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Abstract

Observed and projected global changes in the magnitude and frequency of river flows have potential to alter sediment dynamics

in rivers, but the direction of these changes is uncertain. Linking changes in bank erosion and floodplain deposition to hydrology

is necessary to understand how rivers will adjust to changes in hydrologic flow regime induced by increasing societal pressures

and increased variability of climatic conditions. We present analysis based on aerial imagery, an aerial lidar dataset, intensive

field surveys, and spatial analysis to quantify bank erosion, lateral accretion, floodplain overbank deposition, and a floodplain

sediment budget in an 11-km long study segment of the meandering East River, Colorado, USA, over 60 years. Assuming steady

state conditions over the study period, our measurements of erosion and lateral accretion close the sediment budget for a smaller

2-km long intensive study reach. We analyzed channel morphometry and snowmelt-dominated annual hydrologic indices in this

mountainous system to identify factors influencing erosion and deposition in nine study sub-reaches. Results indicate channel

sinuosity is an important predictor for both lateral erosion and accretion. Examination of only hydrologic indices across the

study segment regardless of sub-reach morphology, indicate that the duration of flow exceeding baseflow and the slope of the

annual recession limb explain 59% and 91% of the variability in lateral accretion and erosion, respectively. This work provides

insight into hydrologic indices likely to influence erosion and sedimentation of rivers and reservoirs under a shifting climate and

hydrologic flow regimes in snowmelt-dominated systems.
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Key Points: 16 

• Floodplain erosion and accretion estimated over 60 years using aerial lidar, 17 

repeat aerial imagery, field surveys, and historic flow data  18 

• Hydrograph recession and duration of floodplain inundation explain 91% and 19 

59% of the variability in bank erosion and lateral accretion 20 

• Results can inform potential response to shifting climatic conditions and 21 

hydrologic regimes of snowmelt-dominated rivers 22 
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Abstract 30 

 Observed and projected global changes in the magnitude and frequency of river 31 

flows have potential to alter sediment dynamics in rivers, but the direction of these 32 

changes is uncertain. Linking changes in bank erosion and floodplain deposition to 33 

hydrology is necessary to understand how rivers will adjust to changes in hydrologic flow 34 

regime induced by increasing societal pressures and increased variability of climatic 35 

conditions. We present analysis based on aerial imagery, an aerial lidar dataset, intensive 36 

field surveys, and spatial analysis to quantify bank erosion, lateral accretion, floodplain 37 

overbank deposition, and a floodplain sediment budget in an 11-km long study segment 38 

of the meandering East River, Colorado, USA, over 60 years. Assuming steady state 39 

conditions over the study period, our measurements of erosion and lateral accretion close 40 

the sediment budget for a smaller 2-km long intensive study reach. We analyzed channel 41 

morphometry and snowmelt-dominated annual hydrologic indices in this mountainous 42 

system to identify factors influencing erosion and deposition in nine study sub-reaches. 43 

Results indicate channel sinuosity is an important predictor for both lateral erosion and 44 

accretion. Examination of only hydrologic indices across the study segment regardless of 45 

sub-reach morphology, indicate that the duration of flow exceeding baseflow and the 46 

slope of the annual recession limb explain 59% and 91% of the variability in lateral accretion 47 

and erosion, respectively. This work provides insight into hydrologic indices likely to 48 

influence erosion and sedimentation of rivers and reservoirs under a shifting climate and 49 

hydrologic flow regimes in snowmelt-dominated systems.  50 

 51 

 52 



Plain Language Summary 53 

  Changing climatic conditions are poised to alter the timing and magnitude of 54 

precipitation, snowpack, snowmelt and the balance of water and sediment within river 55 

corridors. Understanding how these changes affect the stability of land along rivers is 56 

important for securing infrastructure, maintaining healthy ecosystems, preserving water 57 

quality, and understanding the fate and transport of contaminated sediment. This 58 

research uses aerial imagery, laser topographic scanning technology, field 59 

measurements of water and soil, and historical river flow data to examine linkages 60 

between river flows and erosion and deposition of sediment along the floodplain of a 61 

mountain over 60 years. Results show that river bank erosion is linked to the rate at 62 

which the river flows decrease following snowmelt-driven peaks and that the amount of 63 

sediment that is deposited along the river banks is linked to the duration of flooding;  64 

both are influenced by channel sinuosity. These results have important implications for 65 

understanding how rivers and freshwater resources may be impacted by shifting climatic 66 

conditions and hydrologic regimes.  67 

1 Introduction 68 

A large number of studies have quantified long-term channel migration and 69 

episodic bank erosion, but these approaches do not fully examine the link between 70 

changes in river flows and the timing of river bank erosion, particularly in snowmelt-71 

dominated systems. Rapid changes in river flows likely strongly influence river bank 72 

stability and erosion on seasonal scales (Wolman, 1959; Simon et al., 2002). Annual 73 

hydrologic trends including the magnitude, frequency, timing, duration, and rate of 74 

change in discharge are important aspects of river flow regimes that influence aquatic 75 

and riparian habitat (Poff et al., 1997) and sediment dynamics including erosion and 76 

deposition along floodplains (Wohl et al., 2015). More specific investigation of hydrologic 77 



flow regimes have been examined using various hydrologic indices to provide insight 78 

into riverine ecosystems (Richter et al., 1996) and germination of riparian vegetation 79 

(Benjankar et al., 2014; Caponi et al., 2019). These changes that characterize annual 80 

hydrologic flow regimes across all climatic zones can include very rapid changes in 81 

discharge, such as those in flashy rainfall dominated systems. Alteration of natural flow 82 

regimes induced by dams and flow regulation – common in snowmelt dominated 83 

systems – can mimic these rapid changes and greatly alter sediment regimes and 84 

riverine habitat (Richter et al., 1996; Poff et al., 1997; Lenhart et al., 2013). 85 

While understanding the mechanisms and timing of bank erosion is fundamental 86 

to landscape evolution and risk to infrastructure, it is also crucial for nutrient and carbon 87 

dynamics and potential impact to water resources. The rate at which banks erode and 88 

rivers migrate substantially influence nutrient and carbon dynamics (Sekely et al., 2002; 89 

Sutfin et al., 2016), ecosystem habitat (Naiman et al., 2010), and the fate and transport 90 

of contaminants bound to floodplain sediment (Macklin et al., 2006; Rhoades et al., 91 

2009). Changes in erosion and deposition along floodplains can greatly alter carbon 92 

storage along floodplains (Noe & Hupp, 2005; Hoffmann et al., 2009; Omengo et al., 93 

2018; Scott & Wohl, 2018; Lininger et al., 2019), which is substantially higher within 94 

snowmelt-dominated mountainous headwater systems (Wohl et al., 2012; Sutfin et al., 95 

2016; Sutfin & Wohl, 2017). Contaminants adsorbed to mineral facies and organic 96 

matter in floodplain and bank sediment of mountain streams, such as the heavy metals 97 

from the mining spill along the Animas River in Colorado, USA, (Rodriguez-Freire et al., 98 

2016), are susceptible to erosion and pose a risk for downstream water quality and 99 

ecosystems. The research presented here is motivated by our efforts to quantify carbon 100 

storage and dynamics in a mountainous region along the floodplain of the East River 101 

near Crested Butte, Colorado, USA. The general goals of this research were to quantify 102 



erosion and deposition along the East River and to link these observations to past 103 

hydrologic conditions. 104 

Many researchers have used remotely sensed imagery to examine bank erosion 105 

and lateral accretion over years to decades (James E. Pizzuto, 1994; Micheli & Kirchner, 106 

2002a, 2002b; S. S. Day et al., 2013b, 2013a; Lenhart et al., 2013; Rowland et al., 2016; 107 

Schook et al., 2017; Schwenk et al., 2017; Caponi et al., 2019). Using these data as a 108 

basis for understanding river migration rates, modeling efforts seek to understand the 109 

physically-based drivers of channel migration over long time scales (i.e., 102 to 105 110 

years) (Howard, 1996; Güneralp & Rhoads, 2009; G. Parker et al., 2011; Bogoni et al., 111 

2017), or use near-bank velocities to estimate bank erosion over shorter time scales 112 

(Darby et al., 2007; Gary Parker et al., 1982; J. E. Pizzuto & Meckelnburg, 1989).  113 

Physically based models of bank erosion provide understanding of cantilever 114 

failures, slip or rotational failures, and planar shear resulting from undercutting, positive 115 

pore pressure, and excess bank shear stress, respectively (Thorne & Tovey, 1981; 116 

Simon et al., 2000; Langendoen & Simon, 2008; Langendoen & Alonso, 2008). Available 117 

models tend to use bankfull flow conditions to model bank erosion (Langendoen & 118 

Alonso, 2008) and past work indicates that more erosion is likely to occur at high flow 119 

conditions. However, changes in flow have also been identified as potential drivers for 120 

bank failure because positive pore pressure of saturated banks combined with the loss 121 

of supporting pressure when stage declines make slip and rotational bank failures likely 122 

(Rinaldi & Casagli, 1999). Thus, additional hydrologic indices such as the rate of change 123 

offer the potential to provide a more robust understanding of the hydrologic drivers of 124 

bank erosion. 125 

Effectively linking floodplain erosion and accretion to hydrology requires the 126 

assumption of minimal changes in sediment supply and are simplified by the assumption 127 



of steady state and a balanced sediment budget over the time period examined. 128 

Sediment budgets at the watershed scale must consider the production of sediment from 129 

weathering and erosion, elements of storage within the basin, sediment transport 130 

processes, and the resulting sediment yield (Dietrich et al., 1982; Gellis & Walling, 131 

2013). Sediment budgets for only floodplains, however, may be simplified needing only 132 

to account for the time averaged balance of erosion and deposition along the floodplain 133 

alone (Reid & Dunne, 2016). Examples of floodplain sediment accounting includes those 134 

in the southwestern United States by Gellis et al. (2012) and in the Le Sueur watershed 135 

in Minnesota, USA, by Belmont et al., (2011) and Day et al., (2013). Here, we use a 136 

floodplain sediment budget to constrain estimates of floodplain erosion and 137 

sedimentation along a subalpine meandering river using a combination of field 138 

observations, remotely sensed imagery and lidar, and GIS spatial analysis.  139 

We studied the connections between hydrology and sediment flux of the East 140 

River floodplain, using (1) repeat aerial imagery to quantify lateral erosion and accretion 141 

over a 60-year period, (2) measurement of floodplain fine sediment depth, (3) an aerial 142 

lidar digital elevation model (DEM) and (4) empirical relationships with characteristics of 143 

the flow regime to identify hydrologic drivers of river bank erosion and lateral accretion. 144 

From this work, we developed an empirical relationship between hydrology and 145 

sediment fluxes on decadal time scales to address the primary goal to determine what 146 

morphometric variables (e.g., sinuosity, channel slope, width) and hydrologic indices 147 

(e.g., peak magnitude, timing of peak, slope of the recession limb) best explain observed 148 

floodplain erosion and accretion on the snowmelt-dominated East River. We also 149 

calculated a sediment budget to verify our accounting of eroded and accreted floodplain 150 

sediment and used the results to examine a practical and cost-effective way to estimate 151 



hydrologic influence on floodplain erosion and accretion that does not require the 152 

intensive fieldwork and lidar analysis employed in this study.  153 

    154 

2 Study Area 155 

We studied an 11-km long segment of the East River approximately 3.5 km down 156 

valley from Gothic, CO, (Figure 1) near Crested Butte. At the downstream end of the 157 

study segment, the East River drains approximately 134 km2 and has an annual average 158 

precipitation of 64 cm (SNOTEL, 2017). The floodplain lies directly downstream of steep, 159 

confined, mountainous tributaries that incise through sandstones, mudstones, shales, 160 

granodiorite and metamorphosed byproducts of the uplifted White Rock pluton in the Elk 161 

Mountains of Colorado (Gaskill et al., 1991). Within the floodplain reach, the East River 162 

is a gravel-cobble bed, sinuous alluvial river approximately 20-m wide on average and 163 

bounded by lateral Pinedale glacial moraines, landslide deposits, and outcrops of 164 

Mancos Shale along the bed and valley walls. Sedges, grasses, and willows dominate 165 

the vegetation along the floodplain with isolated trees, dominantly blue spruce, scattered 166 

along the reach, but rarely located along the river banks. Throughout the floodplain, 167 

extensive beaver activity results in dams, lodges and the introduction of large wood from 168 

the surrounding hillslopes. Floodplain fine overbank sediment is dominated by silt-size 169 

particles with varying proportions of sand, clay, and minimal gravel content (Malenda et 170 

al., 2019). Beneath fine sediment, the floodplain is composed of gravel and cobbles, and 171 

contains lenses of finer, sorted material. Erosion of underlying gravels and undercutting 172 

of fine overbank sediment commonly result in cantilever failure of grass-covered blocks 173 

along the East River 11-km long study segment (Figure 1D, S1).  174 

The East River is a typical snowmelt-dominated system, which is characterized 175 

by a gradual rising limb as temperatures warm and snow melts in the spring months of 176 



April and May. An annual peak flow commonly occurs in the latter half of May or early 177 

half of June after peak snowmelt, followed by a gradual recession limb that takes place 178 

over weeks to months at which discharge returns to some baseflow condition sometime 179 

between September and November.  180 

181 
Figure 1. Map of study area on the East River near Crested Butte, Colorado, USA. The 182 
floodplain was delineated by “flooding” a 0.5-m resolution lidar digital elevation model 183 
along the 11-km long study segment, which was divided into 9 study reaches (A) based 184 
on changes in valley slope. The depth of fine sediment was measured across the 185 
floodplain at 1847 points and interpolated across the upper 2 km, intensive study reach 186 



(B) consisting of reach 1 and approximately half of reach 2, ending at the downstream 187 
extent of the black box in (A). Masks of the river channel, depicted in various colors, 188 
were derived for all seven time periods (C), and used to determine lateral accretion and 189 
erosion, typically occurring as cantilever failures in the study area (D). Shades of blue 190 
indicate relative depth of water across the delineated floodplain in A and C.  191 

Limited land-use impacts have influenced the watershed upstream of the 11-km 192 

long study segment of the East River. From 1880 to 1890, a silver mine operated along 193 

Copper Creek upstream of Gothic, CO, the present location of the Rocky Mountain 194 

Biological Laboratory. The mining area is now designated as US Forest Service (USFS) 195 

national forest and wilderness area. Land use along the 11-km long study segment 196 

consists of small privately owned parcels and U.S. Forest Service (USFS) land, on which 197 

ranchers graze cattle for limited portions of the year (Theobald et al., 1996). Limited 198 

property access restricted our field investigations to the upper 2 km, intensive study 199 

reach (Figure 1A; Reach 1 and half of reach 2). Although flow diversions exist within the 200 

11-km long study segment, they were present prior to beginning of the study period in 201 

1955 and they primarily capture runoff from tributaries before they reach the East River.  202 

 203 

3 Materials and Methods 204 

 Spatial analysis of aerial lidar, repeat aerial imagery, surface water flow 205 

measurements and historical hydrologic flow analysis, measurements of floodplain fine 206 

sediment depth, and multiple linear regression were used to examine linkages between 207 

hydrology and bank erosion, accretion, and channel migration rates over 60 years. 208 

3.1 Terrain Analysis and Study Reach Delineation 209 

Aerial lidar was collected in August of 2015 for the entire East River watershed. 210 

Average bare-ground point cloud density of lidar was 4.29 points/m2 resulting in a total 211 

accuracy with root mean squared error of 0.05 m at the 95% confidence level. A hydro-212 

flattened, bare-ground DEM with a horizontal resolution of 0.5 m derived from the lidar 213 



point cloud data was used for all topographic analysis. Using the valley slope, we divided 214 

the ~11-km long floodplain segment into nine study reaches. We calculated the valley 215 

slope using a best-fit line of elevation points extracted from the 2015 DEM and spaced 216 

every 10 meters down the valley center. We detrended the slope of the 9 sub-reaches 217 

using the raster calculator in QGIS and recombined them to generate a floodplain DEM 218 

with zero down-valley slope and a maximum total relief of 5.44 m. We artificially 219 

entrenched the flat lidar water surface by 2 meters and used the r.fill.dir Grass tool in 220 

QGIS to flood the detrended DEM at a depth of six meters to delineate the approximate 221 

extent of the floodplain. We verified the digitally delineated floodplain extent with field 222 

observations of distinct breaks in slope, such as the base of lateral moraines, toes of 223 

alluvial fans, and abutments to incised bedrock outcrops.  224 

3.2 Channel Position and Movement using Aerial Imagery 225 

 We used aerial images from seven dates (i.e., 1955, 1973, 1983, 1990, 2001, 226 

2012, 2015) obtained from the US Geological Survey, US Department of Agriculture, 227 

and the US Forest Service to delineate the channel, measure channel widths, sinuosity, 228 

and lateral erosion and accretion over time. All imagery was resampled to 1-m resolution 229 

to allow direct comparison between images. We georeferenced the 2015 imagery using 230 

the 2015 lidar DEM dataset as a reference using >6 control points including the corners 231 

of buildings, intersections of roads and fences, and the base of mature trees. All other 232 

images were georeferenced (if not already done so by the source agency) through 233 

comparison with similar point types in the 2015 georeferenced image. 234 

To analyze channel characteristics and compare changes over time, we 235 

generated binary channel masks for each set of aerial imagery. For color imagery 236 

between 1973 and 2015, we generated masks of bankfull river extent using red-green-237 

blue (RGB) color bands and the normalized difference water index (NDWI) to classify the 238 



channel water surface in each image (Figure 1C; McFeeters, 1996) using the object-239 

oriented classification software, eCognition. To control for variations in water levels 240 

between images, regions of tan and grey gravel and sand bars devoid of vegetation and 241 

exposed, un-vegetated bank faces were included in the channel mask as an estimate of 242 

bankfull extent (Gurnell, 1997; Richard et al., 2005; Mount & Louis, 2005; Fisher et al., 243 

2013; Rowland et al., 2016; Donovan et al., 2019). The black and white 1955 USDA 244 

photos required manual delineation of the channel mask. 245 

Metrics calculated to quantify the channel and floodplain attributes for the nine 246 

valley reaches and entire 11-km long study segment included: valley, floodplain, and 247 

channel areas; valley and channel lengths; elevation change along the reach; valley and 248 

channel slopes; sinuosity; average channel width; and valley confinement. The channel 249 

area relative to the area of delineated valley floor defined valley confinement as a proxy 250 

for potential of the floodplain to accommodate channel migration, dissipate energy 251 

during overbank flow, and facilitate overbank deposition. Channel sinuosity measures 252 

the channel length divided by the straight down-valley length. Channel slope was 253 

calculated as the valley slope divided by channel sinuosity. Channel width, linear 254 

erosion, and accretion rates were  determined for each bank pixel using the Spatially 255 

Continuous Riverbank Erosion and Accretion Measurements algorithm (SCREAM; 256 

Rowland et al., 2016).   257 

Linear rates represent the distance that a river bank face moves in a given time 258 

interval by measuring the Euclidean distance between a bank pixel in one river mask 259 

and the closest bank pixel at the subsequent river mask. Eroded and accreted floodplain 260 

areas derived from SCREAM were divided by the number of years within that time 261 

period and the channel length to estimate linear rates of erosion and accretion. Three 262 

sources of error are associated with our measurements of linear change: image 263 



registration, image classification and the accuracy of SCREAM output (Rowland et al., 264 

2016). Average estimated registration error for the 1-m imagery from 1973 to 2015 was 265 

0.58 m. Poor image quality of the 1955 photographs prevented direct estimates of error 266 

using this method, so we have assigned a registration error equal to two times the 267 

highest error (1.2 m) in areas for the period between 1955-1973. Errors associated with 268 

area-based erosion and accretion measurements as a result of image mis-registration 269 

for each time period were assigned as percentage of change in areas following the 270 

methodology detailed in Rowland et al. (2016). Total measurement errors were 271 

estimated by combining registration, classification, and methodological errors in 272 

quadrature (Rowland et al. 2016)) (Table S1).  273 

3.3 Vertical Accretion Rates 274 

We estimated long-term vertical accretion rates using a combination of field-275 

based measurements of fine-grained deposit thickness and changes in channel position 276 

from aerial imagery between 1973 and 2015. Images from 1955 were excluded from this 277 

analysis because of the uncertainty associated with the poor-quality images. In 2016, 278 

along the upper 2 km, intensive study reach (Figure 1A, reach 1 and half of reach 2), we 279 

measured thickness of fine-grained deposits at 324 locations on 21 transects by 280 

inserting a soil probe into the floodplain surface until refusal at bedrock or gravel-size 281 

material (>2mm). Mean migration rate was estimated from SCREAM output and the 282 

distance to each transect point from the channel was converted into duration since 283 

channel occupation by dividing by the bend averaged migration rate (Figure S2). More 284 

detailed analysis to examine vertical accretion rates in conjunction with the channel 285 

migration rate over each time period was conducted and outlined in the supplemental 286 

information (Figure S2), but suspected point bar erosion did not produce robust results 287 

that support continuous vertical accretion for each time period. Instead, we used the total 288 



depth to represent an average deposition rate over the time period examined. The 289 

measured depth of fine sediment (di) was then divided by the duration since occupation 290 

by the river channel (ti, when fine sediment depth would have been equal to zero) to 291 

estimate a mean vertical accretion rate (ai; Equation 1).  292 

   𝑎𝑖 =
𝑑𝑖

𝑡𝑖
    (1) 293 

Potential predictors of floodplain vertical accretion rates, across the upper 2 km, 294 

intensive study reach were assessed through stepwise multiple linear regression. 295 

Variables examined for this analysis were similar to those described above, with the 296 

following additions. Distance from the channel was measured in the field. Relative 297 

elevation from the bankfull stage at the transect was extracted from the lidar at the top of 298 

point bars were bar sand/gravel transitioned into vegetation cover. Along each transect, 299 

channel width, valley width, and the ratio between the two (valley confinement) were 300 

measured from the imagery in GIS. Localized valley slope, channel slope, and sinuosity 301 

were measured using GIS extending approximately 50 m upstream to 50 m downstream 302 

of the transect. Mean values of radius of curvature, lateral accretion rate, and erosion 303 

rate were calculated along each meander bend. Measurements were denoted as either 304 

being on the inside or outside of a bend. The angle of each transect was used as a 305 

proxy for the angle of each river bend relative to the down valley direction from 0-90º. 306 

3.4 Estimating floodplain sediment volumes 307 

Areas of accretion and deposition from the SCREAM analysis were converted to 308 

sediment volumes using measured sediment depths. In our analysis, we only estimate 309 

volumes of fine grained (less ~ 2mm in grain diameter) sediments deposited on top of 310 

the gravel-rich channel and point bar deposits. In addition to the soil probe 311 

measurements collected on point bar transects (Section 3.3), 1,587 measurements were 312 



made along the upper 2 km intensive study reach (Figure 1A, Reaches 1 and 2; Sutfin & 313 

