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Abstract

StorAge Selection (SAS) functions describe how catchments selectively remove water of different ages in storage via discharge,

thus controlling the transit time distribution (TTD) and solute composition of discharge. SAS-based models have been emerging

as promising tools for quantifying catchment-scale solute export, providing a coherent framework for describing both velocity

and celerity driven transport. However, due to their application in headwaters only, the spatial heterogeneity of catchment

physiographic characteristics, land-use management practices, and large-scale validation have not been adequately addressed

with SAS-based models. In this study, we integrated SAS functions into the grid-based mHM-Nitrate model (mesoscale Hy-

drological Model) at both grid scale (distributed model) and catchment scale (lumped model). The proposed model provides

a spatially distributed representation of nitrogen dynamics within the soil zone and a unified approach for representing both

velocity and celerity driven subsurface transport below the soil zone. The model was tested in a heterogeneous mesoscale

catchment. Simulated results show a strong spatial heterogeneity in nitrogen dynamics within the soil zone, highlighting the

necessity of a spatially explicit approach for describing near-surface nitrogen processing. The lumped model could well capture

instream nitrate concentration dynamics and the concentration-discharge relationship at the catchment outlet. In addition, the

model could satisfactorily represent the relations between subsurface storage, mixing scheme, solute export, and the TTDs of

discharge. The distributed model shows comparable results with the lumped model. Overall, the results reveal the potential

for large-scale applications of SAS-based transport models, contributing to the understanding of water quality-related issues in

agricultural landscapes.
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Abstract 21 

StorAge Selection (SAS) functions describe how catchments selectively remove water of 22 

different ages in storage via discharge, thus controlling the transit time distribution (TTD) and 23 

solute composition of discharge. SAS-based models have been emerging as promising tools for 24 

quantifying catchment-scale solute export, providing a coherent framework for describing both 25 

velocity and celerity driven transport. However, due to their application in headwaters only, the 26 

spatial heterogeneity of catchment physiographic characteristics, land-use management practices, 27 

and large-scale validation have not been adequately addressed with SAS-based models. In this 28 

study, we integrated SAS functions into the grid-based mHM-Nitrate model (mesoscale 29 

Hydrological Model) at both grid scale (distributed model) and catchment scale (lumped model). 30 

The proposed model provides a spatially distributed representation of nitrogen dynamics within 31 

the soil zone and a unified approach for representing both velocity and celerity driven subsurface 32 

transport below the soil zone. The model was tested in a heterogeneous mesoscale catchment. 33 

Simulated results show a strong spatial heterogeneity in nitrogen dynamics within the soil zone, 34 

highlighting the necessity of a spatially explicit approach for describing near-surface nitrogen 35 

processing. The lumped model could well capture instream nitrate concentration dynamics and 36 

the concentration-discharge relationship at the catchment outlet. In addition, the model could 37 

satisfactorily represent the relations between subsurface storage, mixing scheme, solute export, 38 

and the TTDs of discharge. The distributed model shows comparable results with the lumped 39 

model. Overall, the results reveal the potential for large-scale applications of SAS-based 40 

transport models, contributing to the understanding of water quality-related issues in agricultural 41 

landscapes. 42 

1. Introduction 43 

Human activities, especially agricultural practices, have altered the Earth’s landscape. 44 

About 40% of the Earth’s land surface has been converted to agricultural land (Foley et al., 45 

2005). With a predicted increase in the global population until the middle of the 21st century, 46 

agricultural activities will be further intensified to meet the global food demand (Godfray et al., 47 

2010; Baulcombe et al., 2009). This may have negative impacts on the ecosystem and human 48 

health. Nutrient pollution from agricultural sources has been identified as one of the major 49 

threats to aquatic ecosystems and via drinking water to human health in many areas worldwide 50 

(Vitousek et al., 2009; Alvarez-Cobelas et al., 2008). In recent years, there has been a call for a 51 

‘sustainable intensification’ (increasing agricultural productivity from the same agricultural land 52 

area while reducing its environmental impacts) of agricultural practices (Godfray et al., 2010; 53 

Baulcombe et al., 2009). To achieve such an objective, understanding the transport and fate of 54 

solutes from its entry into a catchment to the catchment outlet is necessary. 55 

The age of a water parcel, i.e., the time passed since its entry into a catchment, provides 56 

valuable information for understanding flow and transport processes at catchment scale (Botter et 57 

al., 2011; Benettin et al., 2015a; Sprenger et al., 2019). This is because the age of a water parcel 58 

encapsulates information about its flow path characteristics, the time it has been in contact with 59 

catchment material, and the hydrological processes it has been subjected to (McDonnell et al., 60 

2010; Rodriguez et al., 2018; Asadollahi et al., 2020). The water-age based concept, the 61 

formulation of transport by transit time distributions (TTDs), has been emerging as a useful tool 62 

for understanding how catchments store, mix, and release water and solutes in recent years 63 

(Sprenger et al., 2019; Benettin et al., 2017; Hrachowitz et al., 2016; Rinaldo et al., 2015; Botter 64 
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et al., 2011; van der Velde et al., 2010). In many catchments, the response time of streamflow to 65 

rainfall inputs could be several orders of magnitude faster than the response time of instream 66 

solute concentration to solute inputs (Hrachowitz et al., 2016). For these catchments, transport 67 

models explicitly based on the transit time are required to capture velocity-driven transport 68 

phenomena. 69 

There are few TTD-based models used to explore solute export at the catchment scale 70 

(Ilampooranan et al., 2019; van Meter et al., 2017; 2018; Rinaldo et al., 2006). These models 71 

assumed that TTDs are time-invariant; however, experimental data and numerical studies have 72 

indicated that TTDs (e.g., for discharge) are time-variant for many hydrological systems (Yang 73 

et al., 2018a; Kaandorp et al., 2018; Rodriguez et al., 2018; Kim et al., 2016; Heibüchel et al., 74 

2012; van der Velde et al., 2012). Temporal variations of TTDs are controlled by many factors, 75 

e.g., changes in the flow paths, subsurface mixing, and boundary conditions (van der Velde et al., 76 

2012; Kim et al., 2016; Hrachowitz et al., 2016). TTD-based models, which are often conceptual 77 

hydrological models, could use the time-variant TTDs obtained from forward physically-based 78 

groundwater models with particle tracking (e.g., van der Velde et al., 2012; Yang et al., 2018a; 79 

Heidbüchel et al. 2020). In large catchments, however, a rigorous mathematical framework for 80 

the representation and parameterization of time-variant TTDs is needed. This is because the 81 

application of physically-based groundwater models in large catchments is not always possible 82 

due to a lack of data and/or computational capacity.  83 

TTDs can be transformed to what van der Velde (2012) called Storage Outflow 84 

Probability (STOP) functions, which were later referred to as StorAge selection (SAS) functions 85 

(Rinaldo et al. 2015; Harman et al., 2015; 2019). Compared to TTDs, SAS functions have a 86 

clearer physical meaning and are more stable in time and easier for parameterization than TTDs 87 

(van der Velde et al., 2012). SAS functions describe the probability that a water parcel of a 88 

certain age in storage will contribute to the outflow, or in other words, how water parcels of 89 

different ages in storage mix to produce outflows (van der Velde et al., 2012; Rinaldo et al., 90 

2015). SAS functions can be considered as a generalization of TTDs (Harman et al., 2019). 91 

Numerical experiments have indicated that these SAS functions can be approximated by, for 92 

example, a power law (Queloz et al., 2015) or beta distribution functions (van der Velde et al., 93 

2012, Yang et al., 2018a). 94 

SAS functions could be combined with storage-discharge functions to provide a coherent 95 

framework for describing both celerity driven water flow dynamics and velocity driven solute 96 

transport mechanisms (Harman et al., 2019; Hrachowitz et al., 2016). For this purpose, there 97 

have been several SAS-based models developed for modeling solute (or isotope) transport from 98 

plot to catchment scales (e.g., Wilusz et al., 2017; Queloz et al., 2015; Harman, 2015; Benettin et 99 

al., 2013; 2015b; 2017; Bertuzzo et al., 2013; Lutz et al., 2017). An in-depth discussion of SAS-100 

based models was provided by Hrachowitz et al. (2016). In general, these studies have proven 101 

the effectiveness of the chosen models in capturing catchment-scale flow and transport 102 

phenomena for small catchments (with an area less than 10 km2). However, validation of SAS-103 

based models has not been done at larger spatial scales (for example, drainage areas of about 100 104 

km²). 105 

At larger scales, the catchment’s landscape, meteorological conditions, and land use 106 

management practices are often heterogeneous. As a result, the catchment responses, especially 107 

the nutrient processes within the root zone, could be highly heterogeneous (e.g., Yang et al., 108 

