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Abstract

Climate change will likely lead to more regular and more severe drought events in the near future, with large impacts on

agriculture, especially during long-lasting precipitation deficits or heat waves. This study focuses on agricultural droughts,

which are generally defined as soil moisture deficits so severe, that vegetation is negatively impacted. However, during short

soil moisture drought events, vegetation is not always negatively affected, and sometimes even thrives under increased solar

input. Because of this duality in agricultural drought impacts, the use of the term agricultural droughts is a potential issue.

Here we show that, in major European droughts over the past two decades, clear asynchronies did occur between soil moisture

and vegetation anomalies. A wrong use of the term agricultural droughts could lead to misclassification of drought events and

false drought alarms, and for that reason, a distinction is necessary between soil moisture and vegetation droughts.
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Abstract15

Climate change will likely lead to more regular and more severe drought events in the16

near future, with large impacts on agriculture, especially during long-lasting precipita-17

tion deficits or heat waves. This study focuses on agricultural droughts, which are gen-18

erally defined as soil moisture deficits so severe, that vegetation is negatively impacted.19

However, during short soil moisture drought events, vegetation is not always negatively20

affected, and sometimes even thrives under increased solar input. Because of this dual-21

ity in agricultural drought impacts, the use of the term agricultural droughts is a poten-22

tial issue. Here we show that, in major European droughts over the past two decades,23

clear asynchronies did occur between soil moisture and vegetation anomalies. A wrong24

use of the term agricultural droughts could lead to misclassification of drought events25

and false drought alarms, and for that reason, a distinction is necessary between soil mois-26

ture and vegetation droughts.27

Plain Language Summary28

Climate change impacts large parts of our society, not in the least water reservoirs,29

as drought conditions are expected to aggravate. Many definitions for droughts exist, but30

here we focus on agricultural droughts, which occur when the water content of the soil31

diminishes to such a level that vegetation is negatively impacted. In some cases, how-32

ever, vegetation profits from drought conditions. For example, droughts often coincide33

with more hours of sun, and if the vegetation is not (yet) water limited, this can enhance34

vegetation growth, rather than counteract it. A drought in soil moisture can thus lead35

to two opposite effects in vegetation. This duality is not included in the term agricul-36

tural drought, and thus is a potential issue in drought research. Here we show that, al-37

though they are classified as the same type of drought, substantial differences between38

soil water droughts and vegetation droughts exist. This risks misclassification of droughts39

and false drought alarms, and for that reason, a distinction should be made between soil40

moisture and vegetation drought events.41

1 Introduction42

Due to climate change and enhanced land-atmosphere feedbacks, the impact of droughts43

will likely become more severe over the coming decades (Teuling, 2018). Droughts are44

generally considered to be induced by a precipitation deficit relative to normal condi-45

tions, which, when persisting over longer time periods, results in insufficient water sup-46

ply to meet demands of both human activities and the environment (Hayes et al., 2011).47

As a result, impacts of droughts can range from decreased crop yield, damage to ecosys-48

tems, and land subsidence, to insufficient drinking water and disruption of transport. To49

monitor and quantify drought across the terrestrial part of the hydrological cycle, nu-50

merous drought indices are available. These can be divided into indices for meteorolog-51

ical, agricultural, and hydrological drought in line with the three main drought types.52

Meteorological droughts are defined as a prolonged period with below-normal precipi-53

tation, and they are typically quantified with the Standardized Precipitation Index (SPI)54

(McKee et al., 1993). Meteorological droughts can propagate into hydrological droughts,55

which entail below-normal (ground)water levels or river discharge (Seneviratne et al., 2012),56

and are generally evaluated using e.g. reservoir levels, Standardized Runoff Index or the57

Streamflow Drought Index (Shukla & Wood, 2008; Hayes et al., 2011). Lastly, agricul-58

tural droughts are defined as a soil moisture deficit severe enough to hamper vegetation59

growth (Wilhite & Glantz, 1985). Due to their direct relation to food production (through60

crop yield) and water management (through irrigation), agricultural drought is often the61

key focus of drought monitoring and forecasting.62

Agricultural droughts have traditionally been quantified based on soil moisture con-63

ditions in the root zone. The well-known and widely-used Palmer Drought Severity In-64
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dex (PDSI, see Palmer, 1965) calculates a simple water budget based on monthly val-65

ues of precipitation and potential evapotranspiration, in combination with parameters66

that have been optimised to ensure similar PDSI values correspond to similar impacts67

on vegetation and crop yield even in different climate conditions. The development of68

high-resolution land surface models applied at continental scales now also allows to have69

a more physically-based alternative to PDSI, which can account for local soil and veg-70

etation properties. In other cases, standardised in situ or remotely sensed soil moisture71

observations have been used directly as agricultural drought index (Mozny et al., 2012).72

