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Abstract

The week 3-6 averaged winter North Atlantic Oscillation (NAO) predictive skill in a state-of-the-art coupled climate prediction

system is attributed to two principle sources: upper and lower boundary conditions linked to the stratosphere and El Niño-

Southern Oscillation (ENSO), respectively. A 20-member ensemble of 45-day reforecasts over 1999-2015 is utilized, together

with uninitialized simulations with the atmospheric component of the prediction system forced with observed radiative forcing

and lower boundary conditions. NAO forecast skill for lead times out to six weeks is higher following extreme stratospheric

polar vortex conditions (weak and strong vortex events) compared to neutral states. Enhanced week 3-6 NAO predictive skill for

weak vortex events results primarily from stratospheric downward coupling to the troposphere, while enhanced skill for strong

vortex events can be partly attributed to lower boundary forcing related to the ENSO phenomenon. Implications for forecast

system development and improvement are discussed.
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Key Points: 16 

• Week 3-6 NAO predictive skill is attributed to stratospheric polar vortex conditions and 17 

ocean lower boundary forcing 18 

• Enhanced NAO skill following weak vortex events results primarily from stratospheric 19 

coupling to the troposphere 20 

• Enhanced NAO skill following strong vortex events can be attributed partly to ENSO  21 
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Abstract 23 

        The week 3-6 averaged winter North Atlantic Oscillation (NAO) predictive skill in a state-24 

of-the-art coupled climate prediction system is attributed to two principle sources: upper and lower 25 

boundary conditions linked to the stratosphere and El Niño-Southern Oscillation (ENSO), 26 

respectively. A 20-member ensemble of 45-day reforecasts over 1999-2015 is utilized, together 27 

with uninitialized simulations with the atmospheric component of the prediction system forced 28 

with observed radiative forcing and lower boundary conditions. NAO forecast skill for lead times 29 

out to six weeks is higher following extreme stratospheric polar vortex conditions (weak and strong 30 

vortex events) compared to neutral states. Enhanced week 3-6 NAO predictive skill for weak 31 

vortex events results primarily from stratospheric downward coupling to the troposphere, while 32 

enhanced skill for strong vortex events can be partly attributed to lower boundary forcing related 33 

to the ENSO phenomenon. Implications for forecast system development and improvement are 34 

discussed.  35 
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Plain Language 36 

        Winter climate over Europe and eastern North America is significantly affected by variability 37 

of the North Atlantic Oscillation (NAO). In this study, we quantify the NAO predictive skill for 38 

lead times of 3-6 weeks and attribute it to two main sources: the stratosphere and the El Niño-39 

Southern Oscillation (ENSO) phenomenon.  This is done by contrasting ensembles of 45-day 40 

reforecasts over 1999-2015 with the corresponding uninitialized atmosphere model simulations 41 

forced with observed radiative forcing, sea-surface temperature and sea ice conditions. We find 42 

that the model is able to better predict the NAO up to six weeks following extreme weak or strong 43 

states of the stratospheric polar vortex compared to stratospheric neutral vortex states. Enhanced 44 

week 3-6 NAO predictive skill for weak vortex events results primarily from stratospheric 45 

coupling to the troposphere, while enhanced skill for strong vortex events can be attributed in part 46 

to lower boundary forcing related to ENSO. These results have implications for forecast model 47 

development and improvement.  48 
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1. Introduction 49 

        Forecasting of North Atlantic Oscillation (NAO) variability on subseasonal-to-seasonal (S2S) 50 

and seasonal-to-decadal (S2D) timescales has recently received much attention due to its potential 51 

to provide enormous social-economic benefits (White et al. 2017; Smith et al. 2019; Merryfield et 52 

al. 2020; Mariotti et al. 2020; Meehl et al. 2020). Winter climate over Europe and eastern North 53 

America is significantly affected by the variability of the NAO (Hurrell, 1995; 1996; Hurrell and 54 

