras called auroral bright spots observed during the first 25 Juno orbits. Bright spots were identified in 16 perijoves (PJ) out of 24 (there was no available data for perijove 2), in both the northern and southern hemispheres. The emitted power of the bright spots is time variable with peak power ranging from a few tens to a hundred of gigawatts. Moreover, we found that, for some perijoves, bright spots exhibit quasiperiodic behavior. The spots, within PJ4 and PJ16, each reappeared at almost the same system III position of their first appearance with periods of 28 and 22 minutes, respectively. This period is similar to that of quasiperiodic emissions previously identified in X-rays and various other observations. The bright spot position is in a specific region in the northern hemisphere in system III, but are scattered around the magnetic pole in the southern hemisphere, near the edge of the swirl region. Furthermore, our analysis shows that the bright spots can be seen at any local time, rather than being confined to the noon sector as previously thought based on biased observations. This suggests that the bright spots might not be firmly connected to the noon facing magnetospheric cusp processes.

Morphology of Jupiter's Polar Auroral Bright Spot Emissions via Juno-UVS Observations

K. Haewsantati^{1,2,3,4}
B. Bonfond¹
S. Wannawichian ^{3,4}
G. R. Gladstone⁵
V. Hue⁵
M. H. Versteeg⁵
T. K. Greathouse⁵
D. Grodent¹
Z. Yao^{6,1}
W. Dunn^{7,8,9}
J.-C. Gérard¹
R. Giles⁵
J. Kammer⁵
R. Guo¹
M. F. Vogt¹⁰

6	¹ LPAP, STAR Institute, Université de Liège, Liège, Belgium
7	² Ph.D. program in Physics, Department of Physics and Materials Science, Faculty of Science, Chiang Mai
8	University, Chiang Mai, Thailand
9	³ Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai,
10	Thailand
11	⁴ National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand
12	⁵ Southwest Research Institute, San Antonio, Texas, USA
13	6 Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy
14	of Sciences, Beijing, China
15	⁷ Mullard Space Science Laboratory, Department of Space and Climate Physics, University College
16	London, Dorking, UK
17	⁸ The Centre for Planetary Science at UCL/Birkbeck, London, UK
18	⁹ Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, MA
19	USA
20	10 Center for Space Physics, Boston University, Boston, MA, USA

Key Points:

22	• Jupiter's auroral bright spots seen by Juno-UVS for the first 25 PJ mostly appear
23	close to the edge of the polar-most region (swirl region).
24	- During long observation sequences (PJ4 and PJ16), bright spots recurred at ap-

- proximately the same system III location every 22-28 minutes.
- The bright spots are not fixed at noon or at any specific local time, which possibly exclude the explanations involving a noon-facing cusp.

Corresponding author: K. Haewsantati, K.Haewsantati@uliege.be

28 Abstract

Since 2016, the Juno-UVS instrument has been taking spectral images of Jupiter's au-29 roras during its polar fly-bys. These observations provide a great opportunity to study 30 Jupiter's auroras in their full extent, including the nightside, which is inaccessible from 31 Earth. We present a systematic analysis of features in Jupiter's polar auroras called au-32 roral bright spots observed during the first 25 Juno orbits. Bright spots were identified 33 in 16 perijoves (PJ) out of 24 (there was no available data for perijove 2), in both the 34 northern and southern hemispheres. The emitted power of the bright spots is time vari-35 able with peak power ranging from a few tens to a hundred of gigawatts. Moreover, we 36 found that, for some perijoves, bright spots exhibit quasiperiodic behavior. The spots, 37 within PJ4 and PJ16, each reappeared at almost the same system III position of their 38 first appearance with periods of 28 and 22 minutes, respectively. This period is similar 39 to that of quasiperiodic emissions previously identified in X-rays and various other ob-40 servations. The bright spot position is in a specific region in the northern hemisphere 41 in system III, but are scattered around the magnetic pole in the southern hemisphere, 42 near the edge of the swirl region. Furthermore, our analysis shows that the bright spots 43 can be seen at any local time, rather than being confined to the noon sector as previ-44 ously thought based on biased observations. This suggests that the bright spots might 45 not be firmly connected to the noon facing magnetospheric cusp processes. 46

47 **1** Introduction

Jupiter's very bright UV auroras result from the collision between precipitating en-48 ergetic particles and the atmospheric constituents in the planet's upper atmosphere. Jupiter's 49 UV auroras are generally divided into four components: the main emissions, the equa-50 torward emissions, the polar emissions, and the satellites' footprints. Their specific lo-51 cation, morphology and behavior indicates that each of them is related to specific pro-52 cesses in different parts of the magnetosphere. The ever-present main emissions are the 53 easiest feature to identify. The main emissions appear as a discontinuous contour around 54 the magnetic pole. There is a kink region in the northern hemisphere main emission con-55 tour due to a local magnetic anomaly (Grodent et al., 2008). The main emissions are 56 driven by internal process in the middle magnetosphere at a radial distance 20-60 Jo-57 vian radii (R_J) in the magnetosphere (Clarke et al., 2004; Vogt et al., 2011). The sec-58 ond component of Jupiter's aurora, the equatorward emissions, appear between the main 59 emissions and Io's footpath and are mostly associated with magnetospheric injections 60 (Mauk et al., 2002; Dumont et al., 2014). The multiple components of the satellite mag-61 netic footprints are connected to the satellites of Jupiter via magnetic field lines (Bonfond, 62 2012). Lastly, polar auroras are characterized by the large variability of the auroral emis-63 sions in the entire region located poleward of the main emissions. The polar auroras are 64 related to the dynamics of the outer magnetosphere, but the detailed mechanisms are 65 still unclear. The UV polar emissions are divided into three subregions, the dark region, 66 swirl region, and active region (Grodent et al., 2003). The dark region is characterized 67 by its crescent shape in the dawn sector above the main emission which appears dark 68 in ultraviolet (UV) emission (Swithenbank-Harris et al., 2019). The swirl region is a re-69 gion located around the magnetic pole which consists of numerous patchy and transient 70 features whose motion is highly variable. Despite relatively dim emissions, the swirl re-71 gion usually displays spectral signatures of strong methane absorption (Bonfond, Glad-72 stone, et al., 2017). The active region, which lies poleward from the main emission in 73 noon to post-noon sector (Pallier & Prangé, 2001), is very dynamic. Flares, bright spots, 74 and arc-like features are often observed in this region (Waite et al., 2001; Nichols et al., 75 2009; Bonfond et al., 2016). 76

In UV observations, one of the features of the active region studied by Pallier and
 Prangé (2001) is called the auroral bright spot. The bright spots that they observed in
 the northern hemisphere with the Hubble Space Telescope (HST) were not always ob-

served at the same jovi-centric system III (hereafter SIII) longitude but are typically lo-80 cated close to noon magnetic local time. Pallier and Prangé (2001) therefore suggested 81 that this feature is the signature of the polar cusp process. Another feature, polar flares, 82 reported by Waite et al. (2001), were identified as short-lived but intense features in the 83 active region that can suddenly brighten within a short time scale (10s of seconds). The 84 flares occurring in the southern hemisphere were reported to reappear periodically with 85 time intervals of 2-3 minutes (Bonfond et al., 2011). They were mapped to the dayside 86 in the outer magnetosphere by using the magnetic mapping model developed by Vogt 87 et al. (2011, 2015). Bonfond et al. (2016) revisited this study and found the quasiperi-88 odic (QP) flares among half of their augmented dataset. These features appeared in both 89 northern and southern hemispheres, and some of them appeared to brighten in phase. 90 From their location, size and behaviors, the flares appear to correspond to closed field 91 lines mapping to the dayside outer magnetosphere. Besides, the QP emissions also oc-92 cur in the main emission region. Nichols, Yeoman, et al. (2017) revealed a ~ 10 min pe-93 riod pulsating aurora feature in the main emission, which has the same period as the Alfvén 94 wave travel time between the equatorial sheet and the ionosphere. 95

Quasi-periodic pulsations had been reported and studied across a wide range of datasets 96 in the Jovian magnetosphere. For example, McKibben et al. (1993) identified 40-minute 97 periodicity in electron bursts observed by Ulysses, with a few cases showing shorter pe-98 riods (2-3 minutes). Similarly, MacDowall et al. (1993) reported two classes of QP ra-99 dio bursts with periods of 15 and 40 minutes, respectively. There was also a report by 100 Pryor et al. (2005) of the correspondence of 2 minutes long QP flares observed by Cassini 101 Ultraviolet Imaging Spectrograph (UVIS) and low frequency radio bursts observed by 102 Cassini Radio and Plasma Wave Spectrometer (RPWS) and Galileo Plasma Wave Spec-103 trometer (PWS). Furthermore, many QP pulsations are reported from the analysis of 104 X-ray observations with periods in range 10-100 minutes (Gladstone et al., 2002; Elsner 105 et al., 2005; Dunn et al., 2016, 2017, 2020; Jackman et al., 2018; Weigt et al., 2020; Wibisono 106 et al., 2020). Gladstone et al. (2002) presented the pulsation emissions from hot spot re-107 gion in the northern hemisphere with 45 minutes period. Elsner et al. (2005) showed the 108 relation between X-ray pulsations with ~ 40 minutes period with Ulysses radio observa-109 tion. Bunce et al. (2004) suggested that pulsed reconnection on the dayside magnetopause 110 could be the source of the pulsations in both the X-ray and UV auroras. 111

