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Abstract

There are a plethora of satellite-derived water clarity and turbidity indicators to support the decision making of environmental

managers and policy makers. However, water quality dynamic ranges addressed by these indicators can differ significantly,

subjecting unsuspecting users to potential pitfalls. Here we propose a satellite water clarity-turbidity index (CTI) as a simplified

way to capture major changes in water clarity/turbidity across all water types. This is achieved by merging three satellite-

derived indicators, namely, the Secchi disk depth, the particulate backscattering coefficient, and the nephelometric turbidity,

which are suitable for clear, intermediate, and turbid waters, respectively. Application to the Great Lakes shows that with

one parameter, the CTI can illustrate major spatial and temporal patterns that are not entirely visible with each of the three

original indicators alone, making it a convenient holistic assessment tool for water quality management.
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Abstract14

There are a plethora of satellite-derived water clarity and turbidity indicators to sup-15

port the decision making of environmental managers and policy makers. However, wa-16

ter quality dynamic ranges addressed by these indicators can differ significantly, subject-17

ing unsuspecting users to potential pitfalls. Here we propose a satellite water clarity-turbidity18

index (CTI) as a simplified way to capture major changes in water clarity/turbidity across19

all water types. This is achieved by merging three satellite-derived indicators, namely,20

the Secchi disk depth, the particulate backscattering coefficient, and the nephelometric21

turbidity, which are suitable for clear, intermediate, and turbid waters, respectively. Ap-22

plication to the Great Lakes shows that with one parameter, the CTI can illustrate ma-23

jor spatial and temporal patterns that are not entirely visible with each of the three orig-24

inal indicators alone, making it a convenient holistic assessment tool for water quality25

management.26

1 Introduction27

Water clarity and turbidity are important water quality indicators that can be es-28

timated from satellite data using various proxy variables. Commonly used variables in-29

clude the Secchi disk depth, Zsd, the particulate backscattering coefficient, bbp(λ), dif-30

fuse attenuation coefficient of downwelling irradiance, Kd(λ), and turbidity in nephelo-31

metric turbidity units (NTU), Tn (Zheng & DiGiacomo, 2017). It is important to note32

that no single variable fits all water types with respect to covarying with changes in wa-33

ter quality; each individual variable has an optimal dynamic range. For example, the Sec-34

chi Depth Zsd is well suited for clear waters but its magnitude tends to diminish in tur-35

bid waters. With errors and uncertainties which are inherent to satellite data, highly tur-36

bid waters are practically indistinguishable using only Zsd. For a similar reason, it is also37

difficult to evaluate turbidity of clear waters using the nephelometric turbidity Tn. Per-38

haps a good question to ask is, why estimate turbidity for waters with little turbidity,39

or clarity when there is essentially no clarity?40

Therefore, effective application of these satellite products requires knowledge about41

their applicable dynamic range. This could overwhelm water quality managers and pol-42

icy makers who may not have technical expertise. Since satellite data alone will not pro-43

vide answer to all problems for environmental managers and policy makers, but are more44

likely used in conjunction with traditional field measurement programs (Schaeffer et al.,45
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2013), a simple but broadly applicable product merging multiple variables might be more46

useful for the decision making (Mouw et al., 2015). In practice, a smart decision-making47

framework could include a strategic plan made based on low-cost and timely satellite data48

to identify priority locations, followed by field sampling activities targeting the priority49

locations to provide more precise and legally compliant measurements, particularly at50

depth and also to provide parameters that cannot be measured from space (e.g., nutri-51

ents and pathogens). In this study, we develop such a product that addresses the tur-52

bidity/clarity of all water types ranging from the clearest to the most turbid waters by53

merging Zsd, bbp(λ), and Tn. The efficacy of the new product is demonstrated using data54

from the Great Lakes which is the largest system of fresh surface water by total area in55

the world and water turbidity varies greatly in this region. Another motivation of us-56

ing the Great Lakes as a case-study site is because the anthropogenic environment and57

aquatic ecosystems of the Great Lakes were historically impaired by pollution and in-58

vasive species; our product may help facilitate the restoration activities.59

2 Data and Methods60

2.1 Data61

The remote-sensing reflectance, Rrs(λ), data covering the Great Lakes region were62

obtained from three satellite missions: Visible Infrared Imaging Radiometer Suite (VIIRS)-63

SNPP (2011-2019), Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua (2002-64

2019), and MODIS-Terra (2000-2019). Daily Level-2 VIIRS-SNPP granule data with ”sci-65

ence quality” were processed by the NOAA Ocean Color Science Team (reprocessing ver-66

sion, SCI OC04.0 V1.21) and are available on the NOAA CoastWatch website (coast-67

watch.noaa.gov). Daily Level-2 MODIS-Aqua and -Terra data were obtained from the68