Rowland, 2019). We subtracted these depth measurements from the DEM elevations 314 

using the raster calculator in QGIS to calculate an absolute elevation of underlying 315 

gravel/bedrock. We then generated a triangular irregular network (TIN) of the 316 

gravel/bedrock surface elevation using the interpolate tool in QGIS. By subtracting 317 

elevations of this interpolated surface from the ground surface elevations, we created a 318 

spatially continuous isopach map of fine-grained floodplain sediment.  319 

This interpolated fine-sediment map represents conditions in 2015. At the 320 

location of the current channel the fine sediment has values of zero, as such, areas of 321 

historical floodplain erosion that intersected the 2015 channel did not have accurate 322 

values of the floodplain volume eroded. To correct for this error we interpolated 2015 323 

fine-sediment thickness across the channel using a 3 m buffer that extended beyond the 324 

locally thin deposits covering active point bars. We used the close gap Saga tool in 325 

QGIS (threshold = 0.1) to create the corrected isopach map. We calculated eroded 326 

volumes by multiplying the areas of eroded regions derived from the aerial imagery for 327 

each time interval by the interpolated isopach map of fine sediment within those mapped 328 

areas. 329 

Using the estimated vertical accretion rates from our soil probe transects we 330 

estimated an average deposition rate for laterally accreted regions along the channel 331 

and developed a multiple linear regression model to estimate overbank deposition on the 332 

stable floodplain surface in response to floods. For the laterally accreted areas, we used 333 

the average migration rates at the bends determined using the probe transects 334 

described above in section 3.3 to determine the portion of contemporary floodplain that 335 

would have been formed by lateral accretion during the 42 years between 1973 and 336 

2015. A reach-based average migration rate and resulting mean migration distance 337 



along the probe transects were used to estimate an average vertical accretion rate from 338 

all points within the mean migration distance for the entire period between 1973-2015 339 

(Table S2). This average rate was multiplied by the mapped accretion areas from the 340 

aerial photos and SCREAM output to provide a volume of laterally accreted sediments. 341 

Overbank deposition rates beyond 10 m were calculated for each cell utilizing 342 

another multiple linear regression model including only the two strongest predictor 343 

variables, distance from the channel and relative elevation from the channel (Figure S3). 344 

The proximity grid Saga tool in QGIS was used to create a grid based on distance from 345 

the channel for images from the six years. Floodplain elevation relative to the channel 346 

was calculated by subtracting the minimum elevation from the detrended 2015 DEM 347 

floodplain surface (derivation described above in section 3.1). This assigned a relative 348 

elevation to every raster pixel. The river channel buffered by three meters on both sides 349 

was subtracted from the relative elevation grid and the close gap tool in QGIS was used 350 

to interpolate elevations across the channel.  351 

The distance-from-channel raster and the detrended-valley DEM were used as 352 

input to the vertical accretion rate regression model equation in the raster calculator to 353 

generate raster grids of estimated overbank deposition rates for all six time periods. 354 

Overbank sediment deposition estimates of volume were made by multiplying calculated 355 

rates by the number of years in the respective time interval, summing all pixel values for 356 

each period, and multiply that value by the area of each pixel (0.25 m2). Vertical 357 

accretion within abandoned channels was estimated using the lateral accretion rate of 358 

3.3 cm y-1 within the first 10 m from the channel for periods following cutoff occurrence. 359 

Aggradation of previously abandoned channels was based on the relative vertical and 360 

horizontal distance from the active bankfull channel at distances exceeding 10 m. Rates 361 



of volume of sediment accreted and eroded during each time period were estimated by 362 

dividing the total volume of sediment by the number of years in each time period. 363 

3.5 Streamflow Data and Hydrologic Analysis  364 

Streamflow was measured 22 times near the Crested Butte city water pump 365 

house in the upper 2 km, intensive study reach, from October, 1st, 2014, to September, 366 

30th, 2017, and a stage-discharge rating curve was created against stage data recorded 367 

every 15 minutes (r2 = 0.99) (Carroll & Williams, 2019). To extend the flow record prior to 368 

2014, we regressed measured discharge at the 2-km intensive study reach against data 369 

from the US Geological Survey stream gage on the East River at Almont (gage # 370 

09112500) 40 km downstream (r2 = 0.97; Figure 3A). Using this regression, we 371 

generated a synthetic hydrograph for the study site from 1934-2018 using the Almont 372 

streamflow data (Table S3). A comparison of the synthetic hydrograph and flows 373 

measured between 2014 and 2018 showed a strong agreement with a Nash-Sutcliffe 374 

Efficiency coefficient (NSE) of 0.97 (Figure 3B). Flow frequency analysis was conducted 375 

on the entire synthetic hydrograph to determine annual statistics for the continuous 82 376 

years. Analysis of possible hydrological drivers for erosion and deposition examined the 377 

synthetic hydrograph from 1955 to 2015 to correspond with the aerial imagery analysis.  378 

We used R software (R Core Team, 2017) to extract synthetic hydrograph 379 

characteristic between 1955 and 2015. An average minimum flow value of 0.49 m3 s‐1  380 

during the low-flow months of October, November, December, January, February, and 381 

March were used as a reference baseflow condition. Bankfull flow was estimated as 8 382 

m3 s‐1 based on field observations and hydrologic analysis indicates an approximate 383 

recurrence interval of 1.2 years. The mean value for the day of the year on which peak 384 

flow occurred, the last day exceeding bankfull flow conditions, and the last day 385 

exceeding baseflow conditions were calculated for each time period. The maximum and 386 



mean values within each time period were calculated for annual hydrograph peak 387 

magnitude, peak timing, annual volume of discharge, the annual volume of water above 388 

bankfull flow, duration between the first and last day of flow exceeding baseflow, the 389 

number of days on which baseflow occurred, the annual volume of discharge exceeding 390 

bankfull, duration between the first and last day of flow exceeding bankfull flow, the 391 

number of days on which bankfull flow occurred, and the cumulative number of days 392 

since the last bankfull flow, the total recession limb slope from the annual maximum 393 

peak to baseflow, the bankfull recession limb slope from bankfull stage to baseflow, and 394 

the number of peaks above bankfull flow. Recession slopes were estimated as the slope 395 

of the line between peak discharge and the first occurrence of baseflow conditions.  396 

A secondary analysis was conducted to examine diel fluctuations in discharge 397 

associated with the slope of the recession limb of each annual hydrograph. A regression 398 

analysis of 15-minute streamflow data from the same USGS gauge and measured flow 399 

at the study site from 2015-2019 yielded an r2 = 0.94. This regression was used to 400 

extend the study site discharge data to span the duration of the 15-minute data from 401 

1988-2019. Maximum and minimum daily values were determined using hourly data and 402 

the number and magnitude of diel fluctuations exceeding 6 m3s-1  within a window of 5 to 403 

10 m3s-1 were summed. Correlations were examined between the recession limb slope 404 

and the number, the summed magnitude, and the average magnitude of diel fluctuations 405 

to occur within the defined recession window. 406 

3.6 Statistical Analyses 407 

The number of potential variables for all multivariate regression models used to identify 408 

significant predictors was reduced to minimize collinearity of predictor variables prior to 409 

multiple linear regression. Starting with the most strongly correlated variable and working 410 

sequentially through variables with decreasing correlation values, variables were 411 



eliminated as potential predictors for the regression model if they were moderately cross 412 

correlated (r > 0.7) with another more strongly correlated variable (Dormann et al., 2013) 413 

already selected as a predictor.  Stepwise multiple linear regression was conducted 414 

using the stats package lm function in R statistical software to examine possible 415 

predictor variables and determine the best regression model for: (1) the area of accreted 416 

and (2) the area of eroded floodplain along nine study reaches, and (3) vertical 417 

floodplain deposition rate estimated from measurements of floodplain fine sediment 418 

depth along the upper 2 km, intensive study reach over the 6 time periods. Multiple 419 

linear regression assumptions of normality and homoscedasticity of model residuals 420 

were met with power transformations and verified using the Shapiro-Wilk normality test 421 

(shapiro.test function) and the non-constant error variance test in R (ncv.test function), 422 

for which details are provided in supporting material. Variables were included in stepwise 423 

multiple linear regression to identify the best regression model based on minimizing the 424 

Akaike Information Criteria (AIC). 425 

4. Results  426 

4.1 Channel and floodplain metrics 427 

The floodplain delineation of the entire 11-km long study segment resulted in a valley 428 

bottom area of 2.65 km2 with a total valley length of 10.62 km and a total valley slope of 429 

0.64%. Despite the occurrence of 21 channel chute cutoffs in the 60-year time period, 430 

channel slope and the sinuosity for the entire river segment remained relatively constant 431 

during the six periods examined. Channel slope along the entire 11-km long study 432 

segment varied from 0.34 to 0.36% over the 60-year time period. Sinuosity fluctuated 433 

about a mean value of 1.81  0.04 m/m (SD) with a minimum and maximum of 1.77 to 434 

1.89 (Table 1).  435 



Table 1. Morphological characteristics of the entire East River study segment derived from remotely sensed imagery and lidar for 436 
each time period. Channel width was calculated as a mean of channel width pixel values from SCREAM and standard deviations of 437 
those averages are provided following each mean. 438 

Year 
Floodplain 
area (km2) 

Channel 
Area (km2) 

Channel 
Length (km) 

Sinuosity 
(m/m) 

Channel 
slope (%) 

Confinement 
(m2/m2) 

Mean channel 
width (m) 

1955 2193.6 459.0 20.08 1.89 0.339 0.17 25 ± 2 

1973 2254.0 398.7 19.29 1.82 0.353 0.15 20 ± 2 

1983 2222.3 430.3 18.80 1.77 0.362 0.16 23 ± 3 

1990 2295.4 357.3 18.90 1.78 0.361 0.13 19 ± 3 

2001 2275.4 377.3 19.39 1.83 0.352 0.14 21 ± 3 

2011 2296.2 356.5 18.81 1.77 0.362 0.13 19 ± 1 

2015 2312.2 340.4 18.98 1.79 0.359 0.13 17 ± 1 

 439 

Table 2. Morphological characteristics of nine study reaches derived from remotely sensed imagery and lidar. Values are averaged 440 
from the seven images spanning 60 years and standard deviations of those averages are provided following each mean. 441 

Reach 

Valley 
area 
(m2) 

Valley 
Length 

(m) 

Valley 
slope 
(%) 

Floodplain 
area (m2) 

Channel Area 
(m2) 

Channel 
Length (m) Sinuosity (m/m) 

Channel slope 
(%) 

Confinement 
(m2/m2) 

Channel 
width (m) 

1 344236 1471 0.94 294462 49774 ± 6292 2860 ± 130 1.94 ± 0.09 0.48 ± 0.02 0.14 ± 0.02 18 ± 3 

2 489119 2126 0.74 405784 83334 ± 6234 4735 ± 143 2.23 ± 0.07 0.33 ± 0.01 0.17 ± 0.01 18 ± 2 

3 232658 910 0.55 199873 32785 ± 6046 1740 ± 99 1.91 ± 0.11 0.29 ± 0.02 0.14 ± 0.03 19 ± 3 

4 93445 595 0.86 76134 17311 ± 1495 903 ± 60 1.52 ± 0.10 0.57 ± 0.04 0.19 ± 0.02 20 ± 2 

5 330488 1142 0.68 283494 46994 ± 5334 2419 ± 170 2.12 ± 0.15 0.32 ± 0.02 0.14 ± 0.02 20 ± 2 

6 378666 924 0.56 344169 34497 ±4194 1448 ± 248 1.57 ± 0.27 0.37 ± 0.06 0.09 ± 0.01 22 ± 3 

7 302210 855 0.33 271371 30839 ± 6166 1490 ± 116 1.74 ± 0.14 0.19 ± 0.02 0.10 ± 0.02 21 ± 3 

8 126101 1175 0.54 89108 36992 ± 2469 1583 ± 26 1.35 ± 0.02 0.40 ± 0.01 0.29 ± 0.02 23 ± 3 

9 355743 1420 0.46 299779 55965 ± 8114 2001 ± 53 1.41 ± 0.04 0.33 ± 0.01 0.16 ± 0.02 23 ± 4 

 442 



Valley slope ranged from 0.33% to 0.94% along each of the 9 delineated study reaches 443 

with a mean of 0.36  0.19% (SD; Table 2). Mean valley confinement for the time period was 444 

0.16  0.02 m2/m2 (mean  SD). Study reach 8 is the most confined reach (Cv = 0.29  0.02) and 445 

is located toward the downstream end of the 11-km long study segment where the tributary 446 

alluvial fan from Brush Creek constricts the East River valley. Reach sinuosity (P) averaged 447 

over the time period is also lowest in study reach 8 at 1.35 ± 0.02 m/m (Figure 2). The highest 448 

reach mean sinuosity (P = 2.23 ± 0.07) occurred in reach 2, which is moderately confined (Cv = 449 

0.17  0.01) (Table 2).   450 

Averaged over all time periods, channel width generally increased from upstream 451 

reaches to downstream reaches (Table 2). Although the channel mean width fluctuated with 452 

intervals of widening followed by narrowing, there was a net overall decrease over the 60-year 453 

time period. The average channel width for the entire 11-km long study segment decreased 454 

from a high of 25 ± 2 m in 1955 to a minimum of 17 ± 1 m in 2015. The greatest width reduction 455 

(~5 m) occurred between 1955 and 1973, but a substantial decreased of >4 m also occurred 456 

during two time periods between 2001 and 2015.  457 

4.2 Channel Migration and Floodplain Area 458 

 The net balance between total area of eroded and accreted floodplain by the East River 459 

varied over the six time periods, with estimated accretion greater than erosion in four out of six 460 

time periods (Table 3). Over the entire 60-year period accretion exceeded erosion by 120,036 ± 461 

43,973 m2, equal to 5.3% of the total area of the valley bottom. This accretion total includes the 462 

area of 21 abandoned channels arising from meander bend cutoffs. The highest rate of change 463 

in floodplain sediment balance occurred from 1983-1990 with a mean accretion rate outpacing 464 

erosion by a factor of four (Table 3; Figure 2). There was an observed decrease in channel 465 

width during this period, followed by a period dominated by erosion and channel widening. The 466 



period between 1973 and 1983 was dominated by the largest erosion rates observed in this 467 

study, and was accompanied by an observed increase in channel width (Table 1, 3; Figure 2A).  468 

 469 

Figure 2 Bar plots of estimated accretion, erosion, and net difference (accretion minus erosion) 470 
in linear rates along the entire 11-km long study segment (A) and volume of floodplain fine 471 
sediment along the upper 2 km, intensive study reach (B) during each time period examined 472 
over the 60 year study period.  473 

 474 

 475 



Table 3. Area accreted and eroded across the entire 11-km long study segment and hydrologic  476 
flow indices on the East River during the six time periods of the study.   477 

 478 

4.3  Floodplain Vertical Accretion 479 



 Measured total depths of floodplain fine sediment above gravel and bedrock across the 480 

floodplain ranged from 0 to 141 cm with a mean value of 41 ± 25 cm (Table S2). A reach-based 481 

average migration rate of 0.24±0.05 m y-1 resulted in a mean migration distance of ~10.0±2.1 m 482 

along the probe transects for the entire period between 1973-2015 (Table S2). Error presented 483 

in the values above were propagated from the mean standard deviation of the estimated mean 484 

migration rates derived from the SCREAM analysis. Using our estimated vertical accretion rates 485 

at each point, we estimated an average vertical accretion rate of 3.3±0.3 cm y-1 among all points 486 

within the closest 10 m from the channel. The best performing multiple linear regression model 487 

explains ~60% of the variability in vertical accretion rates (r2=0.60, p<0.001) using distance from 488 

the channel, relative elevation from the channel, valley confinement, local channel slope (all with 489 

p<0.001), and whether the survey point was on the inside of a bend (p=0.023; Table S4). A cell-490 

by-cell multiple linear regression model of estimates of vertical accretion rates (rva) across the 491 

floodplain (Figure S2) for each time period was developed based on distance from the channel 492 

(p< 0.001) and relative elevation from the channel (p<0.001). This model, readily parameterized 493 

from remotely-sensed data, explained ~54% of the variability in long-term vertical accretion 494 

rates over the 42-year time period between 1973 and 2015 (r2=0.54, p<0.001) such that more 495 

deposition occurred closer to the channel and at lower elevations across the floodplain (Figure 496 

S2). 497 

4.4 Eroded and Accreted Sediment Volumes 498 

Estimated volumes of eroded and accreted sediment from the upper 2 km, intensive 499 

study reach were used to examine changes in volumes of floodplain sediment over the six time 500 

periods. Sediment input to and output from the floodplain during the six time periods ranged 501 

from 1145 ±258 to 17,324 ±2610 m3 and 2713 ±113 to 11519 ±1851 m3, respectively (Table 4). 502 

The difference between accreted and eroded volumes represent the net sediment change, 503 



which ranged from -6273 ±2018 (where negative values indicate net erosion) to 10,683 ±3792 504 

m3 of sediment (Figure 2B, Table 4).  505 

Estimated eroded volume exceeded accreted volume in all but one (i.e., 1955-1973) of 506 

the six periods examined in this study resulting in a net loss of sediment over the total 60-year 507 

time period between 1955 and 2015 (Figure 2B). Although the resulting estimated sediment 508 

balance after 60 years was a net loss of 3919 m3 across the floodplain during the 60-year 509 

period, this net difference falls within the error of the estimate (i.e., ±5091 m3) and suggest 510 

closure of the sediment budget. 511 



Table 4. Floodplain area and sediment volume eroded, accreted, and the net change between accretion and erosion along the  512 
upper 2 km, intensive study reach.  513 

 1955 - 1973 1973 - 1983 1983 - 1990 1990 - 2001 2001 - 2011 2011 - 2015 Total 

Duration (y) 18 ± 0.3 10 ± 0.3 7 ± 0.3 11 ± 0.3 10 ± 0.3 4 ± 0.3    

Area eroded (m2)a 12228 ± 5060 12428 ± 2113 7341 ± 1835 16774 ± 2684 13317 ± 2530 3752 ± 1538    

Mean Depth of Eroded 
bank material (m) 

0.54 ± 0.01 0.60 ± 0.01 0.58 ± 0.01 0.69 ± 0.01 0.61 ± 0.01 0.72 ± 0.01    

Volume Eroded  (m3)b  -6640 ± 2751 -7476 ± 1277 -4272 ± 1071 -11519 ± 1851 -8080 ± 1541 -2713 ± 1113 -40700 ± 4169 

Mean erosion rate 
(m3/y) 

-369 ± 153 -748 ± 130 -610 ± 155 -1047 ± 171 -808 ± 156 -678 ± 283    

Mean bank area 
erosion rate (m2/y)c 

-0.02 ± 0.01 -0.04 ± 0.01 -0.03 ± 0.01 -0.06 ± 0.01 -0.04 ± 0.01 -0.04 ± 0.02    

Point bar area of 
accretion from (m2)d 28392 ± 4356 12391 ± 1735 14534 ± 2035 13612 ± 2178 14493 ± 1884 7403 ± 1851    

Mean vertical 
accretion within 
eroded areas (m)e 

0.59 ± 0.01 0.33 ± 0.01 0.23 ± 0.01 0.36 ± 0.01 0.33 ± 0.01 0.13 ± 0.01    

Estimated accretion 
along point bars (m3)f 

16865 ± 2608 4089 ± 587 3357 ± 493 4941 ± 803 4783 ± 640 977 ± 255    

Overbank deposition 
(m3)g 

459 ± 92 302 ± 61 213 ± 44 305 ± 62 322 ± 66 168 ± 36    

Total volume accreted 
(m3)h 

17324 ± 2610 4391 ± 590 3570 ± 495 5246 ± 806 5105 ± 643 1145 ± 258 36780 ± 2921 

Mean accretion rate 
(m3/y) 

962.43 ± 145.87 439.11 ± 60.462 509.97 ± 73.961 476.9 ± 74.406 510.54 ± 66.126 286.16 ± 67.924    

Net volume (m3) 10684 ± 3792 -3085 ± 1407 -702 ± 1179 -6273 ± 2018 -2975 ± 1670 -1568 ± 1142 -3920 ± 5091 

a Area eroded from banks estimated by SCREAM (Rowland et al., 2016) 514 
b Volume calculated directly in GIS 515 
c Mean vertical area of bank eroded estimated as the mean erosion rate divided by the total channel length 516 
d Area of point bar accretion estimated by SCREAM 517 
e Vertical accretion estimated as the product of the duration of each time period and accretion rates derived from measured probe transect of fine floodplain sediment depths described in section 3.3 518 
f Volume of accretion estimated as the product of accreted areas identified by SCREAM and mean vertical accretion rates   519 
g Estimates of overbank deposition derived from the regression model described in section 3.4 in which vertical accretion rates of each DEM cell were summed and the total was multiplied by the number of years in each time 520 
period.  521 
h The sum of accreted volumes from point bars and overbank deposition522 



4.5 Hydrologic linkages with floodplain sediment  523 

Although each of the six time periods studied do not span equal time intervals, average 524 

flow conditions were similar for most time periods, with one drier and one wetter period (Figure 525 

3C; Table 3). Peak discharge typically occurred within the second half of May, throughout June, 526 

and secondary peaks during high flow years sometimes occurred at the beginning of May and 527 

the beginning of July (Figure 3C; Table S3). The mean annual and peak discharges within the 528 

reach averaged 1.9 and 12.1 m3 s-1 respectively from 1935 to 2017. The period between 2012 529 

and 2015 was a relatively dry interval with the least average number of days above both 530 

baseflow conditions and bankfull stage, the least mean and max annual volume of flow, the 531 

lowest maximum and mean peak flow, and the lowest mean and maximum total recession slope 532 

of all time periods (Table 3). Conversely, the period between 1991 and 2001 was a relatively 533 

wet interval with the highest mean duration above baseflow, the highest maximum peak flow, a 534 

relatively high total annual volume of discharge, and a relatively high number of peaks above 535 

bankfull flow conditions. 536 



 537 

Figure 3 Modeled discharge at the East River study site and Almont stream gauge. (A) Linear 538 
regression between measured discharge at Almont and the study site (r2=0.97 ), (B) discharge 539 
at the two sites for the 2015 to 2018 water years including modeled discharge at the study site 540 
based on the regression analysis (NSE=0.97). (C) Modeled annual hydrographs for the 60-year 541 
study period (1955-2015) and an inset closeup of the hydrograph recession limbs. Thin, light 542 
blue lines are annual hydrographs, the shaded blue area is the 95% confidence interval, and 543 
colored lines represent mean hydrographs for the six time periods.  544 

 545 



Multiple stepwise linear regression indicates that floodplain sediment exchange along the nine 546 

study reaches during the six time intervals are explained primarily by the hydrologic conditions 547 

and the sinuosity of the channel at the beginning of each period (Table S5). Laterally accreted 548 

area (AL) with the appropriate power transformation (𝜆 = 0.2626) was most significantly 549 

influenced by a positive correlation with sinuosity (P; p <0.0001), the maximum number of days 550 

above the reference baseflow condition (Dbase; p <0.05), the mean channel width (w) of the 551 

study reach (p<0.05, and the maximum bankfull recession limb slope (Rbf) (r2 = 0.55, p < 0.1).  552 