Helped by the readily available satellite observations of vegetation indices like NDVI, EVI,73

SIF, fPAR, NIRv and VOD, other studies have been focusing on the use of these veg-74

etation indices to quantify agricultural drought (Anyamba & Tucker, 2012; Hu et al., 2019).75

The question remains whether soil moisture and vegetation indices reflect the same agri-76

cultural drought.77

Whereas soil moisture and vegetation-based indices both aim to quantify agricul-78

tural drought, the relation between soil moisture and vegetation is characterised by con-79

siderable complexity and nonlinearity. Although combined indices have been proposed80

as a solution (Yurekli & Kurunc, 2006; Sivakumar et al., 2010; Sepulcre-Canto et al., 2012),81

it can be questioned whether agricultural drought should be quantified by a single in-82

dex. From the small scale to the continental scale, distinct water- and energy limited soil83

moisture regimes can be identified (Denissen et al., 2020), with the relation between soil84

moisture and evaporative fraction often being represented by a bilinear relation (Seneviratne85

et al., 2010). Above the so-called critical moisture content, evapotranspiration and plant86

functioning will not be limited or affected by a lack of precipitation. In fact, increased87

incoming solar radiation can even enhance evapotranspiration, leading to positive anoma-88

lies in vegetation indices despite prolonged meteorological drought conditions (Jolly et89

al., 2005; Teuling et al., 2006; Mastrotheodoros et al., 2020). Because of this duality in90

the drought impacts, the use of the term agricultural drought is ambiguous, even more91

so as the term drought bears a negative connotation to it, though its impacts are not nec-92

essarily negative.93

To address the issues surrounding the definition of agricultural drought, we aim to94

quantify the synchrony between droughts in soil moisture and vegetation using readily95

available long-term gridded datasets of precipitation, vegetation functioning, and soil mois-96

ture. Based on the concept of critical soil moisture, we hypothesise that the link between97

soil moisture and vegetation droughts is more direct in the water-limited Mediterranean98

region, whereas a more complex behaviour is expected in the more humid Northern Eu-99

rope. We investigate the relation between soil moisture and vegetation drought for six100

widespread meteorological drought events that occurred over the past two decades in Eu-101

rope, including the severe 2003 and, more recent, 2018 events, that occurred in water-102

as well as energy-limited regions. In addition, we test the ability of soil moisture to pre-103

dict observed agricultural drought (i.e. vegetation impact).104

2 Methods105

The most severe droughts over Europe (here 11◦ W-45◦ E, 35-72◦ N) during grow-106

ing seasons over the past two decades were selected to study the relation between soil107

moisture and vegetation anomalies. The selection was based on the 6 month aggregated108

Standardized Precipitation Index (SPI6, derived from monthly NASA GPM IMERG pre-109

cipitation data, McKee et al., 1993; Huffman et al., 2019) in September of each year, so110

that the SPI6 reflects the rainfall deficit over the entire growing season. Interconnected111

pixels over relatively large areas with a strong precipitation deficit (SPI6 < -1) were cho-112

sen, resulting in the six events as indicated in Figure 1: the 2002 drought over the Baltic113

states and north-western Russia (Rimkus et al., 2017), the 2005 event on the Iberian Penin-114

sula (Sepulcre-Canto et al., 2012) and the infamous 2003, 2015 and 2018 events over cen-115

tral Europe (Ionita et al., 2017; Hanel et al., 2018; Buras et al., 2020). Because of the116
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Figure 1. Properties of the selected summer droughts. Left: location and spatial extent,

right: SPI6 over the selected growing season (red), compared to the distribution of SPI6 in the

remaining growing seasons for the same region.

large North-South extent of the 2018 drought event, this event was split in two parts (re-117

ferred to as 2018N and 2018S ).118

To allow for a fair comparison between anomalies of different variables, normali-119

sation was used. Monthly soil moisture (SM, ESA CCI SM v04.5, Gruber et al., 2017;120