NASA’s Goddard Space Flight Center Ocean Biology Processing Group using the Level69

1&2 Browser on oceancolor.gsfc.nasa.gov. Data were reprocessed in 2018 (version ”R2018.0”).70

Both VIIRS and MODIS data were produced with the atmospheric correction using the71

near-infrared bands as a basis for making the “black-pixel” assumption. To avoid ice con-72

tamination, most data used in this study were collected during warm seasons from May73

to September unless otherwise noted.74

As preprocessing, data were screened to remove quality issues and then gridded.75

Specifically, we rejected pixels flagged as high sun or sensor zenith angles, or high glint.76
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In addition, the daily Level-2 data granules were reprojected into gridded format at 750-77

m (VIIRS) and 1000-m (MODIS) resolutions, respectively, and monthly composites for78

each individual band were calculated as the mean of all gridded daily images in each month.79

The final product of this preprocessing is monthly 2-D arrays of the VIIRS Rrs(λ) data80

at 410, 443, 486, 551, 638, and 671 nm, and MODIS Rrs(λ) data at roughly identical bands,81

i.e., 412, 443, 469, 488, 547, 645, and 667 nm. Other MODIS ocean color bands were ex-82

cluded from further calculations. Note that the VIIRS 638-nm band is not a regular ocean83

color band, but an ”I-band” with 2 times higher spatial resolution and roughly 1/3 signal-84

to-noise ratio (SNR). So each Rrs(638) value is aggregated from 4 I-band pixels and in85

this process its SNR is somewhat enhanced.86

2.2 Methods87

We propose a clarity-turbidity index (CTI) product to provide a simple, qualita-88

tive measure of overall water quality across essentially all natural waters, ranging from89

the clearest to the most turbid, freshwater and marine. The CTI can be determined based90

on three satellite-derived variables, namely Zsd, bbp(550), and Tn which account for wa-91

ter quality variability of the clearest, the intermediate, and the most turbid waters, re-92

spectively.93

There are many formulas to derive Zsd from Rrs(λ) (e.g., Doron et al., 2011; Lee94

et al., 2015, and references cited therein). Here we used a formula based on the one given95

by Lee et al. (2015):96

Zsd =
1

2.5Kd(λmin)
ln

(
| 0.14−Rrs(λmin) |

0.013

)
(1)

, where Kd(λ) is the vertically averaged spectral diffuse attenuation coefficient, and λmin97

is the light wavelength with minimum Kd(λ), i.e., where light can penetrate the deep-98

est into the water column. Also following Lee et al. (2015), Kd(λ) was calculated from99

the spectral light absorption, a(λ), and backscattering coefficients, bb(λ), which were cal-100

culated with the Quasi-Analytical Algorithm (QAA) version 6 (Lee et al., 2013).101

The particulate bbp(550) is calculated simply by subtracting the pure water con-102

tribution, bbw(550), from the total bb(550). Note that the 550 nm here is a nominal band103

name referring to the 551 nm for VIIRS and 547 nm for MODIS. The bbw(550) is cal-104

culated with the Water Optical Properties Processor (WOPP) developed by Rottgers105

et al. (2011). In this calculation water salinity was set to zero, and water temperature106
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to 10 °C which is close to the medians of monthly whole-lake average temperature of in-107

dividual Great Lakes from May to September (see coastwatch.glerl.noaa.gov/statistic/).108

To calculate turbidity in nephelometric units, Tn, we used a formula based on the109

magnitude of Rrs(645) (or 638 nm for VIIRS) from Dogliotti et al. (2015):110

Tn =
228.1πRrs(645)

1− πRrs(645)/0.1641
(2)

We also examined the use of Tn derived from reflectance at near-infrared bands to111

account for more turbid waters but found it unnecessary because such waters are rare112

in the Great Lakes. However, this may be needed for application in more turbid waters113

elsewhere.114

Given Zsd, bbp(550), and Tn, the CTI is determined based on threshold values of115

these variables as illustrated in Table 1 and Fig. 1. Figure 1 shows the distribution of116

all monthly VIIRS data used in this study which comprise over two million samples. The117

MODIS data show similar patterns except that the Tn rarely exceeds 60 NTU (not shown).118