 AL
0.26263 = -6.591 + 0.015Dbase + 3.142P + 0.240w + 21.432 Rbf (2)   553 

The area of floodplain erosion (EA) across the nine study reaches over the 6 periods was best 554 

explained by a positive correlation with the maximum total recession limb slope from peak to 555 

baseflow conditions (Rtotal; p<0.0001) and sinuosity (P; p <0.001) and a negative correlation with 556 

the maximum time between the first and last day flow exceeded baseflow (Tbase) (r2 = 0.59, p < 557 

0.05; Table S5).  558 

 EA
0.10101 = 2.058 + 5.190 Rtotal + 0.157 P – 0.002 Tbase  (3) 559 

Because our multiple linear regression analyses explained only about 55-60% of the 560 

variability in observed area of accretion and erosion and many variables examined require 561 

detailed analysis of imagery and lidar, we examined an additional simpler regression model 562 

using only the most significant variables that describe hydrologic conditions. Because sinuosity 563 

across the entire 11-km long study segment remains relatively constant and channel width 564 

similarly adjusts on a decadal time scale (Tables 1, 2), channel morphology maintains a quasi-565 

steady state over the course of the study period. This means that changes in erosion and 566 

accretion may be explained by hydrology alone on a larger scale, under the primary 567 

assumptions of consistent sediment supply proportional to discharge. Such an approach is 568 

appealing because changes in hydrology are more easily measured by stream gauging, which 569 

allows predictions using future projections in climate variability.  570 



 571 

Figure 4 Linear regression of eroded and accreted areas and diel fluctuations. Each point 572 
represents each of the six time intervals for which data from all nine study reaches are 573 
combined. (A) The number of days that flow exceeded bankfull flow conditions is a significant 574 
predictor of accreted area (r2=0.59, p = 0.074) and (B) the maximum slope within each time 575 
frame of the total recession limb from peak to baseflow is a significant predictor of eroded area 576 
(r2=0.91, p = 0.003). (C) Fluctuations in discharge in response to snowmelt during daily warming 577 
and cooling cycles can exceed 3 m3 s-1, but do not show a strong correlation with the slope of 578 
the recession limb (r2=0.29) (D). In A, B, and D, the dashed lines represent the linear regression 579 
model and the gray shaded area represents the 95% confidence intervals. In C the red line 580 
represents the bankfull flow stage and the blue shaded area represents the window in which diel 581 
fluctuations were examined.  582 
 583 

Our analysis did not show a strong correlation between the maximum slope of the 584 

recession limb and number of, the summed magnitude, or the mean magnitude of diel 585 

fluctuations in discharge (Q = 8 m3s-1) within the defined bankfull window (5 < Qbf < 12 m3s-1),  586 

but this topic requires more attention, particularly in snowmelt-dominated system that could 587 

change under a shifting climate.  588 



 589 

Multiple linear regression to examine the role of hydrologic drivers alone on floodplain 590 

sediment dynamics across the entire 11-km long study segment – in contrast to the regression 591 

analyses that examined morphologic variables in addition to hydrologic variable across the nine 592 

study reaches – identified similar variables as the most significant predictors of erosion and 593 

accretion found in those other regression analyses. Examining hydrology alone, lateral accretion 594 

across the entire 11-km long study segment was best explained by the maximum number of 595 

days flow was above bankfull stage (r2 = 0.59, p = 0.074; Figure 4A).  The most significant 596 

hydrologic variable for explaining the area of erosion along the 11-km long study segment was 597 

the mean slope of the hydrograph recession from peak to baseflow conditions (r2 = 0.91, p = 598 

0.003; Figure 4B).  599 

4. Discussion 600 

4.1 Temporal variability of channel widening and narrowing 601 

 On the East River, we observed that progressive increases in sinuosity were truncated 602 

by channel cutoffs. This autocylic pattern was punctuated with alternating periods of channel 603 

narrowing and widening, which occur in tandem to maintain a relatively stable sinuosity on the 604 

order of decades over the 11-km long study segment (Table 1; Figure 2A). The period between 605 

2012 and 2015 is the only exception in this alternating pattern and may have arisen from a 606 

reduction in erosion associated with the lowest maximum total recession slope in the study 607 

period. Channel reaches are more likely to experience deposition and lateral accretion following 608 

channel widening as flows spread out, flow depth decreases, and competency to transport 609 

sediment declines. Germination of riparian species during high flows stabilize point bars, 610 

resulting in channel narrowing that can force flow to outer banks and encourage subsequent 611 

bank erosion (Merritt & Cooper, 2000; Zen et al., 2017). This type of feedback appears to have 612 

occurred on the East River where narrowing induced increases in flow depth, velocity, and 613 



boundary shear stress would have driven bank undercutting of the fine sediment facilitating 614 

cantilever failure of saturated banks.  Thus a window of opportunity for vegetation establishment 615 

on bars (Balke et al., 2014; Caponi et al., 2019) followed by a substantial duration of overbank 616 

flow that undercut banks would facilitate such a cyclical pattern. Propagation of cyclical patterns 617 

of narrowing and widening have commonly been observed in the field (Hooke, 2008; Cantelli et 618 

al., 2004) and modeled to match field observations after channel avulsions or bifurcations 619 

(Kleinhans et al., 2011) like the chute cutoffs that occur on the East River.  620 

   621 

4.2 Balancing the floodplain sediment budget and accretion 622 

 Of all the sources of possible error (i.e., lateral erosion and accretion, interpolation of 623 

sediment volumes across the channel, and estimates of floodplain vertical accretion), vertical 624 

accretion represents the most uncertain component of the sediment budget. Estimates of 625 

deposition along point bars and areas adjacent to the channel are relatively robust because they 626 

are based on measured long-term average deposition rates, but overbank deposition across the 627 

entire floodplain based on our multiple linear regression contains uncertainty that cannot fully be 628 

quantified. Our approach used a bulk depth of total sediment deposited over the 42 year period 629 

between 1973 and 2015, which does not account for deposition and subsequent erosion 630 

occurring at time scales shorter than our averaging.  631 

 Our regression analysis of lateral accretion does however examine hydrologic indices 632 

that can incorporate the influences of annual events into the time period in which those events 633 

occur (e.g., maximum bankfull volume, maximum cumulative days since last bankfull flow). The 634 

duration between flow events has been referred to as the “window of opportunity” for riparian 635 

vegetation to germinate and has been shown to be highly correlated with point bar accretion 636 

(Balke et al., 2014; Zen et al., 2017; Caponi et al., 2019). Correlation were low between lateral 637 

accretion and the maximum (r=0.232) and mean (r=-0.346) cumulative days since the last 638 

bankfull flow and although the latter was higher, our results indicate a negative correlation 639 



(Table S6). These variables were also eliminated for consideration in the optimal stepwise linear 640 

regression model because of cross correlation (r = -0.79) with the most significant hydrologic 641 

variable in the regression analysis, duration of overbank flow exceeding bankfull stage. 642 

 Our results linking (1) duration of overbank flows to lateral accretion and (2) distance 643 

from the channel and relative elevation with overbank deposition support published research 644 

that documents overbank deposition as a function of the duration of inundation and distance 645 

from the channel (Asselman & Middelkoop, 1995; Hupp et al., 2008; G. Day et al., 2008). 646 

 647 

4.3  Linkages between hydrology and observed bank erosion 648 

 Although the study presented here does not examine annual trends, our multiple 649 

regression analysis results of nine study reaches and the simple relationship in Figure 4B 650 

suggests that the slope of the peak annual recession limb is strongly linked to the occurrence of 651 

bank erosion on the East River. While sinuosity and the maximum duration between the first 652 

and last day of flow exceeding baseflow conditions are also significant predictors in the multiple 653 

linear regression analysis (p<0.01), the recession limb slope has a higher significance 654 

(p<0.0001). Although the volume of discharge above bankfull flow has been shown to be linked 655 

to erosion (Surian, et al., 2015), this variable was eliminated from the analysis as a potential 656 

predictor because of a strong correlation with the mean number of bankfull days (r=0.98). Other 657 

variables eliminated from consideration as predictors for erosion because of high correlation 658 

with the maximum total recession limb include variants of: the duration of baseflow, the bankfull 659 

slope of the recession limb, and the cumulative number of days since the last bankfull flow. 660 

 The importance of the recession limb slope is emphasized by the fact that the maximum 661 

total recession slope alone explains 91% of the variability in bank erosion when considering the 662 

entire 11-km long study segment without separation into the nine study reaches. Past work by 663 

Pizzuto (1994) in a snowmelt dominated system determined that elevated discharge for 664 



approximately 7 days on the Powder River, Montana suggested a steep recession limb in 1978 665 

may have been partially responsible for observed bank erosion on the order of 30% of the 666 

channel width. Temporal resolution of aerial imagery does not provide the frequency needed to 667 

examine past erosion on annual time scales on the East River. Hooke (1979) outlined a similar 668 

challenge when examining the connection between bank erosion and hydrologic flow conditions 669 

in temperate systems, because the study lacked the temporal resolution necessary to examine 670 

the role of the recession limb in the observed rainfall-induced storm hydrograph peaks. The role 671 

of the recession limb as a mechanism for bank erosion, however, likely varies substantially 672 

between the temperate stormy system examined by Hooke and snowmelt-dominated discharge 673 

of the East River.  674 

 Several mechanisms for river bank failures have been identified in prior research, as 675 

described briefly in the introduction, but findings presented here that link flow conditions to 676 

erosion may include a combination of mechanisms. On the East River, we observed that high 677 

flows eroded underlying fluvial gravels resulting in planar cantilever failures of the fine grained 678 

upper portion of the bank (Figure 1D, S1). Bank failures as a result of changes in river stage 679 

may be triggered by a loss of confining pressure or slip failures resulting from positive pore 680 

pressure, where slow drainage in saturated overlying banks of fine sediment cannot drain fast 681 

enough to keep pace with the decline in stage (Rinaldi & Casagli, 1999). Positive pore pressure 682 

is likely the case in stormy systems that experience flash floods with dramatic changes in 683 

discharge occurring over the course of a single day or several hours, but could likely play a 684 

partial role in bank erosion on the East River. 685 

 Shifting oblique directions in subsurface hydraulic gradient observed on the East River 686 

(Malenda et al., 2019), could change the magnitude and direction of confining pressure on the 687 

outside of river bends where erosion occurs and shifts hyporheic flow toward apposing meander 688 

bends. This change in hydraulic gradient could produce a positive pore pressure along banks 689 

with a seepage face, triggering bank erosion (Rinaldi & Casagli, 1999; Fox et al., 2007). 690 



Although it is possible that some bank failures in the study area have been triggered by positive 691 

pore pressure, these types of failures often occur along much higher banks (>4m) composed of 692 

heterogeneous bank material, and slump scarps commonly provide evidence of occurrence 693 

(Simon et al., 2000; Langendoen & Simon, 2008; S. S. Day et al., 2013b). Slumps scarps are 694 

not observed on the East River, and cantilevers failures are the primary mechanism of bank 695 

failure. 696 

 Loss in confining pressure, provides a conceptual explanation for the link between 697 

observed cantilever failures and the slope of the recession limb in our analysis. Following 698 

undercutting during flows at or exceeding bankfull discharge, the gradual decline in flow stage 699 

occurring over the course of days to weeks and characteristic of snowmelt-dominated systems 700 

is likely to allow silt-dominated soils to drain so that undercut banks are no longer fully saturated 701 

(Figure 4). The loss of supporting pressure with declining stage can result in tension cracks of 702 

undercut banks that trigger bank failure (Rinaldi & Casagli, 1999). These cracks can be 703 

exacerbated by the weight of nearly saturated banks and repeat loss of supporting pressure 704 

from large diel fluctuations in discharge (2 to 5 m3s‐1) during peak flow recessions on the East 705 

River near bankfull stage (~8 m3s‐1; Figure 4C). These rapid changes in discharge (Q) equate to 706 

daily changes in flow depth (d) of approximately 20 to 30 cm at the gauging station which has 707 

an approximate bankfull width (w) of 14 m. Our analysis of diel fluctuations on an hourly time 708 

step from using USGS gage data from 1988 to 2018, however, does not show a strong 709 

correlation with the slope of the recession limb (Figure 4D), but this possible mechanism 710 

requires additional attention.  711 

 712 

4.4 Influence of shifting hydrologic regimes on floodplain sediment fluxes 713 

Observed increases in erosion linked to the total slope of the annual recession limb 714 

along the snowmelt-dominated East River in CO are likely to exist in other snowmelt-dominated 715 

systems that constitute a majority of rivers in the western USA (Li et al., 2017) and rivers above 716 



40° latitude globally (Adam et al., 2009). Predicted increase in the frequency and severity of 717 

storms and floods (Bates et al., 2008) could make extreme floods in mountainous regions – like 718 

the one that occurred in the Colorado Front Range in 2013 – more common, which could greatly 719 

alter floodplain sediment dynamics and residence times (Sutfin & Wohl, 2019). Observed 720 

changes in snowpack (Stewart, 2009), upward shifts in the rainfall-snowfall transition (Kampf & 721 

Lefsky, 2016), rapid warming and earlier snowmelt (Clow, 2009), increased rain-on-snow 722 

events, are altering snow-melt dominated hydrographs (Stewart et al., 2004; Clow, 2009; Kampf 723 

& Lefsky, 2016; Praskievicz, 2016; Painter et al., 2018). The coldest snowmelt regimes are 724 

likely to experience increased spring hydrograph peaks, whereas transitional snowmelt regimes 725 

may experience lower spring peaks and more winter peak events (Nijssen et al., 2001). Rain-726 

on-snow events in winter months could produce hydrograph peaks that exceed spring peaks in 727 

snowmelt dominated systems. Although observations and projections of floods do not indicate 728 

an increase in magnitude across rivers with all types of flow regimes, floods are occurring more 729 

often (Hirsch & Archfield, 2015; Mallakpour & Villarini, 2015), which means more variability and 730 

more frequent recession limbs in otherwise predictable and consistent snowmelt-dominated 731 

systems. These changes would by definition shift otherwise predictable snowmelt dominated 732 

systems to more flashy systems with increased variability and more rapidly rising and receding 733 

limbs, but how changes could influence sediment dynamics are uncertain. 734 

The changes in annual average snowpack and timing of snowmelt are poised to change 735 

the variables identified in this study as important for both erosion and accretion, but the direction 736 

of these changes in unknown. If a link between diel fluctuations and recession slope exists in 737 

snowmelt-dominated systems stronger than that presented here, increased frequency of flood 738 

peaks may not result in a substantial increase in bank erosion. However, if the link between the 739 

recession slope and cantilever bank erosion occurs independently of diel fluctuations, increased 740 

frequency and flashiness of flood peaks could equate to a significant increase in bank erosion 741 

and alteration of floodplain sediment budgets. Because our results and other studies have 742 



shown a positive correlation between floodplain accretion and the duration of overbank flow 743 

(Asselman & Middelkoop, 1995; Hupp et al., 2008), flashier systems could limit overbank 744 

deposition while encouraging bank erosion.  745 

 746 

Conclusion 747 

 Analysis of aerial imagery, aerial lidar data, and field measurements of depth of 748 

floodplain fine sediment suggest that the floodplain sediment budget along the East River study 749 

segment is balanced over the 60-year study period. Empirical relationships between 60 years of 750 

discharge data, channel morphometry of nine study reaches, and observed bank erosion and 751 

accretion suggest that channel sinuosity is a significant factor for both erosion and accretion and 752 

that channel width is a significant factor for the latter. In addition, the maximum slope of the 753 

recession limb from the peak to baseflow and bankfull stage to baseflow as well as the duration 754 

of flow above baseflow and bankfull conditions are significant hydrologic indices correlated with 755 

erosion and accretion.  The role of the hydrologic variables becomes more evident when 756 

erosion and accretion are examined across the entire 11-km long study segment, rather than 757 

the nine study reaches. Sixty percent of the variability in accretion is explained by the maximum 758 

number of flow days exceeding bankfull stage and 91% of erosion is explained by the maximum 759 

slope of the annual peak recession limb within each time period. We posit that diel fluctuations 760 

during the annual recession on the order of 25% of the bankfull flow play a role in observed 761 

cantilever failures, but our analysis does not show a strong relationship between recession 762 

slope and diel fluctuations. Projected changes and increased variability in flow regimes of 763 

snowmelt-dominated systems are likely to influence the variables identified here as important for 764 

floodplain sediment dynamics in other regions.  765 

 766 

Acknowledgement: 767 



This work was funded by an Early Career award to Rowland by the Subsurface Biogeochemical 768 

Research Programs within the U.S. Department of Energy Office of Science, Biological and 769 

Environmental Research Program. This material is partially based upon work supported through 770 

the Lawrence Berkeley National Laboratory’s Watershed Function Scientific Focus Area 771 

(operated by the University of California) funded by the U.S. Department of Energy (DOE), 772 

Office of Science, Office of Biological and Environmental Research contract DE-AC02-773 

05CH11231. We thank the Rocky Mountain Biological Research Station for their support and 774 

Meghan King and Anastasia Piliouras for their assistance in the field. All data used for this study 775 

are provided in the manuscript, as supplemental materials, and in Sutfin & Rowland (2019) and 776 

Carroll & Williams (2019). The R code used to extract hydrologic parameters are provided as 777 

supplemental Supporting Information as cited in the text. This manuscript was greatly improved 778 

by comments from two anonymous reviewers and the associate editor. 779 

 780 

References 781 

 Adam, J. C., Hamlet, A. F., & Lettenmaier, D. P. (2009). Implications of global climate change 782 

for snowmelt hydrology in the twenty-first century. Hydrological Processes, 23(7), 962–783 

972. https://doi.org/10.1002/hyp.7201 784 

Asselman, N. E. M., & Middelkoop, H. (1995). Floodplain sedimentation: Quantities, patterns 785 

and processes. Earth Surface Processes and Landforms, 20(6), 481–499. 786 

https://doi.org/10.1002/esp.3290200602 787 

Balke, T., Herman, P. M. J., & Bouma, T. J. (2014). Critical transitions in disturbance-driven 788 

ecosystems: identifying Windows of Opportunity for recovery. Journal of Ecology, 789 

102(3), 700–708. https://doi.org/10.1111/1365-2745.12241 790 

Bates, B., Kundzewicz, Z. W., Wu, S., Burkett, V., Doell, P., Gwary, D., et al. (2008). Climate 791 

Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. 792 



Belmont, P., Gran, K. B., Schottler, S. P., Wilcock, P. R., Day, S. S., Jennings, C., et al. (2011). 793 

Large Shift in Source of Fine Sediment in the Upper Mississippi River. Environmental 794 

Science & Technology, 45(20), 8804–8810. https://doi.org/10.1021/es2019109 795 

Benjankar, R., Burke, M., Yager, E., Tonina, D., Egger, G., Rood, S. B., & Merz, N. (2014). 796 

Development of a spatially-distributed hydroecological model to simulate cottonwood 797 

seedling recruitment along rivers. Journal of Environmental Management, 145, 277–288. 798 

https://doi.org/10.1016/j.jenvman.2014.06.027 799 

Bogoni, M., Putti, M., & Lanzoni, S. (2017). Modeling meander morphodynamics over self-800 

formed heterogeneous floodplains. Water Resources Research, 53(6), 5137–5157. 801 

https://doi.org/10.1002/2017WR020726 802 

Cantelli, A., Paola, C., & Parker, G. (2004). Experiments on upstream-migrating erosional 803 

narrowing and widening of an incisional channel caused by dam removal. Water 804 

Resources Research, 40(3). https://doi.org/10.1029/2003WR002940 805 

Caponi, F., Koch, A., Bertoldi, W., Vetsch, D. F., & Siviglia, A. (2019). When Does Vegetation 806 

Establish on Gravel Bars? Observations and Modeling in the Alpine Rhine River. 807 

Frontiers in Environmental Science, 7. https://doi.org/10.3389/fenvs.2019.00124 808 

Carroll, R., & Williams, K. (2019). Discharge data collected within the East River for the 809 

Lawrence Berkeley National Laboratory Watershed Function Science Focus Area (water 810 

years 2015-2018), Watershed Function SFA. EES-DIVE: Deep Insight for Earth Science. 811 

http://dx.doi.org/10.21952/WTR/1495380 812 

Clow, D. W. (2009). Changes in the Timing of Snowmelt and Streamflow in Colorado: A 813 

Response to Recent Warming. Journal of Climate, 23(9), 2293–2306. 814 

https://doi.org/10.1175/2009JCLI2951.1 815 



Darby, S. E., Rinaldi, M., & Dapporto, S. (2007). Coupled simulations of fluvial erosion and 816 

mass wasting for cohesive river banks. Journal of Geophysical Research: Earth Surface, 817 

112(F3). https://doi.org/10.1029/2006JF000722 818 

Day, G., Dietrich, W. E., Rowland, J. C., & Marshall, A. (2008). The depositional web on the 819 

floodplain of the Fly River, Papua New Guinea. Journal of Geophysical Research: Earth 820 

Surface, 113. https://doi.org/10.1029/2006JF000622@10.1002/(ISSN)2169-821 

9011.PAPUA1 822 

Day, S. S., Gran, K. B., Belmont, P., & Wawrzyniec, T. (2013a). Measuring bluff erosion part 1: 823 

terrestrial laser scanning methods for change detection. Earth Surface Processes and 824 

Landforms, 38(10), 1055–1067. https://doi.org/10.1002/esp.3353 825 

Day, S. S., Gran, K. B., Belmont, P., & Wawrzyniec, T. (2013b). Measuring bluff erosion part 2: 826 

pairing aerial photographs and terrestrial laser scanning to create a watershed scale 827 

sediment budget. Earth Surface Processes and Landforms, 38(10), 1068–1082. 828 

https://doi.org/10.1002/esp.3359 829 

Dietrich, W. E., Dunne, T., Humphrey, N. F., & Reid, L. M. (1982). Construction of sediment 830 

budgets for drainage basins. In: Sediment Budgets and Routing in Forested Drainage 831 

Basins: Proceedings of the Symposium; 31 May - 1 June 1982; Corvallis, Oregon. Gen. 832 

Tech. Rep. PNW-141. Portland, Oregon: Pacific Northwest Forest and Range 833 

Experiment Station, Forest Service, U.S. Department of Agriculture; 1982: 5-23. 834 

Retrieved from https://www.fs.usda.gov/treesearch/pubs/7749 835 

Donovan, M., Belmont, P., Notebaert, B., Coombs, T., Larson, P., & Souffront, M. (2019). 836 

Accounting for uncertainty in remotely-sensed measurements of river planform change. 837 

Earth-Science Reviews, 193, 220–236. https://doi.org/10.1016/j.earscirev.2019.04.009 838 



Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). 839 

Collinearity: a review of methods to deal with it and a simulation study evaluating their 840 

performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-841 

0587.2012.07348.x 842 

Fisher, G. B., Bookhagen, B., & Amos, C. B. (2013). Channel planform geometry and slopes 843 

from freely available high-spatial resolution imagery and DEM fusion: Implications for 844 

channel width scalings, erosion proxies, and fluvial signatures in tectonically active 845 

landscapes. Geomorphology, 194, 46–56. 846 

https://doi.org/10.1016/j.geomorph.2013.04.011 847 

Fox, G. A., Wilson, G. V., Simon, A., Langendoen, E. J., Akay, O., & Fuchs, J. W. (2007). 848 

Measuring streambank erosion due to ground water seepage: correlation to bank pore 849 

water pressure, precipitation and stream stage. Earth Surface Processes and Landforms, 850 

32(10), 1558–1573. https://doi.org/10.1002/esp.1490 851 

Gaskill, D. L., Mutschler, F. E., Kramer, J. H., Thomas, J. A., & Zahony, S. G. (1991). Geologic 852 

map of the Gothic quadrangle, Gunnison County, Colorado. Geologic Quadrangle Map 853 

GQ-1689, sale 1:24,000, Gunnison, Colorado: U.S. Geological Survey. 854 

Gellis, A. C., & Walling, D. E. (2013). Sediment Source Fingerprinting (Tracing) and Sediment 855 

Budgets as Tools in Targeting River and Watershed Restoration Programs. In A. Simon, 856 

S. J. Bennett, & J. M. Castro (Eds.), Geophysical Monograph Series (pp. 263–291). 857 

Washington, D. C.: American Geophysical Union. 858 

https://doi.org/10.1029/2010GM000960 859 



Gellis, A. C., Pavich, M. J., Ellwein, A. L., Aby, S., Clark, I., Wieczorek, M. E., & Viger, R. 860 

(2012). Erosion, storage, and transport of sediment in two subbasins of the Rio Puerco, 861 

New Mexico. GSA Bulletin, 124(5–6), 817–841. https://doi.org/10.1130/B30392.1 862 

Güneralp, İ., & Rhoads, B. L. (2009). Empirical analysis of the planform curvature-migration 863 

relation of meandering rivers. Water Resources Research, 45(9), W09424. 864 

https://doi.org/10.1029/2008WR007533 865 

Gurnell, A. M. (1997). Channel change on the River Dee meanders, 1946–1992, from the 866 

analysis of air photographs. Regulated Rivers: Research & Management, 13(1), 13–26. 867 

https://doi.org/10.1002/(SICI)1099-1646(199701)13:1<13::AID-RRR420>3.0.CO;2-W 868 

Hirsch, R. M., & Archfield, S. A. (2015). Flood trends: Not higher but more often. Nature 869 

Climate Change, 5(3), 198–199. https://doi.org/10.1038/nclimate2551 870 

Hoffmann, T., Glatzel, S., & Dikau, R. (2009). A carbon storage perspective on alluvial sediment 871 

storage in the Rhine catchment. Geomorphology, 108(1), 127–137. 872 

https://doi.org/10.1016/j.geomorph.2007.11.015 873 

Hooke, J. M. (1979). An analysis of the processes of river bank erosion. Journal of Hydrology, 874 

42(1), 39–62. https://doi.org/10.1016/0022-1694(79)90005-2 875 

Hooke, J. M. (2008). Temporal variations in fluvial processes on an active meandering river over 876 

a 20-year period. Geomorphology, 100(1), 3–13. 877 

https://doi.org/10.1016/j.geomorph.2007.04.034 878 

Howard, A. D. (1996). Modeling Channel Evolution and Floodplain Morphology. Floodplain 879 

Processes, 15–62. 880 



Hupp, C. R., Demas, C. R., Kroes, D. E., Day, R. H., & Doyle, T. W. (2008). Recent 881 

sedimentation patterns within the central Atchafalaya Basin, Louisiana. Wetlands, 28(1), 882 

125–140. https://doi.org/10.1672/06-132.1 883 

Kampf, S. K., & Lefsky, M. A. (2016). Transition of dominant peak flow source from snowmelt 884 

to rainfall along the Colorado Front Range: Historical patterns, trends, and lessons from 885 

the 2013 Colorado Front Range floods. Water Resources Research, 52(1), 407–422. 886 

https://doi.org/10.1002/2015WR017784 887 

Kleinhans, M. G., Cohen, K. M., Hoekstra, J., & IJmker, J. M. (2011). Evolution of a bifurcation 888 

in a meandering river with adjustable channel widths, Rhine delta apex, The Netherlands. 889 

Earth Surface Processes and Landforms, 36(15), 2011–2027. 890 

https://doi.org/10.1002/esp.2222 891 

Langendoen, E. J., & Alonso, C. V. (2008). Modeling the Evolution of Incised Streams: I. Model 892 

Formulation and Validation of Flow and Streambed Evolution Components. Journal of 893 

Hydraulic Engineering, 134(6), 749–762. https://doi.org/10.1061/(ASCE)0733-894 

9429(2008)134:6(749) 895 

Langendoen, E. J., & Simon, A. (2008). Modeling the Evolution of Incised Streams. II: 896 

Streambank Erosion. Journal of Hydraulic Engineering, 134(7), 905–915. 897 

https://doi.org/10.1061/(ASCE)0733-9429(2008)134:7(905) 898 

Lenhart, C. F., Titov, M. L., Ulrich, J. S., Nieber, J. L., & Suppes, B. J. (2013). The Role of 899 

Hydrologic Alteration and Riparian Vegetation Dynamics in Channel Evolution along the 900 

Lower Minnesota River. Transactions of the American Society of Agricultural and 901 

Biological Engineers, 56(2), 549–561. 902 



Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much runoff 903 

originates as snow in the western United States, and how will that change in the future? 904 

Geophysical Research Letters, 44(12), 6163–6172. 905 

https://doi.org/10.1002/2017GL073551 906 

Lininger, K. B., Wohl, E., Rose, J. R., & Leisz, S. J. (2019). Significant Floodplain Soil Organic 907 

Carbon Storage Along a Large High-Latitude River and its Tributaries. Geophysical 908 

Research Letters, 46(4), 2121–2129. https://doi.org/10.1029/2018GL080996 909 

Macklin, M. G., Brewer, P. A., Hudson-Edwards, K. A., Bird, G., Coulthard, T. J., Dennis, I. A., 910 

et al. (2006). A geomorphological approach to the management of rivers contaminated by 911 

metal mining. Geomorphology, 79(3), 423–447. 912 

https://doi.org/10.1016/j.geomorph.2006.06.024 913 

Malenda, H. f., Sutfin, N. a., Guryan, G., Stauffer, S., Rowland, J. c., Williams, K. h., & Singha, 914 

K. (2019). From Grain to Floodplain: Evaluating heterogeneity of floodplain 915 

hydrostatigraphy using sedimentology, geophysics, and remote sensing. Earth Surface 916 

Processes and Landforms, 0(0). https://doi.org/10.1002/esp.4613 917 

Mallakpour, I., & Villarini, G. (2015). The changing nature of flooding across the central United 918 

States. Nature Climate Change, 5(3), 250–254. https://doi.org/10.1038/nclimate2516 919 

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the 920 

delineation of open water features. International Journal of Remote Sensing, 17(7), 921 

1425–1432. https://doi.org/10.1080/01431169608948714 922 

Merritt, D. M., & Cooper, D. J. (2000). Riparian vegetation and channel change in response to 923 

river regulation: a comparative study of regulated and unregulated streams in the Green 924 



River Basin, USA. Regulated Rivers: Research & Management, 16(6), 543–564. 925 

https://doi.org/10.1002/1099-1646(200011/12)16:6<543::AID-RRR590>3.0.CO;2-N 926 

Micheli, E. R., & Kirchner, J. W. (2002a). Effects of wet meadow riparian vegetation on 927 

streambank erosion. 1. Remote sensing measurements of streambank migration and 928 

erodibility. Earth Surface Processes and Landforms, 27(6), 627–639. 929 

https://doi.org/10.1002/esp.338 930 

Micheli, E. R., & Kirchner, J. W. (2002b). Effects of wet meadow riparian vegetation on 931 

streambank erosion. 2. Measurements of vegetated bank strength and consequences for 932 

failure mechanics. Earth Surface Processes and Landforms, 27(7), 687–697. 933 

https://doi.org/10.1002/esp.340 934 

Mount, N., & Louis, J. (2005). Estimation and propagation of error in measurements of river 935 

channel movement from aerial imagery. Earth Surface Processes and Landforms, 30(5), 936 

635–643. https://doi.org/10.1002/esp.1172 937 

Naiman, R. J., Decamps, H., & McClain, M. E. (2010). Riparia: Ecology, Conservation, and 938 

Management of Streamside Communities. Elsevier. 939 

Nijssen, B., O’Donnell, G. M., Hamlet, A. F., & Lettenmaier, D. P. (2001). Hydrologic 940 

Sensitivity of Global Rivers to Climate Change. Climatic Change, 50(1), 143–175. 941 

https://doi.org/10.1023/A:1010616428763 942 

Noe, G. B., & Hupp, C. R. (2005). Carbon, nitrogen, and phosphorus accumulation in 943 

floodplains of atlantic coastal plain rivers, usa. Ecological Applications, 15(4), 1178–944 

1190. https://doi.org/10.1890/04-1677 945 

Omengo, F. O., Geeraert, N., Bouillon, S., & Govers, G. (2018). Deposition and fate of organic 946 

carbon in floodplains along a tropical semiarid lowland river (Tana River, Kenya). 947 



Journal of Geophysical Research: Biogeosciences, 1131–1143. 948 

https://doi.org/10.1002/2015JG003288@10.1002/(ISSN)2169-8961.CNFLOI1 949 

Painter, T. H., Skiles, S. M., Deems, J. S., Brandt, W. T., & Dozier, J. (2018). Variation in 950 

Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust 951 

Radiative Forcing in Snow. Geophysical Research Letters, 45(2), 797–808. 952 

https://doi.org/10.1002/2017GL075826 953 

Parker, G., Shimizu, Y., Wilkerson, G. V., Eke, E. C., Abad, J. D., Lauer, J. W., et al. (2011). A 954 

new framework for modeling the migration of meandering rivers. Earth Surface 955 

Processes and Landforms, 36(1), 70–86. https://doi.org/10.1002/esp.2113 956 

Parker, Gary, Sawai, K., & Ikeda, S. (1982). Bend theory of river meanders. Part 2. Nonlinear 957 

deformation of finite-amplitude bends. Journal of Fluid Mechanics, 115, 303–314. 958 

https://doi.org/10.1017/S0022112082000767 959 

Pizzuto, J. E., & Meckelnburg, T. S. (1989). Evaluation of a linear bank erosion equation. Water 960 

Resources Research, 25(5), 1005–1013. https://doi.org/10.1029/WR025i005p01005 961 

Pizzuto, James E. (1994). Channel adjustments to changing discharges, Powder River, Montana. 962 

GSA Bulletin, 106(11), 1494–1501. https://doi.org/10.1130/0016-963 

7606(1994)106<1494:CATCDP>2.3.CO;2 964 

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., et al. (1997). 965 

The Natural Flow Regime. BioScience, 47(11), 769–784. 966 

https://doi.org/10.2307/1313099 967 

Praskievicz, S. (2016). Impacts of Projected Climate Changes on Streamflow and Sediment 968 

Transport for Three Snowmelt-Dominated Rivers in the Interior Pacific Northwest. River 969 

Research and Applications, 32(1), 4–17. https://doi.org/10.1002/rra.2841 970 



Reid, L., & Dunne, T. (2016). Sediment budgets as an organizing framework in fluvial 971 

geomorphology. In: Kondolf, G.M.; Piégay, H., Eds. Tools in Fluvial Geomorphology. 972 

Chichester, UK: John Wiley & Sons, Ltd: 357-379. Chapter 16, 357–379. 973 

https://doi.org/10.1002/9781118648551 974 

Rhoades, E. L., O’Neal, M. A., & Pizzuto, J. E. (2009). Quantifying bank erosion on the South 975 

River from 1937 to 2005, and its importance in assessing Hg contamination. Applied 976 

Geography, 29(1), 125–134. https://doi.org/10.1016/j.apgeog.2008.08.005 977 

Richard, G. A., Julien, P. Y., & Baird, D. C. (2005). Statistical analysis of lateral migration of 978 

the Rio Grande, New Mexico. Geomorphology, 71(1), 139–155. 979 

https://doi.org/10.1016/j.geomorph.2004.07.013 980 

Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A Method for Assessing 981 

Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4), 1163–1174. 982 

https://doi.org/10.1046/j.1523-1739.1996.10041163.x 983 

Rinaldi, M., & Casagli, N. (1999). Stability of streambanks formed in partially saturated soils 984 

and effects of negative pore water pressures: the Sieve River (Italy). Geomorphology, 985 

26(4), 253–277. https://doi.org/10.1016/S0169-555X(98)00069-5 986 

Rodriguez-Freire, L., Avasarala, S., Ali, A.-M. S., Agnew, D., Hoover, J. H., Artyushkova, K., et 987 

al. (2016). Post Gold King Mine Spill Investigation of Metal Stability in Water and 988 

Sediments of the Animas River Watershed. Environmental Science & Technology, 989 

50(21), 11539–11548. https://doi.org/10.1021/acs.est.6b03092 990 

Rowland, J. C., Shelef, E., Pope, P. A., Muss, J., Gangodagamage, C., Brumby, S. P., & Wilson, 991 

C. J. (2016). A morphology independent methodology for quantifying planview river 992 



change and characteristics from remotely sensed imagery. Remote Sensing of 993 

Environment, 184, 212–228. https://doi.org/10.1016/j.rse.2016.07.005 994 

Schook, D. M., Rathburn, S. L., Friedman, J. M., & Wolf, J. M. (2017). A 184-year record of 995 

river meander migration from tree rings, aerial imagery, and cross sections. 996 

Geomorphology, 293, 227–239. https://doi.org/10.1016/j.geomorph.2017.06.001 997 

Schwenk, J., Khandelwal, A., Fratkin, M., Kumar, V., & Foufoula-Georgiou, E. (2017). High 998 

spatiotemporal resolution of river planform dynamics from Landsat: The RivMAP 999 

toolbox and results from the Ucayali River. Earth and Space Science, 4(2), 1000 

2016EA000196. https://doi.org/10.1002/2016EA000196 1001 

Scott, D. N., & Wohl, E. E. (2018). Geomorphic regulation of floodplain soil organic carbon 1002 

concentration in watersheds of the Rocky and Cascade Mountains, USA. Earth Surface 1003 

Dynamics, 6(4), 1101–1114. https://doi.org/10.5194/esurf-6-1101-2018 1004 

Sekely, A. C., Mulla, D. J., & Bauer, D. W. (2002). Streambank slumping and its contribution to 1005 

the phosphorus and suspended sediment loads of the blue earth river, minnesota. Journal 1006 

of Soil and Water Conservation, 57(5), 243–250. 1007 

Simon, A., Curini, A., Darby, S. E., & Langendoen, E. J. (2000). Bank and near-bank processes 1008 

in an incised channel. Geomorphology, 35(3), 193–217. https://doi.org/10.1016/S0169-1009 

555X(00)00036-2 1010 

Simon, A., Thomas, R. E., Curini, A., & Shields, F. D. (2002). Case Study: Channel Stability of 1011 

the Missouri River, Eastern Montana. Journal of Hydraulic Engineering, 128(10), 880–1012 

890. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(880) 1013 

Stewart, I. T. (2009). Changes in snowpack and snowmelt runoff for key mountain regions. 1014 

Hydrological Processes, 23(1), 78–94. https://doi.org/10.1002/hyp.7128 1015 



Stewart, I. T., Cayan, D. R., & Dettinger, M. D. (2004). Changes in Snowmelt Runoff Timing in 1016 

Western North America under a `Business as Usual’ Climate Change Scenario. Climatic 1017 

Change, 62(1), 217–232. https://doi.org/10.1023/B:CLIM.0000013702.22656.e8 1018 

Sutfin, N. A., & Rowland, J. C. (2019). Depth and elevation of floodplain fine sediment along 1019 

the East River near Crested Butte, Colorado measured in 2016 and 2017. Incorporating 1020 

the Hydrological Controls on Carbon Cycling in Floodplain Ecosystems into Earth 1021 

System Models (ESMs). ESS-Dive: Deep Insight for Earth Science Data. 1022 

https://doi.org/doi:10.15485/1574502 1023 

Sutfin, N. A., & Wohl, E. (2017). Substantial soil organic carbon retention along floodplains of 1024 

mountain streams. Journal of Geophysical Research: Earth Surface, 122(7), 1325–1338. 1025 

https://doi.org/10.1002/2016JF004004 1026 

Sutfin, N. A., & Wohl, E. (2019). Elevational differences in hydrogeomorphic disturbance 1027 

regime influence sediment residence times within mountain river corridors. Nature 1028 

Communications, 10(1), 2221. https://doi.org/10.1038/s41467-019-09864-w 1029 

Sutfin, N. A., Wohl, E. E., & Dwire, K. A. (2016). Banking carbon: a review of organic carbon 1030 

storage and physical factors influencing retention in floodplains and riparian ecosystems. 1031 

Earth Surface Processes and Landforms, 41(1), 38–60. https://doi.org/10.1002/esp.3857 1032 

Surian, N., Barban, M., Ziliani, L., Monegato, G., Bertoldi, W., & Comiti, F. (2015). Vegetation 1033 

turnover in a braided river: frequency and effectiveness of floods of different 1034 

magnitude. Earth Surface Processes and Landforms, 40(4), 542–558. 1035 

https://doi.org/10.1002/esp.3660 1036 



Theobald, D. M., Gosnell, H., & Riebsame, W. E. (1996). Land Use and Landscape Change in 1037 

the Colorado Mountains II: A Case Study of the East River Valley. Mountain Research 1038 

and Development, 16(4), 407–418. https://doi.org/10.2307/3673990 1039 

Thorne, C. R., & Tovey, N. K. (1981). Stability of composite river banks. Earth Surface 1040 

Processes and Landforms, 6(5), 469–484. https://doi.org/10.1002/esp.3290060507 1041 

Wohl, E., Dwire, K., Sutfin, N., Polvi, L., & Bazan, R. (2012). Mechanisms of carbon storage in 1042 

mountainous headwater rivers. Nature Communications, 3, 1263. 1043 

https://doi.org/10.1038/ncomms2274 1044 

Wohl, E., Bledsoe, B. P., Jacobson, R. B., Poff, N. L., Rathburn, S. L., Walters, D. M., & 1045 

Wilcox, A. C. (2015). The Natural Sediment Regime in Rivers: Broadening the 1046 

Foundation for Ecosystem Management. BioScience, 65(4), 358–371. 1047 

https://doi.org/10.1093/biosci/biv002 1048 

Wolman, M. G. (1959). Factors Influencing Erosion of a Cohesive River Bank. American 1049 

Journal of Science, 257(3), 204–216. https://doi.org/10.2475/ajs.257.3.204 1050 

Zen, S., Gurnell, A. M., Zolezzi, G., & Surian, N. (2017). Exploring the role of trees in the 1051 

evolution of meander bends: The Tagliamento River, Italy. Water Resources Research, 1052 

53(7), 5943–5962. https://doi.org/10.1002/2017WR020561 1053 

 1054 



Year

Floodplain area 

(km2)

Channel Area 

(km2)

Channel 

Length 

(km)

Sinuosity 

(m/m)

Channel 

slope (%)

1955 2193.6 459.0 20.08 1.89 0.339%

1973 2254.0 398.7 19.29 1.82 0.353%

1983 2222.3 430.3 18.80 1.77 0.362%

1990 2295.4 357.3 18.90 1.78 0.361%

2001 2275.4 377.3 19.39 1.83 0.352%

2011 2296.2 356.5 18.81 1.77 0.362%

2015 2312.2 340.4 18.98 1.79 0.359%



Confineme

nt 

(m2/m2)

0.17 25 ± 2

0.15 20 ± 2

0.16 23 ± 3

0.13 19 ± 3

0.14 21 ± 3

0.13 19 ± 1

0.13 17 ± 1

Mean channel width 

(m)



Reach Valley area (m2)
Valley Length 

(m)
Valley slope (%)

Floodplain area 

(m2)

1 344236 1471 0.94 294462 49774 ± 6292

2 489119 2126 0.74 405784 83334 ± 6234

3 232658 910 0.55 199873 32785 ± 6046

4 93445 595 0.86 76134 17311 ± 1495

5 330488 1142 0.68 283494 46994 ± 5334

6 378666 924 0.56 344169 34497 ±4194

7 302210 855 0.33 271371 30839 ± 6166

8 126101 1175 0.54 89108 36992 ± 2469

9 355743 1420 0.46 299779 55965 ± 8114

Channel Area (m2)



2860 ± 130 1.94 ± 0.09 0.48 ± 0.02 0.14 ± 0.02 18

4735 ± 143 2.23 ± 0.07 0.33 ± 0.01 0.17 ± 0.01 18

1740 ± 99 1.91 ± 0.11 0.29 ± 0.02 0.14 ± 0.03 19

903 ± 60 1.52 ± 0.10 0.57 ± 0.04 0.19 ± 0.02 20

2419 ± 170 2.12 ± 0.15 0.32 ± 0.02 0.14 ± 0.02 20

1448 ± 248 1.57 ± 0.27 0.37 ± 0.06 0.09 ± 0.01 22

1490 ± 116 1.74 ± 0.14 0.19 ± 0.02 0.1 ± 0.02 21

1583 ± 26 1.35 ± 0.02 0.4 ± 0.01 0.29 ± 0.02 23

2001 ± 53 1.41 ± 0.04 0.33 ± 0.01 0.16 ± 0.02 23

Channel Channel Length (m) Sinuosity (m/m) Channel slope (%) Confinement (m2/m2)



± 3

± 2

± 3

± 2

± 2

± 3

± 3

± 3

± 4

width (m)



Duration (years) 18 ± 0.3 10 ± 0.3 7 ± 0.3 11 ± 0.3 10 ± 0.3 4 ± 0.3 10 ± 0.3 60 ± 0.8

Accretion (m
2) 125529 ± 27774 45276 ± 6339 99194 ± 13887 50226 ± 8036 70686 ± 9189 30156 ± 7539 70178 ± 12127 421067 ± 34789

Erosion (m2) ‐64915 ± 25388 ‐74670 ± 12694 ‐24569 ± 6142 ‐69550 ± 11128 ‐52358 ± 9948 ‐14969 ± 6137 ‐50172 ± 11906 ‐301031 ± 33224

Net Change (m
2) 60614 ± 37629 ‐29394 ± 14188 74625 ± 15185 ‐19324 ± 13726 18328 ± 13543 15187 ± 9721 20006 ± 17332 120036 ± 48106

Accretion Rate  (m
2y‐1) 6974 ± 1548 4528 ± 652 14171 ± 2095 4566 ± 744 7069 ± 949 7539 ± 1987 7474 ± 1329 44846 ± 3551