2019). While the SAS concept implicitly represents the heterogeneity in flow pathways, the 109 
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spatial heterogeneity of biogeochemical processes, catchment characteristics, and meteorological 110 

conditions have not yet been adequately addressed within the SAS concept. In other words, 111 

effects of spatial heterogeneity and a thorough testing of the concept for larger scales have not 112 

yet been addressed. The main focus of this research is to fill those gaps.  113 

The mHM-Nitrate model (Yang et al., 2018b) is a grid-based water quality (nitrate) 114 

model with the hydrological and water quality concepts taken from two widely-used models, the 115 

mesoscale Hydrologic Model (mHM, Samaniego et al., 2010; Kumar et al., 2013) and the 116 

HYdrological Predictions for the Environment model (HYPE, Lindström et al., 2010). The 117 

mHM-Nitrate model could provide valuable insights into the spatial variability of water and 118 

nitrate dynamics in the root zone (Yang et al., 2018b; 2019). The model is able to account for the 119 

spatial heterogeneity in land used management practices, soil type, and meteorological forcing 120 

explicitly.  121 

In the mHM-Nitrate model, the use of an inactive groundwater storage compartment with 122 

the assumption of complete mixing between active and inactive groundwater storage does, from 123 

our point of view not properly represent velocity-driven transport. Under the complete mixing 124 

assumption, a part of the solute input to groundwater would be instantaneously transported to the 125 

stream. In other words, there is no time lag between input and output signals. In catchments with 126 

velocity-driven transport, however, the time lag between input and output signals could be up to 127 

decades (Ehrhardt et al. 2019, Meals et al., 2010). In addition, the subsurface could be far from a 128 

completely mixed storage compartment (e.g., Yang et al., 2018a). Furthermore, the subsurface 129 

(below the soil zone) nitrate submodel in the mHM-Nitrate model is very simple. Leached nitrate 130 

out of the soil zone is considered as a non-reactive solute. However, nitrate leaching out of the 131 

soil zone will be subject to additional removal processes along its flow path to the stream, for 132 

example, via denitrification in the shallow and deep aquifers (e.g., Hiscook et al., 1991, Fukada 133 

et al., 2003, Smith et al., 2004; Rivett et al., 2008; Kolbe et al., 2019; Knoll et al., 2020). 134 

Nevertheless, the existing mHM-Nitrate model (Yang et al 2018b) provided a promising tool for 135 

further development using the SAS concept.    136 

The objectives of this study are to (1) replace the description of the nitrate submodel for 137 

the subsurface (below the soil zone) in the mHM-Nitrate model with a time-variant SAS-based 138 

model, and by that (2) present a first test of a SAS-based transport model for at a mesoscale 139 

catchment. The proposed model, hereinafter referred to as the mHM-SAS model, provides a 140 

unified approach for modeling both celerity- and velocity-driven transport at the catchment scale 141 

based on SAS functions. The model accounts for nitrate losses along its flow path from the 142 

bottom of the soil zone to the catchment outlet. In this study, we provide not only a detailed 143 

implementation of the SAS-based concept at catchment-scale (lumped approach), but also an 144 

insight into the potential application of the SAS-based concept at a spatially more resolved grid-145 

scale (distributed approach). 146 

2. Methodology 147 

2.1. The mHM-Nitrate model 148 

The mHM-Nitrate model is a grid-based hydrological and water quality (nitrate) model 149 

(Samaniego et al., 2010; Kumar et al., 2013; Yang et al., 2018b). Each grid cell consists of a 150 

series of leaky storage reservoirs, representing water storage in the soil zone, unsaturated zone, 151 

and saturated (groundwater) zone (Figure 1a). The soil zone has a depth of around 2 m, 152 
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representing the root zone (the terms “soil zone” and “root zone” are used interchangeably in this 153 

study). The soil zone consists of three soil layers and the saturated zone is divided into active and 154 

inactive groundwater storages. The mHM model is parameterized using the Multiscale Parameter 155 

Regionalization (MPR) approach to account for the sub-grid variability of catchment properties 156 

and to avoid overparamerization (Samaniego et al., 2010). 157 

 158 

Figure 1. Conceptual model of (a, c) the mHM-Nitrate model (Yang et al., 2018b) and (b, c) the 159 

proposed mHM-SAS model. 160 

The mHM-Nitrate model allows a spatially explicit representation of agricultural 161 

management practices (e.g., crop rotation, fertilizer application). Within the soil zone, the model 162 

tracks the fate of nitrogen in different pools: dissolved inorganic nitrogen (DIN), dissolved 163 
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organic nitrogen (DON), active organic nitrogen (SONA), and inactive organic nitrogen (SONI) 164 

(Figure 1c). The model assumes that nitrate-nitrogen (N-NO3) is equivalent to DIN. Nitrogen can 165 

be transformed between different nitrogen pools via mineralization, dissolution, and degradation 166 

within the soil zone. Only DIN and DON are transported with water to the unsaturated, saturated 167 

zone, and eventually to the stream. The mHM-Nitrate model does not consider the 168 

transformation from DON to DIN and denitrification occurring below the soil zone. In the 169 

saturated zone (groundwater), the active and inactive groundwater storages are assumed to be 170 

well mixed. The inactive groundwater storage, whose storage volume is set to be land-use 171 

dependent, is assumed to be much larger than the active storage. It should be noted that the 172 

inactive groundwater storage did not exist in the original mHM model and was introduced by 173 

Yang et al. (2018b) when implementing nitrate transport in the model. Parameters that 174 

characterize the transformation of nitrogen between different nitrogen pools (Figure 1c) and the 175 

denitrification rate in the soil are land use-dependent parameters. They are modified in space and 176 

time according to the environmental conditions (soil moisture and soil temperature). For a more 177 

detailed description of the mHM-Nitrate model, the reader is referred to Yang et al. (2018b). 178 

2.2. The proposed mHM-SAS model 179 

The mHM-SAS model uses (1) the mHM concept for simulating hydrological processes, 180 

(2) the mHM-Nitrate concept for describing the nitrogen dynamics within the soil zone, and (3) 181 

the transit-time formulation of transport based on SAS functions for representing nitrate transport 182 

and removal below the soil zone (Figures 1b and 1c). In contrast to mHM-Nitrate, mHM-SAS 183 

considers the unsaturated and saturated zones over the entire catchment as a single hydrological 184 

unit, in the following referred to as the SAS compartment. Hydrological fluxes into and out of 185 

the SAS compartment were simulated by the hydrologic routines of the original mHM model 186 

(Samaniego et al. 2010). Hydrological fluxes out of the SAS compartment is the summation of 187 

groundwater flows to the stream (baseflow) and other shallow subsurface flows (interflow). The 188 

spatially distributed hydrologic and nitrate fluxes from the soil zone to the SAS compartment are 189 

spatially lumped over the entire catchment. In the SAS compartment, we only track the fate of 190 

nitrate in the DIN pool (representing mainly N-NO3).  191 

The SAS compartment is a hydrological system with inflow 𝐽(𝑡) [L3T-1] and discharge 192 

𝑄(𝑡) [L3T-1] (Figure 1b). Total storage 𝑆(𝑡) [L3] of the system at time t is: 193 

𝑆(𝑡) = 𝑆0 + 𝑉(𝑡)         (1)  194 

 where 𝑆0 [L3] is the initial storage and 𝑉(𝑡) [L3] is the variation of storage: 195 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐽(𝑡) − 𝑄(𝑡)         (2) 196 

In the SAS concept, the system is conceptualized as storage of different water parcels with 197 

different ages (and solute concentration 𝐶𝑆(𝑇, 𝑡) [ML-3]), which is characterized by the residence 198 

time distribution 𝑝𝑆(𝑇, 𝑡) [T-1] (Botter et al., 2011; van der Velde et al., 2012; Harman et al., 199 

2015; Benettin et al., 2018). Similarly, discharge is characterized by the transit time distribution 200 

𝑝𝑄(𝑇, 𝑡) [T-1]. The corresponding cumulative distribution functions of the residence time (also 201 

called the normalized age-ranked storage) and transit time distributions are 𝑃𝑆(𝑇, 𝑡) [-] and 202 
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𝑃𝑄(𝑇, 𝑡) [-]. The volume of water with age younger than T, the so-called age-ranked storage 203 

𝑆𝑇(𝑇, 𝑡) [L3], is: 204 

𝑆𝑇(𝑇, 𝑡) = 𝑆(𝑡) ⋅ ∫ 𝑝𝑆(𝑇, 𝑡) ⋅ 𝑑𝑇 =
𝑇

0
𝑆(𝑡) ⋅ 𝑃𝑆(𝑇, 𝑡)     (3) 205 

The transit-time formulation of transport based on the SAS concept can be described as 206 

follows. The inflow to the SAS compartment and its associated transport component (nitrate) are 207 

considered to have an age of zero at the time of entry. Changes in the stored water volume with 208 

the age younger than T are induced by inflow 𝐽(𝑡) [L3T-1], discharge 𝑄(𝑡) [L3T-1], and aging. 209 

This can be described by the water age balance equation (e.g., Botter et al., 2011; van der Velde 210 

et al., 2012; Harman et al., 2015; Benettin et al., 2018): 211 

𝜕𝑆𝑇(𝑇,𝑡)

