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Abstract

We investigate the flow-wise variation of the hydraulic conductivity inside a non-uniformly shaped fracture with permeable

walls. Using lubrication theory for viscous flows, in conjunction with the Beavers–Joseph–Saffman boundary condition at

the permeable walls, we obtain an analytical expression for the velocity profile, conductivity, and wall permeation velocity.

These predictions highlight the effects of geometric variation (through the local slope of the aperture’s flow-wise variation), the

permeability of the walls (through a dimensionless slip coefficient), and the effect of flow inertia (through a Reynolds number).

The theory is validated against an OpenFOAM(R) solver for the Navier–Stokes equations subject to a tensorial slip boundary

condition, showing good agreement. The mathematical results have implications on system-level (multiscale) modeling of

hydraulically fractured reservoirs, in which the Darcy conductivity of each non-uniform passage must be accurately accounted

for, throughout the fractured porous rock.
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ABSTRACT
We investigate the flow-wise variation of the hydraulic conductivity inside a non-uniformly shaped
fracture with permeable walls. Using lubrication theory for viscous flows, in conjunction with the
Beavers–Joseph–Saffman boundary condition at the permeable walls, we obtain an analytical expres-
sion for the velocity profile, conductivity, and wall permeation velocity. These predictions highlight
the effects of geometric variation (through the local slope of the aperture’s flow-wise variation), the
permeability of the walls (through a dimensionless slip coefficient), and the effect of flow inertia
(through a Reynolds number). The theory is validated against an OpenFOAM® solver for the Navier–
Stokes equations subject to a tensorial slip boundary condition, showing good agreement. The math-
ematical results have implications on system-level (multiscale) modeling of hydraulically fractured
reservoirs, in which the Darcy conductivity of each non-uniform passagemust be accurately accounted
for, throughout the fractured porous rock.

1. Introduction
Crude oil and natural gas exist as fluids in large under-

ground reservoirs in sedimentary basins around the world.
They occupy the connected porous media within strata of
sedimentary rocks, typically sandstones or carbonates [18].
Over the last decade, hydraulic fracturing (“fracking”) of
shales has paved the way towards increasing the recoverable
reserves of oil and gas in the United States [32]. During
fracking, complex fluids (primarily water-based suspensions
with dispersed particulates termed “proppants”) [64, 4] are
pumped into tight formations [15, 41]. Fracking is inherently
amultiscale problem [23]: as the injected high-pressure fluid
enters a rock formation from the well bore, a complex ar-
ray of cracks of various shapes, sizes, and with flow-wise
variations, are created [64, 46]. This network of fractures
increases the conductivity of the rock formation by increas-
ing the available flow area [43, 60]. Similarly, in enhanced
geothermal systems [34], heat is extracted from hot rocks
by flooding the dry fracture network [35, 40]. Thus, it is
of practical importance, as well as of fundamental scientific
interest, to create mathematical models of the conductivity
in complex and non-uniform fractures. In this letter, we de-
rive a novel mathematical expression for the conductivity of
a shaped fracture with flow-wise geometric variations.

To provide a sense of the scale onwhich the half-aperture
ℎ of a fracture may vary with the flow-wise direction x, con-
sider the standard Perkins–Kern–Nordgren (PKN) and the
Khristianovitch–Zheltov–Geertsma–de Klerk (KGD) mod-
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els, which idealize fractures as long and narrow elliptical
cracks [45]. Garagash and Detournay [17] showed that the
fracture tip has a shape with ℎ(x) ∼ (xtip − x)1∕2 as x →
xtip > L. (The typical fracture geometry we consider has
total length Ltotal, appreciable variations in the shape occur
over some typical scale L ≪ Ltotal, with the tip falling out-
side the domain in Fig. 1.) Thus, the shape gradient away
from the crack tip goes as � = dℎ∕dx ∼ −(xtip − x)−1∕2.Clearly, as x → −∞ (away from the crack tip), |�| → 0−,
justifying the small slope assumption |�|≪ 1. Typical frac-
ture geometry parameter values are summarized in Table 1,
further justifying that, away from the crack tip, dℎ∕dx ∼
|�|≪ � = ℎ0∕L; that is, the fracture’s typical slope is much
smaller than its aspect ratio. (Although our analysis does
not depend on the sign of �, we henceforth take � < 0 for
definiteness.)

The simplestmodel of fracture conductivity (the parallel-
plate model [66]) assumes that fracture walls are smooth,
impermeable walls with a constant aperture of 2ℎ0 (distancebetween the walls) and span w (length in the transverse di-
rection); see Fig. 1. By analogy to lubricating viscous flow
between two plates (the so-called Hele-Shawmodel [5]), one
can calculate the hydraulic conductivity to be  = ℎ20∕3.Then, the transmissivity of the fracture (∝ ℎ0w) follows
the well-known “cubic law” [63]. However, the flow pas-
sages in both naturally [18] and hydraulically fractured [64]
formations have a variable aperture 2ℎ(x). Generally, the
walls of fractures are not parallel [13], in part due to the
flow-wise deformation of the fracture due to large injection
pressures [24], requiring corrections to Darcy’s laws arise
via a modified conductivity and transmissivity models [26,
61, 48]. However, these models are for impermeable walls.

The bounding surfaces of a fracture are the porous rock
formations themselves, therefore they should not be ideal-
ized as impermeable plates [8]. Permeation of gas into the
matrix, and its subsequent diffusion, affects the late-years
productivity of fractured wells [42, 27]. Berman [9] and
Sellars [51] investigated the effects of a permeable wall in a
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Figure 1: Schematic of a typical fracture flow geometry idealized as a Hele-Shaw cell. The fracture’s shape varies appreciably
over a “typical” length L, and it has a constant gradient dℎ∕dx ∼ �, so that the half-aperture is ℎ(x) = ℎ0 + �x (to a linear
approximation). The fracture is long and thin meaning � = ℎ0∕L ≪ 1 and � = dℎ∕dx = [ℎ(L) − ℎ0]∕L = Δℎ∕L ≪ 1, where
ℎ0 = ℎ(0). Gravity is neglected but, in these schematics, it would act in the transversely in the negative y-direction. The flow is
symmetric about the centerline z = 0, and primarily in the x-direction, along the fracture. The top and bottom walls z = ±ℎ(x)
are permeable (permeability kw) and allow a non-zero vertical velocity component vw at the wall, which is to be determined.