Deser 2009). The temporal evolution of the NAO has been suggested to be primarily a stochastic 55 

process with a fundamental timescale of ~10 days (Feldstein 2000) implying limited predictability 56 

beyond weather time scales (e.g., Johansson 2007). Yet, at longer timescales, a fraction of NAO 57 

variability has been shown to be forced by changes in sea-surface temperature (SST) and sea ice 58 

(e.g., Hurrell et al. 2004; Hoerling et al. 2004; Screen 2017). These low frequency NAO variations, 59 

therefore, are likely more than just statistical remnants of energetic high-frequency atmospheric 60 

fluctuations and could be predictable if they are driven by predictable changes in boundary forcing.    61 

        Recent forecast system assessments have suggested that there may be enhanced predictability 62 

of the NAO on S2S timescales (Riddle et al. 2013; Scaife et al. 2014). Efforts have been made to 63 

understand the source of this enhanced predictability (e.g., Cassou 2008; Newman and 64 

Sardeshmukh, 2008; Scaife et al., 2014; Brunet et al. 2015). Evidence suggests that stratospheric 65 

processes and associated variability are important (Tripathi et al., 2015a; Scaife et al., 2016; Wang 66 

et al. 2017; Jia et al. 2017; O’Reilly et al. 2018; Xiang et al. 2019; Nie et al. 2019), including the 67 

contribution of the stratospheric pathway associated with the El Niño-Southern Oscillation (ENSO) 68 

phenomenon (Domeisen et al., 2015; Butler et al., 2016; Domeisen et al. 2018).  69 

        Extreme stratospheric polar vortex states (i.e., weak and strong vortex events) are followed 70 

by anomalous near-surface NAO conditions (Baldwin and Dunkerton, 2001) implying enhanced 71 
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NAO prediction skill could occur as forecasts-of-opportunity contingent on initial stratospheric 72 

states (Albers and Newman 2019). For instance, Sigmond et al. (2013) demonstrated that the skill 73 

of NAO forecasts averaged over 15-60-day periods is substantially enhanced when forecasts are 74 

initialized at the onset time of weak stratospheric polar vortex events.  Tripathi et al. (2015b) found 75 

that initialization based on anomalous vortex events improves the skill of NAO predictions up to 76 

week 4, which has also been supported by multiple S2S model assessments (WWRP/WCRP, 2018; 77 

Domeisen et al. 2020a, 2020b). 78 

        In these aforementioned studies, the role of the stratosphere is typically assessed by 79 

categorizing the individual forecasts based on initial stratospheric polar vortex states. However, 80 

this method cannot rule out the possibility that enhanced NAO predictive skill may also partly 81 

come from other sources, for instance lower-boundary forcing. Separating different sources of 82 

predictability is difficult, especially when the sample size is small. Surface boundary-forced NAO 83 

predictability can be inferred from uninitialized Atmosphere Model Intercomparison Project 84 

(AMIP) simulations prescribed with observed SST and sea ice conditions. By comparing the skill 85 

in a climate prediction system with its corresponding AMIP simulations, the relative importance 86 

of atmospheric (e.g., extreme stratospheric vortex states) and lower boundary sources of NAO 87 

predictability can be identified.  88 

        In this study we attribute boreal winter NAO predictive skill for lead times of 3-6 weeks to 89 

distinct physical sources. Reforecasts using a coupled model are analyzed to quantify skill 90 

dependency on the initial stratospheric conditions.  Parallel uninitialized simulations employing 91 

the same modeling system are analyzed to isolate and quantify boundary forced predictability.  92 

 93 

2. Model reforecasts and AMIP simulations 94 
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a. Model reforecast  95 

        The reforecasts are conducted with the Community Earth System Model Version 1 (CESM; 96 

Hurrell et al. 2013) for 1999-2015. The daily output follows the protocol of the Subseasonal 97 

Experiment project (SubX; Pegion et al., 2019). The forecasts start every Wednesday and run for 98 