𝜕𝑡
= 𝐽(𝑡) − 𝑄(𝑡) ⋅ 𝑃𝑄(𝑇, 𝑡) −

𝜕𝑆𝑇(𝑇,𝑡)

𝜕𝑇
      (4) 212 

Initial condition: 𝑆𝑇(𝑇, 𝑡 = 0) = 𝑆𝑇0
       (5) 213 

Boundary condition: 𝑆𝑇(𝑇 = 0, 𝑡) =  0       (6) 214 

where 𝑆𝑇0
 [L3] is the initial age-ranked storage.  215 

 The key element of the SAS concept is providing a functional relationship between the 216 

age distribution in storage and discharge. Several forms of SAS functions have been proposed 217 

and discussed, e.g., SAS functions could be in the form of (1) absolute age T (Botter et al., 218 

2011), (2) age-ranked storage 𝑆𝑇(𝑇, 𝑡) (Harman, 2015), or (3) normalized age-ranked storage 219 

𝑃𝑆(𝑇, 𝑡) (Van der Velde et al., 2012). In this study, we used the SAS function as a function of 220 

normalized age-ranked storage as it is easy to be parameterized. In other words, the relation 221 

between the age distribution of storage and discharge is expressed as 𝑃𝑄(𝑇, 𝑡) = Ω𝑄(𝑃𝑆(𝑇, 𝑡), 𝑡) 222 

with 𝑃𝑆(𝑇, 𝑡) varies from 0 to 1.  223 

Providing a specific SAS function, equation (4) can be solved for 𝑆𝑇(𝑇, 𝑡) and 𝑃𝑄(𝑇, 𝑡). 224 

Solute concentration 𝐶𝑄(𝑇, 𝑡) [ML-3] in discharge from the SAS compartment is calculated as 225 

follows (Queloz et al., 2015): 226 

𝐶𝑄(𝑡) = ∫ 𝐶𝑆(𝑇, 𝑡) ⋅ 𝑝𝑄(𝑇, 𝑡) ⋅ 𝑑𝑇
∞

0
=  ∫ 𝐶𝐽(𝑇, 𝑡) ⋅ 𝑝𝑄(𝑇, 𝑡) ⋅ 𝑒𝑥𝑝 (−𝑘𝑇) ⋅ 𝑑𝑇

∞

0
  (7) 227 

with 228 

𝑝𝑄(𝑇, 𝑡) =  
𝜕𝑃𝑄(𝑇,𝑡)

𝜕𝑇
=

𝜕Ω𝑄(𝑃𝑆,𝑡)

𝜕𝑃𝑆
⋅

𝜕𝑃𝑆

𝜕𝑇
= 𝜔𝑄(𝑃𝑆, 𝑡) ⋅

𝜕𝑃𝑆

𝜕𝑇
    (8) 229 

where 𝐶𝐽(𝑇, 𝑡) [ML-3] is the solute concentration associated with input 𝐽(𝑡) and 𝑘 [T-1] is the 230 

first-order denitrification rate constant, 𝑝𝑄(𝑇, 𝑡) [T-1] and 𝜔𝑄(𝑃𝑆, 𝑡) [-] are the probability density 231 

functions of the transit times and SAS, respectively, 𝑃𝑆 [-] is 𝑃𝑆(𝑇, 𝑡). Both 𝜔𝑄(𝑃𝑆, 𝑡) and 232 

Ω𝑄(𝑆𝑇, 𝑡) are hereinafter referred to as the SAS function. In this study, point sources such as 233 

discharge from wastewater treatment plants (WWTPs) and direct runoff from sealed areas are 234 

added directly to the catchment outlet. The flow-weighted mean concentration was used to 235 

calculate solute concentration at the catchment outlet. 236 

2.3. Parameterization of the SAS function 237 

The mHM-SAS allows users to select either the power-law (Benettin et al., 2018) or the 238 

beta distribution function (van der Velde et al., 2012; 2015; Benettin et al., 2018; Yang et al., 239 
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2018a) as an approximation of the SAS functions: 240 

𝜔(𝑃𝑠, 𝑡) = 𝑝𝑙𝑎𝑤(𝑃𝑠, 𝛼) =  𝛼 ⋅ 𝑃𝑆
𝛼−1       (9) 241 

ω(𝑃𝑠, 𝑡) = 𝑏𝑒𝑡𝑎(𝑃𝑠, 𝑎, 𝑏) =
Γ(𝑎+𝑏)

Γ(𝑎)Γ(𝑏)
⋅ 𝑃𝑆

𝑎−1 ⋅ (1 − 𝑃𝑆)𝑏−1    (10) 242 

where 𝛼 and 𝑎, 𝑏 are parameters of the power-law (𝑝𝑙𝑎𝑤) and beta (𝑏𝑒𝑡𝑎) distribution functions, 243 

respectively (with 𝛼, 𝑎, 𝑏 ∈ (0, +∞)),  Γ is the gamma function. Different selection schemes of 244 

discharge from storage can be represented by varying parameters of the power-law or beta 245 

distribution functions within defined ranges (Table 1). Van der Velde et al. (2015) suggested 246 

using the one-parameter beta function 𝑏𝑒𝑡𝑎(𝑃𝑠, 𝑎, 1) to represent the young-water selection 247 

preference and 𝑏𝑒𝑡𝑎(𝑃𝑠, 1, 𝑏) to represent the old-water selection preference) instead of the two-248 

parameter beta function. However, Yang et al. (2018a) demonstrated for a small agricultural 249 

catchment that both parameters of the beta function might vary in a wide range. Hence, we opted 250 

for the two-parameter representation of the beta function.  251 

 252 

Table 1. Selection preference schemes and the corresponding parameter ranges of the power-law 253 

and beta functions. 254 

Selection preference scheme 𝑝𝑙𝑎𝑤(𝑃𝑠, 𝛼) 𝑏𝑒𝑡𝑎(𝑃𝑠, 𝑎, 𝑏) 

Young-water selection preference 0 < α < 1 0 < a < 1 ≤ b 

No selection preference (well-mixed) α = 1 a = b = 1 

Old-water selection preference α > 1 a ≥ 1 > b > 0 

Both young- and old-water selection preference - 0 < a, b < 1 

 255 

One way to parameterize the selection preference for discharge is to relate it to catchment 256 

storage volume as a simple measure for catchment wetness. For example, a linear functional 257 

relationship between the selection preference scheme for discharge and storage was suggested by 258 

van der Velde et al. (2015). This ‘one-to-one’ relation, however, might not be sufficient to 259 

characterize the dynamics of the selection preference scheme for discharge due to hysteretic 260 

behavior of the system (e.g., different selection preference schemes corresponding to the same 261 

storage; Benettin et al., 2015). Yang et al. (2018a) found that the mixing scheme for discharge 262 

depends not only on the current storage but also on the antecedent inputs (e.g., inflow to the SAS 263 

compartment during the previous time steps). Furthermore, the authors found that the selection 264 

preference scheme for discharge could be grouped together according to a seasonal hydrological 265 

situation such as wetting and drying phase of a year. This makes sense for catchments with 266 

significant seasonal variation in storage and meteorological forcing conditions as in Yang et al. 267 

(2018a). 268 

In this study, however, we introduce a new, more general approach for determining the 269 

transition between different selection preference schemes for discharge. In this approach, we 270 

assume that the young water fraction of streamflow increases with increasing catchment wetness 271 

as new fast shallow flow paths are activated, creating a different selection scheme (e.g., Yang et 272 

al., 2108a, Dupas et al., 2017). The catchment wetness is reflected in both antecedent inflow and 273 

outflow. Therefore, we propose using the following ratio for determining changes in the 274 

selection preference scheme:  275 
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𝑟𝑡 =  
∑ 𝐽𝑖

𝑡
𝑖=𝑡−𝑛

∑ 𝑄𝑖
𝑡
𝑖=𝑡−𝑛

           (11) 276 

if 𝑟𝑡 ≥ 1: preference for young water (Table 1) 277 

if 𝑟𝑡 < 1: preference for old (and young) water (Table 1) 278 

where 𝐽𝑖 [L
3T-1] and 𝑄𝑖 [L

3T-1]) are the inflow to and the outflow from the SAS compartment at 279 

time 𝑖 ∈ [𝑡 − 𝑛, 𝑡],  𝑡 [T] is the current time, and 𝑛 [T] is the number of time steps considered. 280 

The ratio 𝑟𝑡 [-] is a time-variant factor due to the temporal variations of inflow and outflow. The 281 

ratio 𝑟𝑡 explicitly considers the antecedent inflow and implicitly considers the changes in storage. 282 