Erosion Rate  (m
2 y‐1) ‐3606 ± 1412 ‐7467 ± 1294 ‐3510 ± 893 ‐6323 ± 1030 ‐5236 ± 1010 ‐3742 ± 1566 ‐4981 ± 1201 ‐29884 ± 2999

Mean linear Accretion 

Rate (m  y‐1)
0.347 ± 0.077 0.235 ± 0.034 0.754 ± 0.111 0.242 ± 0.039 0.365 ± 0.049 0.401 ± 0.106 0.390 ± 0.069 2.343 ± 0.186

Mean Linear Erosion 

Rate (m y‐1)
‐0.180 ± 0.070 ‐0.387 ± 0.067 ‐0.187 ± 0.048 ‐0.334 ± 0.054 ‐0.270 ± 0.052 ‐0.199 ± 0.083 ‐0.259 ± 0.062 ‐1.557 ± 0.156

Mean Day of Peak Flow 154.13 ± 5.06

Mean Peak Flow (m
3s‐1) 11.69 ± 0.94

Max Peak Flow (m
3s‐1) 19.67 ± 3.53

Mean Bankfull Duration (days) 33.55 ± 5.84

Max Bankfull Duration

(days)
52.33 ± 12.86

Mean Days Above 

Bankfull Flow 
20.33 ± 4.26

Max Days Above 

Bankfull Flow 
50.00 ± 11.71

Mean Duration Above Baseflow  

(days)
243.50 ± 25.82

Max Duration Above 

Baseflow (days)
345.83 ± 23.74

Mean Days Above Baseflow  244.30 ± 17.86

Max Days Above Baseflow 294.50 ± 37.97

Mean Days Since Bankfull Flow 334.27 ± 70.58

Max Days Since Bankfull Flow 864.67 ± 140.96

Mean Day Baseflow Ends 298.40 ± 14.73

Mean Day Bankfull Flow Ends 174.67 ± 4.11

Mean No. Peaks Above Bankfull 1.52 ± 0.61

Maximum No. Peaks 

Above Bankfull
3.33 ± 1.37

Mean Total Recession 

Slope (m3 s‐1 day‐1)
0.08 ± 0.01

Max Total Recession 

Slope (m
3 s‐1 day‐1)

0.12 ± 0.03

Mean Bankfull Recession

Slope (m3 s‐1 day‐1)
0.06 ± 0.01

Max Bankfull Recession

Slope (m
3 s‐1 day‐1)

0.08 ± 0.02

Mean Total Annual 

Volume (km3)
0.060 ± 0.006

Max Total Annual 

Volume (km3)
0.094 ± 0.015

Mean Bankfull 

Volume (km
3)

0.031 ± 0.005

Max Bankfull 

Volume (km3)
0.058 ± 0.018

Mean Total

152.7 162 156.3 151.5 147 155.3

1955-1973 1973-1983 1983-1990 1990-2001 2001-2011 2011-2015

22.56 18.32 21.86 23.74 16.02 15.49

11.84 11.6 12.9 12.35 11.31 10.15

61 48 64 63 47 31

31.3 38.1 41 36.1 29.3 25.5

59 46 62 56 47 30

20.3 24 22.6 23.8 18.5 12.8

362 331 364 305 364 349

215.5 218 255.1 230.9 263 278.5

281 261 362 275 316 272

232.1 217.8 266.7 243.9 259.8 245.5

925 904 935 579 944 901

267 327.1 349.6 261.3 345.3 455.3

173.3 181.9 176.8 172.7 170.3 173

280.2 288.6 304 305.3 291 321.3

3 4 5 4 3 1

1.9 2 1.8 1.4 0.5

0.149 0.142 0.097 0.13 0.124 0.085

0.094 0.087 0.083 0.077 0.079 0.056

0.12 0.086 0.082 0.075 0.091 0.05

0.076 0.064 0.059 0.058 0.066 0.047

0.109 0.081 0.103 0.110 0.087 0.077

0.060 0.059 0.067 0.065 0.057 0.051

0.074 0.047 0.072 0.073 0.050 0.031

0.027 0.034 0.037 0.033 0.027 0.024



Duration (y) 18 ± 0.3 10 ± 0.3 7 ± 0.3 11 ± 0.3 10 ± 0.3 4 ± 0.3

Area Eroded from SCREAM 

(m2)
12228 ± 5060 12428 ± 2113 7341 ± 1835 16774 ± 2684 13317 ± 2530 3752 ± 1538

Mean Depth of Eroded (m) 0.54 ± 0.01 0.60 ± 0.01 0.58 ± 0.01 0.69 ± 0.01 0.61 ± 0.01 0.72 ± 0.01

Volume Eroded  (m3)  ‐6640 ± 2751 ‐7476 ± 1277 ‐4272 ± 1071 ‐11519 ± 1851 ‐8080 ± 1541 ‐2713 ± 1113 ‐40700 ± 4169

Mean erosion rate (m
3/y) ‐369 ± 153 ‐748 ± 130 ‐610 ± 155 ‐1047 ± 171 ‐808 ± 156 ‐678 ± 283

Mean bank area erosion 

rate (m2/y)c
#REF! ± #REF! #REF! ± #REF! #REF! ± #REF! #REF! ± #REF! #REF! ± #REF! #REF! ± #REF!

Point bar area of accretion 

from SCREAM (m2)
28392 ± 4356 12391 ± 1735 14534 ± 2035 13612 ± 2178 14493 ± 1884 7403 ± 1851

Mean vertical accretion 

within eroded areas (m)
0.59 ± 0.01 0.33 ± 0.01 0.23 ± 0.01 0.36 ± 0.01 0.33 ± 0.01 0.13 ± 0.01

Estimated accretion along 

point bars (m3)
16865 ± 2608 4089 ± 587 3357 ± 493 4941 ± 803 4783 ± 640 977 ± 255

Overbank deposition from 

regression (m3)
459 ± 92 302 ± 61 213 ± 44 305 ± 62 322 ± 66 168 ± 36

Total volume accreted 

(m3)
17324 ± 2610 4391 ± 590 3570 ± 495 5246 ± 806 5105 ± 643 1145 ± 258 36780 ± 2921

Mean accretion rate (m3/y) 962.43 ± 145.87 439.11 ± 60.462 509.97 ± 73.961 476.9 ± 74.406 510.54 ± 66.126 286.16 ± 67.924

Net volume (m3) 10684 ± 3792 ‐3085 ± 1407 ‐702 ± 1179 ‐6273 ± 2018 ‐2975 ± 1670 ‐1568 ± 1142 ‐3920 ± 5091

Totals1955 ‐ 1973 1973 ‐ 1983 1983 ‐ 1990 1990 ‐ 2001 2001 ‐ 2011 2011 ‐ 2015
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# This code will examine to hydrograph dataset, select matching days  
# and times and conduct a regression that can be used to fill in missing data 
# Author: Nicholas A. Sutfin 
# Date: Oct. 18th 2017, last modified May 8th, 2020 
 
library("plyr") 
#library("smwrBase", lib.loc="~/R/win-library/3.2") 
library("lattice") #, lib.loc="C:/Program Files/R/R-3.3.0/library") 
library("lubridate") 
library("hydroGOF") 
 
# Set user space  
loadpath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/' 
savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_1.91_BestFit/' # 
Calculating slope as line between 1st and last points (2p) 
setwd(loadpath) 
 
All_DailyQ_1935_2020 = read.csv("All_DailyQ_1935_2020.csv", stringsAsFactors = F) 
#"All_DailyQ_1910_2020.csv", stringsAsFactors = F) 
 
# Load ALmont data for 2015-2017 as csv file, convert to SI units, code the date as a date, and 
define the year 
Alm_Q <- read.csv("ER_AlmQ_2015-2019.csv", header=TRUE) 
Alm_Q$Q_cfs = as.numeric(as.character(Alm_Q$Q_cfs)) 
Alm_Q$Alm_Q_cms = Alm_Q$Q_cfs*0.0283168 
Alm_DailyQ = as.data.frame(Alm_Q) 
Alm_DailyQ = ddply(Alm_DailyQ, ~date, summarise, Alm_Q_cms = mean(Alm_Q_cms)) 
Alm_Qdaily <- Alm_DailyQ[order(as.Date(Alm_DailyQ$date, format="%m/%d/%y")),] 
Alm_Qdaily$Date = as.Date(Alm_Qdaily$date, "%m/%d/%y") 
Alm_Qdaily$year = year(Alm_Qdaily$Date) 
Alm_Qdaily$month = month(Alm_Qdaily$Date) 
Alm_Qdaily$Calday = day(Alm_Qdaily$Date) 
Alm_Qdaily$day = yday(Alm_Qdaily$Date) 
 
# Load Pump house data for 2015-2017 as csv file, convert to SI units, code the date as a date, 
and define the year 
#PH_Qdaily <- read.csv("ER_PH_2015-17Q.csv", header=TRUE ) 
PH_Data <- read.csv("ER_PHQ_2014-2018.csv", header=TRUE) 
PH_DailyQ = ddply(PH_Data, ~date, summarise, PHQ_cms = mean(PHQ_cms)) 
PH_Qdaily <- PH_DailyQ[order(as.Date(PH_DailyQ$date, format="%m/%d/%y")),] 
PH_Qdaily$Date = as.Date(PH_Qdaily$date, "%m/%d/%y") 
PH_Qdaily$year = year(PH_Qdaily$Date) 
PH_Qdaily$month = month(PH_Qdaily$Date) 
PH_Qdaily$Calday = day(PH_Qdaily$Date) 



PH_Qdaily$day = yday(PH_Qdaily$Date) 
names(PH_Qdaily)[2]<-paste("PH_Q_cms") 
 
#_____________________________________________________________________________
____ 
# Find matching dates and create new dataset 
DailyQ_diff <- setdiff(PH_Qdaily$Date, Alm_Qdaily$Date) 
DailyQ_int <- intersect(PH_Qdaily$Date, Alm_Qdaily$Date) 
 
# Find PH Q data for dates overlapping the with Almont gage 
PH_DailyQ_match <- PH_Qdaily[PH_Qdaily$Date %in% DailyQ_int, ] 
# Find Almont gauge data that overlaps with pump house study site data  
Alm_DailyQ_match <- Alm_Qdaily[Alm_Qdaily$Date %in% DailyQ_int, ] 
# Merge the two overlapping datasets side my side by matching dates 
All_DailyQ_15_18 <- cbind(Alm_DailyQ_match, PH_DailyQ_match) 
 
rows = length(All_DailyQ_15_18$PH_Q_cms) #[All_DailyQ_15_18$day > 105 & 
All_DailyQ_15_18$day < 319]) 
Qmat <- matrix(0, rows, 3) 
Q = as.data.frame(Qmat) 
names(Q)[1]=paste("PH") 
names(Q)[2]=paste("AL") 
names(Q)[3]=paste("day") 
 
# April 15th = 105 Nov 15th = 319, so 104-320 is good 
Q$PHDate = All_DailyQ_15_18$Date[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$PH = All_DailyQ_15_18$PH_Q_cms[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$ALDate = All_DailyQ_15_18$Date[which(is.na(All_DailyQ_15_18$PH_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$AL = All_DailyQ_15_18$Alm_Q_cms[which(is.na(All_DailyQ_15_18$Alm_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
Q$day = All_DailyQ_15_18$day[which(is.na(All_DailyQ_15_18$Alm_Q_cms) == FALSE)] 
#[All_DailyQ_15_18$day > 105 & All_DailyQ_15_18$day < 319] 
 
Qreg <- lm(Q$PH ~ Q$AL, data = Q) 
summary(Qreg) 
Qreg # adjusted R squared = 0.97 
 
# For all days: PHQ = -0.081804 + 0.211284(Alm) 
# Excluding frozen days, regression output: PHQ = 0.010948 + 0.211611(Alm) 
 
par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5, lwd = 1) 



plot(All_DailyQ_15_18$Alm_Q_cms, All_DailyQ_15_18$PH_Q_cms, col = "blue", 
     xlab = expression(paste("Discharge at Almont (m"^"3", "s"^"-1",")")),  
     ylab = expression(paste("Discharge (m"^"3", "s"^"-1",")"))) 
lines(All_DailyQ_15_18$Alm_Q_cms, Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_DailyQ_15_18$Alm_Q_cms,  
      col = "black") 
par(cex = 1) 
#points(Q$AL, Q$PH, pch = 19, col = "red") 
text(10, 15, expression("r"^{2} ~"= 0.97"), cex = 1.5) 
 
# Load Almont discharge data from 1910 to 2020, cut data to timeframe of interest (1955-2015) 
# and convert to cms 
#_____________________________________________________________________________
____ 
Alm_Qdaily_1910_2020 <- read.csv("Alm_Q_cfs_1910_2020.csv", header=TRUE) 
Alm_Qdaily_1910_2020$Alm_Q_cms = Alm_Qdaily_1910_2020$Alm_Q_cfs*0.0283168 
Alm_Qdaily_1910_2020$Date = as.Date(Alm_Qdaily_1910_2020$Date, "%m/%d/%Y") 
 
All_DailyQ_1910_2020 = Alm_Qdaily_1910_2020 
All_DailyQ_1910_2020$year = format(All_DailyQ_1910_2020$Date, "%Y") 
All_DailyQ_1910_2020$month = format(All_DailyQ_1910_2020$Date, "%m") 
All_DailyQ_1910_2020$day = format(All_DailyQ_1910_2020$Date, "%d") 
All_DailyQ_1910_2020$yday = yday(All_DailyQ_1910_2020$Date) 
All_DailyQ_1910_2020$Mod_PH_Q_cms = Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_DailyQ_1910_2020$Alm_Q_cms 
 
# Use regression to extend daily Q for PH based on Almont flow 
#_____________________________________________________________________________
____ 
# regression output: PHQ = x + y(Alm) 
par(mfrow=c(1,1), mar=c(4,5,3,2), cex = 1.5) 
All_DailyQ_2014_2020 = All_DailyQ_1910_2020[37987:length(Alm_Qdaily_1910_2020$Date), ] 
 
#_____________________________________________________________________________
____ 
# plot observed vs. modeled data for East River and calculate Nash-Sutcille and RMSE 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.1) 
 
Date = All_DailyQ_2014_2020$Date 
Modeled_PHQ = subset(All_DailyQ_2014_2020, Date > "2014-9-30") 
#min(WaterYear15):max(WaterYear15))) 
 
# Select only uniqe values 
Observed_PHQ = All_DailyQ_15_18[,c(3,9)] 



 
PH_Q_int <- intersect(Observed_PHQ$Date[order(Observed_PHQ$Date)], 
Modeled_PHQ$Date[order(Modeled_PHQ$Date)]) 
Modeled_Q_match <- Modeled_PHQ[Modeled_PHQ$Date %in% PH_Q_int, ] 
Observed_Q_match <- Observed_PHQ[Observed_PHQ$Date %in% PH_Q_int, ] 
PHQ_15_18 = cbind(Modeled_Q_match, Observed_Q_match) 
 
Qreg2 <- lm(PHQ_15_18$PH_Q_cms ~ PHQ_15_18$Alm_Q_cms, data = All_DailyQ_15_18) 
summary(Qreg2) 
Qreg2 
 
par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5, lwd = 1) 
# Plot Almont flow data 
plot(All_DailyQ_15_18$Date, All_DailyQ_15_18$Alm_Q_cms, lwd = 2, type = "l", 
     col = "black", xlab = "Year", ylab = expression(paste("Discharge (m"^"3", "s"^"-1",")")), lty = 
5, cex = 1.5) 
# Plot observed ER study site flow data 
lines(PHQ_15_18$Date[order(PHQ_15_18$Date)], 
PHQ_15_18$PH_Q_cms[order(PHQ_15_18$Date)], lty = 1, col = "blue", lwd = 2, type = "l",  
     xlab = expression(paste("Discharge (m"^"3", "s"^"-1",")")), ylab = "Time (years)") 
#polygon(PHQ_15_17$date, PHQ_15_17[,5], col = "blue") 
 
# Plot modeled ER study site flow data 
lines(PHQ_15_18$Date[order(PHQ_15_18$Date)], 
PHQ_15_18$Mod_PH_Q_cms[order(PHQ_15_18$Date)], col = 'red', lwd = 2, lty = 2) 
legend("topright", col = c("black", "blue", "red"), lty = c(5,1,2),  
       lwd = 2, legend = c('Almont', 'Observed', 'Modeled')) 
 
NSE(PHQ_15_18[,10],PHQ_15_18[,8]) 
text(10, 15, expression("NSE = 0.97"), cex = 1.5) 
# Nash-Sutcliffe coeeficient = 0.97 
 
#_____________________________________________________________________________
____ 
# Format data for hydrograph analysis 
write.csv(All_DailyQ_2014_2020,"All_DailyQ_2014_2020.csv") 
write.csv(All_DailyQ_1910_2020,"All_DailyQ_1910_2020.csv") 
 
ER_Q_35_20 <- All_DailyQ_1910_2020[All_DailyQ_1910_2020$year > 1934, ] 
write.csv(ER_Q_35_20, "All_DailyQ_1935_2020.csv") 
 
################################### 
# Create plots of Almont and East RIver 



#_____________________________________________________________________________
____ 
par(mfrow=c(1,1), mar=c(4,5,1,1), cex = 1) 
All_Q_1910_2020 = All_DailyQ_1910_2020  
ER_Q_55_20 <- All_Q_1910_2020[All_Q_1910_2020$year > 1954, ] 
 
#_____________________________________________________________________________
____ 
# Create a stacked plot of hydrographs for the period of record  
#_____________________________________________________________________________
____ 
 
par(mfrow=c(1,1), mar=c(4,5,2,2), cex = 1.5) 
 
# Create an initial plot to add hydrographs from all years 
plot(ER_Q_55_20$yday[ER_Q_55_20$year == 1955], 
ER_Q_55_20$Mod_PH_Q_cms[ER_Q_55_20$year == 1955], type = "l",   
    ylim = c(0,25), xlab = "Day of Year",  
    ylab = expression(paste("Modeled discharge (m"^"3", "s"^"-1",")")), lwd = 1,  
    main = "East River 1955-2015") 
 
# Create a smaller zoomed in plot to add hydrographs from all years 
#plot(ER_Q_55_20$day[ER_Q_55_20$year == 1955], ER_Q_55_20[ER_Q_55_20$year == 1955, 
3], type = "l",   
 #    ylim = c(0,11), xlim = c(160,220), xaxt = "n", xlab = "Day of Year", ylab = "Discharge (cms)", 
lwd = 1, main = "East River 1955-2017") 
 
# Create a list of unique years for the period of interest 
years = unique(ER_Q_55_20$year) 
 
# A for loop to plot hydrographs for all years on top of one another  
for (i in 1:65) { 
  years2plot = years[i] 
  print(years2plot) 
  dat.yr = subset(ER_Q_55_20, year == years2plot) 
  print(dat.yr) 
  lines(dat.yr$yday, dat.yr$Mod_PH_Q_cms, col = "royalblue1", lwd = 1) 
} 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
AllFlow = ddply(ER_Q_55_20, ~yday, summarise, 
                MeanFlow = mean(Mod_PH_Q_cms), 
                LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
                UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 



 
# Plot a transparent band representing the 95% confidence level                                     
polygon(c(AllFlow$yday,rev(AllFlow$yday)),c(AllFlow$LCI,rev(AllFlow$UCI)),border=NA,  
        col = rgb(red = 0.0, green = 0.0, blue = 0.5, alpha = 0.25)) 
 
 
#------------------------------------------- 
# Plot mean hydrographs for 6 time intervals 
 
Q_55_73 = ER_Q_55_20[ER_Q_55_20$year < 1974, ] 
Q_74_83 = ER_Q_55_20[ER_Q_55_20$year > 1973 & ER_Q_55_20$year < 1984, ] 
Q_84_90 = ER_Q_55_20[ER_Q_55_20$year > 1983 & ER_Q_55_20$year < 1991, ] 
Q_91_01 = ER_Q_55_20[ER_Q_55_20$year > 1990  & ER_Q_55_20$year < 2002, ] 
Q_02_11 = ER_Q_55_20[ER_Q_55_20$year > 2001  & ER_Q_55_20$year < 2012, ] 
Q_12_17 = ER_Q_55_20[ER_Q_55_20$year > 2011, ] 
Q_12_15 = ER_Q_55_20[ER_Q_55_20$year > 2011  & ER_Q_55_20$year < 2016, ] 
 
 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.5) 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow73 = ddply(Q_55_73, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow73$yday, type = "line", #ylim = c(0, 11), 
      Flow73$MeanFlow, col = "red", lwd = 2.5, 
     xlab = "Day of the year", ylab = "Discharge (cms)") # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow83 = ddply(Q_74_83, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow83$yday,  
      Flow83$MeanFlow, col = "orange", lwd = 2.5) # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow90 = ddply(Q_84_90, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow90$yday, 
      Flow90$MeanFlow, col = "yellow", lwd = 2.5) # Plot the mean hydrograph value 



 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow01 = ddply(Q_91_01, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow01$yday, 
      Flow01$MeanFlow, col = "green", lwd = 2.5) # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow11 = ddply(Q_02_11, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow11$yday, 
      Flow11$MeanFlow, col = "darkblue", lwd = 3.5) # Plot the mean hydrograph value 
 
# Calculate the mean and 95% confidence level for all hydrographs in the period of interest 
Flow17 = ddply(Q_12_15, ~yday, summarise, 
               MeanFlow = mean(Mod_PH_Q_cms), 
               LCI = quantile(Mod_PH_Q_cms, 0.025, na.rm = TRUE), 
               UCI = quantile(Mod_PH_Q_cms, 0.975, na.rm = TRUE)) 
lines(Flow17$yday, 
      Flow17$MeanFlow, col = "black", lwd = 2.5) # Plot the mean hydrograph value 
 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1.2) 
legend(280, 25, legend = c("1955-1973", "1974-1983", "1984-1990", "1991-2001", "2002-2011", 
"2012-2015"),  
       col = c("red", "orange", "yellow", "green", "darkblue", "black"), 
       lty = 1.2, lwd = 2.5, bg = "gray85") 
 
#************************************************************ 
 
###Stream Flow Frequency Analysis and Recession Limb Quantification 
 
################################## 
# From time lapse photos and the stage data, bankfull stage appears to occur at about 4 cms 
################################## 
 
#setwd(loadpath) 
#All_DailyQ_1935_2020 = read.csv("All_DailyQ_1935_2020.csv", stringsAsFactors = F) 
#"All_DailyQ_1910_2020.csv", stringsAsFactors = F) 
data = All_DailyQ_1935_2020 #"All_DailyQ_1910_2020.csv", stringsAsFactors = F) 
dat.er = data[ ,c(2,3,5:9)] 



dat.er$flow.er = dat.er$Mod_PH_Q_cms 
 
# estimate lowflow conditions and a reference basflow by which to measure the recession limb 
Lowflow = mean(na.omit(dat.er$flow.er[dat.er$month %in% list("10","11","12","1","2","3")])) 
Baseflow =  1.91 #Lowflow #mean(na.omit(dat.er$flow.er[dat.er$month %in% list("9")])) 
BFQ = 8 # define a threshold approximation for bankfull discharge 
# Estimated bankkfull at 8 cms 
 