Table 1
Typical dimensions of a hydraulic fracture and typical values of the dimensionless parameters of the hydraulic
conductivity model derived in this study.

Quantity Notation Value Remarks

Fracture total length Ltotal 100 ∼ 1000 m Barbati et al. [4]
Fracture width w 10 ∼ 100 m Barbati et al. [4]
Fracture gap/aperture ℎ0 2 ∼ 10 mm Barbati et al. [4]
Typical velocity U0 ≲ 10−3 m s−1 Yew and Weng [64, Ch. 1]
Permeability of the wall kw ≲ 5 × 10−13 m2 Barbati et al. [4]

Hele-Shaw shape variation � = �∕� ≲ 10−1 Slow variation assumption
Hele-Shaw aspect ratio � = ℎ0∕L 10−4 ∼ 10−2 Using L = Ltotal∕100
Hele-Shaw slope � = dℎ∕dx ≲ 10−3 Using |�| ∼ ��
Wall slip coeff. � =

√

kw∕(aℎ0) ≲ 10−3 a = 0.1
Reduced Reynolds number R̃e = �U0ℎ20∕(�L) ≲ 0.1 �, � for water

constant-height channel using the idealized boundary condi-
tion of equal prescribed wall-normal velocities. Since then,
a large literature has addressed many variations on this prob-
lem, including asymmetric wall normal velocities [55], flow
development effects [12], unsteadiness [28], and so on. These
works rely on reducing the problem to a nonlinear ordinary
differential equation, owing to the existence of a similarity
transformation in two dimensions (2D). Unfortunately, this
technique does not work in the case of a aperture gradient,
such as the present geometry with ℎ = ℎ(x); instead a per-
turbation solution must be sought [20, 61]. Kumar et al. [29]
showed that a similar situation arises if the geometry is uni-
form but the slip length varies in the flow-wise direction,
i.e., lslip = lslip(x). Importantly, imposing the wall-normal
velocity a priori is a significant limitation of the previous
studies because, as Conlisk notes, “[t]he suction velocity at
the wall ... must be calculated from the properties of the
porous medium” [14, p. 162]. Here, we take the perturbative
mathematical approach, based on the notion of slow varia-
tion in fluid mechanics [59], to calculate the conductivity of
a shaped fracture with permeable walls.

Beavers and Joseph [6] experimentally characterized pre-
ssure-driven (Poiseuille) flow over a naturally permeable sur-
face (i.e., channel flow with porous walls) and proposed a
boundary condition to account for the wall permeation. Spe-
cifically, they showed that the shear stress balance at the
fluid–solid interface can be represented by a first-order (par-
tial) slip boundary conditionwith slip lengthlslip =

√

kw∕a,where kw is the permeability of the porous wall, and a is a di-
mensionless constant determined by the structure of the ma-
terial, ranging from 0.1 to 4.0 [6]. Taylor [54] observed that
a is not a universal value, but rather it depends on the flow
geometry. Saffman [49] substantiated this observation and
generalized the slip condition to arbitrary surfaces. How-
ever, this correction only affects the already empirically-de-
termined slip length, thus the form of the boundary condition
remains unchanged, while a ≈ 0.1 is in good agreement with
most experiments [7]. Zhang and Prosperetti [65] provided
further evidence for the slip boundary condition via pore-
scale direct numerical simulations of a two-dimensional chan-
nel flow. Amore detailed discussion of the history andmath-
ematical foundations of the partial slip boundary condition

D Lu et al.: Preprint submitted to Elsevier Page 2 of 8
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can be found in [39, 11]. Now, define the dimensionless
quantity � = lslip∕ℎ0 as the slip coefficient. For the typical
dimensions of a hydraulically-driven fracture, we estimate
the dimensionless parameters values in Table 1.

To address the issue that fracture walls in the subsur-
face are themselves porous media, Mohais et al. [33, 34] em-
ployed the Beavers–Joseph boundary condition to solve for
the flow in, and obtain a correction for the conductivity 
of, uniform-aperture fractures with permeable walls. So far,
however, a theory for the conductivity of variable-aperture
fractures with porous walls (the most common case in the
subsurface) is lacking. This study aims to fill this knowl-
edge gap. Importantly, we also validate our proposed model
for  against direct numerical simulations using a custom
solver built on OpenFOAM® [62, 56]. We provide an im-
plementation of the semi-implicit method for pressure-linked
equations (SIMPLE) algorithm (see, e.g., [36, Ch. 15]) for
the Navier–Stokes equations subject to the tensorial form of
the Beavers–Joseph–Saffman (BJS) boundary condition.

2. Mathematical analysis
2.1. Governing equations

The flow geometry and notation are shown in Fig. 1. An
incompressible Newtonian fluid of density � and dynamic
viscosity � fills the gap. The fracture is long and thin, which
justifies taking ℎ(x) to be a linear function [38]. Alterna-
tively, one is allowed to substitute � = �(x) in the results
below if dℎ∕dx ≠ const., as long as maxx �(x) satisfiesthe original smallness assumption [66, 61]. Let U0 be the
average inlet velocity at the inlet (x = 0), which serves
as the scale for the horizontal velocity u(x, z) in the frac-
ture. The flow is assumed to be 2D, i.e., the fracture is in-
finite in the transverse y-direction. Then, conservation of
mass requires that the scale for the vertical velocity v(x, z)
be V0 = U0ℎ0∕L = �U0 [14, Sec. 4.9].Now, we define the dimensionless (starred) variables

x∗ = x∕L, z∗ = z∕ℎ0, ℎ∗(x∗) = ℎ(x)∕ℎ0,
u∗(x∗, z∗) = u(x, z)∕U0, v∗(x∗, z∗) = v(x, z)∕V0,

p∗(x∗, z∗) = �ℎ0p(x, z)∕(�U0), ∗(x∗) = (x)∕ℎ20, (1)
where Re = �U0ℎ0∕� is the Reynolds number and R̃e =
�Re is a reduced Reynolds number [66]. Then, the dimen-
sionless conservation of mass and momentum equations are