For example, 𝑟𝑡 ≥ 1 (𝑟𝑡 < 1) indicates that the storage is filling (emptying). In this study, the 283 

period with 𝑟𝑡 ≥ 1 is referred to as the wet period while the period with 𝑟𝑡 < 1 is referred to as 284 

the dry period. An example for the relation between 𝑟𝑡 and storage is shown in section 3.4. The 285 

advantages of relating the selection preference scheme to the ratio 𝑟𝑡 are: (1) information about 286 

the minimum and maximum storage is not required, (2) the initial storage does not affect the 287 

selection preference scheme, and (3) no prior knowledge about the seasonal changes of storage is 288 

needed. It should be noted that the proposed two selection preference schemes, preference for 289 

young and preference for old (and young), were shown to be (1) sufficient for describing 290 

subsurface mixing (van der Velde et al., 2015) and (2) the dominant selection schemes in a 291 

subcatchment of the studied catchment (Yang et al., 2018a). 292 

2.4. Case study 293 

2.4.1. Study area and data 294 

The study catchment is that of the upper Selke River (gauge Silberhütte), which is part of 295 

the Bode catchment, a terrestrial environmental observatory within the TERENO network of 296 

observatories in Germany (Wollschläger et al., 2017; Yang et al., 2018b). The study site covers 297 

an area of about 100 km2 with elevation ranging from 335 m to 595 m above mean sea level 298 

(Figure 3a). Forest and agricultural land (pasture and arable land) are the dominant land 299 

uses/land covers in the area, accounting for 61% and 36% of the total area, respectively (Figure 300 

3b). The main crops planted in the area are winter wheat, triticale, winter barley, rye, rapeseed, 301 

and corn (Jiang et al., 2014; Yang et al., 2018b). Spodic Cambisols from hard argillaceous and 302 

silty slates accounts for about 70% of the study area while Dystric Cambisols from acid igneous 303 

and metamorphic rocks account for 26% of the study area (Figure 3c). The geology of the study 304 

area is predominantly characterized by Mississippian wacke/shale, covering 99% of the area 305 

(Yang et al., 2018b). The aquifers of the study area are relatively shallow (Yang et al., 2018a, 306 

Dupas et al., 2017). 307 

The study area has an average annual precipitation of 765 mm. The average monthly 308 

temperature in the area ranges from -3.1 ℃ in December to 16.7 ℃ in July. The area has a strong 309 

seasonal runoff regime with high flows during the cold season (November – April; average 310 

discharge 𝑄𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 1.7 m3/s) and low flows during the warm season (May – October; 𝑄𝑎𝑣𝑒𝑟𝑎𝑔𝑒 311 

= 0.5 m3/s). About 77% of the total runoff is generated during the cold season. Diffuse nitrogen 312 

(N) from fertilizers applied to agricultural fields (with an average application rate of about 130 – 313 

190 kg N ha-1 yr-1) is the main source of in-stream N (Kistner, 2007; Jiang et al., 2014). 314 

Contribution from WWTPs to instream N is negligible during high flow periods. During low 315 

flow periods, however, N from the WWTPs can account for up to 20% of the total N in the 316 

stream.  317 
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Input data were obtained from different sources. Daily weather data (precipitation, 318 

temperature) and potential evapotranspiration were obtained from the Deutscher Wetterdienst 319 

(DWD), geographical data (digital elevation model of 30 m resolution. Land use and soil type at 320 

a scale of 1:1,000,000 were provided by the Federal Institute for Geosciences and Natural 321 

Resources, Germany (BGR). Agricultural practices (fertilizer/manure application, crop rotation) 322 

were obtained by field survey/interview (Yang et al., 2018b). Daily discharge and weekly 323 

instream nitrate concentration were taken from the State Agency for Flood Protection and Water 324 

Management of Saxony-Anhalt. 325 

 326 

 327 

Figure 3. The study area with (a) the digital elevation model (DEM), (b) land use/land cover 328 

map, and (c) soil map. The black dot indicates the catchment outlet.  329 

2.4.2. Selection of the SAS function and initial conditions 330 

In this study, the beta functions were used to represent SAS functions because of their 331 

flexibility to represent more mixing schemes than the power-law function (Table 1). In addition, 332 

beta functions have been found to be good approximations of model-derived SAS functions 333 

within a sub-catchment of the study area (Yang et al., 2018a). Beta functions with time-variant 334 

parameters (𝑎 and 𝑏) were used to represent the temporal dynamics of the SAS functions. Two 335 

SAS functions were defined according to the wetness condition indicated by 𝑟𝑡: 𝑆𝐴𝑆𝑤𝑒𝑡 for the 336 

wet period (𝑟𝑡 ≥ 1) and and 𝑆𝐴𝑆𝑑𝑟𝑦 for the dry period (𝑟𝑡 < 1). 𝑟𝑡 was calculated with n = 90 337 

days, which was defined manually using trial and error approach to have the most suitable 338 

seasonal patterns of the selection functions. However, it could be treated as a model parameter 339 
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and determined via model calibration. 340 

An initial nitrate concentration C0 of 1.5 mg/L in subsurface water was selected based on 341 

the average in-stream nitrate concentration. The initial subsurface storage S0 indicates not only 342 

the subsurface storage at the beginning of the simulation but also the subsurface storage capacity 343 

in general. A reliable estimation of the subsurface storage, which actively participates in the 344 

transport process requires extensive data (e.g., Halle et al., 2016). As this data was not available 345 

for the study area we consider the initial storage as a model calibration parameter. The initial 346 

age-ranked storage (𝑆𝑇0
) is assumed to linearly increase from 0 to S0 over the age range [0, 10] 347 

years and all water in storage is assumed to have the same initial concentration C0. 348 

2.4.3. Model calibration and uncertainty analysis 349 

The Elementary Effect Test (EET, Morris 1991; Campolongo et al, 2007; Pianosi et al., 350 

2016) has been proven as an effective tool for parameter sensitivity analysis for the study area 351 

(Yang et al., 2018b; 2019). The EET is a global sensitivity analysis with a One-At-a-Time 352 

(OAT) sampling approach. With 𝑚 model parameters and 𝑟 trajectories in the parameter space, 353 

the EET requires 𝑟 ⋅ (𝑚 + 1) model runs. The global sensitivity index 𝜇𝑖
∗ of parameter 𝑥𝑖 is the 354 

average of the absolute elementary effect in 𝑟 trajectories (Campolongo et al, 2007), which is 355 

calculated as follows: 356 

𝜇𝑖
∗ =

1

𝑟
∑ |𝐸𝐸𝑖

𝑗
| =𝑟

𝑗=1
1

𝑟
∑

|𝑔(𝑥𝑗+𝑒𝑖∆𝑖
𝑗

)−𝑔(𝑥𝑗)|

∆𝑖
𝑗

𝑟
𝑗=1       (12) 357 

where 𝑥𝑗 is the vector of parameter values in the 𝑗𝑡ℎ trajectory, 𝐸𝐸𝑖
𝑗
 and ∆𝑖

𝑗
 are the elementary 358 

effect and finite variation of the parameter 𝑥𝑖 in the 𝑗𝑡ℎ trajectory, respectively, 𝑒𝑖(𝑖 = 1, 𝑚) is a 359 

vector of zeros except its 𝑖𝑡ℎ element being equal to 1, and 𝑔(𝑥𝑗) and 𝑔(𝑥𝑗 + 𝑒𝑖∆𝑖
𝑗
) are values 360 

of the objective function at 𝑥𝑗 and 𝑥𝑗 + 𝑒𝑖∆𝑖
𝑗
, respectively. The interaction of the parameter 𝑥𝑖 361 

with other parameters is characterized by the standard deviation 𝜎𝑖 of the elementary effects 362 

(Morris 1991; Campolongo et al, 2007): 363 

𝜎𝑖 = √ 1

𝑟−1
∑ (𝐸𝐸𝑖

𝑗
− 𝜇𝑖

∗)
2

𝑟
𝑗=1         (13) 364 

In the EET, higher values of 𝜇𝑖
∗ indicate higher sensitivities of the respective parameter 365 

while higher values of 𝜎𝑖 indicate stronger interactions of that respective parameter with other 366 

parameters. In this study, the Sensitivity Analysis For Everybody (SAFE, Pianosi et al., 2015) 367 

toolbox was used to perform the EET for 54 global parameters, including the initial subsurface 368 

storage (S0). Parameter sensitivity analyses were carried out separately for discharge and 369 

instream nitrate concentration at the catchment outlet. 370 

For parameter optimization, we performed 20,000 simulations with parameters generated 371 

from Latin Hypercube Sampling (LHS). LHS has been demonstrated as an efficient global 372 

sampling procedure for optimization problems with a large number of parameters (Abbaspour et 373 

al., 2004). The best simulation was selected based on the following multi-criteria objective 374 

function (𝑂𝐹): 375 

𝑂𝐹 = 𝑚𝑎𝑥 (
𝑁𝑆𝐸𝑄+𝑙𝑛𝑁𝑆𝐸𝑄+𝑁𝑆𝐸𝐶+𝑙𝑛𝑁𝑆𝐸𝐶

4
)        (14) 376 

https://www.sciencedirect.com/science/article/pii/S1364815216300251#bib40
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𝑁𝑆𝐸𝑥 = 1 −
∑ (𝑥𝑖