# Initialize storage variables  
years = unique(dat.er$year) # Unique years for indexing (using water years (10/01-9/30)) 
years = years[years > 1934] 
 
# Aggregate Yearly (or monthly) data by mean, median, max, and min (or anything else) 
x = subset(dat.er, year %in% c(1935:2019)) 
statistics = as.data.frame(as.list(aggregate(flow.er ~ year ,data = x, FUN=function(x) c(mean 
=mean(x), median=median(x), max = max(x),min = min(x))))) 
 
maxflow = as.data.frame(matrix(ncol=10,nrow =85))#length(years))) 
# define the list of column names for the dataframe 
names(maxflow) = c("year","peakdate","flow.er","BFflow", "BF_EndDay", "enddate", 
"TotalSlope","BFslope","BF_StartDay","PeakSlope") 
 
for (k in 2:85){ 
  # Skip years where insufficient data was collected using a # of days in year as threshold. bad 
  if (length(dat.er$Date[dat.er$year == years[k]]) < 250) { 
  }  
  else { 
    # find peak flows greater than 500cfs and corresponding year and Date 
    dat.sub = subset(dat.er, year == years[k]) # Subset larger data set 
    dat.sub$Date = as.Date(dat.sub$Date, format="%Y-%m-%d")  
    medianflow = mean(dat.sub$flow.er[dat.sub$month %in% list("10","11","12")]) 
 #median(na.omit(dat.sub$flow)) # find median flow (used as a threshold, need better method) 
    maxflow[k,3] = max(na.omit(dat.sub$flow.er)) # find and store peak flows 
    maxflow[k,1] = years[k] # store year 
    index = tail(which(dat.sub$flow.er == maxflow[k,3]), n=1) # find index of peak flow to 
detrmine the exact Date 
    maxflow[k,2] = as.character(dat.sub$Date[index]) # Date of peak flow 
    #as.Date(index, origin = dat.sub$Date[1]) # 
     
    # Bankfull flow 
    if (max(dat.sub$flow.er >= 8)) { 
      indX1 = min(which(dat.sub$flow.er >= 8)) # index the date flow rises above BF 
      indX = max(which(dat.sub$flow.er >= 8)) # index the date flow drops below BF 
      BF_start = as.character(dat.sub$Date[indX1]) # Assign first date flow exceeds BF 



      maxflow[k,9] = BF_start # Assign first date flow exceeds BF 
      BF_end = as.character(dat.sub$Date[indX]) # Assign last date flow drops below BF 
      maxflow[k,5] = BF_end # Assign last date flow drops below BF 
      maxflow[k,4] = dat.sub$flow.er[indX] 
    } 
    else { 
      maxflow[k,5] = NA 
      maxflow[k,4] = NA 
      maxflow[k,9] = NA 
      indX = NA 
      BF_start = NA 
      BF_end = NA 
      print(years[k]) 
      } 
     
    ## Extracting Recession limb 
    # This section finds the Dates corresponding to the peakflow (already found above) and a 
later 
    # Date corresponding to "normal" flow conditions. I am currently using the median but it's a 
bad 
    # metric. 
    # Starting at the index of the peak flow Date, step forward one day (increasing the index by 1) 
and 
    # check if the flow that day is a certain percentage from the median value.  
    PeakDate = as.character(dat.sub$Date[index]) # used for extracting recession limb  
    maxdepth = maxflow[k,3] # used for extracting recession limb 
    repeat{ 
      index = index+1 
      maxdepth = dat.sub$flow.er[index] # flow one day later 
      if (is.na(maxdepth)){ # check if no flow was recorded 
      } else if (Baseflow > (maxdepth)){ # Check if flow is within X% of median value 
        break # was preiously ((medianflow) + Qmin) > maxdepth)) 
        # The "index" term now identifies the obs where Q reaches a baseflow condition ~0.8cms 
      } else if (index == length(dat.sub$flow.er)) { 
        print(paste(dat.sub$year[1])) # identify the year 
        break 
        # This forces the loop to break if Q never falls below baseflow 
      } 
    } 
   #*************************************** 
    # Indexing for bankfull slope calculation 
    BFDate = maxflow[k,5] 
 
    if (is.na(maxflow[k,5]) == FALSE) { 



        repeat{ 
      indX = indX+1 #increment one more day after last BF flow 
      BFQ = dat.sub$flow.er[indX] # flow one day later 
      if (is.na(BFQ)){ # check if no flow was recorded and do nothing 
      } else if (Baseflow > (BFQ)){ # Check if flow is within threshold of median value was 
previously ((medianflow) + Qmin > (BFQ)) 
        break # Exist loop if Q drops below baseflow and saved that Q value as BFQ 
      } else if (indX == length(dat.sub$flow.er)) {  
        print(paste(dat.sub$year[1])) 
        break # Exit loop if flow does not drop below baseflow 
      } 
    } 
    } 
     
    BaseDate = as.character(dat.sub$Date[index]) 
    maxflow[k,6] = as.character(dat.sub$Date[index]) 
    #FirstDate = dat.sub$Date[1] #Set the first date of the year 
     
    # Convert Dates to yday for duration calculations 
    BaseDay=yday(BaseDate) 
    PeakDay=yday(PeakDate) 
    BF_endDay=yday(BF_end) 
    BF_startDay=yday(BF_start) 
    Last_index=length(dat.sub$Date) 
    LastDay = yday(dat.sub$Date[Last_index]) 
    BaseFlow_Date = as.Date(BaseDay, origin = dat.sub$Date[1]) 
     
    ######################################################################### 
    # Calculate and plot slopes of recession limb at various stages 
    #________________________________________________________________________ 
     
    # Calculate recession slope based on best fit regression line between all points 
    TotSlopeQ = dat.sub$Mod_PH_Q_cms[dat.sub$yday %in% c(PeakDay:BaseDay)] 
    TotSlopeDate = dat.sub$Date[dat.sub$yday %in% c(PeakDay:BaseDay)] 
    TotSlopeReg = lm(TotSlopeQ ~ TotSlopeDate) 
    summary(TotSlopeReg) 
     
    maxflow[k,7] = -1*TotSlopeReg$coefficients[2] #((maxflow[k,3])-Baseflow)/(BaseDay-
PeakDay) # Slope of line from start to end of recession limb 
    plot(dat.sub$Date, dat.sub$Mod_PH_Q_cms, type = "line", main = paste(years[k]), 
         ylab = "Discharge (cms)", xlab = NA) 
    points(TotSlopeDate, TotSlopeQ, pch = 19, col = "violet") 
    lines(TotSlopeDate, predict(TotSlopeReg), col = "purple", lwd = 2) 
     



    # Calculate slope as line between two points 
    #maxflow[k,7] = (maxflow[k,3]-Baseflow)/(BaseDay-PeakDay) 
    #plot(dat.sub$Date, dat.sub$Mod_PH_Q_cms, type = "line", main = paste(years[k]), 
     #    ylab = "Discharge (cms)", xlab = NA) 
    #points(TotSlopeDate, TotSlopeQ, pch = 19, col = "violet") 
    #QPoints = c(maxflow[k,3],Baseflow) 
    #TotDayPts =c(PeakDate, BaseDate) 
    #DayPoints = as.Date(TotDayPts, "%Y-%m-%d") 
    #lines(DayPoints, QPoints, col = "purple", lwd = 2) 
     
     
    # Calculate the recession slope from the peak to bankfull flow as the best fit line  
    if (is.na(maxflow[k,4])) { 
      maxflow[k,10] = NA #Calculate slope of highest peak lower than bankfull to baseflow 
    } 
    else { 
     
    # Calculate recession slope based on best fit regression line between all points   
    PeakSlopeQ = dat.sub$Mod_PH_Q_cms[dat.sub$yday %in% c(PeakDay:BF_endDay)] 
    PeakSlopeDate = dat.sub$Date[dat.sub$yday %in% c(PeakDay:BF_endDay)] 
    PeakSlopeReg = lm(PeakSlopeQ ~ PeakSlopeDate) 
    summary(PeakSlopeReg) 
    points(PeakSlopeDate, PeakSlopeQ, pch = 20, col = "pink") 
    lines(PeakSlopeDate, predict(PeakSlopeReg), col = "red", lwd = 2) 
    maxflow[k,10] = -1*PeakSlopeReg$coefficients[2] #((maxflow[k,3])-
(maxflow[k,4]))/(BF_endDay-PeakDay) #SLope from peak to bankfull 
     
    # Calculate slope as line between two points 
    #maxflow[k,10] = (maxflow[k,3]-maxflow[k,4])/(BF_endDay-PeakDay) 
    #points(PeakSlopeDate, PeakSlopeQ, pch = 20, col = "pink") 
    #QPoints = c(maxflow[k,3],maxflow[k,4]) 
    #PeakDayPts =c(PeakDate, BF_end) 
    #DayPoints = as.Date(PeakDayPts, "%Y-%m-%d") 
    #lines(DayPoints, QPoints, col = "red", lwd = 2) 
    } 
     
    # Calculate the bankfull slope from bankfull to base flow  
    if (is.na(maxflow[k,4])) { 
      maxflow[k,8] = NA #Calculate slope of highest peak lower than bankfull to baseflow 
    } 
    else { 
      # Calculate recession slope based on best fit regression line between all points 
      BFSlopeQ = dat.sub$Mod_PH_Q_cms[dat.sub$yday %in% c(BF_endDay:BaseDay)] 
      BFSlopeDate = dat.sub$Date[dat.sub$yday %in% c(BF_endDay:BaseDay)] 



      BFSlopeReg = lm(BFSlopeQ ~ BFSlopeDate) 
      summary(BFSlopeReg) 
      points(BFSlopeDate, BFSlopeQ, pch = 20, col = "lightblue") 
      lines(BFSlopeDate, predict(BFSlopeReg), col = "blue", lwd = 2) 
      maxflow[k,8] = -1*BFSlopeReg$coefficients[2] 
 
      # Calculate slope as line between two points 
      #maxflow[k,8] = (maxflow[k,4]-Baseflow)/(BaseDay-BF_endDay) 
      #points(BFSlopeDate, BFSlopeQ, pch = 20, col = "lightblue") 
      #QPoints = c(maxflow[k,4],Baseflow) 
      #BFDayPts =c(BF_end,BaseDate) 
      #DayPoints = as.Date(BFDayPts, "%Y-%m-%d") 
      #lines(DayPoints, QPoints, col = "blue", lwd = 2) 
       
    } 
   
    # Save year-days for duration calculations 
    maxflow[k,11] = BF_startDay 
    maxflow[k,12] = PeakDay 
    maxflow[k,13] = BF_endDay 
    maxflow[k,14] = BaseDay  
    maxflow[k,15] = BF_endDay - BF_startDay # Duration Of recession Limb 
    maxflow[k,16] = BaseDay - PeakDay # Duration Of recession Limb 
    maxflow[k,17] = BaseFlow_Date 
    maxflow[k,18] = LastDay # Last recorded day of the year 
     
    # Cumulative days before and after bankfull 
    if (is.na(BF_endDay)==FALSE) { # If there was a bankfull flow (i.e., BF_endDay is not NA) 
      maxflow[k,19] = LastDay - BF_endDay  # Calculate the days since BF ended 
    } 
    else { # if there was no bankfull flow that year... 
      maxflow[k,19] = LastDay + maxflow[k-1,19] # add the total number of days in the year to the 
days since BF in the previous year 
    } 
     
    if (is.na(BF_endDay)==FALSE) { # If there was a bankfull flow (i.e., BF_endDay is not NA) 
      maxflow[k,20] = BF_startDay + maxflow[k-1,19] # Days since bankfull  
    } 
    else { 
     maxflow[k,20] = LastDay + maxflow[k-1,19] 
    } 
    BaseStart = min(which(dat.sub$flow.er >= Baseflow))  
    maxflow[k,21] = dat.sub$yday[BaseStart] 
     



    } 
} 
 
names(maxflow) = c("year","peakdate","flow.er","BFflow", "BF_EndDate", "enddate",  
                   "TotalSlope","BFslope","BF_StartDate","PeakSlope","BF_startDay", 
                   "PeakDay","BF_endDay","Base_endDay","BankfullDuration","RecDuration", 
                   "BaseFlow_Date","LastDay", "CummDaysAfterBF", "CummDaysBeforeBF", 
                   "Base_startDay") 
 
#maxflow = na.omit(maxflow) # Remove missing flow  
#if (is.na(maxflow[,2]) == FALSE) {} 
#maxflow$peakdate = as.Date(maxflow$peakdate) 
#maxflow$enddate = as.Date(maxflow$enddate)  
maxflow$duration = yday(maxflow$enddate)-yday(maxflow$peakdate) # Duration Of recession 
Limb 
 
# Generate ranks (note that R ranks opposite of what is desired) 
maxflow$rank = (length(maxflow$year)+1)-rank(maxflow$flow.er)  
maxflow$RI = (length(maxflow$year)+1)/maxflow$rank  
# Calculate excedence probablity 
maxflow$exceedence = 1/maxflow$RI  
#maxflow$NonBFdays = maxflow$LastDay - (maxflow$BF_endDay - maxflow$BF_startDay) 
#THis does not account for days before first and last BF day that do not have BF flow 
maxflow$BaseDuration = maxflow$Base_endDay - maxflow$Base_startDay #THis does not 
account for days before first and last BF day that do not have BF flow 
 
maxflow1 = maxflow[2:85,] 
maxflow = maxflow[,c(1,9,2,5,6,3,4,7,10,8,20,21,22,23,26,11:19,24,25)] 
 
setwd(savepath) 
write.csv(maxflow1, file = "Maxflow1_6.29.20_Base_1.91_BestFit.csv") 
write.csv(maxflow, file = "Maxflow_6.29.20_Base_1.91_BestFit.csv") 
 
#******************************************************** 
# Create plots 
maxflow1$enddate = as.Date(maxflow1$enddate, format="%Y-%m-%d") 
maxflow1$peakdate = as.Date(maxflow1$peakdate, format="%Y-%m-%d") 
 
plot(flow.er ~ maxflow1$RI, maxflow1, log = 'x', 
     xlab = "Recurrence Interval (years)", 
     ylab = "Annual Maximum discharge (cfs)", 
     main = "Flood Frequency Curve of Estimated Peak Flows")  
 
rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er", 



                        "hydrobounds","statistics","yearstats","years","colfunc", 
                        "loadpath","savepath","mod2","best.span", "Baseflow"))) 
 
 
########## 
# 
#   Recession Limb Characteristics 
# 
########## 
 
 
hydrobounds = as.data.frame(matrix(ncol = 2, nrow = 85)) # create data frame for flow regime 
characteristics  
names(hydrobounds) = c("start","end") # create colums for end and start dates for bankfull 
flow 
#hydrobounds$start = maxflow$BF_StartDay 
#hydrobounds$end = maxflow$BFdata 
hydrobounds$EndDay = maxflow$BaseDay # assign the ending date  
#maxflow$BF_StartDate = as.Date(maxflow$BF_StartDay) 
 
for (k in 1:85){ 
  #print(k) 
  years2plot = years[k] # create a list of each of the 83 years of record 
  dat.sub = subset(dat.er, year%in%years2plot) # create a subset of data for the current year 
  FirstDate = dat.sub$Date[1] #Set the first date of the year 
   
  #____________________________________________ 
  # Calculate cummulative annual volume of water discharged by East River 
  #dat.sub$yearVol[1] = dat.sub$flow.er[1]*86400   # set initial flow volume for 1st day 
  dat.sub$AnnualVol[1] = dat.sub$flow.er[1]*86400   # set initial flow volume for 1st day 
   
  for (n in 2:length(dat.sub$Date)){ # create for loop to add consecutive Q resulting in 
cumulative annual Q 
    dat.sub$AnnualVol[n] =  dat.sub$AnnualVol[n-1] + dat.sub$flow.er[n]*86400 # sum each 
consecutive flow volume for cummulative volume 
  } 
   
  #print(n) 
  maxflow$AnnualVol[k] = dat.sub$AnnualVol[n] # assign the total ANnual volume of discharge 
for each year 
  dat.sub$BFVol = NA #create column for bankfull flow volume and fill with NA 
   
  #____________________________________________ 
  # Calculate cummulative volume of overbank flow discharged by the East River 



  for (m in 1:length(dat.sub$Date)) { 
     
    if (is.na(maxflow$BF_StartDate[k]) == FALSE) { 
      # Set initial volume for first day above Bankful flow 
    dat.sub$BFVol[which(maxflow$BF_StartDate[k]==dat.sub$Date)] = 
dat.sub$flow.er[which(maxflow$BF_StartDate[k]==dat.sub$Date)]*86400   # set initial flow 
volume for 1st day 
    #Create indices for the start and end of bankfull flow 
    BF_StartIndex = which(maxflow$BF_StartDate[k]==dat.sub$Date) # Index the row for the first 
day of bankful flow begins 
    BF_EndIndex = which(maxflow$BF_EndDate[k]==dat.sub$Date) #index the row for the last 
day of bankful flow ends 
     
    #Creat a loop to add cumulative volume of bankfull discharge  
    for (p in BF_StartIndex+1:(BF_EndIndex-BF_StartIndex)) { # create for loop to add consecutive 
Q resulting in cumulative annual Q 
      #print(p) 
      # Old calculations that estimates max BF volume for all days between 1st and last day of 
bankfull flow. THis is an iver estimate 
      dat.sub$BFVol[p] = dat.sub$BFVol[p-1] + dat.sub$flow.er[p]*86400 # sum each consecutive 
flow volume for cummulative volume 
      #print(dat.sub$Date[p]) 
      } 
    maxflow$BFVol[k] = dat.sub$BFVol[p] # Assign yearly volume of flow above bankful to the 
annual summary 
  } 
  else { 
   dat.sub$BFVol[m] = NA #Assign days without bankful flow as NA values 
   maxflow$BFVol[k] = NA #Assign years without bankful flow as NA values 
   p=NA 
    
  } 
  } 
 
  hydrobounds$cvol.er[k] = dat.sub$AnnualVol[length(dat.sub$AnnualVol)] 
  hydrobounds$BFVol[k] = dat.sub$BFVol[max(which(is.na(dat.sub$BFVol) == FALSE))] 
 
  ### Model peaks and valleys 
 
  baseflowinitial = mean(dat.sub$flow.er[dat.sub$month %in% list("1","2")]) # Set initial 
baseflow conditions as the mean of flow in Jan and Feb 
  baseflowend = mean(dat.sub$flow.er[dat.sub$month %in% list("12")]) # Set ending baseflow 
conditions as the mean flow in Dec  
   



  #create column index for the peaks defined by a rise in flow followed by a decline in flow 
ocurring in three consecutive days  
  peaks = which(diff(sign(diff(dat.sub$flow.er)))==-2)+1  
  #create column index for the valleys defined by a decrease in flow followed by an increase in 
flow ocurring in three consecutive days  
  valleys = which(diff(sign(diff(dat.sub$flow.er)))==2)+1 
 
  peakbase = dat.sub$flow.er[peaks]-baseflowinitial 
  #print(peakbase) 
  valleybase = dat.sub$flow.er[valleys] - baseflowinitial 
  hydrographstart = 1 # Define HYDRGRAPHSTART  
   
  for (n in 1:length(peakbase)){ 
    if (length(valleys) < 1){ 
      hydrographstart = peaks[n] 
      peaks[n] 
      break 
    } 
   
    if(peakbase[n] > 40){ # Check if threshold was met 
      if (peaks[n] < valleys[1])  { # Check if first peak is greater than threshold 
        hydrographstart = peaks[n] 
        break 
        }  
      else { 
        firstvalley = max(valleys[valleys<peaks[n]]) 
        } 
 
        hydrographstart = firstvalley 
        break 
      } 
  } 
 
  bankfullflow = dat.sub$flow.er[dat.sub$flow.er > 8] 
  maxflow$bankfullvol[k] = sum((bankfullflow)*86400) # sum the volume of water exceeding 
bankfull flow 
  maxflow$bankfulldays[k] = length(bankfullflow) 
  hydrobounds[k,1] = hydrographstart 
  BaseDays = dat.sub$flow.er[dat.sub$flow.er > Baseflow] 
  maxflow$BaseflowDays[k] = length(BaseDays) 
  maxflow$NonBFdays[k] = maxflow$LastDay[k] - maxflow$bankfulldays[k] 
 
  if (k%%10 == 0){ 
 



  } 
  hydrobounds$startdate[k] = as.character(dat.sub$Date[hydrobounds$start[k]]) 
 
} 
 
# Write csv file of the temporary dat.sub datasheets for each year 
#setwd(savepath) 
write.csv(maxflow, "AnnualStats_6.29.20_Base_1.91_BestFit.csv", row.names = TRUE)  
 
rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er", 
                        "hydrobounds","statistics","yearstats","years","colfunc", 
                        "loadpath","savepath","mod2", "best.span"))) 
 
#### Extract Local Peaks above a specific flow rate above "bankfull" 
#library("signal", lib.loc="~/R/win-library/3.2") 
library("signal") 
 
# Estimated bankkfull at 8 cms 
 
for (k in 1:85){ 
  years2plot = years[k] 
  dat.sub = subset(dat.er,year == years2plot) 
  x1 = dat.sub$flow.er 
  x1 
  y1 = dat.sub$day 
 
  #myfilter = butter(1, .2, type = 'low', plane='z')   
  myfilter2 = filter(filt = sgolay(p = 12, n = 23), x = x1) # PEak FIlter started at 11 
  #myfilter3 = fftfilt(rep(1, 10)/10, x1, n = 365) 
  myfilter4 = filter(filt = sgolay(p = 7, n = 15), x = x1) # p = 5, n = 17 # 10 & 15 Oct 2017 # VALLEY 
filter good as it gets 
   
  #yfiltered = as.matrix(filter(myfilter, x1)) # apply filter 
  yfiltered = myfilter2 
  zfiltered = myfilter4 
  ##print("************************************************") 
  ##print(years2plot) 
  plot(dat.sub$flow.er,type = "n", main = paste(years2plot)) 
  lines(yfiltered,col = "red") 
  lines(dat.sub$flow.er) 
  points(dat.sub$flow.er) 
   
  #points(yfiltered[peaks]~dat.sub$day[peaks], pch = 19) 
   



  # PEaks 
  peaks = which(diff(sign(diff(yfiltered)))==-2)+1 #identify the peaks by setting a threshold 
where the next point decresaes by 2 
  ##print(peaks) 
  points(yfiltered[peaks]~dat.sub$yday[peaks], pch = 20, col = "orange") 
  peaks2keep = (peaks[yfiltered[peaks] > 8]) 
  ##print("peaks 2 keep") 
  ##print(length(peaks2keep)) 
  #SortPeaks <- peaks2keep[order(dat.sub$flow.er)] 
  ###print(SortPeaks) 
  ##print(peaks2keep) 
  points(yfiltered[peaks2keep]~dat.sub$yday[peaks2keep], pch = 19, col = "red") 
 
  # Valleys 
  valleys = which(diff(sign(diff(zfiltered)))==2)+1 #identify the trophs by setting a threshold 
where the next point incresaes by 2 
  print("valleys") 
  print(valleys) 
  points(zfiltered[valleys]~dat.sub$yday[valleys], pch = 20, col = "green") 
  valleys2keep = (valleys[zfiltered[valleys] < 100]) 
  print("valleys2keep") 
  print(valleys2keep) 
  points(zfiltered[valleys2keep]~dat.sub$yday[valleys2keep], pch = 19, col = "blue") 
   
  #PeakFlows = yfiltered(dat.sub$flow.er[peaks2keep]) 
   
  truepeak = c() 
  truepeak[1] = tail(which(dat.sub$flow.er == maxflow$flow.er[k]), n=1) # FInd the date of the 
max flow and assign to peak flow 
  ###print(truepeak) 
   
  RealPeaks = c() 
  leftthresh = c() 
  rightthresh = c() 
  PeakCount = 1 
  #NotPeak = 0 
  p = 0 
  Rp = 0 
  IsPeak = c() 
 
  for (n in 1:length(peaks2keep)) { 
     
    if (length(peaks2keep) == 0){ # If no peaks exceed bankfull... 