45 days. The atmospheric initial conditions are based on ERA-Interim reanalysis (Dee et al., 2002). 99 

The ocean and sea ice initial conditions come from a forced ocean-sea-ice simulation that employs 100 

adjusted Japanese 55-year Reanalysis atmospheric state fields and fluxes (Tsujino et al., 2018) as 101 

surface boundary conditions.  102 

        The CESM reforecast ensembles are generated using the random field initialization method 103 

(Magnusson et al., 2009). There are two 10-member ensembles with the same initial conditions 104 

but 30 (default) and 46 vertical levels in its atmospheric component – Community Atmosphere 105 

Model version 5 (CAM5; Neale et al., 2012; Richter et al., 2015). Richter et al., (2020) compared 106 

these two CESM reforecasts and found that improved representation of the stratosphere can 107 

improve the predictive skill of the stratosphere, but does not improve the NAO predictive skill. 108 

Therefore, we combine the two 10-member ensembles to yield a 20-member ensemble for detailed 109 

analysis. Our conclusions hold when we analyze the 10-member ensembles separately.  110 

        In addition, hindcasts with the National Centers for Environmental Prediction (NCEP) 111 

coupled forecast system model version 2 (CFS; Saha et al., 2014) and European Centre for 112 

Medium-Range Weather Forecasts (ECMWF; Vitart, 2014) are compared to those using CESM. 113 

This includes a 4-member CFS reforecast ensemble conducted every day for 1999-2010 and a 11-114 

member ECMWF reforecast ensemble conducted twice per week for 1996-2015, both from the 115 

international S2S database (Vitart et al., 2016; 2017). Recognizing that the models have somewhat 116 
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different hindcast periods, all the findings presented here have been re-calculated using their 117 

common period of 1999-2010 and the results were not materially different. 118 

b. NAO skill evaluation 119 

        We use the bias correction method used in SubX, where the daily anomaly for each variable 120 

is obtained by removing the daily climatology at different time lags (Pegion et al., 2019). The 121 

predictive skill is evaluated by the anomaly correlation coefficient (ACC) that has been commonly 122 

used in S2S forecasts (e.g., Tripathi et al., 2015b). Namely,  123 

𝐴𝐶𝐶 = 	
∑ 𝑥!"#$%& 𝑥"'(&

'∑(𝑥!"#$%&) ∑𝑥"'(&) )
 124 

where 𝑥!"#$%&  and 𝑥"'(&  represent the weekly or monthly anomaly for models and observations 125 

(ERA-Interim reanalysis; Dee et al., 2002), respectively. We also calculate the root-mean-square 126 

error (RMSE) skill score between the model and observations (Wilks, 1995) and find smaller 127 

values but with roughly the same pattern as ACC (not shown).  128 

        In this study, we diagnose the NAO forecast skill of sea-level pressure (SLP) based on 129 

initialization during November-March for lead times of 3-6-weeks (day 15-42 average). Discrete 130 

weekly skill for lead times of 1- 6-weeks is also diagnosed. Similar to other studies (e.g., Johansson, 131 

2007; Butler et al., 2016) we conduct Empirical Orthogonal Function (EOF) analysis for ERA-132 

Interim monthly (November-March) SLP anomalies over the Atlantic sector (20oN-80oN; 90oW-133 

40oE) and treat the leading EOF regression as the NAO pattern for both observations and models. 134 

The NAO index is then calculated by projecting the daily SLP anomaly from model and reanalysis 135 

data onto the leading EOF pattern and using it for ACC diagnostics. To quantify the confidence 136 

interval in the predictive skill of the NAO, we apply a bootstrapping method by resampling 10000 137 

times with replacement and obtaining the 5% and 95% of the ACC significance levels (Mudelsee 138 

2010). 139 
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        The role of initial persistence in NAO predictability is evaluated by the correlation of the 140 