Dorigo et al., 2017; Gruber et al., 2019) and Normalized Difference Vegetation Index (NDVI,121

MODIS MOD13C2, Tucker, 1979; Didan, 2015) data were thus standardised by subtract-122

ing the long-term monthly mean from the SM/NDVI at each time step, and subsequently123

divided by the long-term monthly standard deviation. This resulted in values between124

approximately −3 and +3, indicating negative and positive anomalies, respectively, that125

can be directly compared with SPI6. Other indices, such as the ESSMI (Carrão et al.,126

2016) for soil moisture data, or the VCI (Kogan, 1990) for NDVI data, are available and127

comparable to normalisation, but a more general approach was adopted here to increase128

comparability of two different variables. We recognise anomalies in SM (SMA) and NDVI129

(NDVIA) below -1 as pixels in drought. To account for seasonality in the variables, data130

for each month of the year were taken separately, and pixels with less than 7 data points131

were removed from the analysis. The datasets have been extensively validated (e.g. La-132

hoz et al., 2018; Navarro et al., 2019), and, as such, a validation has not been conducted133

here.134

After the data normalisation, for each drought event, the fraction of the selected135

SPI6 pixels with an anomaly lower than -1 was determined for each variable. Then, for136

each event and time step, the Pearson correlation between SMA and NDVIA was quan-137

tified. Though correlation is useful for an overview of similarity between two variables,138

it is not sensitive to bias or scale errors (Brier & Allen, 1951; Murphy & Epstein, 1989).139

Skill scores, on the other hand, give a more in-depth and well-rounded view on the use140

of SM as a predictor for agricultural impact. It should be noted that, because soil mois-141

ture drought is often used as a proxy for vegetation drought, predictions using soil mois-142

ture drought are implicitly assumed to be skilful. Therefore, the number of Hits (H), Misses143

(M), Correct Rejections (CR) and False alarms (FA) were determined, and converted144

to five skill scores, each highlighting a different aspect of prediction accuracy. First, the145
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Frequency Bias (FB) is given by:146

FB =
H+FA

H+M
, (1)

and expresses the difference between mean drought frequencies. Next, the frequency of147

hits (FOH) is a measure of discrimination, showing the fraction of forecasted vegetation148

droughts that were correct, which is given by:149

FOH =
H

H+FA
. (2)

The frequency of misses (FOM) is given by:150

FOM =
M

H+M
, (3)

and expresses the fraction of observed vegetation droughts that are incorrectly forecasted151

by the soil moisture anomaly. The Hanssen-Kuipers score (HK Hanssen & Kuipers, 1965)152

measures the ability of the soil moisture drought to discriminate between (or correctly153

classify) vegetation drought events and non-events:154

HK =
H

H+M
− FA

FA+CR
. (4)

Lastly, the Odds Ratio (OR, Stephenson, 2000) is used to measure the strength of the155

association between soil moisture and vegetation drought:156

OR =
H · CR

FA ·M
(5)

We refer to Hogan and Mason (2011) for an overview of these, and more, skill scores, and157

their (dis-)advantages.158

3 Results159

A general check of the full data time series revealed that during each event, asyn-160

chronies between spatial patterns in soil moisture and vegetation anomalies are widespread.161

Figure 2 serves as an illustration for these asynchronies, which occur in all green and pur-162

ple pixels (See Fig. S1-S5 for other events). Regionally more humid areas such as moun-163

tain ranges and high latitude regions can easily be distinguished by their relatively low164

Pearson correlations between SMA and NDVIA (Fig. S6), in line with our hypothesis.165

Furthermore, correlations between the anomalies were low in April and generally increased166

towards September, though in some areas, correlations peak in August.167

Not all of the six studied events were equally affected by deficits in SM and/or NDVI.168