)u∗

)x∗
+ )v∗

)z∗
= 0, (2a)

R̃e
(

u∗ )u
∗

)x∗
+ v∗ )u

∗

)z∗

)

= −
)p∗

)x∗
+ �2 )

2u∗

)x∗2
+ )2u∗

)z∗2
,

(2b)
�2R̃e

(

u∗ )v
∗

)x∗
+ v∗ )v

∗

)z∗

)

= −
)p∗

)z∗
+ �4 )

2v∗

)x∗2
+ �2 )

2v∗

)z∗2
,

(2c)

subject to the following boundary conditions (BCs):

symmetry at z∗ = 0 ∶ )u∗

)z∗
= 0 and v∗ = 0; (3a)

partial slip at z∗ = ℎ∗ ∶ u∗ = −�)u
∗

)z∗
, (3b)

where� is the slip coefficient, and ℎ∗ = ℎ∗(x∗) = 1+�x∗∕�.
Observe that, here, we can introduce � = �∕� = [ℎ(L) −
ℎ(0)]∕ℎ0 = Δℎ∕ℎ0, which is the percent change of ℎ(x)
over the typical fracture variation length L, so that ℎ∗(x∗) =
1 + �x∗. The assumption of slow variation dictates that
� ≪ 1, while the assumption of lubrication (small aspect ra-
tion) dictates that � = ℎ0∕L ≪ 1 (see also [14, 66]). These
two assumptions are independent and lead to � = �� ⋘ 1,
which is typical of fractures, as discussed in Sec. 1.

The BC in Eq. (3a) is the centerline symmetry condition,
while the BC in Eq. (3b) comes from the BJS partial slip BC
[6, 7, 49, 31, 25] on the permeable wall (see Supplemen-
tary Material for details). Physically, the BJS BC enforces
a shear stress balance along the fluid–porous solid interface
by relating the tangential velocity component to the normal
component of the velocity gradient via the slip coefficient �
(which is an empirically-measurable constant set by the per-
meability of the surrounding medium and its pore geometry,
recall Sec. 1). Importantly, the BJS BC allows us to solve
for the flow in the fracture without solving for the flow in
the surround porous medium.
2.2. Perturbation solution for the velocity profile

Following the standard procedure of a regular perturba-
tion expansion [22], the velocity field is expanded as u∗ =
u∗0 + R̃e u

∗
1 +⋯ and v∗ = v∗0 + R̃e v∗1 +⋯ (R̃e ≪ 1). Then,

we find the horizontal velocity at the leading order (see Sup-
plementary Material for details):

u∗0(x
∗, z∗) =

(

ℎ∗2 − z∗2
2

+ �ℎ∗
)(

−
dp∗

dx∗

)

. (4)

Since the flow is in the direction of positive x∗, dp∗∕dx∗ <
0. Then, the leading-order depth-averaged velocity is

⟨u∗0⟩(x
∗) = 1

ℎ∗(x∗) ∫

ℎ∗(x∗)

0
u∗0(x

∗, z∗) dz∗

=
3�ℎ∗ + ℎ∗2

3

(

−
dp∗

dx∗

)

.
(5)

And, the vertical velocity at the leading order is

v∗0(x
∗, z∗) =

(

ℎ∗ + �
) dℎ∗

dx∗
z∗
dp∗

dx∗

−
(

z∗2

6
− ℎ∗2

2
− �ℎ∗

)

z∗
d2p∗

dx∗2
. (6)

At the next order in R̃e, we find the depth-averaged ve-
locity’s correction:

⟨u∗1⟩(x
∗) =

(

3
35
ℎ∗2 +

�
3
ℎ∗ +

�2

3

)

ℎ∗4
(

−
dp∗

dx∗

)

d2p∗

dx∗2
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−
(

ℎ∗

5
+
�
3

)

ℎ∗3(ℎ∗ + �)1
�
dℎ∗

dx∗

(

dp∗

dx∗

)2
. (7)

For the present purposes, it is not necessary to write out u∗1and v∗1 but they can be calculated (see Supplementary Mate-
rial).
2.3. Equivalent Darcy’s law and the hydraulic

conductivity
To obtain the conductivity  in a shaped fracture with

porous walls, we must put the flow field thus obtained into
the form of a Darcy-like law, i.e., ⟨u∗⟩ ∝ −dp∗∕dx∗, with
the proportionality factor being the sought-after result. To
this end, combining Eqs. (5) and (7) we obtain the “full”
depth-average horizontal velocity up to(R̃e): ⟨u∗⟩ = ⟨u∗0⟩+
R̃e⟨u∗1⟩. However, at this point, the pressure distribution
p∗(x∗) is still unknown. To close the problem, we need an-
other constraint. Mohais et al. [34] provided one solution
by assuming a constant permeation velocity vw in a parallel
fracture (� = dℎ∗∕dx∗ = 0, ℎ∗ = 1), i.e., v0||z=±ℎ0 = ±vw.We could apply this BC here too (see Supplementary Ma-
terial), however, as discussed in Sec. 1, the assumption of a
constant vw is not suitable for shaped fractures, due to the
flow-wise x∗-variation of the aperture.

Instead, to close the problem, we impose the full flux
onto the leading-order depth-averaged velocity, i.e., we set
⟨u∗0⟩ = 1. We impose this condition because, as discussed in
Sec. 1, the representative fracture region of interest is away
from the crack tip, and thus the flow is not leak-off dom-
inated, following Refs. [33, 34, 53, 61] but in contrast to
Refs. [64, 4, 50] (or, e.g., Refs. [58, 21] in the context of
filtration). Thus, v∗w will not be constant and will be self-
consistently determined as a function of x∗. Another mod-
eling approach is to set the wall-normal velocity via the local
pressure, as in filtration problems [58, 21], however this ap-
proach is beyond the scope of the present study focused on
porous media flows.