The first step is to separate the two endmember groups, i.e., clear waters and turbid wa-119

ters. This is important because turbidity indicator Tn diminishes in clear waters and clar-120

ity indicator Zsd diminishes in turbid waters, and as they diminish, they also lose the121

dynamic range to capture the variability of water quality (see right end of blue points122

and left end of red points in Fig. 1). Based on the VIIRS data distribution, two thresh-123

old values of bbp(550), 0.01 and 0.1 m−1, were selected to broadly categorize a given pixel124

into clear (CTI ≤4), intermediate (CTI 5), or turbid waters (CTI ≥6). The value of 0.01125

m−1 happens to intercept with the upper bound of Zsd−bbp(550) distribution at Zsd ≈10126

m, whereas the value of 0.1 m−1 happens to intercept with the upper bound of Tn−bbp(550)127

distribution at Tn ≈15 NTU. Therefore Zsd=10 m is used as a threshold value to fur-128

ther separate the clearest (CTI≤3) from the transitional clear-intermediate waters (CTI=4),129

and Tn =15 NTU is used to separate the intermediate-turbid (CTI=6) from the most130

turbid waters (CTI≥7). For the clearest waters (CTI 1 through 3), the CTI is based solely131

on Zsd with threshold values of 15 and 20 m, respectively; whereas for the most turbid132

waters (CTI 8 through 11), it is based solely on Tn with threshold values of 30, 60, 100,133

200, and 500 NTU, respectively. There are relatively few data points beyond 200 NTU134

so they were not shown in Fig. 1 to better illustrate other CTI indices.135
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The choices of these threshold values may make the CTI approach appear arbitrary;136

nevertheless, it is the framework merging Zsd, bbp(550), and Tn together that is impor-137

tant. The CTI approach is essentially a discretization, or data binning, of the three com-138

monly used water clarity and turbidity variables. It transforms quantitative into qual-139

itative information, while distilling and preserving dominant water quality information140

out of an overwhelmingly large amount of data, making it suitable for water quality man-141

agers and policy-makers to readily grasp general trends and patterns in both space and142

time. In addition, the way CTI is defined makes it a flexible approach. First, its appli-143

cable range of clarity/turbidity can be easily expanded; it can cover much clearer (e.g.,144

oceanic waters with Zsd as deep as 70 m, Gieskes et al., 1987; Doron et al., 2011; Lee145

et al., 2018) and much more turbid waters (e.g., Tn over 1000, Dogliotti et al., 2015). Sec-146

ond, the choices of threshold values are flexible; users can easily change these thresholds147

as they see fit and easily trace each CTI back to the ranges of Zsd, bbp(550), and Tn through148

Table 1. In essence, the CTI provides a one-number metric for water quality managers149

and policy-makers to make quick evaluations without having to worry about technical150

details, particularly for regions where turbidity variation is large.151

3 Results and Discussion152

Using the approach discussed above we mapped out the CTI for the Great Lakes153

using Rrs(λ) data from VIIRS-SNPP, MODIS-Aqua and -Terra, and made monthly com-154

posites for each sensor. Compared with Zsd, bbp(λ), and Tn individually, the CTI prod-155

uct exhibits a broader range of variability. Taking VIIRS data in Arpil 2018 for exam-156

ple (Fig. 2), among the three original variables the clearest waters in central Lake Huron157

(white dashed circles) can only be seen in the Zsd map, the most turbid waters in Lake158

Erie (black dashed circles) can only be seen in the Tn map, whereas the bbp(551) map159

only highlights turbidity changes in moderately turbid waters (e.g., the Saginaw Bay, gray160

dashed cicles). In contrast, the CTI map shows all main features across all water types161

ranging from the clearest to the most turbid.162

Next, we examined the consistency of CTI product derived from VIIRS-SNPP, MODIS-163

Aqua and -Terra by comparing the CTI values derived from the 3 different sensors. For164

brevity we selected one month from each season (spring, summer, and fall) and calcu-165

lated the lakewide average CTI. Figure 3 shows that the agreement among the three sen-166

sors is generally very good particularly for the two MODIS sensors which exhibit almost167

–6–
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Figure 1. VIIRS-SNPP monthly averaged Zsd, bbp(550), and Tn data in the Great Lakes dur-

ing 2012-2019 overlaid with clarity-turbidity indices (denoted by circled numbers). See Table 1

for numerical definitions.
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Table 1. Definitions of clarity-turbidity indices based on satellite-derived Zsd, bbp(550), and

Tn. Blank means the corresponding variable is not used to define a specific index.