In summary, the QP emissions in the active region typically found in HST obser-112 vations of the UV auroras have shorter periods (2-3 minutes) than X-ray and radio QP 113 emissions (10s of minutes). However, the maximum length for a continual observation 114 obtain from HST is about 45 minutes which limits the longest periodicity it can detect 115 to about 20 minutes. HST observations cannot explore the night side of the aurora and 116 are biased toward configurations in which the magnetic pole is tilted towards the Earth. 117 In contrast, observations from Juno allow for a complete view of the auroras, including 118 the night as well as longer time interval observations up to a few consecutive hours. 119 Here, we present a systematic study of the bright spots observed with the ultraviolet spec-120 trograph on board Juno (Juno-UVS) during the first 25 orbits, with a particular focus 121 on bright spots location (Section 3.1) and their variability (Section 3.2). 122

¹²³ 2 Juno-UVS observations and processing methods

The Juno-UVS instrument is a UV photon-counting imaging spectrograph oper-124 ating in the 68 to 210 nm wavelength range. There is a flat scan mirror at the entrance 125 of the instrument, which allows it to look at targets up to $\pm 30^{\circ}$ away from the Juno spin 126 plane. Its "dog bone" shaped slit consists of three contiguous segments with fields-of-127 view (FOV) of $0.2^{\circ} \times 2.5^{\circ}$, $0.025^{\circ} \times 2^{\circ}$, and $0.2^{\circ} \times 2.5^{\circ}$. The data obtained from UVS 128 consist of a list of photon detection events with X position of the photon count on the 129 detector corresponding to the spectral dimension and the Y position of the spatial di-130 mension along the slit (Gladstone et al., 2017; Greathouse et al., 2013; Hue et al., 2019). 131

The spacecraft spins every ~ 30 seconds. Every spin, a spectrally resolved image can be 132 reconstructed based on the motion of the field of view across the planet. The pointing 133 mirror can target a different region of the aurora at each spin. The polar projected im-134 ages used for this study assume that the aurora originates from a mean altitude of 400 135 km above 1 bar level (Bonfond et al., 2015). For further analysis, the photon counts are 136 converted to brightness in kilo-Rayleighs (kR) which corresponds to the total unabsorbed 137 H₂ Lyman emissions and Werner bands. The conversion can be done by multiplying the 138 intensity obtained in the 155-162 nm spectral range with a conversion factor of 8.1, us-139 ing to the H_2 synthetic spectrum calculated by Gustin et al. (2013). Then, the emitted 140 power can be computed by multiplying the brightness with the surface area and with 141 the mean energy of a UV photon. Uncertainty on the brightness calculation mainly comes 142 from the in-flight calibration of the instrument effective area (Hue et al., 2019). In com-143 parison, the uncertainty related to the shot noise is negligible here because we integrate 144 over a relatively large region of the aurora (Gérard et al., 2019). 145

The bright spot feature is characterized as a distinct feature with a compact shape, 146 which is very bright (typically more than 10 times brighter) in comparison to the sur-147 rounding area in polar region. In order to identify the area of the bright spot, we first 148 remove a mean background emission and then we consider the region whose brightness 149 is above twice the standard deviation of surrounding area's brightness. We then fit the 150 shape of bright spot with an ellipse and we compute the emitted power in this ellipse. 151 In this case, the main source of uncertainty lies in the selection of the area of interest. 152 Hence, the uncertainty is calculated by assuming an elliptical reference area 25% smaller 153 and then 25% larger than the best fit ellipse. To assess the evolution of the total power 154 in the region of interest, the ellipse area is fitted based only on the images for which the 155 bright spot can be clearly identified. Then, for a given dataset (i.e. a specific spot dur-156 ing a given perijove), the union of the fitted ellipses is used as a reference surface to com-157 pute the total power, so that the area of interest remains the same during the whole se-158 quence. 159

160 **3 Results**

From UVS data obtained during the first 25 perijoves (PJ), the bright spots ap-161 pear in both northern and southern hemispheres (Figure 1). Northern hemisphere bright 162 spots have been identified in PJ1, PJ3, PJ6, PJ8, and PJ13. However, in our dataset, 163 the bright spots appear more often in the southern aurora, which can be seen in PJ4, 164 PJ8, PJ9, PJ12, PJ14, PJ15, PJ16, and PJ20-PJ24. Indeed, as Juno's orbit precesses 165 and as Juno's apojove moves from dawn to midnight, the time interval available for ob-166 servations of the northern hemisphere decreased as the mission goes. It should be noted 167 that two bright spots which appear in the same perijove at different positions are ob-168 served in PJ3, PJ12, PJ21, and PJ23. The bright spots sometimes appear as compact 169 small spots, with smallest surface area $3.5 \times 10^5 km^2$, and sometimes it covers a larger 170 area $(2.07 \times 10^7 km^2)$. The total power emission usually lies in the range of tens of gi-171 gawatts (GW), but some spots' power can occasionally rise up to a hundred GW (e.g. 172 PJ16 at 01:52:04, cf. Figure 6). The summary of bright spots area, power, magnetic flux 173 corresponding to the spot's area, and the local time in Jupiter's ionosphere are shown 174 in Figure 2. In the next subsections, we will discuss the variability of the bright spots' 175 power and position. As we will see, the bright spots usually reappear at almost the same 176 position in SIII coordinates. Moreover, the time intervals between the occurrence of con-177 secutive spots in a given perijove range from a few minutes to more than half an hour. 178

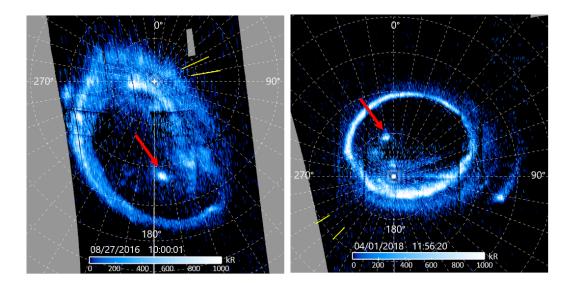


Figure 1. Two examples of bright spot in Jupiter's polar auroras (indicated by red arrows) as observed by Juno-UVS in the northern hemisphere during PJ1 (left) and the southern hemisphere during PJ12 (right). The grid represents meridians and parallels in the SIII, spaced every 10°. Each polar projection is a combination of observations acquired during several spins in order to create a full view of Jupiter's aurora. Two short-yellow lines show the subsolar longitudes of the start time and stop time of combined data.

¹⁷⁹ **3.1 Location and Local Time**

3.1.1 Position in System III

The pixel positions of the peak of bright spots were used to calculate the latitu-181 dinal and longitudinal coordinates of spot features in the ionosphere. The bright spots 182 in the northern hemisphere are mostly clustered in a restricted region. As shown in Fig-183 ure 3, the positions of bright spots, except for PJ8 data (marked as green cross), are in 184 range of 60-70 degrees latitude and 160-190 SIII degrees longitude. Incidentally, this re-185 gion is also the X-ray hot spot regions (Gladstone et al., 2002; Dunn et al., 2016, 2017; 186 Weigt et al., 2020; Dunn et al., 2020). One notable exception is found during PJ8, dur-187 ing which the bright spot is at ~ 82 degrees latitude and 216.5 degrees SIII longitude. 188 On the other hand, the bright spots detected in the southern hemisphere scatter around 189 the magnetic pole. 190

Figure 3 shows the positions of the bright spots in SIII, superimposed on the sur-191 face magnetic field strength from the JRM09 model (Connerney et al., 2018). Consid-192 ering the two hemispheres together, it appears that the bright spots favour areas where 193 the surface magnetic field is larger than 8×10^5 nT. The only exception being the bright 194 spots observed in the north during PJ8, which is one of the dimmest of our selection. 195 Moreover, we calculated for the solar zenith angle at the bright spots positions (see sup-196 porting information). The bright spots occur even when the sun is at high zenith angle 197 or even below the horizon. Therefore, the bright spots might be independence on the con-198 ductivity of the ionosphere. 199

200

180

3.1.2 Position with respect to the swirl region

We also plot the bright spot positions over maps of the color ratio, in order to locate them with respect to the swirl region. These are produced from the ratio between

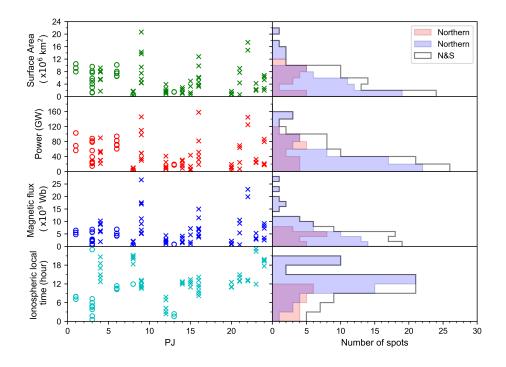


Figure 2. Top three panels are distribution of the surface area, the power emission, and the magnetic flux inside bright spot's area based on elliptical fit. Bottom panel shows ionospheric local time of bright spot's peak emission. On the left panels, those values vary at different PJs, for the northern spots (circles) and the southern spots (crosses). The total numbers of spots for each parameter from each hemisphere are presented by histogram on the right panels.