Applying the constraint ⟨u∗0⟩ = 1 to Eq. (5), we compute
dp∗∕dx∗ and d2p∗∕dx∗2 (see SupplementaryMaterial). Sub-
stituting the latter results into Eq. (7) and putting it all to-
gether,

⟨u∗⟩ = −∗ dp∗

dx∗
,

∗(x∗) =
[

3�ℎ∗ + ℎ∗2

3
− R̃e

ℎ∗3(28�2 + 22�ℎ∗ + 3ℎ∗2)�
35(3� + ℎ∗)2

]

,
(8)

which is already in the form of Darcy’s law. Finally, Eq. (8)
can be put in dimensional form:

⟨u⟩ = −
�
)p
)x
,  =

ℎ20
3
C, (9)

where we have defined the dimensionless function
C(x) =

[

3�ℎ∗ + ℎ∗2 − 3R̃e
ℎ∗3(28�2 + 22�ℎ∗ + 3ℎ∗2)�

35(3� + ℎ∗)2

]

= 1
⏟⏟⏟

(I)

+ 3�
⏟⏟⏟

(II)

+

[

(2 + 3�) x
L
− 3R̃e

3 + 22� + 28�2

35(3� + 1)2

]

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(III)

+ 
(

�2
)

(10)
to represent the “correction” to the hydraulic conductivity of
the fracture. As discussed in Sec. 1, typical fractures are long
and shallow (� ≪ 1), and the slopes of the wall variation are
even smaller (� = ��⋘ 1), thus we expanded a number of
terms in Eq. (10) into Taylor series and kept only terms up to
(�) to highlight the key physical effects of shape variation
in a fracture with permeable walls.

The function C accounts for wall permeation through
the BJS slip coefficient � =

√

kw∕(aℎ0), the shape of the
fracture through the slope � = dℎ∕dx and aspect ratio � =
ℎ0∕L, and weak inertia through the reduced Reynolds num-
ber R̃e = �U0ℎ20∕(�L). The first term (I) on the right-hand
side of Eq. (10) corresponds to the classic conductivity cal-
culated by the Hele-Shaw analogy [5]; the second term (II)
comes from wall permeation [34]; the third term (III), which
is the novel contribution of our calculation, and is explicitly a
function of the flow-wise coordinate x, is due to the coupled
effect of geometry variation, fluid inertia, and wall perme-
ation.
2.4. Wall permeation velocity

Substituting the expression for dp∗∕dx∗ into the vertical
velocity from Eq. (6), and evaluating the result at z∗ = ℎ∗,
we obtain the a priori unknown wall permeation velocity

vw(x) = −V0
ℎ(x)�

3�ℎ0 + ℎ(x)
. (11)

Recall that � < 0 (⇒ � < 0), so vw > 0, i.e., the veloc-
ity is into the wall. Observe that both vw and the term (III)
in C vanish for � = 0 (⇒ � = 0) (parallel walls) because,
in this case, there is no driving force to push fluid into the
porous walls. We have imposed the full volumetric flux onto
the leading-order solution (see also [53]), and it must be con-
served. Note vw ≠ 0 for� = 0 because there can still be fluid
penetrating the wall in the normal direction even if there is
no (tangential) slip. The permeation velocity for � = 0 is
driven by the flow-wise contraction of the aperture (rather
than being imposed a priori [34]).

3. Results and Discussion
Figure 2 shows the flow profile generated from the per-

turbative solution from Sec. 2, for a fracture with linear aper-
ture variation. The streamlines highlight the 2D nature of the
velocity field, as well as permeation through the fracture’s
top wall. The pressure does not vary with z∗, as required by
the lubrication (small aspect ratio, � ≪ 1) approximation.
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Figure 2: Illustration of the dimensionless analytical flow solution (Eqs. (4), (5) and (6)) obtained for the model shaped fracture
with permeable angled walls. Only the top half (0 ≤ z∗ ≤ 1) is shown, for clarity. Background color denotes pressure, and curves
are streamlines shaded by velocity magnitude. Here, � = −10−3, � = 0.01, R̃e = 0.01, � = 10−3.

Next, we validate our mathematical results against “full”
Navier–Stokes direct numerical simulations (DNS) [3]. We
carried out DNS using the simpleFoam solver inOpenFOAM®
ver. 7.0 [62, 56], an open-source library based on the fi-
nite volume method [36]. The simulations (see Supplemen-
tary Material for description of the method) were performed
using the Hele-Shaw cell geometry with varying aperture
along x from Fig. 1. Importantly, unlike previous computa-
tional studies on flow in fractures with permeable walls [57],
we did not impose the wall (tangent and normal) velocities
from the theory onto the simulations. The latter approach is
akin to verification, while we seek validation [47] between
theory and simulation. Instead, we imposed a tensorial slip
condition on the tangential velocity (the BJS BC) coupled
with a normal pressure flux BC, to allow the simulation to
self-consistently determine the flow (in particular, the un-
known wall permeation velocity) and pressure profiles.

The DNSs provide the 2D velocity field and the pres-
sure distribution, i.e., (u∗(x∗, z∗), v∗(x∗, z∗)) and p∗(x∗, z∗)
(both scaled as in Eq. (1)). From these quantities, the vol-
umetric flux across a vertical cross-section and the pressure
gradient at a given x∗ are computed, yielding ⟨u∗(x∗)⟩ and
dp∗∕dx∗. Their ratio, ⟨u∗⟩∕(−dp∗∕dx∗) is to be compared
to the theoretically predicted dimensionless hydraulic con-
ductivity ∗(x∗) from Eq. (8).

First, in Fig. 3, we show the velocity profiles across the
midlength plane (x∗ = 0.5) of fractures with different slopes.
The simulation results agree well with theory. The zoomed-
in inset in Fig. 3(a) highlights that u∗ does not start from
0, but rather some finite value, as required by the BJC par-
tial slip BC. For all �, v∗ = 0 at the centerline (z∗ = 0) as
required by symmetry, then increases smoothly in absolute
value towards the walls (Fig. 3(b)). Fluid enters into the sur-
rounding porous medium and the wall permeation velocity
v∗w = v