NAO anomaly relative to its week 0 value (day -3 to day 3 average), and the resulting monthly 141 

persistence skill is compared to that from the initialized dynamical models.  Also, to isolate the 142 

role of surface lower boundary forcing, we utilize 50-member free-running atmosphere model 143 

simulations with CAM5 forced by observed greenhouse gases, SST and sea ice conditions (Hurrell 144 

et al., 2008). The ensemble-mean anomaly for the uninitialized AMIP forecast is obtained by 145 

removing the daily long-term climatology and then calculating the ACC against observations.  146 

Again, the analysis is of monthly mean variability, and the simulation skill is compared to the 147 

week 3-6 skill from initialized forecasts and from simple persistence.  148 

        To explore the role of the stratosphere in surface NAO predictability, we subsample the winter 149 

forecast into three categories based on the initial stratospheric zonal-mean zonal winds at 10 hPa 150 

and 60oN. Similar to Tripathi et al., (2015b), we first calculate the probability density function 151 

(PDF) of the 1999-2015 10-hPa 60oN November-March zonal-mean zonal wind distribution. The 152 

weak (strong) stratospheric polar vortex events can be defined for forecasts whose initial zonal 153 

wind at 10-hPa 60oN is below 10% of the PDF (3.55 m/s) or above 80% of the PDF (40.79 m/s). 154 

Note that slightly different thresholds are used so that the number of extreme events (60 weak and 155 

62 strong vortex events) are comparable, but the results are not sensitive to the exact choice of 156 

thresholds. Figure S1 shows the composite of standardized polar-cap geopotential height and SLP 157 

anomalies for weak and strong vortex events, indicating that the observed downward coupling of 158 

extreme polar vortex events and their surface NAO features are both well captured in CESM. 159 

Neutral vortex events are defined for forecasts whose initial zonal wind at 10-hPa 60oN is between 160 

30% and 70% of the PDF (17.18 m/s – 35.74 m/s; 154 cases).  The predictive skills of persistence 161 
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and uninitialized AMIP simulations can be evaluated based on the same stratospheric events as in 162 

the CESM reforecasts. 163 

 164 

3. Results 165 

3.1. Winter NAO predictive skill 166 

 The Northern Hemisphere (NH) monthly SLP hindcast skill from week 3 to 6 in boreal 167 

winter (November-March) for CESM (1999-2015), CFS (1999-2010) and ECMWF (1996-2015) 168 

models is presented in Figure 1a. The common feature among the three reforecasts is overall 169 

greater skill in lower-latitudes than higher-latitudes, with a secondary skill maximum centered 170 

over Greenland especially in CESM and ECMWF forecasts.  When averaged over NH extratropics, 171 

ECMWF has the highest skill (0.36), followed by CESM (0.33) and CFS (0.26). In the Atlantic 172 

basin, high skill regions over Greenland and near the Azores project onto the NAO centers-of-173 

action, suggesting that this leading mode of climate variability has particularly enhanced forecast 174 

skill (Johansson, 2007). CESM and ECMWF monthly SLP skill implies greater NAO 175 

predictability than indicated by CFS, a contrast among these systems that is evident already by 176 

week 2 and persists until week 6 (see Supplemental Figure S2). 177 

 Some of the model differences in skill are a function of ensemble size rather than a 178 

fundamental model bias that might plague a particular prediction system, and it has been shown 179 

that skill declines with diminishing model ensemble size (e.g., Kumar and Hoerling 1995; Butler 180 

et al. 2016; Athanasiadis et al. 2020; Smith et al. 2020). To explore this further, we randomly select 181 

N ensembles (N from 1 to 20) from the CESM reforecast and then conduct 1000-times 182 

bootstrapping to calculate the 5% and 95% statistical significance level of the NAO skill. Figure 183 