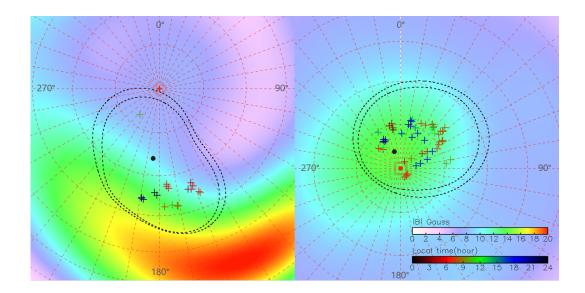


Figure 3. Polar projections with the same coordinates as Figure 1, show the magnetic field magnitude (in Gauss) on the surface of Jupiter based on JRM09 model (Connerney et al., 2018) and positions of bright spots observed in Jupiter's polar region for (left) northern and (right) southern hemispheres. The two dash contours are the statistical locations of the main emission for the compressed (inner contour) and expanded (outer contour) cases observed by HST in 2007 (Bonfond et al., 2012). The black dot indicates the magnetic pole of each hemisphere (Bonfond, Saur, et al., 2017; Connerney et al., 2018). The colors of bright spot positions correspond to their local times, acquired by magnetic mapping model developed by Vogt et al. (2011, 2015) couple with JRM09 model.

emission intensity of molecular hydrogen at two wavelength ranges, one unaffected by 203 methane absorption (1550-1620 Å) and one affected by methane absorption (1250-1300 Å)204 Å). On these maps, the swirl region displays distinctive strong absorption signatures (Bonfond, 205 Gladstone, et al., 2017). Figure 4 shows examples of such color ratio maps from PJ6 (north, 206 left) and PJ16 (south, right) with the position of the bright spots identified during these 207 perijoves over-plotted. The results show that the most bright spots are located near the 208 boundary of the high color ratio regions (swirl region). The most diverse position took 209 place during PJ1, for which the bright spots are located inside the high color ratio re-210 gion instead of at its boundary (see supporting information). 211

3.1.3 Position in magnetic local time

Observations carried out with HST suggested that the bright spot are located in 213 the magnetic noon sector (Pallier & Prangé, 2001). However, HST observations are bi-214 ased in favor of a configuration when the magnetic pole faces the Earth and the night 215 side of the aurora is out of sight. On the contrary, Juno-UVS allows us to get an unbi-216 ased understanding of the mapping of the bright spots in the magnetosphere. We ap-217 plied the magnetosphere-ionosphere mapping flux equivalence method of Vogt et al. (2011, 218 2015) couple with the JRM09 internal magnetic field model (Connerney et al., 2018) to 219 evaluate the magnetospheric source location in the outer magnetosphere. It should be 220 noted however that such a model is increasingly inaccurate as one moves from Ganymede's 221 footprint path towards the pole. The bright spots are generally mapping to positions be-222 yond 150 R_J or beyond the dayside magnetopause, which means the positions are be-223 yond the model's limit. In order to estimate the result despite these limitations, we ex-224 trapolate the spots' position radially until we obtain a predicted position from the model. 225 This can be done by tracing a line on the polar plot, from the magnetic pole toward the 226 bright spot's position and keep moving equatorward until we obtain the latitude and lon-227 gitude that can be mapped to a position inside the model boundary. In the southern hemi-228 sphere, we chose the point where the JRM09 magnetic field is vertical as the southern 229 magnetic pole, at approximately -86 degrees latitude and 340 degrees SIII longitude. In 230 the northern hemisphere, the magnetic field is so complex that there is no point where 231 the field is vertical in the auroral polar region. Hence, we chose the barycenter of the au-232 rora as defined in Bonfond, Saur, et al. (2017), at 74 degrees latitude and 185 degrees 233 SIII longitude. The polar projection maps of bright spots and the corresponding mag-234 netic local time are shown by the color of the crosses in Figure 3. The local times of the 235 bright spots in the northern hemisphere range from late evening through midnight to 236 late morning while the local times for bright spot in the southern hemisphere spread in 237 entire range. Finally, the bottom panel of Figure 2 shows the distribution of the iono-238 spheric local time, considering the magnetic pole defined above as the center and the Sun 239 direction as noon. The distribution of ionospheric local times of bright spots is similar 240 to the distribution of magnetic local times. This wide distribution of local times signif-241 icantly contrasts with previous studies which suggested that the bright spot could cor-242 respond to noon local time facing magnetospheric cusp. 243

244

3.1.4 Bright spot's motion with time

As the appearance of the bright spots are detected, the cylindrical map of Figure 245 5 shows the track change in bright spot's latitude and SIII longitude. Please note that 246 this figure shows both the northern and southern spots in the same plot which are sep-247 arated by different colors. In most cases, the positions of the northern and southern spots 248 only change slightly in both latitude and longitude (a few thousand kilometers). The ex-249 ception spots whose locations vary noticeably are the northern spot from PJ3 and the 250 southern spots from PJ9, PJ16 and PJ24. The motions of the bright spots at latitudes 251 beyond ± 85 degrees, i.e. PJ14 and PJ15, are actually very small because the positions 252 lie close to the rotational pole. The bright spot found in PJ3(N), deep blue symbol in 253

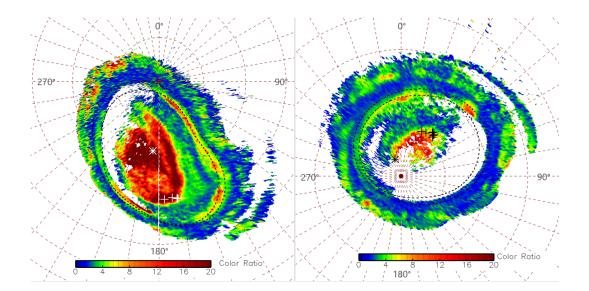
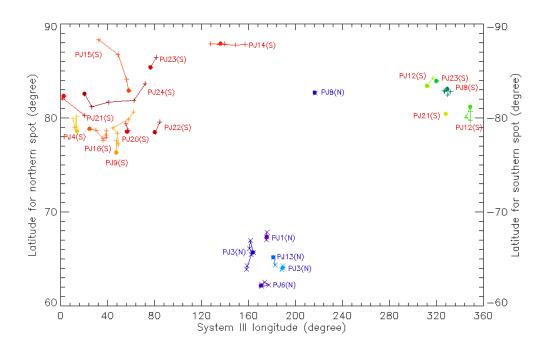


Figure 4. The bright spots positions and the color ratio map observed from (left) PJ6 and (right) PJ16. The coordinates and two dashed contours are described in Figure 1. The plus signs are the bright spots observed in (left) PJ6 and (right) PJ16. The asterisk signs represent the magnetic poles, for (left) north and (right) south hemispheres (Bonfond, Saur, et al., 2017; Connerney et al., 2018).


Figure 5, shows the variation in position starting from 164 to 158 SIII degrees longitude 254 and 3 degrees shifted in latitude. For the bright spot in the southern hemisphere, the 255 bright spot from PJ9 appears to move from low to high latitude starting from -76 to -256 80 degrees and from 47 to 62 degrees in SIII longitude while a bright spot from PJ24 con-257 tinuously change position from 20 to 70 degrees longitude. These results show that the 258 bright spots are mostly fixed in specific positions as Jupiter rotates, while, in a few cases, 259 their positions changed. The rates of change in positions are also not related to Jupiter's 260 rotation period. Moreover, the motions do not have any systematic pattern since we found 261 cases where the SIII longitude increased or decreased over time. 262

3.2 The bright spot's power variations

Since the bright spot reappears at nearly the same position, we consider the emissions in the same region to be part of a continuous sequence. For a given perijove, the bright spots brighten and fade with a time interval on the order of minutes. When we consider the whole available dataset, this time interval is in the 3-47 minutes range.

Unfortunately, the continuous tracking of the bright spot emitted power is complicated by the fact that the field of view of the instrument varies significantly with time, which leads to discontinuous sampling rate, or inappropriately short sequences, to investigate periodicities. Moreover, as the mission progressed, the duration of the observations in the northern hemisphere decreased from a few hours to a few tens of minutes. Fortunately, two particular cases, from PJ4 and PJ16 in the South, allowed for a quasicontinuous monitoring of the bright spots' power variations for 3 to 4 hours.

Figure 6 shows the power variation as a function of time for one particular southern bright spot during PJ16 (a similar plot for PJ4 can be found in the supplemental material). The shaded areas indicate time intervals during which UVS field of view missed more than 50% of the region of interest defined by the union of the fitted ellipses. The

Figure 5. Latitude and SIII longitude map shows the positions of bright spot observed in northern hemisphere (plus sign) and southern hemisphere (cross sign). Each line is named by the perijove number and the hemisphere, e.g. PJ1(N) is for northern bright spot from PJ1. The northern spots are colored in shades of blue and southern spots use a color gradient from green to red. The line connecting each data presents the motion of bright spot with observing time order. The large dot for each line represents the first position of the bright spot during a sequence.