∗
|z∗=ℎ∗ is self-consistently computed (shown in Sup-

plementaryMaterial Fig. S.7). The wall permeation velocity
increases with |�| tomaintain the imposed flux through these
narrowing fractures. Meanwhile, for � = 0, v∗ = 0 for all
z∗, i.e., there is no permeation into the porous medium, only

slip at the fluid–solid interfaces (z∗ = ±1).
To verify the derived analytical expression for the hy-

draulic conductivity in a shaped fracture, we compute∗(x∗)
in multiple angled fractures with permeable walls, based on
typical reservoir properties summarized in Table 1. Fig-
ure 4(a) shows the predicted ∗ (from theory) against the
simulated∗ values along the fracture (multiple x∗ for each)
for multiple slope values �, and multiple slip coefficients �,
for fixed R̃e. In the same color family, the brightness of
the color refers to the value of �: the darker the color, the
smaller � is. The classical conductivity  = 1∕3 (i.e., for
� = � = 0) calculated from the Hele-Shaw analogy [5, 66]
is shown by (simulated) and (predicted). All data points
in Fig. 4(a) lie close to the line of slope 1, which means that
the predicted conductivity (from theory) is in good agree-
ment with the simulations. For � > 10−3, the correlated
trend continues, but in these cases the slip length is large
and the single-domain simulation approach is not appropri-
ate (the flow in the surrounding porous medium should be
resolved as well to be able to impose suitable BCs numeri-
cally).

In Fig. 4(b), we plot the conductivity variation along the
flow-wise (x∗) direction, a novel prediction of the present
theory. By comparing the conductivity for the same � but
different �, for example, � = −10−3 (the red color fam-
ily), we observe that wall slip has only a weak effect on
∗. By comparing the conductivity for different � (differ-
ent color families), we observe that ∗ decreases with x∗,
which means that it becomes “harder” for the fluid to flow
through the narrowing fractures. Of course this is expected
on physical grounds, but this effect of � on∗ had not been
quantified prior to this study. In particular, our results in
Fig. 4 show that that even weak slopes have a much more
significant impact on the conductivity, than wall slip due to
the permeability of the walls. Likewise, the wall permeation
velocity v∗w has not been a priori specified, and is also a
strong function of � (recall Sec. 2.4 and Supplementary Ma-
terial Fig. S.7).
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Figure 3: Dimensionless velocity profiles across the fracture aperture z∗, at the mid-fracture plane x∗ = 0.5, for � = 5 × 10−4
and R̃e = 0.01: (a) the horizontal component u∗(x∗, z∗) (inset highlights the non-zero slip velocity at the wall); (b) the vertical
component v∗(x∗, z∗). Solid curves are the theoretical profiles from Eq. (6), and filled circles with the same colors are the
corresponding simulation results. Colors represent different � values (see legend).
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4. Conclusions and Outlook
The contribution of this study is the mathematical ex-

pressions, Eqs. (9) and (10), that relate the fracture conduc-
tivity to the geometric and physical quantities, and which
explicitly shows the coupling between the fracture shape (in
terms of its wall angle), the permeability of the porous wall
(in terms of the Beavers–Joseph–Saffman slip length), and
the inertia of the fluid in the fracture (in terms of a Reynolds
number). Additionally, unlike previous studies on fractures
with permeable walls, we self-consistently determined the
wall permeation velocity, Eq. (6), which is a priori unknown
and is set by the balance of pressure forces pushing fluid

into the walls, and the permeability of the surrounding ma-
trix. From these results, we concluded that the coupling
effect of geometric variation, wall permeation and inertia
leads to a decreasing conductivity along a narrowing frac-
ture. Importantly, what has not been appreciated in previous
studies is that, among these factors, the geometric variation
(specifically, the resistance to flow induced by the narrow-
ing of a fracture) dominates the conductivity change, even
for slow shape variation (small slopes). The theory was val-
idated against direct numerical simulation of the Navier–
Stokes equations in a model Hele-Shaw geometry.

In future work, the analytical solutions derived could be
used to improve systems-level (network) modelling of hy-
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draulic fracturing and transport [19], wherein simple mod-
ifications of Darcy’s law are currently used to capture the
geometric variation and wall permeability [10]. As men-
tioned above, our analysis is easily applied to fractures with
other (more complex but still “slow”) types of geometric
variations, such those considered in [61]. It could also be
worthwhile to analyze a pressure-controlled flow scenario.
The theory is straightforward to extend: imposing a Darcy-
like BC, such as v∗w ∝ p∗ − p∗ref (for some reference pres-
sure p∗ref deep in the surrounding porous medium) [58, 21,
50], Eq. (6) yields a dimensionless ODE for the pressure,
on which one can impose an inlet and outlet pressure. In
this context, the OpenFOAM® solver developed could also
be adapted to account for solute non-Fickian transport into
the surround rock, as well as wall reactions [37]. Our re-
sults could also guide the design of microfluidic analogues
of porous media flows [52] for emerging reservoir-on-a-chip
technologies [30]meant to emulate flow in geophysical reser-
voirs [44]. Additionally, our solutions for the wall perme-
ation velocity can be employed to estimate leakage in near-
well operations, which can improve the accuracy of reservoir
simulations [16]. Our analytical flow solution could also be
used to revisit the effect of wall permeation on the Saffman–
Taylor (viscous fingering) instability in angled Hele-Shaw
cells [1, 2].

Research data availability
The OpenFOAM® solver, example simulation configu-

ration files, and post-processing scripts are freely available
at https://doi.org/10.5281/zenodo.3934416. [University of
Illinois/NCSA Open Source License].
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ABSTRACT
We investigate the flow-wise variation of the hydraulic conductivity inside a non-uniformly
shaped fracture with permeable walls. Using lubrication theory for viscous flows, in conjunc-
tion with the Beavers–Joseph–Saffman boundary condition at the permeable walls, we obtain an
analytical expression for the velocity profile, conductivity, and wall permeation velocity. These
predictions highlight the effects of geometric variation (through the local slope of the aperture’s
flow-wise variation), the permeability of the walls (through a dimensionless slip coefficient),
and the effect of flow inertia (through a Reynolds number). The theory is validated against an
OpenFOAM® solver for the Navier–Stokes equations subject to a tensorial slip boundary con-
dition, showing good agreement. The mathematical results have implications on system-level
(multiscale) modeling of hydraulically fractured reservoirs, in which the Darcy conductivity of
each non-uniform passage must be accurately accounted for, throughout the fractured porous
rock.

Introduction
The supporting material consists of two sections, seven figures S.1 to S.7, and Table S.1.
Supporting Material Section 1 provides the steps in the derivation of the hydraulic conductivity presented and

discussed in the main text. These steps are included for completeness and to aid a reader in following the mathematical
derivation.