𝑜𝑏𝑠− 𝑥𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑥𝑖
𝑜𝑏𝑠−𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

         (15) 377 

𝑙𝑛𝑁𝑆𝐸𝑥 = 1 −
∑ (𝑙𝑛𝑥𝑖

𝑜𝑏𝑠−𝑙𝑛𝑥𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑙𝑛𝑥𝑖
𝑜𝑏𝑠−𝑙𝑛𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1

       (16) 378 

where 𝑁𝑆𝐸 and 𝑙𝑛𝑁𝑆𝐸 are the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) and its 379 

logarithmic transformation, 𝑥𝑜𝑏𝑠 and 𝑥𝑠𝑖𝑚 are the observed and simulated values of discharge Q 380 

or instream nitrate concentration C, and 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅̅  and 𝑙𝑛𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅  are the mean and the logarithmic 381 

transformation of the observed variables, respectively. The 𝑁𝑆𝐸 and 𝑙𝑛𝑁𝑆𝐸 were used to ensure 382 

accurate modeling of both high and low values of discharge and nitrate concentration. In addition 383 

to the 𝑁𝑆𝐸 and 𝑙𝑛𝑁𝑆𝐸, the percentage bias (𝑃𝐵𝐼𝐴𝑆, Equation 17) was also used to evaluate the 384 

best simulation:  385 

𝑃𝐵𝐼𝐴𝑆𝑥(%) = 100 ⋅
∑ (𝑥𝑖

𝑜𝑏𝑠−𝑥𝑖
𝑠𝑖𝑚)𝑛

𝑖=1

∑ 𝑥𝑖
𝑜𝑏𝑠𝑛

𝑖=1

        (17) 386 

The model prediction uncertainty is defined as a function of parameter uncertainty. 387 

Parameter uncertainty is characterized by the 95% prediction uncertainty (95PPU) estimated 388 

from behavioral simulations obtained from 20,000 Latin Hypercube simulations. We classified 389 

simulations with an objective function value greater than 0.65 as behavioral. The 95PPU was 390 

calculated based on the 2.5% and 97.5% levels of the cumulative distribution of the output 391 

variable at every simulated time steps (e.g., Beven and Binley, 1992; Abbaspour et al., 2004). 392 

The goodness of the 95PPU is evaluated by the p-factor (the percentage of observed data 393 

bracketed by the 95PPU) and r-factor (the average thickness of the 95PPU band divided by the 394 

standard deviation of the observed data) (Abbaspour et al., 2004). The closer the p-factor to one 395 

and r-factor to zero, the better the 95PPU. In this study, the model was run at a daily time step 396 

with a two-year warm-up (1993-1994), 10-year calibration (2005-2015), and 10-year validation 397 

period (1995-2004). The spatial resolution of each grid cell is 1 km2. 398 

 399 

3. Results and validation 400 

3.1. Parameter sensitivity analysis and calibrated parameter values 401 

Parameter sensitivity analyses were carried out separately for discharge and instream 402 

nitrate concentration at the catchment outlet. Results show that discharge generation is most 403 

sensitive to soil parameters (soil10, soil11, soil13), followed by interflow parameters (intfl5, 404 

intfl4, intfl2), percolation (percol), evapotranspiration (pet1), and the snow parameter (tsnow) 405 

(Figure 4a). Instream nitrate concentration is sensitive to both hydrological and nitrate 406 

parameters (Figure 4b). With nitrate parameters, the denitrification rate constants in the soil zone 407 

(denisna, denisna) and below the soil zone (k) are the most sensitive parameters. It is seen that the 408 

initial subsurface storage (S0) is also listed among the most sensitive parameters, indicating the 409 

potential impact of subsurface storage capacity on catchment-scale nitrate export. Most of the 410 

parameters of the SAS functions (awet, bwet, adry) are identified as sensitive parameters. This 411 

shows that the shape of the magnitude of the selection preference scheme for discharge is highly 412 

relevant to the solute export dynamics. Regarding the interaction between parameters, the results 413 

show that more sensitive (higher 𝜇∗) parameters tend to have higher interaction (higher 𝜎) with 414 

other parameters. In this study, the most 15 sensitive parameters for discharge and instream 415 

nitrate concentration are selected for optimization (Figure 4 and Table 2). In addition, the 416 



manuscript submitted to Water Resources Research 

 

parameter bdry is also selected due to its high sensitivity ranking among nitrate parameters. Table 417 

2 shows the optimal parameter set and the behavioral parameter ranges. 418 

 419 

 420 

Figure 4. Parameter sensitivity analyses for (a) discharge and (b) instream nitrate concentration 421 

at the catchment outlet. Only the most 15 sensitive parameters and bdry were labeled. The 422 

description of these parameters is given in Table 2. For visualization purposes, the log-transform 423 

of 𝜇∗ and 𝜎 and only parameters with 𝑙𝑛(𝜇∗) > −4 and 𝑙𝑛(𝜎) > −4 are shown. 424 

  425 

 426 

 427 

  428 
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Table 2. Selected parameters for optimization and their optimal values. 429 

Parameter Description 

Parameter range Optimal value 

[behavioral range] min max 

Snow fall/melt 

tsnow Threshold temperature for snow/rain (℃) -2.0 2.0 1.8 [-1.8, 2.0] 

Soil moisture 

soil1 Organic matter content in forest (%) 0.0 20.0 10.3 [1.0, 18.1] 

soil4 PTF parameter for water retention characteristics 0.65 0.95 0.81 [0.65, 0.93] 

soil5 " 0.0001 0.0029 0.0018 [0.0001, 0.0027] 

soil6 " -0.37 -0.19 -0.33 [-0.37, -0.22] 

soil10 PTF parameter for saturated hydraulic conductivity -1.20 -0.28 -0.88 [-1.20, -0.33] 

soil11 " 0.006 0.026 0.010 [0.007, 0.022] 

soil12 " 0.003 0.013 0.012 [0.003, 0.013] 

soil13 " 1.0 150.0 62.3 [4.4, 142.1] 

soil14 Fraction of roots in forest areas 0.90 1.00 0.96 [0.90, 0.99] 

soil17 Shape factor for calculating infiltration 1.00 4.00 2.27 [1.21, 3.86] 

Evapotranspiration 

pet1 Correction factor for potential evapotranspiration  0.70 1.30 0.85 [0.72, 1.20] 

Infiltration 

intfl1 Maximum holding capacity of the unsaturated zone 75.0 200.0 75.0 [75.0, 192.5] 

intfl2 Interflow recession slope factor 0.00 10.0 9.2 [3.0, 9.2] 

intfl4 Slow interflow recession constant 1.0 30.0 22.7 [2.3, 25.8] 

intfl5 Slow interflow exponent 0.05 0.30 0.11 [0.08, 0.30] 

Percolation 

percol Effective percolation rate 0.00 50.00 44.56 [14.51, 49.65] 

Baseflow 

bflow Baseflow recession rate 1.0 1000.0 92.9 [15.2, 990.8] 

Denitrification 

denisa Denitrification rate in agricultural soil (d-1) 0.00 1.1 0.017 [0.00, 0.05] 

denisna Denitrification rate in non-agricultural soil (d-1) 0.00 1.1 0.009 [0.00, 0.05] 

k Denitrification rate below the soil zone (d-1) 0.00 0.02 0.006 [0.00, 0.014] 

Subsurface mixing and initial storage 

awet Parameter of the SAS function for the wet period 0.01 1.00 0.44 [0.06, 0.71] 

bwet " 1.0 10.0 5.12 [3.64, 9.59] 

adry Parameter of the SAS function for the dry period 0.01 10.0 0.10 [0.06, 0.40] 

bdry  " 0.01 1.0 0.22 [0.11, 0.49] 

S0 Initial storage (mm) 500.0 5000.0 780.7 [564.1, 4865.7] 

The sign (”) indicates that the information in this cell is identical to the cell immediately above it.  430 

PTF is the pedotransfer function. 431 

 432 

 433 

 434 
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3.2. Discharge and in-stream nitrate concentration 435 

Visual assessment and model performance indices (NSE, lnNSE, PBIAS) show that the 436 

proposed model was satisfactorily calibrated and validated for discharge at the catchment outlet 437 

(Figure 5a). Nonetheless, some high discharge events were under- and over-estimated (Figure 438 

5a). The under- and over-estimation of individual high discharge events could be attributed to the 439 

uncertainty in the rainfall data, e.g., under- and over-estimation of rainfall in some regions. From 440 

the flow duration curve (Figure 5b), it is seen that low flows were well represented by the model. 441 

In addition, the 95PPU band covers 96% of the observed values (p-factor = 0.96) with a narrow 442 

band (r-factor = 0.59).  443 

 444 

Figure 5. Observed and simulated (a) discharge and (d) instream nitrate (N-NO3) concentration 445 

at the Silbehütte gauging station during the calibration (1995-2014) and validation (2005-2014) 446 

periods along with (b) the flow duration curve and (c) the concentration-discharge relation.  447 