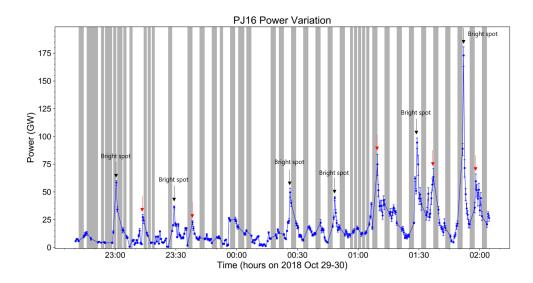


Figure 6. The time variation of power emission observed in PJ16 from 22:40:00 UT on 29 Oct 2018 to 02:00:00 UT on 30 Oct 2018. The gray boxes illustrate the times that the bright spot region was not covered by the UVS field of view. Black arrows indicate the times when clear bright spots are detected while red arrows show the additional peaks at which no bright spot appears in the region of interest.

power peaks of the bright spot are above 35 GW and can reach up to 170 GW. More-279 over, a clear repetitive pattern is identified in the time series. In addition to the well-280 identified bright spots (black arrow), the plot shows that there are additional power peaks 281 (indicated by red arrows) that correspond to more diffuse features that were not iden-282 tified as bright spots at first. Nevertheless, these power peaks are close to shaded areas, 283 suggesting that UVS might have missed the time interval during which a clear bright spot 284 could have been identified. The time intervals between consecutive peaks in this plot ranges 285 from 5 to 42 minutes, with a typical interval around 25 minutes. In order to get quan-286 titative results, we also determine the spot's reappearance period with a Lomb-Scargle 287 analysis (see supporting information). The results confirm that the bright spot emissions 288 PJ16 repeatedly brighten with period of 23 min. Similarly, results from PJ4 show a \sim 289 28-minute period. We note that these periods are similar to earlier reports about Jupiter's 290 quasiperiodic phenomena (MacDowall et al., 1993; McKibben et al., 1993; Dunn et al., 291 2016; Jackman et al., 2018; Wibisono et al., 2020). 292

²⁹³ 4 Discussions and Conclusions

Following the interpretation of Pallier and Prangé (2001), we expected that the bright 294 spots would appear near noon magnetic local time and may correspond to the Jovian 295 magnetospheric cusp. Instead, our results show that the bright spots can be seen in var-296 ious ionospheric local times and are observed at positions mapping to a wide range of 297 magnetic local times in the distant magnetosphere. Moreover, several bright spots were 298 observed at different locations during the same observational sequence. We show that 299 the bright spots mostly lie near the edge of the swirl region (with one exception during 300 PJ1). Furthermore, we show that the bright spots often re-appear at the same SIII po-301 sition during a given sequence, suggesting that the source region (wherever it is along 302 the field line) corotates with Jupiter. Moreover, with additional results regarding the lo-303 cal time, these observations thus rule out a simple interpretation according to which the 304

³⁰⁵ bright spot is a direct counterpart of a noon-facing magnetospheric cusp. However, Zhang
³⁰⁶ et al. (2020) suggested that topology of the polar-most field lines could be very complex
³⁰⁷ and helical, leading to atypical definition of a magnetospheric cusp for Jupiter and an
³⁰⁸ unclear mapping of the field lines. Thus, we cannot confirm nor rule out that the bright
³⁰⁹ spot could be related to some complex Jovian cusp processes.

Finally, our study of the variations of the emitted power shows that the bright spots 310 are not sporadic random events, since they reoccur at nearly the same position after some 311 typical time interval from a few minutes to a few tens of minutes. The bright spot emis-312 313 sions observed during PJ4 and PJ16 are particularly interesting because of the length of the observed sequence, and quasi-periodicities of 22-28 minutes are detected. Such timescales 314 are hard to identify with the limited duration of HST observations (~ 45 minutes). Even 315 if we do not exclude a possible relationship between the bright spots and the flares, it 316 should be noted that the periodicities identified here for the bright spots are one order 317 of magnitude longer (~ 30 minutes) than the one identified for the 2-3 minutes QP flares 318 (Bonfond et al., 2011, 2016; Nichols, Badman, et al., 2017). Moreover, while most of the 319 bright spots appear close to the boundary of the swirl region, the flares rather take place 320 on the noon and dusk sides of the active region (Bonfond et al., 2016; Nichols, Badman, 321 et al., 2017). Instead, the reappearances of bright spots several times during the same 322 day suggest a link with other quasi-periodic behavior with similar time scales. It should 323 be noted that the 3-47 minutes time intervals between consecutive emissions are also the 324 same range as quasi-periodic pulsations identified in radio emissions (MacDowall et al., 325 1993), relativistic electrons (McKibben et al., 1993), Alfvén waves (Manners et al., 2018) 326 and X-ray pulsations (Jackman et al., 2018; Wibisono et al., 2020). Further studies of 327 the connection between these different phenomena will certainly provide important in-328 formation concerning the processes giving rise to these emissions. 329

330 Acknowledgments

K. H. would like to grateful thank for financial support from Science Achievement Schol-331 arship of Thailand (SAST) and Ph.D. program in Physics, Chiang Mai university. K. 332 H. and S. W. are supported by National Astronomical Research Institute of Thailand 333 (NARIT). B. B. is a Research Associate of the Fonds de la Recherche Scientifique - FNRS. 334 B. B., D. G., Z. Y. and J.-C. G. acknowledge the support from the PRODEX Programme 335 of European Space Agency (ESA). G. R. G., V. H., M. H. V., and T. K. G., are funded 336 by the Southwest Research Institute. W. Dunn is supported by STFC research grant to 337 UCL and SAO fellowship to Harvard-Smithsonian Centre for Astrophysics and by ESA. 338 The data included herein are archived in NASA's Planetary Data System (http://pds 339 -atmospheres.nmsu.edu/data_and_services/atmospheres_data/JUNO/juno.html). 340 This research was partly supported by NARIT. Additional support was from Thailand 341 Research Fund grants RTA6280002. We are grateful to NASA and contributing insti-342 tutions which have made the Juno mission possible. This work was funded by NASA's 343 New Frontiers Program for Juno via contract with the Southwest Research Institute. 344

345 **References**

- Bonfond, B. (2012). When Moons Create Aurora: The Satellite Footprints on Giant Planets. In *Geophysical Monograph Series*. AGU. Retrieved 2020-07-08, from https://orbi.uliege.be/handle/2268/136072 doi: 10.1029/ 2011GM001169
- Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., 350 Hue, V., ... Kurth, W. S. (2017, May).Morphology of the UV auro-351 rae Jupiter during Juno's first perijove observations. Geophysical Re-352 search Letters, 44(10), 4463–4471. Retrieved 2019-02-25, from https:// 353 agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL073114 doi: 354 10.1002/2017GL073114 355

356	Bonfond, B., Grodent, D., Badman, S. V., Gérard, JC., & Radioti, A. (2016,
357	December). Dynamics of the flares in the active polar region of Jupiter.
358	Geophysical Research Letters, 43(23), 11,963–11,970. Retrieved 2018-08-
359	31, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
360	2016GL071757 doi: 10.1002/2016GL071757
361	Bonfond, B., Grodent, D., Gérard, JC., Stallard, T., Clarke, J. T., Yoneda, M.,
362	Gustin, J. (2012, January). Auroral evidence of Io's control over the
363	magnetosphere of Jupiter. Geophysical Research Letters, 39(1). Retrieved
364	2018-08-31, from https://agupubs.onlinelibrary.wiley.com/doi/abs/
365	10.1029/2011GL050253 doi: 10.1029/2011GL050253
366	Bonfond, B., Gustin, J., Gérard, JC., Grodent, D., Radioti, A., Palmaerts, B.,
367	Tao, C. (2015, October). The far-ultraviolet main auroral emission at
368	Jupiter – Part 2: Vertical emission profile. Ann. Geophys., 33(10), 1211–1219.
369	Retrieved 2018-08-31, from https://www.ann-geophys.net/33/1211/2015/
	doi: 10.5194/angeo-33-1211-2015
370	
371	Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V.,
372	Radioti, A. (2017, August). The tails of the satellite auroral footprints at
373	Jupiter. Journal of Geophysical Research: Space Physics, 122(8), 7985–7996.
374	Retrieved 2018-08-31, from https://agupubs.onlinelibrary.wiley.com/
375	doi/abs/10.1002/2017JA024370 doi: 10.1002/2017JA024370
376	Bonfond, B., Vogt, M. F., Gérard, JC., Grodent, D., Radioti, A., & Coumans, V.
377	(2011, January). Quasi-periodic polar flares at Jupiter: A signature of pulsed
378	dayside reconnections? Geophysical Research Letters, $38(2)$. Retrieved 2018-
379	08-31, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
380	2010GL045981 doi: 10.1029/2010GL045981
381	Bunce, E. J., Cowley, S. W. H., & Yeoman, T. K. (2004, September). Jovian
382	cusp processes: Implications for the polar aurora. Journal of Geophysical
383	Research: Space Physics, 109(A9). Retrieved 2018-08-31, from https://
384	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JA010280 doi:
385	10.1029/2003JA010280
386	Clarke, J. T., Grodent, D., Cowley, S. W. H., Bunce, E. J., Zarka, P., Connerney,
387	J. E. P., & Satoh, T. (2004). Jupiter's aurora. In (pp. 639–670). Jupiter. The
388	Planet, Satellites and Magnetosphere.
389	Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen,
390	J. L., Joergensen, P. S., Levin, S. M. (2018, March). A New Model
	of Jupiter's Magnetic Field From Juno's First Nine Orbits. <i>Geophysical</i>
391	Research Letters, 45(6), 2590–2596. Retrieved 2018-10-25, from https://
392	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2018GL077312 doi:
393	10.1002/2018GL077312
394	
395	Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, JC. (2014, December)
396	ber). Jupiter's equatorward auroral features: Possible signatures of magneto-
397	spheric injections. Journal of Geophysical Research: Space Physics, 119(12),
398	10,068-10,077. Retrieved 2018-09-03, from https://agupubs.onlinelibrary
399	.wiley.com/doi/abs/10.1002/2014JA020527 doi: 10.1002/2014JA020527
400	Dunn, W. R., Branduardi-Raymont, G., Ray, L. C., Jackman, C. M., Kraft, R. P.,
401	Elsner, R. F., Coates, A. J. (2017, November). The independent pulsations
402	of Jupiter's northern and southern X-ray auroras. Nature Astronomy, $1(11)$,
403	758-764. Retrieved 2020-03-23, from https://www.nature.com/articles/
404	s41550-017-0262-6 (Number: 11 Publisher: Nature Publishing Group) doi:
405	10.1038/s41550-017-0262-6
406	Dunn, W. R., Branduardi-Raymont, G., Elsner, R. F., Vogt, M. F., Lamy,
407	
400	L., Ford, P. G., Jasinski, J. M. (2016). The impact of an ICME
408	L., Ford, P. G., Jasinski, J. M.(2016).The impact of an ICMEon the Jovian X-ray aurora.Journal of Geophysical Research: Space
408	