      #truepeak = yday(maxflow$peakdate[k]) #Determine julian day of max peakflow if below 
bankfull 
      ###print(peaks2keep) 
      PeakCount = 0 
      ##print(PeakCount) 
      break 
    }  
 
     
    IsPeak[n] = "N" 
    leftthresh[n] = max(valleys2keep[valleys2keep < peaks2keep[n]]) # identify the valley 
immediately before each peak above bankfull 
    rightthresh[n] = min(valleys2keep[valleys2keep > peaks2keep[n]]) # identify the valley 
immediately after each peack aboe bankfull 
    p=p+1 
     
    ##print(valleys2keep) 
    ##print(leftthresh[n]) 
    ##print(peaks2keep[n]) 
    ##print(rightthresh[n]) 
    ##print(years[k]) 
    ##print(leftthresh[n]) 
    ##print(dat.sub$flow.er[leftthresh[n]]) 
    ##print(peaks2keep[n]) 
    ##print(dat.sub$flow.er[peaks2keep[n]]) 
    ##print(rightthresh[n]) 
    ##print(dat.sub$flow.er[rightthresh[n]]) 
    #if (abs(yfiltered[peaks2keep[n]]-yfiltered[leftthresh[n]]) < 5 |  # was <50 eliminates  
    #   abs(yfiltered[peaks2keep[n]]-yfiltered[rightthresh[n]]) < 4){   # was <50 
    #q = 0 
    if ( 
        ((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2)  
          &  # peaks that are  >2 cms from valey to left  
        (dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2 & # peaks that are 
>2 cms from valey to right 
        ((dat.sub$flow.er[rightthresh[n]]) < 10 | (dat.sub$flow.er[leftthresh[n]]) < 10) & 
        #(n < length(peaks2keep) & peaks2keep[n+1] < rightthresh[n]) | 
        if (n > 1) { 
          TRUE 
          if (peaks2keep[n-1] < leftthresh[n]) { 
            TRUE 
            } 
            else { 
              FALSE 



              #IsPeak[n] = "N" 
              } 
          } else {TRUE} #JUst changed this from FALSE to TRUE 
        ) 
    { 
          truepeak[n] = leftthresh[n]-1+tail(which(dat.sub$flow.er[leftthresh[n]:rightthresh[n]] == 
max(dat.sub$flow.er[leftthresh[n]:rightthresh[n]])),n=1) 
          Rp = Rp + 1 
          RealPeaks[Rp] = peaks2keep[n] 
          IsPeak[n] = "Y" 
          #print("1st check ____________________________________") 
          #print(peaks2keep[n]) 
          #print(IsPeak[n]) 
          ##print(p) 
          ##print("1st Peaks to keep") 
          ##print(peaks2keep[n]) 
          ##print(dat.sub$flow.er[peaks2keep[n]]) 
          ##print(rightthresh[n]) 
          ##print(dat.sub$flow.er[rightthresh[n]]) 
          ##print("Real peaks") 
          ##print(length(RealPeaks)) 
          ##print(RealPeaks) 
          ##print(RealPeaks[p]) 
          ##print(peaks2keep[n-1])  
          ##print(RealPeaks[p-1]) 
          }  
     
    else { 
      ##print("Length of peaks 2 keep") 
      ##print(length(peaks2keep)) 
      ##print("RealPeaks") 
      ##print(length(RealPeaks)) 
      IsPeak[n] = "N" 
     
    if (length(peaks2keep) == 2 & n == 1) { #length(RealPeaks == 0)) { 
      #Rp = Rp + 1 
      RealPeaks[1] = peaks2keep[n]  
      IsPeak[n] = "Y" 
      Rp = Rp + 1 
      RealPeaks[Rp] = peaks2keep[n] 
      ##print(length(RealPeaks)) 
      ##print("conditional met") 
      ##print(length(RealPeaks)) 
      #print("3rd check____________________________________") 



      #print(peaks2keep[n]) 
      #print(IsPeak[n]) 
    } else { 
     
    #Check all but the last and first point for issues 
    if ((n > 1) & (n < length(peaks2keep))) { # NEED TO CORRECT THIS LINE 
      ##print("checking small cluster peaks") 
      #print("4th check____________________________________") 
      #print(peaks2keep[n]) 
      #print(IsPeak[n]) 
      IsPeak[n] = "N" 
      #TRUE 
       
    if(   
      (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2) & 
        (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) < 2))# |  
         #(dat.sub$flow.er[leftthresh[n]] > 10))  
         & 
        ((IsPeak[n-1] == "N") &  
         (dat.sub$flow.er[leftthresh[n]] < 10 | dat.sub$flow.er[leftthresh[n-1]] < 10 )))  |  
       
      (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) < 2) & 
       (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2)) &  
       (dat.sub$flow.er[leftthresh[n]] < 10) & 
      (leftthresh[n] > peaks2keep[n-1] | IsPeak[n-1] == "N") &  
      rightthresh[n] < peaks2keep[n+1]) 
       #& (IsPeak[n-1] == "N") 
       # THis creates an error because there is no value when there is no peak detected 
      ) 
      {  
      #TRUE 
      truepeak[n] = leftthresh[n]-1+tail(which(dat.sub$flow.er[leftthresh[n]:rightthresh[n]] == 
max(dat.sub$flow.er[leftthresh[n]:rightthresh[n]])), n=1) 
      Rp = Rp + 1 
      RealPeaks[Rp] = peaks2keep[n] 
      IsPeak[n] = "Y" 
      #print("5th check ____________________________________") 
      #print(peaks2keep[n]) 
      #print(IsPeak[n]) 
      ##print(Rp) 
      ##print("2nd Peaks to keep") 
      ##print(peaks2keep) 
      ##print(peaks2keep[n]) 
      ##print(peaks2keep[n-1]) 



      ##print(dat.sub$flow.er[peaks2keep[n]]) 
      ##print(rightthresh[n]) 
      ##print(dat.sub$flow.er[leftthresh[n]])       
      ##print(dat.sub$flow.er[peaks2keep[n]]) 
      ##print("Real peaks") 
      ##print(length(RealPeaks)) 
      ##print(RealPeaks) # Results in NA with no detected peak 
      ##print(RealPeaks[Rp]) 
      ##print(RealPeaks[Rp-1]) 
 
    } 
       
    } else { 
    IsPeak[n] = "N" 
    #print("6th check____________________________________") 
    #print(peaks2keep[n]) 
    #print(IsPeak[n]) 
     
    } 
       
    #Check last point and first point for discrepencies  
      if (n == length(peaks2keep)) {  
        #print("8th check____________________________________") 
        #print(peaks2keep[n]) 
        IsPeak[n] = "N" 
        #print(IsPeak[n]) 
        TRUE 
         
        if(  ((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2 & 
             (dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 1 & # peaks that 
are >2 cms from valey to right 
             (dat.sub$flow.er[leftthresh[n]]) < 10 & 
             leftthresh[n] > peaks2keep[n-1]) | 
              
          (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2) & 
           (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) < 2)) & 
           #(IsPeak[n-1] == "N"| 
            (leftthresh[n] != rightthresh[n-1]))  #|  
           
          #(((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) < 2) & 
          # (((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2)) &  
          # (dat.sub$flow.er[leftthresh[n]] < 10))# & 
          # leftthresh[n] > peaks2keep[n-1] &  
           #rightthresh[n] < peaks2keep[n+1]) 



        ) 
        {  
          TRUE 
          truepeak[n] = leftthresh[n]-1+tail(which(dat.sub$flow.er[leftthresh[n]:rightthresh[n]] == 
max(dat.sub$flow.er[leftthresh[n]:rightthresh[n]])), n=1) 
          Rp = Rp + 1 
          RealPeaks[Rp] = peaks2keep[n] 
          IsPeak[n] = "Y" 
          #print("9th check ____________________________________") 
          #print(peaks2keep[n]) 
          #print(IsPeak[n]) 
        } 
         
      } else { 
        FALSE 
        if (n == 1) { 
          #print("10th check ____________________________________") 
          #print(peaks2keep[n]) 
          #print(IsPeak[n]) 
          ##print(dat.sub$flow.er[peaks2keep[n]]) 
          ##print(dat.sub$flow.er[rightthresh[n]]) 
          TRUE 
           
           
          if ((dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[rightthresh[n]]) > 2 & 
              (dat.sub$flow.er[peaks2keep[n]] - dat.sub$flow.er[leftthresh[n]]) > 2 &  
              dat.sub$flow.er[leftthresh[n]] < 10 & 
              dat.sub$flow.er[rightthresh[n]] < 10 & 
              rightthresh[n] < peaks2keep[n+1]) { 
            TRUE 
            IsPeak[n] = "Y" 
            Rp = Rp + 1 
            RealPeaks[Rp] = peaks2keep[n] 
            #print("11th check____________________________________") 
            #print(peaks2keep[n]) 
            #print(IsPeak[n]) 
          } 
        } 
      } 
       
    } 
    } 
    if (length(RealPeaks) == 0 & length(peaks2keep) != 0) { 
      #TRUE 



      RealPeaks[1] = 1 
    } 
    PeakCount = length(RealPeaks) #PeakCount + p 
    ##print("PeakCount") 
    ##print(PeakCount)  
  } 
 
  truepeak = na.omit(truepeak) 
  ##print(truepeak) 
  ##print(peaks2keep) 
  #points(dat.sub$flow.er[truepeak]~dat.sub$day[truepeak], pch = 19) 
  #points(yfiltered[valleys]~dat.sub$day[valleys], pch = 19, col = "blue") 
   
  #hydrobounds$peak[k] = length(truepeak) 
  hydrobounds$peak[k] = PeakCount 
  bankfullflow = dat.sub$flow.er[dat.sub$flow.er > 8] # define bankfull flow threshold 
  hydrobounds$bankfullvol[k] = sum((bankfullflow)*86400) # sum the volume of water 
exceeding bankfull flow 
  hydrobounds$bankfulldays[k] = length(bankfullflow) 
   
} 
 
 
yearstats = cbind(maxflow[,-c(4,5)],hydrobounds[,-c(1,2)],statistics[,-1]) 
# You will have to rename the headers in excel unless I get some time to go back and clean 
things up a bit 
 
#setwd(savepath) 
write.csv(yearstats,"YearlyStatistics_6.29.20_Base_1.91_BestFit.csv") 
 
 
rm(list=setdiff(ls(), c("maxflow","dat","dat.almont","dat.bc","dat.er", 
                        "hydrobounds","statistics","yearstats","years","colfunc", 
                        "loadpath","savepath","mod2", "best.span"))) 
 
 
# This code will average variables for periods between imagery along the East River 
 
# Author: Nicholas A. Sutfin 
# Date: April 2020 
 
library("plyr") 
#library("smwrBase", lib.loc="~/R/win-library/3.2") 
library("lattice") #, lib.loc="C:/Program Files/R/R-3.3.0/library") 



library("lubridate") 
library("hydroGOF") 
 
# User space same as save path from steps 1-4 
savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_1.91_BestFit/' # 
Calculating slope as line between 1st and last points (2p) 
setwd(savepath) 
# Load ALmont data for 2015-2017 as csv file, convert to SI units, code the date as a date, and 
define the year 
#Alm_Q <- read.csv("ER_AlmQ_2015-2017.csv", header=TRUE) 
AnnualStats <- read.csv("YearlyStatistics_6.29.20_Base_1.91_BestFit.csv", header=TRUE) 
AnnualStats$period = NA 
 
for (i in 2:length(AnnualStats$year)) { 
  #AnnualStats$TimeSinceBF[i] = AnnualStats$BF_startDay[i] + AnnualStats$DaysSinceBF[i-1] 
  if (AnnualStats$year[i] < 1955){ 
    AnnualStats$period[i] = "before1955" 
  } 
  if (AnnualStats$year[i] > 1954 & AnnualStats$year[i] < 1974){ 
    AnnualStats$period[i] = "1955to1973" 
  } 
  if (AnnualStats$year[i] > 1973 & AnnualStats$year[i] < 1984){ 
    AnnualStats$period[i] = "1974to1983" 
  } 
  if (AnnualStats$year[i] > 1983 & AnnualStats$year[i] < 1991){ 
    AnnualStats$period[i] = "1984to1990" 
  } 
  if (AnnualStats$year[i] > 1990 & AnnualStats$year[i] < 2002){ 
    AnnualStats$period[i] = "1991to2001" 
  } 
  if (AnnualStats$year[i] > 2001 & AnnualStats$year[i] < 2012){ 
    AnnualStats$period[i] = "2002to2011" 
  } 
  if (AnnualStats$year[i] > 2011 & AnnualStats$year[i] < 2016){ 
    AnnualStats$period[i] = "2012to2015" 
  } 
  if (AnnualStats$year[i] > 2015){ 
    AnnualStats$period[i] = "after2015" 
  } 
} 
 
#na.rm(AnnualStats) 
 
DecadalStats = ddply(AnnualStats, ~period, summarise,  



                     MeanPeakDay = mean(PeakDay),  
                     MeanPeakQ = mean(flow.er), MaxPeakQ = max(flow.er), 
                     MeanBFDuration = mean(BankfullDuration, na.rm=TRUE), MaxBFDuration = 
max(BankfullDuration, na.rm=TRUE), 
                     MeanBFDays = mean(bankfulldays, na.rm=TRUE), MaxBFDays = max(bankfulldays, 
na.rm=TRUE), 
                     MeanBaseDuration = mean(BaseDuration, na.rm=TRUE), MaxBaseDuration = 
max(BaseDuration, na.rm=TRUE), 
                     MeanBaseDays = mean(BaseflowDays, na.rm=TRUE), MaxBaseDays = 
max(BaseflowDays, na.rm=TRUE), 
                     MeanDaysAfterBF = mean(CummDaysAfterBF, na.rm=TRUE), MaxDaysAfterBF = 
max(CummDaysAfterBF),  
                     MeanDaysB4_BF = mean(CummDaysBeforeBF, na.rm=TRUE), MaxDaysB4_BF = 
max(CummDaysBeforeBF, na.rm=TRUE),  
                     MeanNonBFdays = mean(NonBFdays, na.rm=TRUE), MaxNonBFdays = 
max(NonBFdays, na.rm=TRUE), 
                     MeanBaseDay = mean(Base_endDay, na.rm=TRUE), MeanBF_EndDay = 
mean(BF_endDay, na.rm=TRUE),   
                     MeanPeaks = mean(peak, na.rm=TRUE), MaxPeaks = max(peak, na.rm=TRUE),  
                     MeanTotSlope = mean(TotalSlope, na.rm=TRUE), MaxTotSlope = max(TotalSlope, 
na.rm=TRUE), 
                     MeanBFSlope = mean(BFslope, na.rm=TRUE), MaxBFSlope = max(BFslope, 
na.rm=TRUE), 
                     MeanPeakSlope = mean(PeakSlope, na.rm=TRUE), MaxPeakSlope = max(PeakSlope, 
na.rm=TRUE), 
                     MeanAnnualVol = mean(AnnualVol), MaxAnnualVol = max(AnnualVol), 
TotAnnualVol = sum(AnnualVol), 
                     # ALtered 6.26.2020 to include volume for days above BF rather than all days 
between first and last BF days 
                     MeanBFVol = mean(bankfullvol,na.rm=TRUE), MaxBFVol = 
max(bankfullvol,na.rm=TRUE), 
                     TotBFDuration = sum(BankfullDuration, na.rm=TRUE), TotBaseDuration = 
sum(BaseDuration, na.rm=TRUE), 
                     TotNonBFdays = sum(NonBFdays, na.rm=TRUE), TotBF_EndDay = sum(BF_endDay, 
na.rm=TRUE), 
                     TotDaysB4_BF = sum(CummDaysBeforeBF, na.rm=TRUE), TotDaysAfterBF = 
sum(CummDaysAfterBF), 
                     TotBFVol = sum(BFVol, na.rm=TRUE)) 
 
#setwd(savepath) 
write.csv(DecadalStats, "TimePeriodStats_6.29.20_1.91_BestFit.csv", row.names = TRUE) 
 
# This code will examine 15 min hydrograph datasets from the ALmont gage and East RIver 
study site 



# to quantify fluctuations above and below bankfull along the recession limb 
 
# Author: Nicholas A. Sutfin 
# Date: Oct. 18th 2017 
 
# This code will examine to hydrograph dataset, select matching days  
# and times and conduct a regression that can be used to fill in missing data 
# Author: Nicholas A. Sutfin 
# Date: Oct. 18th 2017 
 
library(plyr) 
library(chron) 
library(tidyr) 
#library(smwrBase, lib.loc=~/R/win-library/3.2) 
library(lattice) #, lib.loc=C:/Program Files/R/R-3.3.0/library) 
library(lubridate) 
library(hydroGOF) 
library(OHLCMerge) 
library(corrplot) 
library(lmtest) 
library(car) 
library(MASS) 
library(Hmisc) 
 
# Set user space on LANL PC 
loadpath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode' 
savepath = '/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode' 
setwd(loadpath) 
#setwd("/Users/306722/Documents/EastRiver/ER_Rcode") 
 
# Load ALmont data for 2015-2017 as csv file, convert to SI units, code the date as a date, and 
define the year 
Alm_15Q <- read.csv("Almont_30minQ_1987_2020.csv", header=TRUE) #load USGS discharge 
data 
Alm_15Q$Discharge_cfs = 
as.numeric(levels(Alm_15Q$Discharge_cfs))[Alm_15Q$Discharge_cfs] # convert Q factors to 
numeric values 
which(is.na(Alm_15Q$Discharge_cfs) == TRUE) #Check for NA values 
Alm_15Q$AlmQ_cms = Alm_15Q$Discharge_cfs*0.0283168 # Calulate Q conversion from cfs to 
cms 
which(is.na(Alm_15Q$Discharge_cfs) == TRUE) # check for NA values after numeric conversion 
 
Alm_15Q$date = as.Date(Alm_15Q$date, format="%m/%d/%y") # convert Q factors to numeric 
values 



Alm_15Q$DaTime = paste(Alm_15Q$date, Alm_15Q$time) 
Alm_15Q$DateTime = as.POSIXct(Alm_15Q$DaTime, format = "%Y-%m-%d %H:%M") 
Alm_15Q$year = year(Alm_15Q$Date) 
Alm_15Q$month = month(Alm_15Q$Date) 
Alm_15Q$Calday = day(Alm_15Q$Date) 
Alm_15Q$Yday = yday(Alm_15Q$Date) 
#Alm_15Q$Yday = yday(Alm_15Q$Date) 
Alm_15Q = as.data.frame(Alm_15Q) 
#________________________________________________________________ 
# Load Pump house data for 2015-2017 as csv file, convert to SI units, code the date as a date, 
and define the year 
PH_10Q <- read.csv("PHQ_2014_2018.csv", header=TRUE) 
#PH_10Q <- read.csv("PH_10Q.csv", header=TRUE) #load East RIver pump house discharge data 
PH_10Q$DateTime = as.POSIXct(PH_10Q$date, format = "%m/%d/%y %H:%M") 
PH_10Q$year = year(PH_10Q$DateTime) 
PH_10Q$month = month(PH_10Q$DateTime) 
PH_10Q$Calday = day(PH_10Q$DateTime) 
PH_10Q$Time = format(as.POSIXct(strptime(PH_10Q$DateTime, "%Y-%m-%d %H:%M",tz="")) 
,format = "%H:%M") 
PH_10Q$Yday = yday(PH_10Q$DateTime) 
PH_10Q = as.data.frame(PH_10Q) 
#plot(PH_10Q$DateTime, PH_10Q$PHQ_cms, type = "l", col = "blue") 
 
#_______________________________________________________________ 
# Find matching date-time combinations and create new dataset 
#PH_Q_match =  
Alm_15Qnew1  = Alm_15Q[,c(4,6,7,8,9,2,10)][!duplicated(Alm_15Q$DateTime),] 
Alm_15Qnew = Alm_15Qnew1[which(is.na(Alm_15Qnew1$DateTime) == FALSE),] 
PH_10Qnew  = PH_10Q[,c(2:8)] 
 
Q_int <- intersect.POSIXct(PH_10Qnew$DateTime, Alm_15Qnew$DateTime) 
Alm_Q_match <- Alm_15Qnew[Alm_15Qnew$DateTime %in% Q_int, ] #Alm_15Q[Q_int, ] # 
PH_Q_match <- PH_10Qnew[PH_10Qnew$DateTime %in% Q_int, ] #PH_10Q[Q_int, ] # 
Q_diff <- setdiff(PH_Q_match$DateTime, Alm_Q_match$DateTime) 
#which(PH_Q_match$DateTime == NA) 
#which(Alm_Q_match$DateTime == NA) 
All_Qmatch <- cbind(Alm_Q_match, PH_Q_match) 
 
# Create a smaller zoomed in plot to view Q around Bankfull Q (8 cms) 
plot(All_Qmatch$DateTime, All_Qmatch$PHQ_cms, type = "l",   
    ylim = c(5,10), xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1, main = "East River 2015 
recession") 
 
# Plot discharge data 



plot(All_Qmatch$DateTime, All_Qmatch$AlmQ_cms, col = "blue", type = "l") 
lines(All_Qmatch$DateTime, All_Qmatch$PHQ_cms, col = "royalblue", type = "l")      
#____________________________________________________________ 
# Linear regression between the Almont and PH gauges 2014-2016 
 