Figures 5c and 5d show that the proposed model can reproduce the seasonal patterns of 448 

in-stream nitrate concentration and the concentration-discharge relationship. A detailed analysis 449 

shows that some runoff events with high nitrate concentration were underestimated while runoff 450 
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events with low concentration were overestimated (Figures 5c and 5d). The concentration-451 

discharge (C-Q) relationship shows that high concentrations are associated with high flows and 452 

low concentrations are associated with low flows. Therefore, the underestimation of high 453 

concentrations during high flow conditions could be attributed to (1) the unaccounted direct 454 

transport of nitrate from the agricultural field to stream via direct surface runoff and/or (2) the 455 

activation of preferential subsurface flow paths that are only activated during extreme events. 456 

The overestimation of low concentrations, however, only occurs during some years, especially 457 

during the validation period (Figure 5d). This could be due to the overestimation of N from 458 

WWTPs in some years that was set constant in time in this model (Yang et al., 2018b). This is 459 

the reason for a lower lnNSE found during the validation period compared with the calibration 460 

period. Overall, the model performance statistics for the nitrate concentrations are within 461 

acceptable ranges and the 95PPU covers 60% of the observed values (p-factor = 0.60). The 462 

95PPU band for instream nitrate concentration (r-factor = 0.99) is higher than that for discharge 463 

(r-factor = 0.59) because the water quality simulation is subjected to additional uncertainty from 464 

the hydrological simulation. 465 

3.3 Spatial nitrate dynamics 466 

 The mHM-SAS model could provide detailed insights into the spatial nitrate dynamics 467 

within the soil zone (Figure 6). In general, the catchment experiences a strong spatial variability 468 

in diffuse nitrate external input (mainly from fertilizer and manure application, Figure 6b), 469 

mineralization (6c), plant-nutrient uptake (Figure 6d), denitrification in the soil zone (Figure 6e), 470 

and nitrate leaching (Figure 6f). This is expected as the mHM-SAS and mHM-Nitrate (Yang et 471 

al., 2018b; 2019) models use the same concept for describing soil nitrogen processes. As 472 

indicated from the input data, diffuse nitrate inputs from agricultural lands are the most dominant 473 

diffuse N sources, a consistent pattern all over Europe (Leip et al. 2011). The simulated spatial 474 

patterns of N-fluxes due to mineralization, plant uptake, denitrification, and nitrate leaching 475 

mainly follow the spatial patterns of diffuse nitrate inputs (with a correlation coefficient > 0.95), 476 

higher rates in agricultural areas and lower rates in forest areas. Denitrification rate in 477 

agriculturally dominated soil (agricultural fraction > 0.5) is generally higher than in forest 478 

dominated soil (forest fraction > 0.5), on average 2.7 times higher. In agriculturally dominated 479 

areas, it is seen that a significant amount of nitrate is leached out of the soil zone despite a high 480 

rate of nitrate removal by plant uptake and denitrification. This is the major reason for the higher 481 

nitrate concentration that is observed in the groundwater zone below agricultural areas compared 482 

to forest areas (e.g., Knoll et al., 2020).  483 

For a long-term nitrate balance within the soil zone, the model suggests that most of the 484 

nitrate input (59.1 kg N ha-1 yr-1) and mineralization (20.6 kg N ha-1 yr-1) to the DIN soil pool 485 

was removed via plant uptake (45.9 kg N ha-1 yr-1), followed by soil denitrification (23.2 kg N 486 

ha-1 yr-1), and finally leaching to the deeper subsurface (11.2 kg N ha-1 yr-1). In agriculturally 487 

dominated areas, denitrification in the soil zone is the largest nitrogen loss pathway, which is 488 

common for European agricultural soils (Velthof et al., 2009) but also observed elsewhere 489 

(Jawitz et al. 2020). Modeling results indicate that there is almost no long-term accumulation of 490 

nitrate in the soil zone and less than 1% of external nitrate input remained in storage during the 491 

period from 1994 to 2014. The simulated rate of mineralization (20.5-20.7 kg N ha-1 yr-1) and 492 

denitrification (18.8-31.1 kg N ha-1 yr-1) in this study are within the measured range reported by 493 

Heumann et al. (2011) (mineralization rate: 14-187 kg N ha-1 yr-1) from different soil types in 494 



manuscript submitted to Water Resources Research 

 

Lower Saxony, Germany and by Hofstra and Bouwman (2005) (denitrification rate: 8-51 kg N 495 

ha-1 yr-1) from 336 agricultural soils located worldwide. The simulated yearly average N surplus 496 

(nitrate input + mineralization – plant uptake) from the optimal parameter set is 33.8 kg N ha-1 497 

yr-1. This is comparable with the calculated N surplus (33 kg N ha-1 yr-1) from other studies for 498 

the area (Häußermann et al., 2019, Winter et al., 2020). 499 

 500 

Figure 6. Spatial distribution of (a) agricultural fraction and (b) nitrate external input from 501 

fertilizer, manure, and atmospheric deposition, (c) mineralization, (d) plant uptake, (e) 502 

denitrification, and (f) nitrate leaching out of the soil zone from the optimal parameter set. μ and 503 

σ are the mean and standard deviation. Numbers outside the bracket correspond to the optimal 504 

parameter set and numbers in bracket are the range of the 95PPU. Data were compiled for the 505 

period from 1995-2014. The size of a grid cell is 1 km2.  506 

A substantial part (about 32%) of the N surplus was leached out of the soil zone to the 507 

SAS compartment (Figure 6f). Within the SAS compartment, nitrate is further denitrified along 508 

its transport pathways and is removed via discharge. The long-term nitrate balance (from 1995-509 

2014) from the optimal parameter set shows that about 37% of the leached nitrate (Figure 6f) 510 

was removed via denitrification and 62% (54% during the wet periods and 8% during the dry 511 

periods) was exported to the stream. In the study area, different magnitudes of denitrification 512 

potential in groundwater have been reported based on measured groundwater chemistry data, 513 

ranging from high to low nitrate reduction potential (Hannappel et al., 2018). We thus conclude 514 

that the modeled denitrification rate below the soil zone is acceptable. 515 

3.4. Subsurface mixing and transport 516 

The results show that the selection preference for discharge has a consistent seasonal 517 

pattern (Figures 7a and 7b). In general, it is seen that the system preferentially selects young 518 

water in storage for discharge during wet periods with high subsurface storage and (2) both 519 
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young and old water in storage for discharge during dry periods with low subsurface storage. The 520 

dominance of young water in discharge during wet periods mainly attributes to the activation of 521 

fast shallow flow paths under high wetness conditions (Yang et al., 2018a; Dupas et al., 2017). 522 

The infiltrated rainfall takes a relatively short time to travel via these flow paths, providing 523 

streamflow with dominant young water. This results in a much smaller median transit time 524 

compared to the median residence time during the wet periods (Figure 7c). The preference for 525 

young water during selected dry periods is due to the fact that occasional rain events with high 526 

intensity lead the activation of fast shallow flow paths. When there is no rainfall or rainfall with 527 

low intensity, stream discharge is mainly composed of older water due to the deactivation of the 528 

fast shallow flow paths and a dominance of slow deep flow paths. As a result, the median transit 529 

time (TT50) for discharge in the dry periods is considerably longer than that in the wet periods 530 

(Figure 7c).  531 

The temporal activation and deactivation of different flow paths affect the age 532 

composition of discharge, the young and old water fraction in discharge, and ultimately the 533 

dynamics of nitrate in discharge. This is because longer transit times indicate less time for 534 

denitrification and a dominance of young water in discharge indicates a pronounced effect of 535 

recent agricultural activities on instream water quality. It is seen that instream nitrate 536 

concentration in the wet periods is higher than that in the dry periods (Figure 7d). Higher nitrate 537 

concentrations in the wet periods are due to higher fractions of young water (with higher nitrate 538 

concentrations). Lower nitrate concentrations in the dry periods are due to a mixture of old water 539 

(with low nitrate concentration due to a long time of denitrification) and young water (with low 540 

nitrate concentration) (Figures 7a and 7d). Subsurface mixing and denitrification also result in a 541 

lower temporal variability of instream nitrate concentration compared to that of leached nitrate 542 

(Figure 7d). 543 
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  544 

Figure 7. (a) SAS functions, (b) subsurface storage, (c) median transit time (TT50) and residence 545 

time (RT50), and (d) instream and leached nitrate concentration correspond to the optimal 546 

parameter set. 547 

3.5. Transport and reaction time scales 548 

 To explore the interplay between transport and reaction rate on nitrate export, we use the 549 

Damköhler number (Da, Ocampo et al., 2013). Da is a dimensionless ratio of the mean transit time 550 

of discharge, �̅�𝑄 [T], to the inverse of the first‐order reaction rate constant for denitrification, 1/k 551 