411 412	$\label{eq:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021888) \mbox{doi:} 10.1002/2015JA021888$
413	Dunn, W. R., Gray, R., Wibisono, A. D., Lamy, L., Louis, C., Badman,
414	S. V., Kraft, R. (2020). Comparisons Between Jupiter's X-ray,
	UV and Radio Emissions and In-Situ Solar Wind Measurements Dur-
415	ing 2007. Journal of Geophysical Research: Space Physics, 125(6),
416	
417	e2019JA027222. Retrieved 2020-07-13, from https://agupubs
418	.onlinelibrary.wiley.com/doi/abs/10.1029/2019JA027222 (_eprint:
419	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA027222) doi:
420	10.1029/2019JA027222
421	Elsner, R. F., Lugaz, N., Waite, J. H., Cravens, T. E., Gladstone, G. R., Ford,
422	P., Majeed, T. (2005, January). Simultaneous Chandra X ray, Hubble
423	Space Telescope ultraviolet, and Ulysses radio observations of Jupiter's aurora.
424	Journal of Geophysical Research: Space Physics, 110(A1). Retrieved 2018-08-
425	31, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
426	2004JA010717 doi: 10.1029/2004JA010717
427	Gladstone, G. R., Jr, J. H. W., Grodent, D., Lewis, W. S., Crary, F. J., Elsner,
428	R. F., Cravens, T. E. (2002, February). A pulsating auroral X-ray hot
429	spot on Jupiter. Nature, 415(6875), 1000–1003. Retrieved 2018-08-31, from
430	https://www.nature.com/articles/4151000a doi: $10.1038/4151000a$
431	Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis,
432	M. W., Denis, F. (2017, November). The Ultraviolet Spectrograph on
433	NASA's Juno Mission. Space Science Reviews, 213(1), 447–473. Retrieved
434	2018-10-24, from https://doi.org/10.1007/s11214-014-0040-z doi:
435	10.1007/s11214-014-0040-z
436	Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H.,
437	Persson, K. B., Eterno, J. S. (2013, September). Performance results
438	from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-
439	UVS). In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy
440	XVIII (Vol. 8859, p. 88590T). International Society for Optics and Photon-
441	ics. Retrieved 2018-09-10, from https://www.spiedigitallibrary.org/
442	conference-proceedings-of-spie/8859/88590T/Performance-results
443	-from-in-flight-commissioning-of-the-Juno-Ultraviolet/10.1117/
444	12.2024537.short doi: 10.1117/12.2024537
445	Grodent, D., Bonfond, B., Gérard, JC., Radioti, A., Gustin, J., Clarke, J. T.,
446	Connerney, J. E. P. (2008, September). Auroral evidence of a localized
447	magnetic anomaly in Jupiter's northern hemisphere. Journal of Geophysi-
448	cal Research: Space Physics, 113(A9). Retrieved 2018-09-03, from https://
449	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JA013185 doi:
450	10.1029/2008JA013185
451	Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W. H., Gérard, JC., & Kim,
452	J. (2003, October). Jupiter's polar auroral emissions. Journal of Geophysical
453	Research: Space Physics, 108 (A10). Retrieved 2018-09-03, from https://
454	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JA010017 doi:
455	10.1029/2003JA010017
455	Gustin, J., Gérard, J. C., Grodent, D., Gladstone, G. R., Clarke, J. T., Pryor,
450	W. R., Ajello, J. M. (2013, September). Effects of methane on giant
457	planet's UV emissions and implications for the auroral characteristics. Jour-
450	nal of Molecular Spectroscopy, 291, 108–117. Retrieved 2019-02-26, from
459	http://www.sciencedirect.com/science/article/pii/S0022285213000441
400	doi: 10.1016/j.jms.2013.03.010
462	Gérard, JC., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse,
462	T. K., Levin, S. M. (2019). Contemporaneous Observations of Jovian
403	Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft.
465	Journal of Geophysical Research: Space Physics, 124 (11), 8298–8317. Re-