Index Water type Zsd[m] bbp(550)[m−1] Turbidity [NTU]

1 Clear-3 20−25

2 Clear-2 15−20

3 Clear-1 10−15

4 Clear-Intermediate 0−10 <0.01

5 Intermediate 0.01−0.1

6 Intermediate-Turbid >0.1 <15

7 Turbid-1 15−30

8 Turbid-2 30−60

9 Turbid-3 60−100

10 Turbid-4 100−200

11 Turbid-5 200−500

12 Turbid-6 >500
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identical results. VIIRS-derived CTI values are systematically larger than the MODIS168

counterparts but they generally follow the same trend. There are a few outliers such as169

Lake Superior in September 2014 and Lake Ontario in September 2015, which are as-170

sociated with significantly different spectral shapes in VIIRS- and MODIS-derived Rrs(λ).171

We did a sensitivity test (not shown) and found that the different spectral shapes are172

associated with different atmospheric correction schemes. Overall, the results suggest that173

for clear and intermediate waters the CTI can be considered independent from sensor,174

algorithm, and data-processing system. For turbid waters the VIIRS- and MODIS-derived175

CTIs can be significantly different owing to the smaller dynamic range exhibited in the176

MODIS 645-nm band.177

Figure 3 also shows that from the whole-lake standpoint, water quality in Lakes178

Michigan and Huron exhibits significant decadal changes. In particular, dramatic CTI179

drop occurred around 2004, consistent with previous studies (e.g. Binding et al., 2015).180

Average CTI in May dropped from >4 in 2002−2003 to ∼3.5 in 2005 for Lakes Michi-181

gan and Huron (Fig. 3D,G). Average CTI in Lake Michigan dropped even more signif-182

icantly in September than in May from >4.5 in 2001 to ∼3.5 in 2005 (Fig. 3F), but the183

same trend did not happen in Lake Huron. Another significant trend is found in July,184

when CTI kept dropping since 2000, reached the minimum in 2012 with a total drop of185

∼0.8, and bounced back by a total of ∼0.7 as of 2019 (Fig. 3E,H). A similar trend was186

also found in Lake Superior in May (Fig. 3A), although the magnitude of variation is187

much smaller. Otherwise, CTI changes in the other three lakes, i.e., Lakes Superior, Erie,188

and Ontario over the past two decades (2000-2019) are mostly associated with interan-189

nual variability. Interestingly, Lake Ontario exhibits both the largest (in September, Fig.190

3O) and the smallest (in July, Fig. 3N) interannual variability.191

To further examine spatial patterns of water quality changes, we obtained quin-192

quennial CTI maps using mean Zsd, bbp(550), and Tn calculated every five years (Fig.193

4). For this analysis we used only MODIS-Terra data which provides the longest time194

record (2000−2019). Note that MODIS-derived Tn tends to be underestimated at higher195

turbidity levels compared with VIIRS. However, this is a minor issue for the purpose of196

this study because very turbid waters only account for a negligible portion of the Great197

Lakes. Figure 4 confirms that the most significant change in CTI occurred in Lake Michi-198

gan and Huron and between the two periods of 2000−2004 and 2005−2009. Most areas199

in Lakes Michigan and Huron underwent a CTI drop by 1, and the biggest drop occurred200

–10–
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Figure 3. Lake-by-lake monthly mean clarity-turbidity index from 2000 to 2019 for May, July,

and September.
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in September in central southern Lake Michigan with a CTI drop by 2, from 5 (inter-201

mediate) to 3 (clear-1) (Fig. 4C,F). After this significant drop in water turbidity, Lake202

Huron and southern Lake Michigan continued to clear up during 2010−2019 whereas CTI203

of northern Lake Michigan stabilized. An intriguing spatial pattern is the decrease in204

CTI at relatively shallow locations in May. For example, the location of the clear wa-205

ters with CTI = 2 in Lakes Michigan and Huron (dark blue in Fig. 4G,J) matches roughly206

with shallow bathymetry contours (not shown). This pattern might be associated with207

higher fraction of the water column cleared per day by invasive dreissenid mussels (Rowe208

et al., 2015), and in particular by quagga mussels in Lake Michigan (Nalepa et al., 2020)209

and Huron (Nalepa et al., 2018). The relationship between CTI and invasive mussels needs210

to be further investigated in future studies.211

4 Summary212

The CTI developed here is a simple approach to make an approximate evaluation213

of water turbidity or clarity for any type of optically deep water body, i.e., as long as the214

water-leaving light is unaffected by reflection off the water bottom. It allows the eval-215

uation of water quality to be ”approximately right”, as opposed to ”precisely wrong” which216

may result from the adoption of a variable that is inappropriate for the waters of inter-217

est. Application of this approach to satellite data essentially generates dynamic water218

quality thematic maps. In this study, we show that this approach allows the depiction219

of spatial gradients and temporal trends of water quality in the Great Lakes, and ma-220

jor turbidity drops in Lake Michigan and Lake Huron around 2004, a timing that matches221

the start of lake-wise infestation of invasive dreissenid mussels. We expect the CTI to222

be a useful tool for many other water bodies around the world, particularly for regions223

where water clarity/turbidity spans a great range, and recommend it to water quality224

managers and policy-makers whose intention is to seek holistic understanding from satel-225

lite data rather than conducting detailed quantitative analyses with them.226
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