A comparison between drought extents using the fraction of the area affected by a SM/NDVI169

deficit is given in Fig. 3. The 2002, 2015 and 2018N events are characterised by a clear170

overlap between the NDVI and Both lines, indicating that an area affected by an NDVI171

deficit also has a soil moisture deficit. Interestingly, in 2003, 2005 and 2018S, some veg-172

etation deficits occur in absence of a SM drought. In these cases, vegetation growth was173

thus not obviously limited by current water content, but possibly by other factors, e.g.,174

energy, heat stress, antecedent low soil moisture conditions, or pests and diseases. Since175

these three events are located further south than most other selected events, energy lim-176

itations can be ruled out. Heat stress could well have been the limiting factor for veg-177

etation, as well as antecedent soil moisture anomalies, which had been negative long be-178

fore the growing season in 2003 and 2005 (Fig. S9), though NDVI anomalies (Fig. S11)179

were negative even before that, indicating a poor state of vegetation all-together. For180

the 2018S event, antecedent SM conditions are ruled out, as its anomalies only become181

negative in May 2018.182

Figure 4 shows the severity of each drought event for both vegetation and soil mois-183

ture and the Pearson correlation between NDVIA and SMA. Asynchrony between the184
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Figure 2. Synchronicity between soil moisture and vegetation droughts during the 2003 grow-

ing season. Note the asynchronous development of soil moisture and vegetation drought, with soil
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the other drought events are included in the Supporting Information (Fig. S1-S5)
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two variables is visible in the irregular shape of the arrows, and the deviation of the lin-185

ear regression from the 1:1 line. Generally, a delay can be distinguished between neg-186

ative SMA and NDVIA values. This delay was expected, since the information contained187

in satellite soil moisture data mainly contains surface soil moisture content, rather than188

root-zone soil moisture content (Nicolai-Shaw et al., 2017). Interestingly, though, pos-189

itive anomalies are more common in NDVIA than in SMA, showing that impacts of soil190

moisture droughts do not always show in the vegetation, and can sometimes even lead191

to opposite, i.e. positive, impacts in vegetation. High monthly correlations between SMA192

and NDVIA generally occur late in the growing season, as shown by redder colours in193

Fig. 4. It seems that there is a general pattern that, when vegetation is energy limited,194

it remains largely unaffected by small anomalies in soil moisture content, whereas un-195

der water limited conditions, which are more likely to occur near the end of the grow-196

ing season, higher correlations are found, consistent with results of Jolly et al. (2005).197

Given the clear asynchrony in soil moisture and vegetation under water-limited con-198

ditions, it is relevant to question how well soil moisture-based indices, such as the widely-199

used SSMI and PDSI, perform when targeting to quantify vegetation drought. The skill200

scores of agricultural drought impacts, as reflected in NDVI and as predicted using SMA,201

is shown in Figure 5. From the low density of lines in the parts of the skill score plots202

shaded green, it is clear that the overall skill is rather low. Moreover, similar to the Pear-203

son correlation, skill scores generally increase in August, though we expect the useful-204

ness of end-of-season NDVIA prediction to be limited for agricultural purposes. Over-205

forecasting, i.e. when more droughts are forecasted using soil moisture than there are206
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droughts observed in vegetation, as seen in a FB > 1, generally occurs in the beginning207

of the growing season, whereas underforecasting (FB < 1) occurs near the end of the grow-208

ing season. The respective in- and decrease in FOH and FOM show the result of the chang-209

ing frequency bias. The HK, showing the accuracy of events minus the accuracy of non-210

events, is rather stable throughout the growing season, though it peaks in the second half,211

just as the OR, which shows the number of correct forecasts. None of the drought events212

stand out in all of the skill scores. A sensitivity analysis showed that different thresh-213

olds for the drought selection and skill scores did not substantially change the results.214

4 Discussion215

The complexity of agricultural droughts is not a local or regional issue, but a global216

one, and thus should be considered that way. While this study was performed over the217

European continent, it covers a range of climates found around the globe: from arid re-218

gions in the Mediterranean to boreal regions in northern Scandinavia. It is therefore ex-219

pected that the behaviour will be similarly asynchronous in other regions. Limitations220

of this approach are on a local scale, rather than the global scale, due to the low spa-221

tial resolution of the used datasets. Even though each dataset was carefully selected based222

on their length, spatial resolution and validation results over Europe, resulting in a se-223

lection of datasets best suited for this analysis, uncertainties are inherent to any type224

of data and results should therefore be interpreted with care. In complex landscapes, high-225

resolution information can sometimes reveal a range in anomalies, even containing con-226

trasting signs, that is not visible at coarser scale (Buitink et al., 2019). The normalis-227

ing of soil moisture data in this study can be criticised, because soil moisture data are228

often bimodal (Teuling et al., 2005; Vilasa et al., 2017). In addition, a dataset length of229