	trieved 2020-01-22, from https://agupubs.onlinelibrary.wiley.com/doi/
467	abs/10.1029/2019JA026862 doi: 10.1029/2019JA026862
468	Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bon-
469	fond, B., Byron, B. D. (2019, February). In-flight Characterization and
470	Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS). The Astro-
471	nomical Journal, 157(2), 90. Retrieved 2019-11-19, from https://doi.org/
472	10.3847%2F1538-3881%2Faafb36 doi: $10.3847/1538$ -3881/aafb36
473	Jackman, C. M., Knigge, C., Altamirano, D., Gladstone, R., Dunn, W., Elsner, R.,
474	Ford, P. (2018). Assessing Quasi-Periodicities in Jovian X-Ray Emissions:
475	Techniques and Heritage Survey. Journal of Geophysical Research: Space
476	<i>Physics</i> , 123(11), 9204–9221. Retrieved 2020-05-18, from https://agupubs
477	.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025490 (_eprint:
478	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018JA025490) doi:
479	10.1029/2018JA025490
480	MacDowall, R. J., Kaiser, M. L., Desch, M. D., Farrell, W. M., Hess, R. A., &
481	Stone, R. G. (1993, November). Quasiperiodic Jovian Radio bursts: ob-
482	servations from the Ulysses Radio and Plasma Wave Experiment. Plan-
483	etary and Space Science, $41(11)$, 1059–1072. Retrieved 2020-01-23, from
484	http://www.sciencedirect.com/science/article/pii/003206339390109F
485	doi: 10.1016/0032-0633(93)90109-F
486	Manners, H., Masters, A., & Yates, J. N. (2018). Standing Alfvén Waves in
487	Jupiter's Magnetosphere as a Source of 10- to 60-Min Quasiperiodic Pul-
488	sations. Geophysical Research Letters, 45(17), 8746–8754. Retrieved
489	2019-06-07, from https://agupubs.onlinelibrary.wiley.com/doi/abs/
490	10.1029/2018GL078891 (tex.ids: mannersStandingAlfvenWaves2018a) doi:
491	10.1029/2018GL078891
492	Mauk, B. H., Clarke, J. T., Grodent, D., Waite, J. H., Paranicas, C. P., & Williams,
493	D. J. (2002). Transient aurora on Jupiter from injections of magnetospheric
494	electrons. Nature, 415, 1003–1005.
494 495	electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impul-
	electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impul- sive bursts of relativistic electrons discovered during Ulysses' traversal of
495	electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impul- sive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041–1058. doi:
495 496	electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impul- sive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. <i>Planet. Space Sci.</i> , 41, 1041–1058. doi: 10.1016/0032-0633(93)90108-E
495 496 497	 electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041–1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J.,
495 496 497 498	 electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041–1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in
495 496 497 498 499	 electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041–1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and
495 496 497 498 499 500	 electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041–1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. Retrieved 2019-04-
495 496 497 498 499 500 501	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
495 496 497 498 499 500 501	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029
 495 496 497 498 499 500 501 502 503 	 electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041–1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of
495 496 497 498 500 501 502 503 503	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/
 495 496 497 498 499 500 501 502 503 504 505 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 doi: 10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578
 495 496 497 498 499 500 501 502 503 504 505 506 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 doi: 10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H.,
 495 497 498 499 500 501 502 503 504 505 506 507 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral
 495 497 498 499 500 501 502 503 504 505 506 507 508 	 electrons. Nature, 415, 1003–1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041–1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44(18), 9192–9198. Retrieved 2019-03-
 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44(18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44(18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 doi: 10.1002/2017GL074824
 495 496 497 498 500 501 502 503 504 505 506 507 508 509 510 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44(18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 doi: 10.1002/2017GL074824 Pallier, L., & Prangé, R. (2001, August). More about the structure of the high
 495 497 498 499 500 501 502 503 504 505 506 507 508 509 511 512 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44(18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 doi: 10.1002/2017GL074824 Pallier, L., & Prangé, R. (2001, August). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10), 1159-1173. Re-
 495 497 498 499 500 501 502 503 504 505 506 507 508 509 511 512 513 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 doi: 10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44(18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 doi: 10.1002/2017GL074824 Pallier, L., & Prangé, R. (2001, August). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10), 1159-1173. Retrieved 2018-08-31, from http://www.sciencedirect.com/science/article/
 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44(18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 doi: 10.1002/2017GL074824 Pallier, L., & Prangé, R. (2001, August). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10), 1159-1173. Retrieved 2018-08-31, from http://www.sciencedirect.com/science/article/pii/S003206330100023X doi: 10.1016/S0032-0633(01)00023-X
 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44 (15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 doi: 10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44 (18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 Pallier, L., & Prangé, R. (2001, August). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10), 1159-1173. Retrieved 2018-08-31, from http://www.sciencedirect.com/science/article/pii/S003206330100023X doi: 10.1016/S0032-0633(01)00023-X Pryor, W. R., Stewart, A. I. F., Esposito, L. W., McClintock, W. E., Colwell, J. E.,
 495 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44 (15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44 (18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 doi: 10.1002/2017GL074824 Pallier, L., & Prangé, R. (2001, August). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10), 1159-1173. Retrieved 2018-08-31, from http://www.sciencedirect.com/science/article/pii/S003206330100023X doi: 10.1016/S0032-0633(01)00023-X Pryor, W. R., Stewart, A. I. F., Esposito, L. W., McClintock, W. E., Colwell, J. E., Jouchoux, A. J., Dougherty, M. K. (2005, November). Cassini UVIS ob-
 495 497 498 499 500 501 502 503 504 505 506 510 511 512 513 514 515 516 517 	 electrons. Nature, 415, 1003-1005. McKibben, R. B., Simpson, J. A., & Zhang, M. (1993, November). Impulsive bursts of relativistic electrons discovered during Ulysses' traversal of Jupiter's dusk-side magnetosphere. Planet. Space Sci., 41, 1041-1058. doi: 10.1016/0032-0633(93)90108-E Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44 (15), 7643-7652. Retrieved 2019-04-26, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073029 doi: 10.1002/2017GL073029 Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009). Observations of Jovian polar auroral filaments. Geophys. Res. Lett., 36, 8101. doi: 10.1029/2009GL037578 Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017). Periodic Emission Within Jupiter's Main Auroral Oval. Geophysical Research Letters, 44 (18), 9192-9198. Retrieved 2019-03-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074824 Pallier, L., & Prangé, R. (2001, August). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10), 1159-1173. Retrieved 2018-08-31, from http://www.sciencedirect.com/science/article/pii/S003206330100023X doi: 10.1016/S0032-0633(01)00023-X Pryor, W. R., Stewart, A. I. F., Esposito, L. W., McClintock, W. E., Colwell, J. E.,

521	S0019103505002265 doi: 10.1016/j.icarus.2005.05.021
522	Swithenbank-Harris, B. G., Nichols, J. D., & Bunce, E. J. (2019). Jupiter's
523	Dark Polar Region as Observed by the Hubble Space Telescope Dur-
524	ing the Juno Approach Phase. Journal of Geophysical Research: Space
525	<i>Physics</i> , 124 (11), 9094–9105. Retrieved 2020-04-11, from https://agupubs
526	.onlinelibrary.wiley.com/doi/abs/10.1029/2019JA027306 (_eprint:
527	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA027306) doi:
528	10.1029/2019JA027306
529	Vogt, M. F., Bunce, E. J., Kivelson, M. G., Khurana, K. K., Walker, R. J., Radioti,
530	A., Grodent, D. (2015, April). Magnetosphere-ionosphere mapping at
531	Jupiter: Quantifying the effects of using different internal field models. Journal
532	of Geophysical Research: Space Physics, 120(4), 2584–2599. Retrieved 2018-
533	08-30, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
534	2014JA020729 doi: 10.1002/2014JA020729
535	Vogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Gro-
536	dent, D., & Radioti, A. (2011, March). Improved mapping of Jupiter's
537	auroral features to magnetospheric sources. Journal of Geophysical Re-
538	search: Space Physics, 116 (A3). Retrieved 2019-02-25, from https://
539	agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JA016148
540	doi: 10.1029/2010JA016148
541	Waite, J. H., Gladstone, G. R., Lewis, W. S., Goldstein, R., McComas, D. J., Ri-
542	ley, P., Young, D. T. (2001). An auroral flare at Jupiter. Nature, 410,
543	787–789.
544	Weigt, D. M., Jackman, C. M., Dunn, W. R., Gladstone, G. R., Vogt,
545	M. F., Wibisono, A. D., Kraft, R. P. (2020). Chandra Ob-
546	servations of Jupiter's X-ray Auroral Emission During Juno Apo-
547	jove 2017. Journal of Geophysical Research: Planets, 125(4),
548	e2019JE006262. Retrieved 2020-03-29, from https://agupubs
549	.onlinelibrary.wiley.com/doi/abs/10.1029/2019JE006262 (_eprint:
550	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JE006262) doi:
551	10.1029/2019JE006262
552	Wibisono, A. D., Branduardi-Raymont, G., Dunn, W. R., Coates, A. J., Weigt,
553	D. M., Jackman, C. M., Fleming, D. (2020). Temporal and Spec-
554	tral Studies by XMM-Newton of Jupiter's X-ray Auroras During a
555	Compression Event. Journal of Geophysical Research: Space Physics,
556	125(5), e2019JA027676. Retrieved 2020-07-10, from https://agupubs
557	.onlinelibrary.wiley.com/doi/abs/10.1029/2019JA027676 (_eprint:
558	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA027676) doi:
559	10.1029/2019JA027676
560	Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A.,
561	Lyon, J. G. (2020, June). How Jupiter's Unusual Magnetospheric Topology
562	Structures Its Aurora. arXiv e-prints, 2006, arXiv:2006.14834. Retrieved
563	2020-07-10, from http://adsabs.harvard.edu/abs/2020arXiv200614834Z

Supporting Information for "Morphology of Jupiter's Polar Auroral Bright Spot Emissions via Juno-UVS Observations"

K. Haewsantati^{1,2,3,4}, B. Bonfond¹, S. Wannawichian ^{3,4}, G. R. Gladstone⁵,

V. Hue⁵, M. H. Versteeg⁵, T. K. Greathouse⁵, D. Grodent¹, Z. Yao^{6,1}, W.

Dunn^{7,8,9}, J.-C. Gérard¹, R. Giles⁵, J. Kammer⁵, R. Guo¹, M. F. Vogt¹⁰

 $^1\mathrm{LPAP},$ STAR Institute, Université de Liège, Liège, Belgium

²Ph.D. program in Physics, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai,

Thailand

³Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

⁴National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand

⁵Southwest Research Institute, San Antonio, Texas, USA

⁶Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

⁷Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Dorking, UK

 $^8\mathrm{The}$ Centre for Planetary Science at UCL/Birkbeck, London, UK

⁹Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, MA USA

¹⁰Center for Space Physics, Boston University, Boston, MA, USA

Contents of this file

1. Figures S1 to S5

Additional Supporting Information (Files uploaded separately)

Х-2

1. Captions for large Table S1

Introduction

The supporting information materials are following.

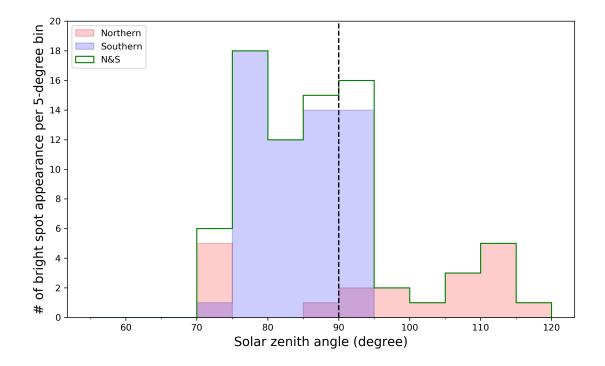
1. The histogram shows the distribution of the solar zenith angles of bright spots which represent the relation between the bright spot occurrence and the exposure to the sunlight.

2. We show the polar projection of bright spots and the SIII longitude position after extrapolation to location that can be mapped by Vogt's mapping model.

3. The color ratio plot shows bright spot detected during PJ1 in high color ratio region.

4. We also show the power variation for PJ4 which has quasiperiodic behaviors as same as the PJ16 power variation plot (Figure 6.)

5. Based on period analysis using Lomb-Scargle periodogram method for bright spots during PJ4 and PJ16, the Lomb Normalized Periodogram will be presented.