Supporting Material Section 2 describes the OpenFOAM® solver methodology for generating the direct numerical
simulation data reported in the main text. Section 2 includes ancillary details about the verification of the simulations
(grid independence tests) and post-processing of the simulation data. Toward these ends, Figs. S.1 through S.6 are
referenced as part of Section 2.

The OpenFOAM® solver and post-processing scripts are freely available at the repository https://github.com/
daihui-lu/HydraulicConductivityofShapedFractures, per the “Research data availability” statement in the
main text.

Figures S.6 and S.7 are complementary representations of data and information discussed in the main text. They
are provided for completeness but are not essential to the conclusions in the main text.
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Conductivity of a shaped fracture with permeable walls

1. Supplementary steps in the main analytical derivations
The Beavers–Joseph–Saffman (BJS) [1, 5] partial slip boundary condition (BC) on the permeable wall is

u∗ = −�
(

)u∗

)z∗
+ �2 )v

∗

)x∗

)

= −�)u
∗

)z∗
+ (�2) at z∗ = ±ℎ∗(x∗). (S.1)

The slip coefficient �, which is a dimensionless slip length (i.e., � = lslip∕ℎ0), is an empirically-measurable quantity
that enforces a shear stress balance at the porous walls, as discussed in the Introduction of the main text.

Let R̃e = �Re be finite as � → 0. Then, upon taking the limit � → 0 of Eqs. (2) from the main text, Eq. (2a)
remains unchanged, and Eqs. (2b) and (2c) become

R̃e u∗ )u
∗

)x∗
+ R̃e v∗ )u

∗

)z∗
= −

)p∗

)x∗
+ )2u∗

)z∗2
, (S.2a)

0 = −
)p∗

)z∗
. (S.2b)

Now, assume a regular perturbation expansion in R̃e ≪ 1. The velocity field is expanded as
u∗ = u∗0 + R̃e u

∗
1 +⋯ , (S.3a)

v∗ = v∗0 + R̃e v
∗
1 +⋯ . (S.3b)

Substituting Eqs. (S.3) into Eqs. (S.2) and neglecting (R̃e) and higher-order terms, we obtain the leading-order
momentum equations:

0 = −
)p∗

)x∗
+
)2u∗0
)z∗2

, (S.4a)

0 = −
)p∗

)z∗
, (S.4b)

subject to the boundary conditions (BCs):
)u∗0
)z∗

|

|

|

|

|z∗=0
= 0, v∗0

|

|

|z∗=0
= 0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
symmetry

and u∗0
|

|

|z∗=ℎ∗
= − �)u

∗

)z∗
|

|

|

|z∗=ℎ∗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

BJS BC

. (S.5)

Recall that, by symmetry, we are only solving for the profile in the top half of the fracture. Therefore, the leading-order
solution for the horizontal velocity has the form

u∗0(x
∗, z∗) = 1

2
dp∗

dx∗
z∗2 + ℭ1(x∗)z∗ + ℭ2(x∗), (S.6)

where ℭ1 and ℭ2 are arbitrary (integration) functions of x∗. Since p∗ is independent of z∗ by Eq. (S.4b), henceforth
we write )p∗∕)x∗ = dp∗∕dx∗. Imposing the boundary conditions (S.5) onto Eq. (S.6), we obtain

u∗0(x
∗, z∗) =

(

ℎ∗2 − z∗2
2

+ �ℎ∗
)(

−
dp∗

dx∗

)

. (S.7)

Since the flow is in the direction of positive x∗, dp∗∕dx∗ < 0, so we choose to associate a negative sign with this
term in some equations, for clarity, as is standard in the fluid mechanics literature. Then, the leading-order depth-
averaged velocity is

⟨u∗0⟩(x
∗) = 1

ℎ∗(x∗) ∫

ℎ∗(x∗)

0
u∗0(x

∗, z∗) dz∗ =
3�ℎ∗(x∗) + ℎ∗(x∗)2

3

(

−
dp∗

dx∗

)

. (S.8)
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Conductivity of a shaped fracture with permeable walls

Next, we determine the leading-order vertical velocity. From the conservation of mass equation,
)u∗

)x∗
+ )v∗

)z∗
= 0, (S.9)

we deduce that
)v∗0
)z∗

= −
)u∗0
)x∗

=
(

ℎ∗ dℎ
∗

dx
+ �dℎ

∗

dx

)

dp∗

dx∗
−
(

z∗2 − ℎ∗2
2

− �ℎ∗
)

d2p∗

dx∗2
. (S.10)

Now, integrating both sides of Eq. (S.10) from 0 to an arbitrary z∗, and using the second boundary condition in Eq. (S.5),
we find that the vertical velocity is

v∗0(x
∗, z∗) =

(

ℎ∗ dℎ
∗

dx
+ �dℎ

∗

dx

)

z∗
dp∗

dx∗
−
(

z∗3

6
− ℎ∗2z∗

2
− �ℎ∗z∗

)

d2p∗

dx∗2
. (S.11)

From Eqs. (S.2), we obtain the first-order perturbation equation:

u∗0
)u∗0
)x∗

+ v∗0
)u∗0
)z∗

=
)2u∗1
)z∗2

. (S.12)
Substituting the (1) solution from Eq. (S.7) above into Eq. (S.12), we obtain

)2u∗1
)z∗2

=

[

(

ℎ∗2

2
+ �ℎ∗

)2
+ z∗4

12

]

dp∗

dx∗
d2p∗

dx∗2
+
(

ℎ∗2 + z∗2
2

+ �ℎ∗
)

(ℎ∗ + �)�
�

(

dp∗

dx∗

)2
, (S.13)

subject to homogeneous BCs:
)u∗1
)z∗

|

|

|

|

|z∗=0
= 0 and u∗1

|

|

|z∗=ℎ∗
= 0. (S.14)

Integrating both sides of Eq. (S.13) from 0 to an arbitrary z∗, and substituting the boundary conditions from Eq. (S.14),
we obtain the first-order inertial correction to the horizontal velocity component:

u∗1(x
∗, y∗) =

[

(

ℎ∗2

2
+ �ℎ∗

)2 z∗2 − ℎ∗2
2

+ 1
360

(

z∗6 − ℎ∗6
)

]

dp∗

dx∗
d2p∗

dx∗2

+
[(

ℎ∗2

2
+ �ℎ∗

)

z∗2 − ℎ∗2
2

+ z∗4 − ℎ∗4
24

]

(ℎ∗ + �)�
�

(

dp∗

dx∗

)2
.