18 years can be considered short compared to a traditional 30-year reference period, as230

recommended by the WMO (2017). On the other hand, uncertainties due to areal prop-231

erties are decreased, because pixel values are compared to other values of the exact same232

pixel, while the resulting anomalies can easily be compared to other pixel values. This,233

next to the possibility to fairly compare different variables, led to the decision to use a234

standard normalisation for both vegetation and soil moisture data, regardless of this method’s235

limitations.236

In this research we used available long-term satellite records of soil moisture and237

NDVI. Whereas current satellite soil moisture products are limited to the top few cm,238

a soil moisture drought assessment is ideally based on observations over the entire root239

zone. However, such observations are currently only available in several regional-scale240

observation networks (Mittelbach et al., 2011). Besides NDVI, numerous other products241

exist that reflect vegetation water status and/or productivity. These include other in-242

dices based on optical (NIR, RED and BLUE) imagery (e.g. NIRv, EVI, etc.) or on mi-243

crowave data (e.g. VOD). Though each of these different indices might give slightly dif-244

ferent results, their application should not affect the fundamentally different response245

of soil moisture and vegetation to drought.246

The inherently complex and nonlinear relation between soil moisture and vegeta-247

tion status has important implications for drought monitoring, where traditionally a dis-248

tinction is made between meteorological, agricultural, and hydrological drought events.249

Whereas traditionally soil moisture has been used to indicate agricultural drought, our250

research highlights that a distinction is necessary between soil moisture drought (reflect-251

ing water status) and vegetation drought (reflecting its impact on the vegetation). This252

is particularly true when evaluating droughts across climate zones. The distinction be-253

tween soil moisture and vegetation drought is important, because shorter soil moisture254

droughts can even have a positive rather than negative impact on productivity, risking255

misclassification of drought events and false drought alarms.256
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5 Conclusions257

Agricultural droughts are generally quantified using soil moisture anomalies, but258

our results show that a clear asynchrony exists between these anomalies and their effects259

on vegetation. occasionally, negative anomalies in soil moisture even lead to positive anoma-260

lies in vegetation. In some of the studied events, vegetation drought could not be attributed261

to a soil moisture deficit alone. This leads to a discrepancy between the definition of agri-262

cultural droughts and the synchrony of soil moisture and vegetation deficits. To over-263

come this duality in the definition of agricultural droughts, and to prevent false drought264

alarms, drought monitoring and prediction may benefit from a move away from the com-265

bined term agricultural drought, that can lead to mixing up of soil moisture and vege-266

tation effects, towards two separate terms: soil moisture drought and vegetation drought,267

each with their own indices and use in drought monitoring and forecasting.268

Acronyms269

CR Correct Rejections270

FA False Alarms271

FB Frequency Bias272

FOH Frequency of Hits273

FOM Frequency of misses274

H Hits275

HK Hanssen-Kuipers score276

M Misses277

NDVI(A) Normalized Difference Vegetation Index (Anomaly)278

OR Odds Ratio279

SM(A) Soil Moisture (Anomaly)280

SPI Standardized Precipitation Index281
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1. Figures S1 to S12

Introduction This document is intended to provide a more detailed background infor-

mation on the separate drought events discussed in the paper and to visualise the data

underlying the results.

S1-S5 Figures S1 to S5 provide illustrations of each drought event, with separate colours

for pixels that are identified as in a soil moisture drought (SM < -1, purple), a vegetation

drought (green, NDVI < -1) or both (orange).

S6 Figure S6 is included in this document to provide an overview of spatial differences in

correlation between soil moisture and NDVI anomalies.
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S7-S8 Figures S7 and S8 show the reaction of different land use types on drought condi-

tions. Figure S7 contains all pixels in drought areas which have at least 90% coverage in

the CCI landcover dataset from 2018 in one of the following categories:

• Cropland, rainfed, tree or shrub cover

• Tree cover, broadleaved, evergreen, closed to open (>15%)

• Tree cover, broadleaved, deciduous, closed to open (>15%)

• Tree cover, broadleaved, deciduous, closed (>40%)

• Tree cover, broadleaved, deciduous, open (15-40%)

• Tree cover, needleleaved, deciduous, closed to open (>15%)

• Tree cover, needleleaved, deciduous, closed (>40%)