References

- Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., ... Kurth, W. S. (2017, May). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. *Geophysical Research Letters*, 44(10), 4463-4471. Retrieved 2019-02-25, from https://agupubs.onlinelibrary.wiley.com/doi/full/ 10.1002/2017GL073114 doi: 10.1002/2017GL073114
- Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., ... Radioti, A. (2017, August). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122(8), 7985-7996. Retrieved 2018-08-31, from https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1002/2017JA024370 doi: 10.1002/2017JA024370

- Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., ... Levin, S. M. (2018, March). A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits. *Geophysical Research Letters*, 45(6), 2590–2596. Retrieved 2018-10-25, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2018GL077312 doi: 10.1002/2018GL077312
- Vogt, M. F., Bunce, E. J., Kivelson, M. G., Khurana, K. K., Walker, R. J., Radioti, A., ... Grodent, D. (2015, April). Magnetosphere-ionosphere mapping at Jupiter:
 Quantifying the effects of using different internal field models. *Journal of Geophysical Research: Space Physics*, 120(4), 2584–2599. Retrieved 2018-08-30, from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA020729 doi: 10.1002/2014JA020729
- Vogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. (2011, March). Improved mapping of Jupiter's auroral features to magnetospheric sources. *Journal of Geophysical Research: Space Physics*, 116(A3). Retrieved 2019-02-25, from https://agupubs.onlinelibrary.wiley.com/doi/full/ 10.1029/2010JA016148 doi: 10.1029/2010JA016148

Figure S1. Distribution of solar zenith angles of bright spots in Northern hemisphere (pink), Southern hemisphere (blue), and the combined spots from both hemispheres (green line). The dashed vertical line represents 90°zenith angle at which the sun is on the horizon. The angles larger than 90°refer to the case that the sun is below the horizon, corresponding to the night time.

Table S1. The bright spot characteristics observed during PJ1 to PJ25 are presented. The power is calculated from the total brightness in bright spot's elliptical area. This power is different from the power variation plot (Figure 6 and Figure S4) which is the integrated area corresponding to all bright spots detected during a perijove. The last two columns are mapped positions in magnetosphere and the local times from Vogt's magnetic flux equivalent using JRM09 model.

:

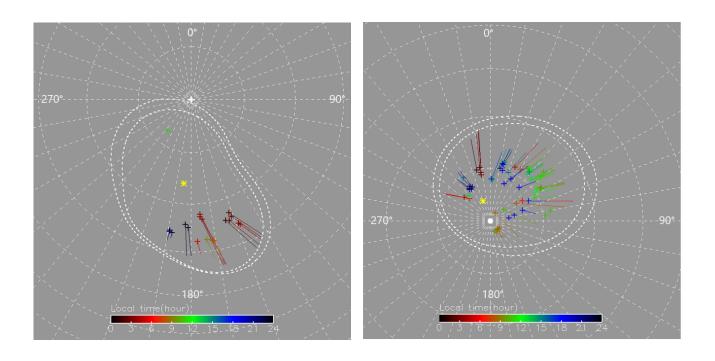


Figure S2. Polar projections (Left: Northern, right: Southern) show positions of bright spots and local times according to Vogt's magnetic flux equivalent mapping with JRM09 model. The grid represents meridians and parallels in the SIII jovi-centric system, spaced every 10°. The two dash contours are the statistical locations of the main emission for the compressed and expanded cases (Bonfond, Gladstone, et al., 2017). The yellow asterisk represents the magnetic pole of each hemisphere (Bonfond, Saur, et al., 2017; Connerney et al., 2018). The lines represent the tracing paths from the magnetic pole to the bright spots' peak positions in the directions toward system III longitudes and latitudes, which can be mapped by Vogt's mapping model.(Vogt et al., 2011, 2015)

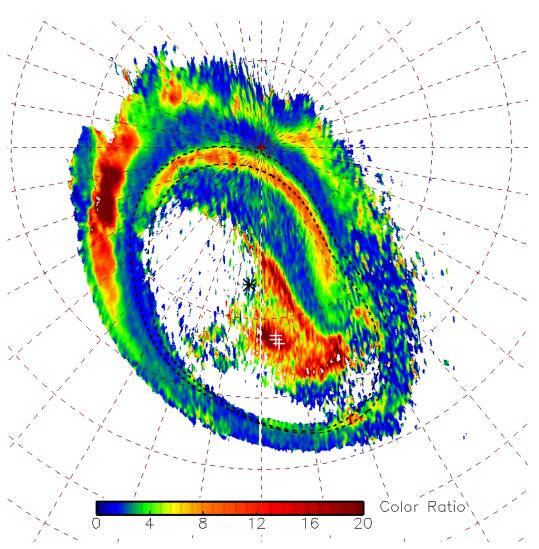
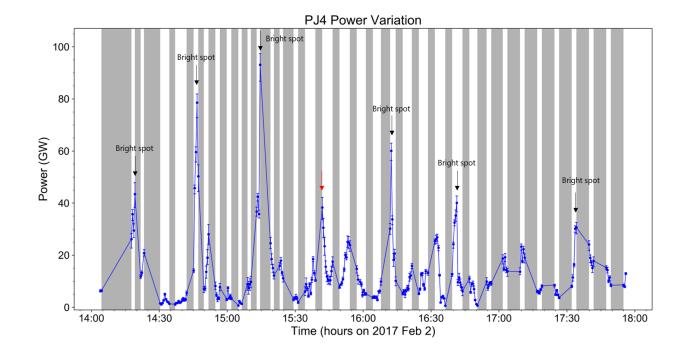
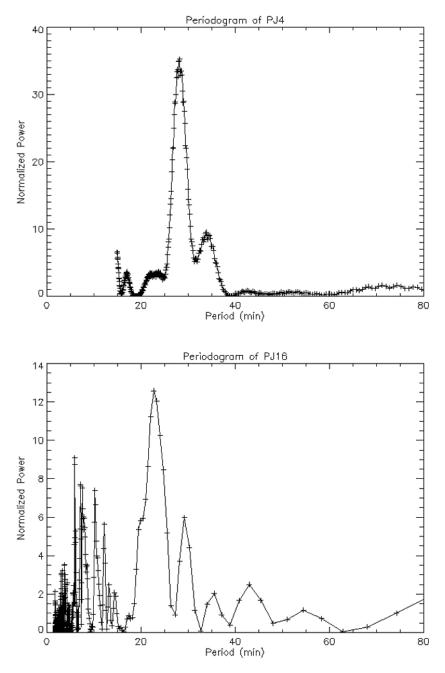




Figure S3. The color ratio map observed from PJ1 shows the bright spots positions (plus symbols) in high color ratio region. The asterisk represents the magnetic pole. The grid coordinates and two dashed contours are the same as in figure S2.

:

Figure S4. The power variation as a function of time for the southern bright spots during PJ4. The black arrows indicate the times that bright spots appear in UVS view. The red arrow presents the peak at which no bright spot appears but there is the increase in the brightness in the region of interest. The grey areas indicate times when the region of interest is covered by UVS view less than 50%.

Figure S5. Fitted result from Lomb-Scargle periodogram for PJ4 (top) and PJ16 (bottom). The dashed lines represent significant levels. The lower significant level implies the high probability for the period to be important. The highest peak of normalized power for PJ4 corresponds to period 28.18 minutes. In addition, for PJ16, the clearest peak of normalized power in our period range is 22.68 minutes.