1b shows the week 3-6 monthly NAO skill in CESM as a function of ensemble size. In agreement 184 
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with those earlier studies, the NAO skill approximately doubles (0.27 versus 0.51) when the 185 

ensemble size increases from 1 to 20, but it is close to saturation at 15 ensemble members (e.g., 186 

there is a less than 0.01 increase from 15 to 20 members).  187 

        Thus, when accounting for the differences in ensemble size of the systems diagnosed herein, 188 

the lower NAO skill in the smaller CFS ensemble is reconcilable with sampling alone; its skill 189 

overlaps with that of CESM when the latter’s ensemble is sub-sampled to match the CFS 190 

population. That said, the lower skill with the CFS model might also be related to the fact that the 191 

stratospheric polar vortex is poorly predicted and stratosphere-troposphere coupling is too weak 192 

(Miller and Wang 2019). Evidence to support this argument for degraded skill is presented in the 193 

next section where we demonstrate an appreciable sensitivity of skill to stratospheric conditions 194 

overall.  195 

        As a prelude to a more detailed analysis of the attributable causes (sources) for week 3-6 196 

NAO prediction skill, the initialized prediction skill of CESM is compared to that resulting from 197 

simple persistence, and that arising from lower boundary forcing alone with no recourse to the 198 

initial weather state.  Summarized in Supplemental Figure S3, the monthly NAO skill in CESM 199 

hindcasts (~0.5) is found to be considerably larger than in both persistence forecasts (~0.3) and the 200 

simulation skill arising solely from effects of prescribed surface lower-boundary forcing (~0.05). 201 

It is interesting to note from their NH distributions of SLP skill (Supplemental Fig. S3, left) that 202 

the AMIP simulations have more than double the correlation skill of persistence averaged over the 203 

NH overall.  But persistence skill is quite high over the two NAO centers of variability in the 204 

Atlantic basin, while AMIP skill is virtually absent over the NAO’s northern node. This overall 205 

estimate of skill sources, while informative, obscures a considerable conditionality of the skill by 206 

each source.  207 
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 208 

3.2. Sensitivity to the stratospheric initial states 209 

        To explore the role of initial stratospheric states on NAO prediction skill, we subsample the 210 

CESM winter reforecasts into weak (60), neutral (154) and strong (62) polar vortex events. Figure 211 

2a shows the monthly time series of 10 hPa zonal winds averaged along 60°N, the extreme values 212 

of which are used to identify strong (blue dots) and weak (red dots) vortex events during 1999-213 

2015. The weekly NAO skill using this stratification is displayed in Figure 2b.  In agreement with 214 

earlier studies, the NAO skill is generally higher in weeks 3–6 when initialized from extreme 215 

stratospheric polar vortex conditions compared to neutral states. Especially striking is the sustained 216 

high skill emerging from initial weak polar vortex conditions, having correlations above 0.5 217 

through week 6.  By week 6, the skill improvement relative to neutral states (0.23) is appreciable 218 

and statistically significant, indicating that NAO skill is substantially enhanced when initialized 219 

during weak vortex events, a result based on CESM that affirms prior findings based on other 220 

forecast systems (Sigmond et al. 2013; Tripathi et al. 2015; Domeisen et al. 2020b). 221 

        The results indicate that NAO skill when forecasts begin from strong and weak vortex events 222 

is comparable - and is moderately elevated compared to neutral vortex states during  weeks 3 and 223 

4.  However, the skill decreases quickly in weeks 5 and 6 for strong vortex initializations, so that 224 

the improvement relative to neutral states becomes marginal (Figure 2b). This skill progression 225 

can be explained by a difference between CESM and observed NAO life cycles during strong 226 

vortex events. In weeks 5-6 following strong vortex events, the canonical positive NAO pattern is 227 

evident in CESM but not in observations (see Supplemental Figure S1b). We speculate that the 228 

lack of positive NAO skill in weeks 5-6 for these strong vortex cases might simply be due to 229 
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sampling rather than due to a fundamentally shorter time scale of stratosphere-troposphere 230 

interactions during strong versus weak vortex environments (c.f., figure 2 of Reichler et al. 2013). 231 