Qreg <- lm(All_Qmatch$PHQ_cms ~ All_Qmatch$AlmQ_cms, data = All_Qmatch) 
summary(Qreg) 
Qreg # adjusted R squared = 0.95 
# For all days: PHQ = -0.081804 + 0.211284(Alm) 
# Excluding frozen days, regression output: PHQ = 0.010948 + 0.211611(Alm) 
 
par(mfrow=c(1,1), mar=c(4,4,2,2), cex = 1, lwd = 1) 
plot(All_Qmatch$AlmQ_cms, All_Qmatch$PHQ_cms, col = "blue", 
     xlab = "Discharge at Almont (cms)", ylab = "Discharge at Study Site (cms)") 
lines(All_Qmatch$AlmQ_cms, Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_Qmatch$AlmQ_cms,  
      col = "black") 
par(cex = 0.6) 
#points(All_Qmatch$AlmQ_cms, All_Qmatch$PHQ_cms, pch = 19, col = "red") 
text(10, 15, expression("r"^{2} ~"= 0.94"), cex = 1.5) 
 
# Use regression to extend daily Q for PH based on Almont flow 
#_____________________________________________________________________________
____ 
# regression output: PHQ = -0.081804 + 0.211284(Alm) 
 
# Reduce Almont Data size 
Alm_15Q_sel = Alm_15Qnew[((Alm_15Qnew$time == "0:00") | (Alm_15Qnew$time == "1:00") 
| (Alm_15Qnew$time == "2:00") |  
                            (Alm_15Qnew$time == "3:00") |(Alm_15Qnew$time == "4:00") | 
(Alm_15Qnew$time == "5:00") | 
                            (Alm_15Qnew$time == "6:00") |(Alm_15Qnew$time == "7:00") | 
(Alm_15Qnew$time == "8:00") | 
                            (Alm_15Qnew$time == "9:00") |(Alm_15Qnew$time == "10:00") | 
(Alm_15Qnew$time == "11:00") | 
                            (Alm_15Qnew$time == "12:00") |(Alm_15Qnew$time == "13:00") | 
(Alm_15Qnew$time == "14:00") | 
                            (Alm_15Qnew$time == "15:00") | (Alm_15Qnew$time == "16:00") | 
(Alm_15Qnew$time == "17:00") | 
                            (Alm_15Qnew$time == "18:00") | (Alm_15Qnew$time == "19:00") | 
(Alm_15Qnew$time == "20:00") | 
                            (Alm_15Qnew$time == "21:00") | (Alm_15Qnew$time == "22:00") | 
(Alm_15Qnew$time == "23:00") | 
                            (Alm_15Qnew$time == "24:00")), ] 



All_Q_1987_2020 = Alm_15Q_sel[which(is.na(Alm_15Q_sel$AlmQ_cms) == FALSE), ] #[ 
,c(6,1,7:9,2,10,4)]  
All_Q_1987_2020$Mod_PHQ_cms = Qreg$coefficients[1] + 
Qreg$coefficients[2]*All_Q_1987_2020$AlmQ_cms 
 
# Plot a zoomed in window of the recession limb for 2017 
Flow2017 = All_Q_1987_2020[All_Q_1987_2020$year == 2017,] 
Recession2017 = Flow2017[Flow2017$month == 6,] 
Recession2017 = Recession2017[Recession2017$Calday > 6,] 
DailyQ = ddply(Recession2017, ~Yday, summarise,  
              MeanQ = median(Mod_PHQ_cms), 
              DateTime = min(DateTime)) 
 
Rmax = max(Recession2017$DateTime) 
Rmin = min(Recession2017$DateTime) 
window1 <- data.frame(xmin=Rmin, xmax=Rmax, ymin=8, ymax=11) 
window2 <- data.frame(xmin=Rmin, xmax=Rmax, ymin=5, ymax=12) 
 
 
ggplot(data=Recession2017, aes(x=DateTime, y=Mod_PHQ_cms)) + 
  geom_path() + 
  geom_line(data = DailyQ, aes(x = DateTime , y = MeanQ, colour = 003399)) + 
  geom_line(data=Recession2017, aes(x=DateTime, y=Mod_PHQ_cms)) +  
  labs(y = expression(paste("Discharge (m"^"3", "s"^"-1",")")), x = "") + 
  theme(axis.title.x = element_blank()) + 
  theme(text = element_text(size=13)) + 
  scale_y_continuous(minor_breaks = seq(6,16,1), breaks = seq(6,16,2)) + 
  geom_rect(data=window2, aes(xmin=Rmin, xmax=Rmax, ymin=5, ymax=10), fill="blue", 
alpha=0.20, inherit.aes = FALSE) + 
  geom_rect(data=window1, aes(xmin=Rmin, xmax=Rmax, ymin=7.95, ymax=8.05), fill="red", 
alpha=0.5, inherit.aes = FALSE) 
 
 
  #geom_rect(x=x, aes(xmin=Rmin, xmax=Rmax, ymin=8, ymax=11, alpha=.5))  
  #geom_density(aes(, alpha=.5)) 
 
 
#################################################################### 
 
#################################################################### 
#   Recession Limb Characteristics 
#################################################################### 
 
#################################################################### 



 
 
 
years = c("1988","1989","1990","1991","1992","1993","1994","1995","1996", 
          "1997","1998","1999","2000","2001","2002","2003","2004","2005", 
          "2006","2007","2008","2009","2010","2011","2012","2013","2014", 
          "2015","2016","2017","2018","2019")  
 
DielYears = data.frame("Years" = years) 
DielYears$PeakDate = as.POSIXlt(All_Q_1987_2020$DateTime[1], format = "%Y-%m-%d 
%H:%M:%S") 
par(cex = 1, mar = c(4,4,2,1)) 
BFmin = 5 
BFmax = 10 
DielFluctuation = 2 
 
for (p in 1:length(years)) { 
  DataYear = years[p] 
  DielData =  subset(All_Q_1987_2020, year%in%DataYear) 
  DielRec = 0 
  AllDiel = 0 
  DielYears$PeakFlow[p] = max(DielData$Mod_PHQ_cms[which(is.na(DielData$Mod_PHQ_cms) 
== FALSE)]) #max(DielData$Mod_PHQ_cms) 
  DielYears$PeakDate[p] = as.POSIXlt(DielData$DateTime[max(which(DielData$Mod_PHQ_cms 
== DielYears$PeakFlow[p]))], format = "%Y-%m-%d %H:%M:%S") 
  DielYears$PeakDay[p] = yday(DielYears$PeakDate[p]) 
  DielYears$PostPeakDays[p] = max(DielData$Yday) - DielYears$PeakDay[p] 
  PeakIndex = which(DielData$DateTime == DielYears$PeakDate[p]) 
  DielPeaks = c() 
  DielTotal = 0 
  maxDiel = 0 
  minDiel = 0 
  #print("________________________") 
  #print(years[p]) 
  #print(DielPeaks) 
  #print(minDiel) 
  #print(maxDiel) 
  #print(AllDiel) 
  #print(DielRec) 
   
   
  #Find unique days for the year on record 
  UniqDays = unique(DielData$Yday) 
  PostPeakUniq = UniqDays[UniqDays > DielYears$PeakDay[p]] 



 
  if (DielYears$PeakFlow[p] > 6) { 
     
    for (r in 2:length(UniqDays)) { 
      # Assign daily max and min discharge values 
      DailyFlow = subset(DielData, DielData$Yday == UniqDays[r]) 
      Dmax = max(DailyFlow$Mod_PHQ_cms) 
      #DmaxIndex = which(DailyFlow$Mod_PHQ_cms == Dmax) 
      Dmin = min(DailyFlow$Mod_PHQ_cms) 
       
      if (((Dmax < BFmax) | (Dmin > BFmin)) & ((Dmax - Dmin) > DielFluctuation)) { 
        AllDiel = AllDiel + 1 
      } 
      DielYears$AllDiel[p] = AllDiel # Record number of times Q crosses BF during the entire year 
    } 
    #print("----------------------") 
    #print(years[p]) 
    #print("YES") 
    for (q in 1:length(PostPeakUniq)) { 
      # Assign daily max and min discharge values 
      DailyFlow = subset(DielData, DielData$Yday == PostPeakUniq[q]) 
      Dmax = max(DailyFlow$Mod_PHQ_cms) 
      #DmaxIndex = which(DailyFlow$Mod_PHQ_cms == Dmax) 
      Dmin = min(DailyFlow$Mod_PHQ_cms) 
       
      if (((Dmax < BFmax) | (Dmin > BFmin)) & ((Dmax - Dmin) > DielFluctuation)) { 
 
        DielRec = DielRec + 1 
        DielPeaks[DielRec] = DailyFlow$Yday # Index the day of year for each Q that crosses BF 
after peak flow 
        #print(length(DielPeaks)) 
        #print(DielPeaks) 
        maxDiel = max(DielPeaks) 
        minDiel = min(DielPeaks) 
        DielRange = Dmax - Dmin 
        DielTotal = DielTotal + DielRange 
        DielYears$minDiel[p] = minDiel 
        DielYears$maxDiel[p] = maxDiel 
         
        # Plot portion of recession limb within bankfull window 
        days = c(minDiel, maxDiel) 
        Qlow = c(BFmin, BFmin) 
        Qhigh = c(BFmax, BFmax) 
        #plot(DielData$day, DielData$Mod_PHQ_cms, type = "l",  main = paste(years[p]), 



             #ylim = c(6,10), xlim = c(DielYears$minDiel[p]-1,DielYears$maxDiel[p]+1),  
             #xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1) 
        #lines(c(0,250), c(8,8), col="blue") 
         
        # plot a transparent band around the bankfull window 
        #polygon(c(days, rev(days)), c(Qlow, Qhigh), border = NA,  
                #col = rgb(red = 0.0, green = 0.0, blue = 0.5, alpha = 0.4)) 
      } 
      AveDielRange = DielTotal/DielRec 
      DielYears$TotalDielRange[p] = DielTotal 
      DielYears$AveDielRange[p] = AveDielRange 
      DielYears$DielRec[p] = DielRec # Record number of times Q crosses BF during recession limb 
       
    } 
    #plot(DielData$day, DielData$Mod_PHQ_cms, type = "l",  main = paste(years[p]), 
         #xlab = "Day of Year", ylab = "Discharge (cms)", lwd = 1) 
  } 
   
  else { 
    #print("----------------------") 
    #print(years[p]) 
    #print("NO") 
    DielYears$TotalDielRange[p] = NA 
    DielYears$AveDielRange[p] = NA 
    DielYears$DielRec[p] = NA 
    DielYears$minDiel[p] = 0 
    DielYears$maxDiel[p] = 0 
    } 
  } 
 
DielYears 
 
# THis data was combined with the average statistics form the hydrologic and 
# imagery analysis to produce the datasheet used below 
 
##############################################################################
################################### 
# Conduct Multiple Regression to examine role of diel fluctuations on erosion 
##############################################################################
################################### 
 
# Load data on Mac with slope analysis from primary 60 year analysis derived from daily mean 
data 
# Set user space  



savepath = 
'/Users/NicholasSutfin/Documents/EastRiver/ER_Rcode/Baseflow_0.49_2p_corrected/' # 
Calculating slope as line between 1st and last points (2p) 
setwd(savepath) 
write.csv(DielYears,"DielRecessionDate_6.30.20_2cms_>6_5_10.csv") 
 
# Load other hydrologic variables from baoder analysis and 6 year hydro record 
YearlyHydroStats <- read.csv("DielRecessionRegData_6.29.20.csv", header=TRUE) 
 
# cbind annual hydrologic data with diel data  
DielRegData = cbind(DielYears, YearlyHydroStats) 
 
DielRegData = DielRegData[(which(is.na(DielRegData$DielRec) == FALSE)), ] 
 
for (i in 1:length(DielRegData$Years)) { 
  if (DielRegData$DielRec[i] == 0) { 
    DielRegData$AveDielRange[i] = 0 
  } 
} 
   
#=============================================================== 
#Assign variables 
#RespVar = DielRegData$AveDielRange 
Preds = subset(DielRegData, select = c(6:9,16:18)) #c(3:6,9:52)) 
Preds[, c(1:7)] <- sapply(Preds[, c(1:7)], as.numeric) 
 
# examine subset correlations 
par(mfrow=c(1,1), mar=c(3,3,3,2), cex = 1.3) 
DataCorr = cor(Preds, method = "pearson")  
corrplot(DataCorr) 
 
CorrT = rcorr(as.matrix(Preds), type = "pearson") 
CorrRtable = data.frame(CorrT$r) 
CorrPtable = data.frame(CorrT$P) 
CorrT 
 
write.csv(CorrRtable, file = "DielData_RCorrs_6.30.20_2cms_>6_5_10.csv") # with new data 
from new stats calculated June 2020 
write.csv(CorrPtable, file = "DielData_PCorrs_6.30.20_2cms_>6_5_10.csv") 
 
############################################### 
# Number of Diel Fluctuations  
#_______________________________________________ 
 



cor.test(Preds$TotalSlope, Preds$DielRec) 
DielRecReg = lm(Preds$TotalSlope ~ Preds$DielRec, data=Preds) 
summary(DielRecReg) 
 
ggplot(Preds, aes(x=TotalSlope, y=DielRec)) +  
  geom_point(color='#D55E00', size = 3) +  
  geom_smooth(method=lm, color='#2C3E50', linetype="dashed") + 
  theme(text = element_text(size=13)) + 
  labs(title = "2cms fluctuations >6cms from 5-10cms window", 
       y=expression(paste("Number of diel fluctuations > 2 m"^"3", "s"^"-1")),  
       x = expression(paste("Slope of recession limb (m"^"3", "s"^"-1", "day"^"-1",")"))) 
 
############################################### 
# Total sum magnitude of diel fluctuation 
#_______________________________________________ 
 
cor.test(Preds$TotalSlope, Preds$TotalDielRange) 
 
ggplot(Preds, aes(x=TotalSlope, y=TotalDielRange)) +  
  geom_point(color='#D55E00', size = 3) +  
  geom_smooth(method=lm, color='#2C3E50', linetype="dashed") + 
  theme(text = element_text(size=13)) + 
  labs(title = "2cms fkuctuations >6cms from 5-10cms window", 
       y=expression(paste("Summed magnitude of diel fluctuation")),  
       x = expression(paste("Slope of recession limb (m"^"3", "s"^"-1", "day"^"-1",")"))) 
 
############################################### 
# Average magnitude of diel fluctuation 
#_______________________________________________ 
 
cor.test(Preds$TotalSlope, Preds$AveDielRange) 
 
ggplot(Preds, aes(x=TotalSlope, y=AveDielRange)) +  
  geom_point(color='#D55E00', size = 3) +  
  geom_smooth(method=lm, color='#2C3E50', linetype="dashed") + 
  theme(text = element_text(size=13)) + 
  labs(title = "2cms fkuctuations >6cms from 5-10cms window", 
       y=expression(paste("Average magnitude of diel fluctuation (m"^"3","s"^"-1", ")")),  
       x = expression(paste("Slope of recession limb (m"^"3", "s"^"-1", "day"^"-1",")"))) 
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Introduction  

Figures and tables below are cited within the text of Sutfin et al. to provide supporting 
information and summary data. In addition, we briefly provide explanation of the 
statistical transformations conducted for analyses and referenced in the text. 

Multiple linear regression model residuals met assumptions of homoscedasticity and 
normality (at the 95% confidence level) after a natural log transform of annual floodplain 
vertical accretion rate and boxcox power transformations with lambda (!) exponent 
coefficients of 0.1010101 and 0.2626263 for the area of floodplain eroded and laterally 
accreted, respectively. Eroded and accreted areas appearing in equations 2 and 3 in the 
main text contain exponents of the reciprocal of these lambda values, necessary if one 



 
 

 
 

were to attempt calculation of erosion or accretion based on parameters listed in those 
equations. 

 

Figure S1: Bank erosion commonly observed along the East River. The upper fine-
grained portion of floodplain sediment collapses in large blocks on the outside of channel 
bends. Following undercutting and erosion of underlying sandy gravel, channel banks 
crack (A, C) and eventually fall into the channel (A, B, D) where they remain on the 
channel bed at low flows (A, B) and can be buried by gravel during higher flows (C,D).  



 
 

 
 

 

Figure S2. At each bend where a transect of measured depths was located, linear 
erosion rates along the bank (depicted as the outer bank in 1973 by the yellow-red 
spectrum) and accretion rates (depicted as the inner bank in 2015 by the yellow-blue 
spectrum) were averaged within a rectangle. The rectangle was drawn to capture the 
accreted bank pixels with a boundary defined by the approximate location where the 
outer bank from 1973 intersect the outer bank from 2015 (thin black line). The difference 
in the horizontal distances (xi and xi-1) between consecutive depth measurements (di and 
di-1) was divided by the mean migration rate to determine the duration of sediment 
deposition at each point (ti). Vertical accretion rate at each point was then calculated by 
the difference in measured depth between consecutive points divided by the time 
between points. This point-by-point method was conducted in addition to that described 
in the main text, but yielded inconsistent results as a function of small changes in 
floodplain topography and possible alternative periods of point bar erosion and 
deposition, so this analysis was not used for the results presented.  
 
 
 
 
 
 



 
 

 
 

 

Figure S3 Example from the 2015 pixel grid calculations. Distance from the channel (A) for each time period and relative elevation 
(B) for all time periods were used in a multiple linear regression to estimate mean overbank vertical accretion rate (rva) across the 
floodplain (C) using the following equation. ln(rva) = 1.204490 – 0.072038x – 1.205276z where x is distance from the channel along a 
transects orthogonal to the channel and z is elevation from the channel. As indicated in the legend, areas in red on the vertical 
accretion map are those identified from SCREAM analysis from differences in channel masks in consecutive years. Long-term 
deposition from measured depths within 10 m from the active channel indicated a mean vertical accretion rate of 3.3 cm y-1, which 
was applied to the area of lateral accretion. Overbank deposition outside of the red accreted areas was estimated using relationships 
determined in multiple regression equation 3. 



 
 

 
 

TABLES 

 

Years Erosion Accretion 
1973-1983 17% 14% 
1983-1990 25% 14% 
1990-2001 16% 16% 
2001-2011 19% 13% 
2011-2015 41% 25% 

Table S1 .  Percentage error in floodplain area estimates from SCREAM, as calculated and outlined by Rowland et al. (2016). As described in 
the text, estimates of error for the time period between 1955 and 1973 were not obtainable through SCREAM, thus errors presented in Table 1 
and Figure 3 are estimated as two times the maximum error from other time periods. 

Table S2. Field and remotely sensed data for stepwise multiple linear regression of measured floodplain fine sediment depths at 315 points 
across 51 transects.  

Table S3. Annual hydrologic indices for synthetic hydrographs at the East River study site constructed using a linear regression with the USGS 
East River at Almont stream gage and parameters extracted using code provided.  

  



 
 

 
 

Variable 

Floodplain vertical accretion 

Considered Included 

Surface elevation (m) ✗ ✓** 

Elevation of gravel surface (m) ✗  

Distance from the channel (m) ✗ ✓*** 

Relative elevation from the channel (m) ✗  

Duration (years) ✗  

Channel width (m) ✗  

Valley width (m) ✗ ✗ 

Confinement (m2/m2) ✗ ✓** 

Reach valley slope (m/m) ✗  

Reach sinuosity (m) ✗ ✗ 

Reach channel slope (m/m) ✗  

Local valley slope (m/m) ✗  

Local sinuosity (m/m) ✗  

Local Channel slope (m/m) ✗ ✗ 

Bend orientation angle ✗ ✗ 

Radius of curvature ✗ ✓- 

Inside of bend ✗ ✗ 

Outside of bend ✗  

Table S4. Variables considered (✗) before elimination following reduction of collinearity and 

examined (✗) using stepwise multiple linear regression for vertical accretion. Among variables 

examined, those marked with (✓) indicate variables retained in the optimal multiple linear 

regression model. Significance of variables in the regression model is denoted at confidence 

levels of 99.9% ***, 99% **,  95% *, 90% . , or not significant <90% -  



 
 

 
 

Variable 

Floodplain area along nine reaches over 6 
time periods  Entire study segment over 6 time periods 

Considered 

Examined 

Considered 

Examined 

Erosion Accretion Erosion Accretion 

Channel slope 
✗ ✗ ✗   

    

Valley Slope 
✗ 

    
    

Confinement 
✗ ✗ ✗   

    

Mean Channel width  
✗ ✗ ✓*   

    

Sinuosity ✗ ✓** ✓***   
    

Mean Day of Peak Flow ✗ 
 

✗ ✗ 
  

Mean Peak Flow (m3s-1) ✗ 
  ✗ 

  
Max Peak Flow (m3s-1) ✗ 

  ✗ 
  

Mean Bankfull Duration (days) ✗ ✗ 
 

✗ 
  

Max Bankfull Duration (days) ✗ 
  ✗ 

  
Mean Days Above Bankfull Flow  ✗ 

  ✗ 
  

Max Days Above Bankfull Flow  ✗ 
 

✗ ✗ 
 

✓. 

Mean Duration Above Baseflow  (days) ✗ 
 ✗ ✗ 

  
Max Duration Above Baseflow (days) ✗ ✓* ✗ ✗ 

  
Mean Days Above Baseflow  ✗ ✗ 

 
✗ 

  
Max Days Above Baseflow ✗ 

 
✓* ✗ 

  
Mean Days Since Bankfull Flow ✗ 

  ✗ 
  

Max Days Since Bankfull Flow ✗ 
  ✗ 

  
Mean Day Baseflow Ends ✗ 

  ✗ 
  

Mean Day Bankfull Flow Ends ✗ ✗ 
 

✗ 
  

Mean No. Peaks Above Bankfull ✗ 
  ✗ 

  
Maximum No. Peaks Above Bankfull ✗ 

  ✗ 
  

Mean Total Recession Slope (m3 s-1 day-1) ✗ 
  ✗ 

  
Max Total Recession Slope (m3 s-1 day-1) ✗ ✓*** 

 
✗ ✓** 

 

Mean Bankfull Recession Slope (m3 s-1 day-1) ✗ 
  ✗ 

  
Max Bankfull Recession Slope (m3 s-1 day-1) ✗ 

 
✓. ✗ 

  
Mean Total Annual Volume (km3) ✗ 

  ✗ 
  

Max Total Annual Volume (km3) ✗ 
  ✗ 

  
Mean Bankfull Volume (km3) ✗ 

  ✗ 
  

Max Bankfull Volume (km3) ✗ ✗ 
 

✗ 
  

Power transformation coefficient (lambda) 
  0.1010101 0.2626263 

  
NA NA 

Coefficient of determination (r2)   0.59 0.55 
  

0.91 0.59 

Regression model p-value   <0.0001 <0.0001 
  

0.003 0.074 

 
Table S5. Variables considered (✗) before elimination following reduction of collinearity 

and examined (✗) using stepwise multiple linear regression for lateral erosion and 

accretion. Among variables examined, those marked with (✓) indicate variables retained 

in the optimal multiple linear regression model. Significance of variables in the 

regression model is denoted at confidence levels of 99.9% ***, 99% **,  95% *, 90% . , or 

not significant <90% - 

 
 
 



 
 

 
 

Table S6. Correlation matrix for variables considered in multiple linear regression 

analysis to examine linkages between hydrologic flow conditions, erosion, and accretion. 
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