Table S1. Bright spot characteristics

PJ	Date	Time	Peak's position		Power	Surface area	Magnetic flux	Ionospheric	Vogt's mapping result	
			Latitude	Longitude	(GW)	$(x10^{6} \text{ km}^{2})$	(x10 ⁹ Wb)	local time	Position (R _J)	Local time (h)
PJ1	8/27/2016	10:00:01	67.3489	175.632	103.133	9.156	5580.420	7.116	143.393	2.84056
PJ1	8/27/2016	10:15:53	67.8432	175.539	68.922	10.477	6429.260	7.873	141.845	3.42373
PJ1	8/27/2016	10:19:28	66.8182	174.753	56.162	7.997	4823.740	7.972	141.502	3.70408
PJ3	12/11/2016	14:56:59	65.6758	164.029	39.371	4.102	2881.550	3.840	149.348	1.21778
PJ3	12/11/2016	15:01:32	66.9921	161.503	88.089	9.643	6839.500	4.589	146.267	2.29083
PJ3	12/11/2016	15:13:10	66.1218	160.968	78.691	8.134	5817.300	4.943	149.452	2.42041
PJ3	12/11/2016	15:21:15	65.458	162.437	23.956	2.967	2113.490	4.976	148.021	2.27462
PJ3	12/11/2016	15:42:27	64.2582	158.95	81.811	7.685	5722.400	6.038	143.476	3.34408
PJ3	12/11/2016	16:12:17	63.8974	158.489	14.468	1.364	1055.040	7.239	135.893	4.46139
PJ3	12/11/2016	14:45:21	64.0401	189.29	26.241	5.842	2799.420	23.034	131.527	20.7002
PJ3	12/11/2016	15:18:43	63.8654	188.179	56.005	5.051	2409.250	0.581	144.07	21.8748
PJ3	12/11/2016	15:52:34	64.3051	189.202	21.741	1.220	579.654	1.746	147.002	22.8547
PJ4	2/2/2017	14:18:13	-78.5853	14.0362	21.510	1.746	1926.980	12.695	92.0647	14.417
PJ4	2/2/2017	14:46:10	-78.9183	12.0115	54.170	5.377	5851.510	13.959	99.8606	15.9231
PJ4	2/2/2017	15:14:32	-79.0946	13.4486	89.820	9.207	10244.600	14.951	107.664	16.968
PJ4	2/2/2017	16:12:25	-80.2062	13.6005	50.826	5.617	6280.220	17.097	148.886	19.0696
PJ4	2/2/2017	16:40:22	-78.9944	12.0947	30.718	7.850	8758.550	18.544	149.374	19.8545
PJ4	2/2/2017	17:33:40	-79.9242	10.5392	29.904	8.175	9180.190	20.699	147.419	20.9001
PJ6	5/19/2017	03:51:39	62.1384	170.806	94.076	6.634	4229.370	10.531	102.831	8.03681
PJ6	5/19/2017	03:52:40	62.2641	171.266	71.978	6.519	4252.650	10.518	101.114	8.13232
PJ6	5/19/2017	03:54:11	62.0802	171.155	82.254	10.248	6869.470	10.579	99.3184	8.23206
PJ6	5/19/2017	04:08:49	62.2366	177.375	70.110	7.534	4405.250	10.257	148.593	5.13488
PJ6	5/19/2017	04:22:26	62.5093	173.532	60.703	8.077	5242.050	11.410	89.5063	9.26073
PJ8	9/1/2017	20:47:45	82.6612	216.511	2.594	0.445	320.956	11.965	73.5976	11.2746
PJ8	9/1/2017	22:42:39	-83.0653	329.47	3.312	0.350	423.032	18.407	149.99	20.3766
PJ8	9/1/2017	23:17:50	-82.7975	327.155	2.187	0.464	561.052	20.074	149.512	21.1154

PJ8	9/1/2017	23:30:55	-82.9264	326.482	10.164	1.576	1904.370	20.732	148.272	21.5613
PJ8	9/1/2017	23:46:30	-82.8045	332.071	9.689	1.719	2077.170	20.541	149.824	21.5275
PJ8	9/1/2017	23:56:04	-82.4445	329.534	7.907	1.782	2151.990	21.208	148.143	21.6553
PJ9	10/24/2017	20:58:31	-76.298	47.5094	34.796	4.385	5103.280	10.602	90.9659	10.0248
PJ9	10/24/2017	21:11:08	-77.6322	47.2704	49.057	9.472	11143.500	10.999	92.4111	10.4482
PJ9	10/24/2017	21:13:09	-77.1139	48.8785	29.783	5.557	6564.570	11.023	91.7053	10.5553
PJ9	10/24/2017	21:25:47	-77.3349	48.9452	109.941	14.299	16969.000	11.506	92.2943	11.0453
PJ9	10/24/2017	21:32:21	-78.3933	48.4926	34.513	4.490	5383.320	11.685	89.6168	11.2084
PJ9	10/24/2017	21:53:33	-78.9105	44.4383	48.733	7.516	9097.410	12.748	89.7743	12.8518
PJ9	10/24/2017	22:29:23	-79.8573	57.9946	98.037	13.737	17469.000	13.176	88.6372	12.0939
PJ9	10/24/2017	22:30:54	-80.6291	62.1759	146.325	20.701	26725.600	12.868	86.547	11.3414
PJ12	4/1/2018	10:59:35	-83.387	312.184	24.804	1.881	2291.500	6.902	137.352	4.34857
PJ12	4/1/2018	11:20:34	-84.2603	317.161	12.506	1.327	1703.070	7.799	122.933	5.83077
PJ12	4/1/2018	11:13:24	-81.1704	348.983	7.340	0.985	1119.500	2.435	79.4951	2.48828
PJ12	4/1/2018	11:18:31	-80.074	345.211	8.953	1.569	1736.150	3.147	147.444	1.71082
PJ12	4/1/2018	11:54:48	-79.7424	348.774	13.536	2.562	2768.200	4.236	132.883	2.79601
PJ12	4/1/2018	11:56:20	-80.7	349.061	41.316	3.887	4399.730	4.199	123.593	2.87237
PJ13	5/24/2018	04:22:10	65.1589	181.273	19.209	1.507	846.061	1.631	136.407	23.023
PJ13	5/24/2018	04:47:31	65.8103	182.611	17.498	1.549	867.602	2.420	136.157	23.6283
PJ14	7/16/2018	06:31:39	-87.8921	136.469	20.000	2.217	3252.040	11.966	97.5102	8.22648
PJ14	7/16/2018	06:33:39	-87.8866	139.399	30.891	2.884	4193.630	11.981	99.6099	7.96567
PJ14	7/16/2018	06:38:10	-87.8755	127.694	28.599	2.285	3338.340	12.430	93.1937	8.77023
PJ14	7/16/2018	06:55:12	-87.7722	149.036	8.764	1.031	1472.670	12.637	92.0644	9.15722
PJ14	7/16/2018	07:01:43	-87.8428	157.068	14.951	1.370	1958.270	12.707	86.5823	9.60095
PJ15	9/7/2018	02:28:55	-82.8799	58.1906	6.461	0.722	989.899	12.707	115.911	6.33337
PJ15	9/7/2018	03:02:29	-84.0993	56.1038	3.704	1.290	1763.750	10.998	94.4549	8.18897
PJ15	9/7/2018	04:33:42	-86.7499	48.8141	14.053	3.326	4669.580	13.434	90.586	10.3344
PJ15	9/7/2018	04:37:12	-88.283	32.2756	43.550	4.959	7211.750	12.094	93.0438	8.39585
PJ16	10/29/2018	23:00:33	-78.8204	24.8027	51.881	3.709	4241.330	8.240	148.995	4.94903
PJ16	10/29/2018	23:29:09	-78.6979	30.2284	31.638	4.645	5312.320	8.985	97.0588	8.13252

PJ16	10/29/2018	23:56:15	-77.8215	36.0007	18.909	3.266	3759.260	9.753	94.48	9.40275
PJ16	10/30/2018	00:26:21	-77.6031	36.1582	41.142	5.927	6749.550	10.979	87.0123	11.2907
PJ16	10/30/2018	00:48:26	-77.9568	38.7742	31.673	6.176	7216.400	11.639	90.4642	12.0096
PJ16	10/30/2018	01:29:05	-78.6268	38.9623	81.816	9.845	11463.300	13.180	91.1544	13.2555
PJ16	10/30/2018	01:52:04	-78.1764	38.6598	157.713	12.770	15025.000	14.185	94.0923	14.9941
PJ20	5/29/2019	09:08:12	-78.5023	56.7351	13.048	1.653	2089.040	10.929	94.2201	9.49789
PJ20	5/29/2019	09:11:46	-78.7181	56.9598	9.032	0.713	898.851	11.033	92.2378	9.61732
PJ20	5/29/2019	09:14:18	-78.6289	57.7071	19.086	1.707	2147.060	11.099	90.1268	9.67043
PJ20	5/29/2019	09:49:22	-79.387	55.6197	3.359	0.976	1220.710	12.548	88.5162	11.6019
PJ21	7/21/2019	05:17:40	-80.4162	328.092	7.064	0.636	719.276	13.056	96.7069	15.6174
PJ21	7/21/2019	06:59:00	-82.3281	2.86245	24.467	4.432	5438.680	12.848	92.2783	14.3567
PJ21	7/21/2019	07:46:09	-82.1031	1.66836	63.929	7.726	9279.190	14.950	107.442	17.0867
PJ21	7/21/2019	08:00:12	-80.2607	20.2918	69.460	9.043	10553.700	14.164	97.7403	15.6688
PJ22	9/12/2019	07:34:24	-78.4555	80.4122	144.630	17.417	22926.200	12.953	89.7742	10.5494
PJ22	9/12/2019	07:50:56	-79.5817	84.4996	124.978	14.869	19931.700	13.285	89.5918	10.6388
PJ23	11/4/2019	00:31:30	-85.3625	76.6513	32.664	2.363	3321.070	22.436	132.311	18.6968
PJ23	11/4/2019	01:06:41	-86.4431	81.3475	25.556	2.010	2924.850	23.265	136.222	19.2979
PJ23	11/4/2019	01:01:09	-83.9144	320.102	23.796	4.261	5293.730	11.929	91.2448	13.1339
PJ24	12/26/2019	19:20:32	-82.5578	20.487	19.534	2.043	2559.610	17.734	148.054	19.0153
PJ24	12/26/2019	20:00:32	-81.1849	26.3421	79.836	6.799	8310.690	19.287	149.448	19.7707
PJ24	12/26/2019	20:44:34	-81.6846	40.8878	17.765	2.700	3415.000	19.882	149.648	19.0486
PJ24	12/26/2019	20:49:38	-81.8746	62.468	20.984	5.386	7294.450	19.882	115.385	17.4216
PJ24	12/26/2019	21:33:40	-83.6333	71.7829	86.355	6.293	9185.660	19.615	114.031	17.4712