        The CESM SLP and NAO skill averaged for forecast lead times of 3-6 weeks under weak, 232 

neutral and strong polar vortex events is presented in Figure 3, and further elucidates the sensitivity 233 

to the stratospheric initial conditions. The higher NAO skill for weak vortex cases originates from 234 

a superior forecast performance over the northern center of NAO variability. There the monthly 235 

SLP correlation skill is near 0.7 for weak vortex conditions compared to slightly below 0.5 for the 236 

strong vortex cases. Interestingly, the NH average SLP skill is higher for the strong vortex 237 

environments (0.41 versus 0.34) and tends to also be higher in most locations, though with the 238 

clear regional exception being over the far North Atlantic.   239 

        The NAO skill for persistence forecasts and AMIP simulations provides further insight on 240 

the attributable causes for NAO prediction skill beyond two weeks (Figure 3b). The high skill for 241 

weak polar vortex initial states is not an outcome of particularly high persistence of the NAO 242 

during such states. Rather, NAO persistence skill following weak vortex initial conditions is 243 

significantly lower than for strong vortex states. There is also statistically significant asymmetry 244 

in AMIP simulation skill when binned according to reforecast polar vortex intensity. It is important 245 

to note that the AMIP runs are constrained only by variability in surface boundary conditions, and 246 

have no explicit synchronicity with the actual temporal variability of the polar vortex. Yet, the 247 

results of Fig. 3a can only be understood if those boundary forcings themselves force the NAO 248 

variability for the strong events. 249 

        Considering these two factors in aggregate reveals an absence of skill during weak vortex 250 

states in both persistence and AMIP, and that the considerable monthly skill of CESM predictions 251 

is mostly due to the importance of the initial stratospheric state.  Note that the absence of 252 
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persistence skill implies a fundamentally nonlinear dynamical evolution in the forecasts that 253 

cannot be represented via simple persistence methods alone. By contrast, both persistence and 254 

lower boundary forcing contribute to monthly NAO skill when the initial polar vortex is strong.  255 

        An explanation for the role of ocean forcing is provided by an analysis that stratifies the 256 

occurrences of polar vortex events according to ENSO phase. The Niño 3.4 index in relation to 257 

weak and strong polar vortex events is shown in Fig. 4a.  The relationship is not linear and is 258 

complicated.  For instance, many strong vortex events appear to happen in either El Niño or La 259 

Niña years (e.g., 1999/2000, 2007/2008, 2009/2010, 2010/2011, 2015/2016), though this is less 260 

evident for weak and neutral events. This is evident from the histograms of Niño3.4 SST states 261 

stratified according to polar vortex intensity (Fig. 4b).  The spread of the distribution for strong 262 

vortex states is wide and highly non-Gaussian (blue curve), especially compared to that for weak 263 

polar vortex states (red curve). It suggests that the NAO predictive skill following strong vortex 264 

events is influenced by ENSO, agreeing with the recent findings of Xiang et al. (2019) who 265 

identified ENSO as the most predictable subseasonal mode and found that its influence in the 266 

North Atlantic resembles the NAO pattern.  However, further research is needed to determine why 267 

many strong vortex events coincide with both El Niño and La Niña years.  268 

        The lower panel of Fig. 4 provides a spatial view of the monthly SLP skill patterns related to 269 

effects of initial stratospheric upper air conditions and ENSO lower boundary conditions.  Here 270 

we subsample the winter cases into extreme stratospheric polar vortex conditions (both weak and 271 

strong), ENSO cases (both El Niño and La Niña, defined by Niño3.4 index above/below +/-0.5, 272 

respectively), and neutral stratosphere-ENSO cases (Figure 4b). Note that the ENSO cases have 273 

been excluded from the composites of extreme stratospheric vortex states, and extreme polar 274 

vortex events have been excluded from the ENSO cases. Immediately apparent is that SLP skill 275 
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for neutral stratosphere and neutral ENSO cases is negligibly low (Figure 4b middle panel), and 276 

has little amplitude in the NAO regional centers of variability. By contrast, SLP skill is 277 

comparatively high for extreme states of ENSO and the polar vortex. While the initial atmospheric 278 

state is an especially effective skill source over the northern node of the NAO, it is also clear that 279 