(S.15)

From the latter, we find the depth-averaged velocity correction:

⟨u∗1⟩ =
1

ℎ∗(x∗) ∫

ℎ∗(x∗)

0
u∗1(x

∗, z∗) dz∗

=
(

3
35
ℎ∗6 + 1

3
�ℎ∗5 +

�2

3
ℎ∗4

)(

−
dp∗

dx∗

)

d2p∗

dx∗2
−
(1
5
ℎ∗4 + 1

3
�ℎ∗3

)

(ℎ∗ + �)�
�

(

dp∗

dx∗

)2
.

(S.16)

To close the problem, we need another constraint. Mohais et al. [3] provided one solution by assuming a constant
permeation velocity vw in a parallel fracture (� = 0, ℎ∗ = 1), i.e., v0||z=±ℎ = ±vw (v∗0||z∗=±1 = ±1). If we apply this
constraint to the above analysis, the dimensionless average horizontal velocity becomes

⟨u∗⟩ =
[

3� + 1
3

+ R̃e
(

3
35
+ 1
3
� +

�2

3

)

3
3� + 1

](

−
dp∗

dx∗

)

=
(

3� + 1
3

)[

1 + R̃e
(

3
35
+ 1
3
� +

�2

3

)

9
(3� + 1)2

](

−
dp∗

dx∗

)

.
(S.17)

This solution differs from [3] in that the we have expanded only the velocity u∗ in powers of R̃e, while Mohais et al.
[3] expanded p∗ as well and obtained (using our notation):

−
dp∗

dx∗
= ⟨u∗⟩

{

3
1 + 3�

− R̃e

[

9(7� + 1)
140(1 + 3�)3

+
(

3 + 6�
2 + 6�

)2
]}

. (S.18)

D Lu et al.: Preprint submitted to Elsevier Page 3 of 9



Conductivity of a shaped fracture with permeable walls

To the leading order in R̃e, we may use the Taylor series (1 − �)−1 = 1 + � + (�2) to rewrite (S.18) as

⟨u∗⟩ =
(

3� + 1
3

){

1 + R̃e
[

3(7� + 1)
140(3� + 1)2

+
3(2� + 1)2

4(3� + 1)

]}(

−
dp∗

dx∗

)

. (S.19)

Despite the different expansion methods used to obtain Eqs. (S.17) and (S.19), the leading-order terms are the
same, i.e., they both yield:

⟨u∗⟩ = 1
3
(1 + 3�)

(

1 + 27
35
R̃e

)

(

−
dp∗

dx∗

)

+ (R̃e2, �2, �R̃e), (S.20)

meaning they are asymptotically equivalent for � ≪ 1 and R̃e ≪ 1.
Now, however, the wall permeation velocity vw (and its relation to the pressure gradient dp∕dx) is not necessarily

known a priori. To close the problem, we apply the flux constraint ⟨u∗0⟩ = 1 to Eq. (S.8), and we obtain
dp∗

dx∗
= − 3

3�ℎ∗(x∗) + ℎ∗(x∗)2
⇒

d2p∗

dx∗2
=

(9� + 6ℎ∗)�
[3�ℎ∗(x∗) + ℎ∗(x∗)2]2

. (S.21)

Substituting the latter results into Eq. (S.16) and suppressing the explicit notation that ℎ∗ is a function of x∗, we have

⟨u∗1⟩ =
ℎ∗3(28�∗2 + 22�ℎ∗ + 3ℎ∗2)�

35(3� + ℎ∗)2
dp∗

dx∗
. (S.22)

Finally, from Eqs. (S.8) and (S.22), ⟨u∗⟩ can be reconstituted into a Darcy’s law, as shown in Eq. (8) in the main
text and discussed therein.
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2. Implementation of the numerical solver and its verification
The solution algorithm for the incompressible Navier–Stokes equations [Eqs. (2) in the main text] used in our

direct numerical simulation (DNS) study is SIMPLE (semi-implicit method for pressure-linked equations) [see, e.g.,
4, Ch. 15]. In this study, we set the tolerance for the pressure and velocity components’ residuals to be 10−5 (see the
example convergence plot in Fig. S.1). The BCs applied in the simulation are summarized in the schematic in Fig. S.2.
In particular, note that the BJS BC (S.1) is, mathematically, a Robin (or mixed-type) BC. However, within the iterative
algorithm, we reformulated it as a Dirichlet boundary condition to enhance stability and ensure consistency of fluxes
within the pressure iterations.

The BJS BC, as given in the computational paper by Layton et al. [2], is essentially a slip condition enforcing a
specific value of the velocity field in the face-planar direction of the boundary cell. In this formulation, the condition
does not alter the velocity normal to the porous walls.

In OpenFOAM® [7, 6] and, more generally, in the finite volumemethod [4], discretization is performed by summing
all the contribution from the volumetric source terms (if present) and fluxes, looping over all the cell faces. In order
to discretize generic differential equations without any specific knowledge of the form of the fluxes, OpenFOAM®
requires that each flux is expressed in terms of a face value uf and a face-normal gradient (∇u)f ⋅ nf , where f is
a generic face and nf is the vector normal to such face. Therefore, an explicit or implicit (i.e., matrix coefficients)
expression for those two face-based fields is required. Boundary faces are no exception. Thus, with reference to
Fig. S.3, it is necessary to provide expressions for ub and (∇u)b ⋅ n that take into account the BJS BC. In vector form,
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Figure S.1: SIMPLE algorithm’s residuals plot for a sample simulation with � = −10−3, � = 5 × 10−4 and R̃e = 0.01. The
tolerance used is 10−5 for both the pressure residual and each velocity component’s residual. The simulation converges
after about 10 000 iterations.

u: zeroGradient
p: FixedValue

z

Inlet Outlet

BJS BC + FixedFluxPressure

BJS BC + FixedFluxPressure

xu: FixedPro�le
p: zeroGradient

Figure S.2: Schematic of the OpenFOAM® boundary conditions used in the numerical simulations.
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n
c b

Figure S.3: Illustration of a boundary cell with face centers an face normals. In this figure, c is the cell center (blue dot)
and the blue line represents the boundary. The BJS BC is applied at point b, corresponding to the center of the boundary
face, where �x is the distance between b and c, and n is the vector normal to the boundary face.

the boundary condition reads:
T ⋅ ub = −T ⋅

(

l
)u
)n

)

b
, (S.23)

where T = (I − nn) is the projector on the tangential plane, I is the identity operator, and l = lslip is the BJS slip
length discussed in the main text.

