IDENTIFYING CANDIDATES FOR FREE-FLOATING ARTIFACTS IN THE SOLAR SYSTEM

Virisha Timmaraju¹ and George Djorgovski²

¹NASA Jet Propulsion Laboratory ²California Institute of Technology

November 22, 2022

Abstract

One approach to a search for the artifacts within the Solar system is to look for the objects (e.g., probes, defunct or active) with anomalous orbits that are significantly different from those of the asteroids. To this effect, we used the data on the orbital parameters of 524,214 asteroids from AstDys-2. Approximately 24% of the asteroids belong to the known families in the orbital parameter space. The unclassified ones are labeled as the 'background', produced mainly by the dynamical scattering in the course of the evolution of the solar system. We apply Machine Learning tools to identify objectively defined outliers in the feature space of orbital parameters. Various techniques can be used for this task, including DBSCAN, which use distance measures, and Isolation Forest, which use decision trees, and many others.

IDENTIFYING CANDIDATES FOR FREE-FLOATING ARTIFACTS IN THE SOLAR SYSTEM

VIRISHA TIMMARAJU, GEORGE DJORGOVSKI

NASA JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY

OBIECTIVE

One approach to a search for the artifacts within the Solar system is to look for the objects (e.g., probes, defunct or active) with anomalous orbits that are significantly different from those of the asteroids.

To this effect, we used the data on the orbital parameters of 524,214 asteroids from AstDys-2. Approximately 24% of the asteroids belong to the known families in the orbital parameter space. The unclassified ones are labeled as the 'background', produced mainly by the dynamical scattering in the course of the evolution of the solar system.

We apply Machine Learning tools to identify objectively defined outliers in the feature space of orbital parameters. Various techniques can be used for this task, including DBSCAN, which use distance measures, and Isolation Forest, which use decision trees, and many others.

DATA AND EXPERIMENT

Based on the asteroid family classification literature, the features selected are; Eccentricity (e), Inclination (i), Semi-Major Axis (a).

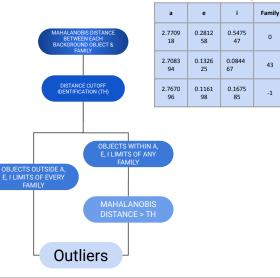
Narrowed down the search to only the main-belt asteroids by applying thresholds on the values of 'a'.

There are two classes of objects: background objects (397834) and asteroid families (106).

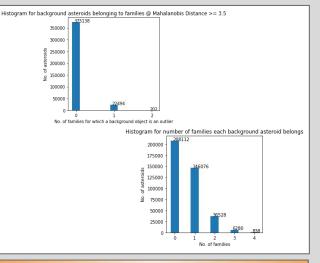
Dataset Snapshot

EXPERIMENT

|N(x)| = .


Border

Noise 😑


inpts = 4 🔘 🔘 Core

000

DATASET

PRELIMINARY RESULTS

FUTURF WORK

Apply DBSCAN and Isolation Forest to narrow down the search by eliminating natural groupings within the outliers detected by Mahalanobis Distances.

ACKNOWLEDGEMENTS

Virisha Timmaraiu was supported by the JPL Researchers on Campus (JROC) program at JPL.

METHODS

UNSUPERVISED ANOMALY DETECTION

Identifying rare or significantly different (from a majority of unlabeled data) objects.

ALGORITHMS

Mahalanobis Distance (M.D)

Distance between a point and a distribution

Parameters: Deciding a cut-off value.

DBSCAN

Density-Based Spatial Clustering of Applications with Noise.

Parameters: Epsilon (eps) & minimum samples (minpts)

Isolation Forest

Isolates anomalies using a collection of decision trees.

Parameters: no. of trees, no. of samples, no. of features, contamination