ENSO likewise projects onto centers of skill that align with the NAO dipole. These results 280 

demonstrate that both extreme stratospheric polar vortex states and extreme lower boundary 281 

forcing linked to ENSO account for week 3-6 NAO predictive skill during boreal winter. 282 

 283 

4. Summary and Discussion  284 

        In this study, we explore sources of subseasonal predictive skill of the boreal winter NAO.  By 285 

utilizing ensembles of 45-day reforecasts during 1999-2015 with a state-of-the-art prediction 286 

system, in combination with uninitialized AMIP simulations, we attribute NAO predictive skill for 287 

lead times of 3-6 weeks. We find two principle sources of skill: upper and lower boundary 288 

constraints linked to the stratosphere and ENSO, respectively.   289 

        Specifically, we find that the winter NAO skill for forecast lead times out to six weeks is 290 

higher following extreme stratospheric polar vortex conditions (weak and strong vortex events) 291 

compared to neutral states. We further show that the enhanced NAO predictive skill for weak 292 

vortex events results primarily from stratospheric downward coupling, while the enhanced skill 293 

for strong vortex events can be attributed, in part, to lower boundary forcing associated with ENSO. 294 

        We also find that NAO prediction skill can be significantly reduced if the forecast ensemble 295 

size is too small. While a similar result has been determined for seasonal and decadal prediction 296 

systems, it may become more important for the subseasonal forecast due to compromise between 297 

ensemble size and running frequency. Our finding suggests that given fixed computational 298 
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resources, the ensemble size should be no less than 10; otherwise, NAO predictive skill will be 299 

substantially lower than achievable levels.  300 

        Our findings come with a caveat that CESM and most other similar subseasonal forecast 301 

systems (e.g., S2S Prediction Project and SubX) cover only the most recent 20-30 years. Since 302 

NAO predictability has been found to vary at decadal and multidecadal timescale (Weisheimer et 303 

al. 2018), the degree to which our results are specific to the period analyzed is still an open question. 304 

        Our findings also have important implications for forecast system development and 305 

improvement.  Specifically, our results indicate that NAO boreal winter forecast skill depends on 306 

not only the representation of stratospheric processes in the forecast model, but also on the ENSO 307 

evolution during the model testing period. Thus, for NAO predictive skill as benchmark for model 308 

improvement, the analysis of subseasonal reforecasts in combination with AMIP simulations will 309 

provide insight as to whether NAO predictive skill can be improved by focusing on better 310 

representation of stratospheric processes and related variability in a specific prediction system, or 311 