However, a problem described by the Navier–Stokes equations with a BC of the type in Eq. (S.23) is not well
posed, since such condition only constrains the face-planar field. Therefore, it is necessary to specify a condition on
the face-normal field. Since the BJS BC does not provide such a constrain, we assume that all the flow arriving normal
to the boundary leaves the domain. This assumption corresponds to:

n ⋅
()u
)n

)

b
= 0 . (S.24)

In this sense, condition (S.24) merely correspond to copying the value of the velocity field in the first cell. In fact,
using a linear interpolation scheme one obtains:

n ⋅
()u
)n

)

b
≈

n ⋅ (ub − uc)
�x

, (S.25)

which results in:
n ⋅ ub = n ⋅ uc . (S.26)

Equation (S.23) is also discretized using a linear interpolation scheme:

T ⋅ ub = −T ⋅
(

l
ub − uc
�x

)

= T ⋅
(

l
uc

�x + l

)

. (S.27)
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The final form of the BC is then implemented as a Dirichlet BC:

ub = n(n ⋅ ub) + T ⋅ ub = n(n ⋅ ub) + T ⋅
(

l
uc

�x + l

)

. (S.28)

This formulation clearly requires multiple fixed point iterations that, if they converge, result in the correct calculation of
up up to second-order accuracy. For the pressure field, we employ a fixedFluxPressure BC, which essentially imposes
a pressure gradient based on the flux leaving the domain, and allows the simulation to self-consistently determine the
wall permeation velocity.

Since we study steady flow, the initial conditions are only relevant for the convergence (rather than the accuracy),
so they are simply specified as zero velocity and zero pressure. At the inlet of the fracture (x = 0), we impose
the theoretically computed velocity profile given by Eqs. (S.7) and (S.10) (with dp∗∕dx∗ computed from Eq. (S.16)
under the constraint ⟨u∗⟩ = 1), which has a non-zero permeation velocity and satisfies the BJS BC at the inlet’s walls
(z = ±ℎ0). A zero-gradient velocity BC is employed across the outlet plane (x = L), and the pressure there is set to
zero gauge pressure (see Fig. S.2). We do not consider the case of a closed fracture, so we do not need to impose a
crack-tip condition.

To find the optimal computational grid arrangement for the simulations results presented in the main text, we ran a
series of test cases with different numbers of grid elements and with different grid resolutions (spacing), as summarized
in Table S.1. The simulations can be considered non-dimensional (the fluid’s physical properties are chosen to fix the
dimensionless parameters such as R̃e). To maintain �, the simulation channel has length L = 100 and inlet half-
aperture ℎ0 = 1. From each simulation, we extracted the velocities at the cross-sectional plane located at x = L∕2
(x∗ = 0.5). We also extracted the pressure gradient dp∕dx variation along the whole channel. Then, we calculated
the percent change of these quantities with respect to the theoretical values (see above). Finally, the velocities from
the simulations were rescaled by ⟨u⟩ to be comparable to the theory, since the constraint ⟨u⟩ = 1 was imposed in the
derivation.

The grid independence study revealed that the optimal choice is 4000 grid elements withΔx = 0.5 andΔz = 0.05,
as it showed significantly better performance on the permeation velocity than coarser girds and finer grids did not
improve the accuracy notably (see Fig. S.4). The slip velocity and axial pressure gradient showed convergence for
4000 grid elements, with the error increasing for larger grids. Therefore, we used 4000 grid elements for all DNS
results reported in the main text. Note that a non-uniform grid spacing (see Fig. S.5) was used in the vertical direction
to better resolve the flow near the porous walls.
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Figure S.4: Grid independence of key (dimensionless) flow quantities. Percent difference (relative to the theoretical
solution in the main text) of the wall permeation velocity v∗

(

x∗, ℎ∗(x∗)
)

, the wall slip velocity u∗
(

x∗, ℎ∗(x∗)
)

, and the axial
component of the pressure gradient dp∗∕dx∗, all evaluated at x∗ = 0.5 but using different grids.
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Figure S.5: Schematic of the computational grid showing the non-uniform vertical spacing (“boundary layer meshing”).
Notice that the grid spacing is scaled in the horizontal direction to fit the figure.
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Figure S.6: Flow-wise variation: Dimensionless velocity profiles versus fracture aperture z∗ at the planes x∗ ∈ {0.2, 0.5, 0.8},
for � = −10−3, � = 10−4 and R̃e = 0.01: (a) the horizontal component u∗(x∗, z∗); (b) the vertical component v∗(x∗, z∗).
Solid curves are the theoretical profiles from Eq. (S.11), and filled circles with the same colors are the corresponding
simulation results. Profiles are color-coded by their x∗ positions.

Table S.1
Information about the grids used to establish grid independence of the direct numerical simulation results.

Grid arrangement 100 × 50 200 × 100 400 × 200 800 × 400
Total grid elements 5 000 20 000 80 000 320 000
Δx resolution 1 0.5 0.25 0.125
Δz resolution 0.02 0.01 0.005 0.0025
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Figure S.7: The dimensionless wall permeation velocity v∗w(x
∗) along the channel for R̃e = 0.01. Colors represent cases with

different � and � values: : � = 0, � ∈ {0, 5 × 10−4, 10−3}; : � = −10−4, � ∈ {0, 5 × 10−4, 10−3}; : � = −5 × 10−3,
� ∈ {0, 5 × 10−4, 10−3}; : � = −10−3, � ∈ {0, 5 × 10−4, 10−3}. Filled circles represent the simulation results, and solid
curves of the same color represent the corresponding theoretical predictions.
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