• Tree cover, needleleaved, deciduous, open (15-40%)

• Tree cover, needleleaved, evergreen, closed to open (>15%)

• Tree cover, needleleaved, evergreen, closed (>40%)

• Tree cover, needleleaved, evergreen, open (15-40%)

• Tree cover, mixed leave type (broadleaved and needleleaved)

• Mosaic T and shrub (>50%) / herbaceaous cover (<50%)

Figure S8 contains all pixels in drought areas which have at least 90% coverage in the

CCI landcover dataset from 2018 in one of the following categories:

• Cropland, rainfed

• Cropland, rainfed, herbaceous cover

• Cropland irrigated or post-flooding

July 25, 2020, 2:27pm
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• Mosaic cropland (>50%) / natural vegetation (Tree, shrub, herbaceous cover)

(<50%)

• Mosaic natural vegetation (Tree, shrub, herbaceous cover) (>50%) / cropland

(<50%)

• Grassland

• Sparse vegetation (tree, shrub, herbaceous cover) (<15%)

S9-S12 Figures S9 to S12 show average time series of soil moisture (S9, S10) and NDVI

(S11, S12), from May in the year prior to the event until the end of the event (September)

in the selected pixels. All values in the selected event extent, according to the SPI6 rule

as discussed in the main document, were averaged per monthly time step. Figures are

provided both for the anomalies (S9, S11) and the original values (S10,S9).
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Figure S1. Soil moisture and vegetation anomalies during the 2002 growing season, produced

in the same way as Figure 2 in the main document.
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Figure S2. Soil moisture and vegetation anomalies during the 2005 growing season, produced

in the same way as Figure 2 in the main document.
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Figure S3. Soil moisture and vegetation anomalies during the 2015 growing season, produced

in the same way as Figure 2 in the main document.
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Figure S4. Soil moisture and vegetation anomalies during the 2018 growing season (northern

part of drought event), produced in the same way as Figure 2 in the main document.
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Figure S5. Soil moisture and vegetation anomalies during the 2018 growing season (southern

part of drought event), produced in the same way as Figure 2 in the main document.
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Figure S6. Correlation between soil moisture and NDVI, in space (left), and zonal averages

throughout the growing season (right).

July 25, 2020, 2:27pm



X - 8 :

2015 2018N 2018S

2002 2003 2005

M
ay

 
Ju

n 
Ju

l 
A

ug
 

S
ep

 
O

ct
 

N
ov

 
D

ec
 

Ja
n 

F
eb

 
M

ar
 

A
pr

 (
ev

en
t)

M
ay

 (
ev

en
t)

Ju
n 

(e
ve

nt
)

Ju
l (

ev
en

t)
A

ug
 (

ev
en

t)
S

ep
 (

ev
en

t)

M
ay

 
Ju

n 
Ju

l 
A

ug
 

S
ep

 
O

ct
 

N
ov

 
D

ec
 

Ja
n 

F
eb

 
M

ar
 

A
pr

 (
ev

en
t)

M
ay

 (
ev

en
t)

Ju
n 

(e
ve

nt
)

Ju
l (

ev
en

t)
A

ug
 (

ev
en

t)
S

ep
 (

ev
en

t)

M
ay

 
Ju

n 
Ju

l 
A

ug
 

S
ep

 
O

ct
 

N
ov

 
D

ec
 

Ja
n 

F
eb

 
M

ar
 

A
pr

 (
ev

en
t)

M
ay

 (
ev

en
t)

Ju
n 

(e
ve

nt
)

Ju
l (

ev
en

t)
A

ug
 (

ev
en

t)
S

ep
 (

ev
en

t)

−1

0

1

−1

0

1

Month

N
D

V
IA

 [−
]

Figure S7. Average NDVI anomalies in forested pixels in event areas prior to (black) and

during (red) each event.
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Figure S8. Average NDVI anomalies in grassland pixels in event areas prior to (black) and

during (red) each event.
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Figure S9. Average soil moisture anomalies in event areas prior to (black) and during (red)

each event.
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Figure S10. Average soil moisture in event areas prior to (black) and during (red) each event.

July 25, 2020, 2:27pm
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Figure S11. Average NDVI anomalies in event areas prior to (black) and during (red) each

event.
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Figure S12. Average NDVI in event areas prior to (black) and during (red) each event.

July 25, 2020, 2:27pm