through better simulation of ENSO, if not both.   312 

 313 
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Figure 1: (a) Sea-level pressure week 3-6 predictive skill evaluated by anomaly correlation 509 
coefficient (ACC) during November-March (NDJFM) for CESM, CFS and ECMWF reforecasts. 510 
Values on the left corner denote the skill averaged over Northern hemisphere extratropics. 511 
Numbers in the brackets of each model show the ensemble size. (b) Week 3-6 North Atlantic 512 
Oscillation (NAO) predictive skill as a function of ensemble size. Shading denotes the 5% and 95% 513 
statistical level of the CESM reforecast by conducting bootstrapping. Blue (red) error bars indicate 514 
the 5% and 95% statistical level of CFS and ECMWF reforecasts, respectively. 515 
 516 
Figure 2: (a) Observed Nov-March zonal-mean zonal wind at 10hPa and 60oN and the weak (red), 517 
strong (blue) polar vortex CESM reforecast cases. (b) Weekly NAO skill for the weak (red), strong 518 
(blue) stratospheric polar vortex events and neutral polar vortex conditions (gray). Error bars 519 
indicate the 5% and 95% statistical level based on 10000-time bootstrapping. 520 
 521 
Figure 3: (a) Sea-level pressure week 3-6 predictive skill for weak, neutral and strong polar vortex 522 
events. Values on the left corner denote the average of the ACC averaged over NH extratropics. 523 
(b) As in (a), but for the NAO skill in CESM, persistence and uninitialized AMIP simulations. 524 
Error bars indicate the 5% and 95% statistical levels by bootstrapping. 525 
 526 
Figure 4: (a) Niño3.4 time series and the weak (red dots) and strong (blue dots) polar vortex events 527 
and the probability density function of Niño3.4 index for the weak (red), neutral (gray shading) 528 
and strong (blue) polar vortex events. In (a) the daily Niño3.4 index is smoothed by 31 days 529 
running mean. (b) sea-level pressure predictive skill for initial extreme stratospheric polar vortex 530 
events (bottom left; combining weak and strong events), neutral stratosphere-ENSO events 531 
(bottom middle) and ENSO events. Values on the left corner denote the skill averaged over NH 532 
extratropics.  533 
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Figure 2: (a) Observed Nov-March zonal-mean zonal wind at 10hPa and 60oN and the weak (red), 544 
strong (blue) polar vortex CESM reforecast cases. (b) Weekly NAO skill for the weak (red), strong 545 
(blue) stratospheric polar vortex events and neutral polar vortex conditions (gray). Error bars 546 
indicate the 5% and 95% statistical level based on 1000-time bootstrapping.  547 
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Figure 3: (a) Sea-level pressure week 3-6 predictive skill for weak, neutral and strong polar vortex 550 
events. Values on the left corner denote the average of the ACC averaged over NH extratropics. 551 
(b) As in (a), but for the NAO predictive skill in CESM, persistence and uninitialized AMIP 552 
simulations. Error bars indicate the 5% and 95% statistical levels by bootstrapping. 553 
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Figure 4: (a) Niño3.4 time series and the weak (red dots) and strong (blue dots) polar vortex events 556 
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and strong (blue) polar vortex events. In (a) the daily Niño3.4 index is smoothed by 31 days 558 
running mean. (b) sea-level pressure predictive skill for initial extreme stratospheric polar vortex 559 
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extratropics. 562 



Supplementary Information for  1 

Attribution of NAO predictive skill beyond two weeks in boreal winter 2 

 3 

Lantao Sun1*, Judith Perlwitz2, Jadwiga (Yaga) Richter3,  4 

Martin Hoerling2, James W. Hurrell1 5 

 6 

 7 

1 Department of Atmospheric Science, Colorado State University, Fort Collins, CO 8 

2NOAA Earth System Research Laboratory Physical Science Division, Boulder, CO 9 

3National Center for Atmospheric Research, Boulder, CO 10 

  11 



 1 

 12 
 13 
Figure S1: a) Composite of the standardized polar-cap geopotential height anomalies for weak 14 
and strong polar vortex events based on ERA-Interim and CESM reforecast. b) As in a), but for 15 
the anomalous sea-level pressure (SLP) composite based on ERA-Interim and week 3-4/5-6 of the 16 
CESM reforecast. 17 
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 20 
Figure S2: Weekly North Atlantic Oscillation (NAO) skill for CESM, NCEP and ECMWF. Error 21 
bars indicate the 5% and 95% statistical level based on 10000 bootstrap resamples. 22 
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 26 

Figure S3: As in Fig. 1a, but for the SLP predictive skill due to persistence (a) and in the 27 
uninitialized AMIP simulations (b). Values on the left corner denote the skill averaged over 28 
northern hemisphere extratropics. c) week 3-6 NAO skill comparison among CESM, persistence 29 
and uninitialized AMIP simulations. Error bars indicate the 5% and 95% statistical levels by 30 
bootstrapping. 31 