[T]. Da values > 1 indicate the dominance of reaction over transport while Da values < 1 indicate 552 

the dominance of transport over reaction. The simulated average Da number for the wet periods 553 

is 1.62 compared to the average Da number of 8.03 for the dry periods. This shows that nitrate 554 

transport during the dry periods is characterized by a much more pronounced dominance of 555 

reaction over transport. 556 
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 In the study area, the simulated mean transit time (MTT) over the simulation period 557 

(1995-2014) is 2.34 years. This is comparable with the mean transit time estimated based on 558 

stable isotope data for the Meisdorf gauging station (2.19 years) located further downstream of 559 

the study area (Lutz et al., 2018). In their study, the MTT was calibrated using stable isotope data 560 

and young water fraction under the assumption of a gamma-shape TTD. In a recent study for the 561 

study area, Winter et al. (2020) assumed that TTDs follow a lognormal distribution. Parameters 562 

of the lognormal were determined from a comparison of the long-term changes in annual N input 563 

and flow normalized nitrate concentrations observed in the output. Their results indicate that the 564 

MTT is about 2.12 years, which is comparable to our finding. However, the calculation of the 565 

MTT in this study is subjected to a certain degree of uncertainty as described below. 566 

Nevertheless, a similar mean transit obtained from our study compared to other, data-driven 567 

approaches validate our findings and thus illustrate the potential of a robust application of the 568 

proposed model.  569 

 In this study, we found that the variables MTT and Da which take into account the oldest 570 

water are highly sensitive to the actual age of the oldest water. Information on the age of the 571 

oldest water cannot be determined from the observed instream nitrate time series or the model 572 

which is calibrated against that (e.g., Stewart et al., 2010). This is because nitrate in old waters 573 

was effectively denitrified to the level that is below the lower detection limit. The 574 

aforementioned MTT (2.34 years) was calculated with an assumption that the maximum age in 575 

storage is 10 years, older water is merged to the “old” water pool (with the age of 10 years and 576 

an average volume of 46% the total subsurface storage). In other words, it means that old water 577 

(water with age ≥ 10 years or Da ≥ 22.2) is assumed to be well mixed. Under the assumption that 578 

the oldest water in storage is not restricted to a certain age (the oldest water becomes older as the 579 

simulation time increases), the MTT of discharge shifts to 4.03 years. In terms of instream nitrate 580 

concentration and TT50, the two aforementioned assumptions give almost identical results 581 

(section 3.6). Similar results (instream nitrate concentration and TT50) are obtained if the 582 

maximum age in storage is limited to 1 year. For solute export, the results indicate that when 583 

reaction strongly dominates transport, mixing within the old water storage with very low nitrate 584 

concentration compared to young water does not affect solute concentration in the outflow. 585 

3.6. Age composition of nitrate and discharge 586 

  Figure 8 shows the age composition of nitrate (nitrate age distribution) and discharge 587 

(TTD) on the typical wet and dry days. It is seen that the age composition of nitrate does not 588 

follow the age composition of discharge because of denitrification. The age of nitrate on the dry 589 

day is much older than on the wet day. In both dry and wet days, the majority of nitrate in 590 

discharge is from the young water fraction of discharge. On the dry (wet) day, about 75% (85%) 591 

of nitrate in discharge is younger than the median transit time. On the dry day, a very small 592 

fraction (< 1%) of nitrate in discharge is older than a year despite a high overall fraction of old 593 

water (about 40% of discharge is older than a year). This result further confirms that in the study 594 

area, a detailed representation of mixing inside the old water pool (> 1 year) is not necessary for 595 

representing instream nitrate dynamics when the reaction is high. 596 
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 597 

Figure 8. The age composition of nitrate (nitrate age distribution) and discharge (TTD) in a 598 

cumulative form on the typical wet day (15 December 2002) and dry day (9 August 2003). The 599 

x-axis is represented on a log-scale for better visualization. The data were derived from the 600 

optimal parameter set.  601 

3.7. Time lags in catchment response 602 

 To understand the time lag between nitrogen input and catchment solute export, a 603 

hypothetical scenario was set up. In this scenario, all nitrogen inputs to the soil (fertilizer, 604 

manure, atmospheric deposition, residues) are stopped after a certain time (Figure 9). The time 605 

lag between input nitrogen and instream nitrate concentration signals can be due to 606 

biogeochemical (soil) and hydrological (groundwater) time lags (Ilampooranan et al., 2019). In 607 

this study, the biogeochemical time lag corresponds to the biogeochemical reaction time scale in 608 

the soil zone while the hydrological time lag corresponds to the travel time of nitrate in the 609 

subsurface. The time lag between input nitrogen and leached nitrate concentration signals 610 

reflects the biogeochemical time lag while time lag between leached nitrate in instream nitrate 611 

concentration signals reflects the hydrological time lag. The biogeochemical time lag in the study 612 

is more pronounced compared to the hydrological time lag. This is indicated by an increase of 613 

instream nitrate concentration following a decrease and a complete cessation of all input 614 

nitrogens (Figure 9). However, the delay between leached nitrate and instream nitrate 615 

concentration signals is not clear. This is because of a short transit time, a dominant of young 616 

water fraction in discharge, and a high reaction rate as mentioned in the previous sections. 617 

 618 

Figure 9. The response of instream and leached nitrate concentration following a complete 619 

cessation of all input nitrogens. The data were derived from the optimal parameter set. The base 620 

case is the case without stoping N input.  621 

 622 
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4. Discussion 623 

4.1. Representation of spatial nitrate dynamics and subsurface nitrate transport 624 

The simulated spatial nitrate patterns have highlighted the necessity of a spatially explicit 625 

representation of nitrate dynamics within the soil zone. This could help to identify critical source 626 

areas and to advise better management practices. In the catchment-scale application of the SAS 627 

approach, the spatial patterns in nitrate leaching from the soil zone are not explicitly considered 628 

in the transport process. This SAS approach transfers the transport problem into the time domain 629 

and only considers the dynamic distribution of transit times due to the heterogeneity of 630 

subsurface transport pathways. In other words, this approach provides insights into the time 631 

origin of discharge and the solutes in discharge instead of their spatial origin.  632 

The proposed mHM-SAS model uses the time-variant SAS functions to describe 633 

subsurface mixing dynamics and time-variant TTDs of discharge. Within this approach, both 634 

celerity- and velocity-driven transport mechanisms are taken into account. Transport of reactive 635 

solutes (e.g., nitrate) was implemented in a parsimonious manner. Compared to other approaches 636 

that use the hydrologically inactive and active groundwater storage (e.g., Yang et al., 2018b; 637 

Shafii et al., 2019), our approach provides a more general description for reactive solute 638 

transport. For example, the hydrological active and inactive storage concept usually does not 639 

account for biogeochemical processes of reactive solutes (e.g., denitrification) in the passive or 640 

both passive and active groundwater storage (Hrachowitz et al., 2016; Yang et al., 2018b; Shafii 641 

et al., 2019). In addition, this concept is often restricted to a well-mixed assumption (e.g., Yang 642 

et al., 2018b).  643 

4.2. Model capabilities and limitations  644 

In this study, we have demonstrated the capability of the mHM-SAS model to provide 645 

insights into the functioning of the catchment (subsurface mixing) and the internal dynamics of 646 

discharge (TTD) and solute in discharge unlike traditional conceptual water quality models 647 

(Hrachowitz et al., 2016). The tested catchment is characterized by a small and reactive 648 

catchment storage that leads to a fast reaction time of instream nitrate concentration to changes 649 

in the input. In catchments with larger groundwater storages and transit times, the long-term 650 

effects of biogeochemical and hydrological legacies can play out very differently (Ehrhardt et al., 651 

2019, van Meter et al., 2018). Here, our modeling approach could serve as an investigation tool 652 

for quantifying the long-term memory effects of historical agricultural practices on the present 653 

surface water quality status. Understanding the temporal dynamics of subsurface mixing and 654 

TTD also allows us to identify when instream water quality is more vulnerable to input 655 

contaminants and to develop better management practices.  656 

Despite the aforementioned model capabilities, the model is still a simplified 657 

representation of the real system and further developments are suggested. The current version of 658 

the model does not explicitly consider instream nitrate removal. Instream nitrate removal is 659 

lumped with subsurface nitrate denitrification. However, the travel time in the stream network is 660 

of different magnitudes compared to the travel time in the subsurface, therefore, separation of 661 

these processes are required for the areas where instream nitrate removal is significant. In our 662 

study area, instream nitrate removal is negligible (Yang et al., 2018b). The current lumped 663 

version of the mHM-SAs model does not consider the spatial variability of leached nitrate out of 664 

the soil zone. To preserve the spatial information of leached nitrated from the root zone in the 665 

transport process or to answer the question about the spatial origin of discharge at the catchment 666 
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outlet, a spatially more resolved, grid-based application of the SAS concept is required. This also 667 

applies when the model is transferred to larger basins with a distinct spatial heterogeneity in 668 

subsurface properties that does not allow for an effective lumped parameterization. 669 

4.3. Towards a fully spatially distributed SAS-based model 670 

In the following implementation of the SAS approach in a grid-cell level, parameters of 671 

the SAS functions (including the initial conditions) are assumed to be spatially homogeneous and 672 

assigned as the optimal values obtained from the lumped approach (Table 2). This assumption 673 

reflects a case with homogeneous hydrogeological settings where outflow from each grid cell is 674 

directly discharged to the stream (no subsurface flow between grid cells). Changes in the mixing 675 

scheme in each model grid cell are defined by the antecedent inflows and outflows as described 676 

in section 2.3. The simulated instream nitrate concentration and the median transit time of 677 

discharge at the catchment outlet from the two approaches are almost identical (Figure 10). This 678 

indicates that the spatial information about nitrate fluxes from the root zone has only minor 679 

effects on catchment nitrate export and the catchment scale median transit time of discharge. 680 

However, this conclusion is only applicable under the assumption that the catchment is spatially 681 

homogeneous in terms of mixing schemes and subsurface storage. Satisfactory results from the 682 

distributed approach, even under the spatial homogeneity assumption for the SAS functions 683 

show the potential applicability of the distributed approach.  684 

 685 

Figure 10. The simulated (a) instream nitrate concentration and (b) median transit time of 686 

discharge at the catchment outlet from the distributed and lumped approaches. 687 

 688 

In the spatially distributed approach, the model can provide spatial information about, for 689 

example, the age of storage (residence time, RT) and discharge (transit time, TT) (Figure 11). 690 

This information has significant implications for the understanding of flow and transport of 691 

contaminants. It is seen that even though the spatial patterns of residence times, which are 692 

characterized by the median of the median RT is far from homogeneous (Figure 11a). In this 693 

example, the spatial patterns of the residence time are mainly controlled by the spatial pattern of 694 

recharge, the median RT50 is inversely correlated with the recharge rate with a correlation of -695 

0.94. The recharge rate is further controlled by precipitation, land cover, topography, and soil 696 

properties. In this study, it is seen that shorter residence times are observed in highland areas 697 

while longer residence times are observed in lowland areas. Shorter (or longer) residence times 698 
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indicate a faster (or slower) responses of groundwater quality to changes in agricultural practices. 699 

At the same time shorter (or longer) residence times also indicate more or less nitrate removal 700 

via denitrification. The spatially distributed approach also allows us to explore the spatial 701 

patterns of the transit time of discharge (Figure 11b). It is seen that even though the mixing 702 

scheme is spatially homogeneous, the transit time of discharge is highly heterogeneous. In 703 

general, the spatial pattern of the transit time of discharge (Figure 11b) follows the spatial pattern 704 

of the residence time (Figure 11a). Shorter transit times indicate higher vulnerabilities of stream 705 

water quality to input contaminants. The evolution of the transit times along the river network is 706 

shown in Figure 11c. Changes in the transit time of discharge along the river network are 707 

expected because the main river receives discharges from tributaries with different transit time 708 

distributions along its course. The temporal variation of the RT and TT (lower panel, Figure 11) 709 

indicates that the TT of discharge has a higher temporal variation than the RT. This is due to the 710 

seasonal changes in the mixing scheme.   711 

 712 

Figure 11. The upper panel: a) the median of the median residence time (RT50), b) the median of 713 

the median transit time of discharge from each grid cell (TT50
cell) without flow accumulation, and 714 

c) the median of the median transit time of discharge (TT50
cell) at the main river network with flow 715 

accumulation. The low panel shows the ratio of the interquartile range over the median of the 716 

corresponding indicator.  717 

A major disadvantage of most distributed conceptual hydrological models is that lateral 718 

subsurface flow and transport between model grid cells is usually neglected, e.g., VIC (Variable 719 

Infiltration Capacity model, Liang et al., 1994 ), mHM-Nitrate (Yang et al., 2018b), GROWA–720 

DENUZ–WEKU (Kunkel et al., 2017). Thus, the maximum flow path length is limited to the cell 721 

size. If the grid resolution is large (small cell sizes), water and solutes from the upstream grid 722 

cell can be transported to downstream grid cells and mixed with water and solute in these grid 723 

cells before entering the river. The response of instream solute concentration to the input signal 724 

from a cell located at a distance could be slower than the response to the input signal from a cell 725 
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located nearby. In other words, there would be legacy effects due to the longer transit times of 726 

nutrients from regions, which are not directly connected to the stream network (Figure 12). In a 727 

fully spatial distributed approach, which accounts for lateral subsurface flows between grid cells, 728 

the aforementioned flow and transport mechanisms could in principle be represented. For 729 

example, transport of water and solute from a grid cell located far away from the river could be 730 

conceptualized with a selection preference for older water compared to the selection preference 731 

for younger water for the cell located near the river (Figure 12). Mixing occurring along longer 732 

flow paths could be conceptualized as mixing in the river, where the flow contributions from the 733 

all distant and close grid cells are eventually combined. This example (Figure 12) indicates the 734 

potential of application of the fully distributed SAS-based model for representing lag times of N 735 

inputs and outputs due to hydrologic legacy. For a reactive solute such as nitrate, the distributed 736 

approach would also allow to vary denitrification rates between grid cells.  737 

 738 

Figure 12: Example for the representation of transport of conservative solute from different grid 739 

cells to a river with the SAS-based approach. In this example, both grid cells are assumed to 740 

have the same initial storage (S0 = 500 mm), initial concentration (C0 = 0 mg/L), impulse input 741 

signal (C = 1 mg/L) at time t = 0, and constant input and output fluxes (Qin = Qout = constant = 1 742 

mm/day).  743 

 Despite these potential advantages of a fully distributed approach, several challenges 744 

would have to be overcome in its implementation. For example, the functional relationships 745 

between grid cell characteristics (e.g., meteorological forcing, hydrogeological properties, and 746 

location of the grid cell) and parameters of the SAS functions needs to be addressed. In addition, 747 
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the fully distributed model will significantly increase the number of model parameters (e.g., 748 

parameters of the SAS function could be changed in space and time), which could lead to the 749 

problem of overparameterization. The distributed approach will also require more computational 750 

and storage capacity compared to the lumped approach. Furthermore, additional field data would 751 

be required to constrain or verify the spatially resolved output from the model to ensure model 752 

robustness. However, the advancement of physically-based groundwater models as tools to 753 

evaluate processes more mechanistically as well as an increasing amount of field data from 754 

experimental catchments could help to alleviate some of these verification problems.  755 

5. Conclusions and outlook  756 

StorAge (SAS) selection functions have emerged as a novel tool for modeling solute 757 

transport at the catchment scale. However, a thorough representation of the spatial heterogeneity 758 

of catchment characteristics (e.g., land use, soil, topography) in such models and a systematic 759 

testing of SAS-function based models at larger scales (e.g., mesoscale-catchments) have not been 760 

done to date. In this study, we took a step in this direction and integrated a SAS-function based 761 

nitrate transport model into a fully distributed soil nitrate model (mHM-Nitrate) at both the 762 

catchment as well as grid cell scales, resulting in the mHM-SAS model. Seasonal variations in 763 

the age selection schemes of the catchments as represented by shifting SAS functions were 764 

implemented in the model based on antecedent inflows and outflows to the subsurface 765 

compartment of the model (i.e. entire catchment or on the grid cell level). For the first time, to 766 

the best of our knowledge, the SAS concept has been evaluated in a mesoscale catchment (100 767 

km2) with heterogeneous catchment characteristics (land cover, land use management practices, 768 

soil types). Key results show that: 769 

 Denitrification below the soil zone could be significant and should be accounted for 770 

(e.g., the upper Selke in this study).  771 

 The lumped SAS-based approach could well represent streamflow and solute export 772 

dynamics of a mesoscale heterogeneous catchment with realistic reaction rates and 773 

transit times. 774 

 Both lumped and distributed SAS-based approaches yield comparable results in terms 775 

of instream nitrate dynamics and median transit times of discharge at the catchment 776 

outlet. 777 

 Temporal activation and deactivation of different flow paths control the transit time 778 

of discharge and solute export dynamics of the catchment. 779 

 Knowledge about the age of the oldest water in storage or discharge is not required 780 

for characterizing solute export dynamics from a highly reactive system. 781 

 Temporal changes in the SAS functions could be related to the antecedent inflow and 782 

outflow ratio, which does not explicitly require prior knowledge about subsurface 783 

storage (e.g., minimum, maximum, seasonal changes).  784 

 Heterogeneity in the recharge rates controls the spatial patterns of transit times. 785 
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This study has demonstrated the general applicability of SAS-function based solute 786 

transport models to mesoscale catchments. However, the application of the SAS concept at this 787 

scale is still in an early stage. Testing of the SAS concept in other catchments with different 788 

settings is needed. The mHM-SAS model can be considered as the first prototype for a 789 

parsimonious SAS-function based solute transport model for larger catchments. However, the 790 

proposed general integration framework could easily be applied to other distributed water quality 791 

models.  792 
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