Testing the Organization of Whistler-mode Chorus Wave Properties by Plasmapause Location

David M. Malaspina¹, Allison N Jaynes², Scot R. Elkington¹, Anthony Arthur Chan³, George Blair Hospodarsky², and John Wygant⁴

¹University of Colorado Boulder ²University of Iowa ³Rice University ⁴University of Minnesota

November 26, 2022

Abstract

Lower-band whistler-mode chorus waves are important to the dynamics of Earth's radiation belts, playing a key role in accelerating seed population electrons (100's of keV) to relativistic (\$>\$ 1 MeV) energies, and in scattering electrons such that they precipitate into the atmosphere. When constructing and using statistical models of lower-band whistler-mode chorus wave power, it is commonly assumed that wave power is spatially distributed with respect to magnetic L-shell. At the same time, these waves are known to drop in power at the plasmapause, a cold plasma boundary which is dynamic in time and space relative to L-shell. This study organizes wave power and propagation direction data with respect to distance from the plasmapause location to evaluate what role the location of the plasmapause may play in defining the spatial distribution of lower band whistler-mode chorus are determined by L-shell, and are largely independent of plasmapause location. The primary physical importance of the plasmapause is to act as an Earthward boundary to lower band whistler mode chorus wave activity. This behavior is consistent with an equatorial lower band whistler mode chorus wave activity. This behavior is consistent with an equatorial lower band whistler mode chorus wave activity.

Testing the Organization of Whistler-mode Chorus Wave Properties by Plasmapause Location

David M. Malaspina^{1,2}, Allison N. Jaynes³, Scot Elkington², Anthony Chan⁴, George Hospodarsky³, John Wygant⁵

¹Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado, USA ²Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA ³Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA ⁴Department of Physics and Astronomy, Rice University, Houston, Texas, USA ⁵School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA

Key Points:

1

2

3

10

11	• An often-used assumption, that whistler-mode chorus properties are organized by
12	L-shell, is tested and verified
13	• The plasmapause bounds whistler mode chorus activity but does not otherwise

¹⁴ influence wave property distributions

Corresponding author: David Malaspina, David.Malaspina@lasp.colorado.edu

15 Abstract

Lower-band whistler-mode chorus waves are important to the dynamics of Earth's ra-16 diation belts, playing a key role in accelerating seed population electrons (100's of keV) 17 to relativistic (> 1 MeV) energies, and in scattering electrons such that they precipitate 18 into the atmosphere. When constructing and using statistical models of lower-band whistler-19 mode chorus wave power, it is commonly assumed that wave power is spatially distributed 20 with respect to magnetic L-shell. At the same time, these waves are known to drop in 21 power at the plasmapause, a cold plasma boundary which is dynamic in time and space 22 relative to L-shell. This study organizes wave power and propagation direction data with 23 respect to distance from the plasmapause location to evaluate what role the location of 24 the plasmapause may play in defining the spatial distribution of lower band whistler-mode 25 chorus wave power. It is found that characteristics of the statistical spatial distribution 26 of equatorial lower band whistler mode chorus are determined by L-shell, and are largely 27 independent of plasmapause location. The primary physical importance of the plasma-28 pause is to act as an Earthward boundary to lower band whistler mode chorus wave ac-29 tivity. This behavior is consistent with an equatorial lower band whistler mode chorus 30 wave power spatial distribution that follows the L-shell organization of the particles driv-31 ing wave growth. 32

³³ Plain Language Summary

Whistler-mode chorus are plasma waves that can efficiently accelerate particles in 34 Earth's radiation belts, and act to scatter them out of the radiation belts into Earth's 35 atmosphere. Models of the statistical behavior of these plasma waves are important for 36 predicting the shape of the radiation belts. For decades, wave models relied on the as-37 sumption that these particular waves are distributed in space similar to radiation belt 38 particles - by distance from Earth at the magnetic equator. Another possibility is that 39 the spatial distribution of these waves could be modified by the location of Earth's cold 40 plasma torus, the plasmasphere. The plasmasphere moves toward and away from Earth 41 on different time scales than radiation belt particles. This study tests how whistler-mode 42 chorus plasma waves are organized in space, by comparing statistics of plasma wave prop-43 erties organized by distance from the Earth at the magnetic equator with the same data 44 organized by distance from the plasmasphere outer boundary. The long-standing assump-45 tion is found to be valid. This result is consistent with the interpretation that the spa-46 tial distribution of the plasma waves under study is determined by the spatial organi-47 zation of the particles that drive the wave growth. 48

49 **1** Introduction

Whistler-mode chorus waves are important to the dynamics of the Earth's radiation belts, playing a key role in accelerating seed population electrons (100's of keV) to relativistic (> 1 MeV) energies, (e.g. (Horne & Thorne, 1998; Summers et al., 1998; Horne et al., 2005; Reeves et al., 2013; Jaynes et al., 2015)) and in scattering electrons across a broad range of energies, often leading to their precipitation into the atmosphere (e.g. (Shprits et al., 2008; Thorne, 2010; Kasahara et al., 2018)).

In the inner terrestrial magnetosphere, whistler-mode chorus waves appear in two 56 bands, a lower band $(0.1f_{ce} < f < 0.5f_{ce})$, and an upper band, $(0.5f_{ce} < f < f_{ce})$, 57 where f_{ce} is the electron cyclotron frequency (e.g. (Burtis & Helliwell, 1969; Tsurutani 58 & Smith, 1977; Santolík et al., 2003)). Also, in this region, whistler-mode chorus waves 59 are driven by cyclotron resonance with electron distributions with strong perpendicu-60 lar temperature anisotropy (Schriver et al., 2010; Li et al., 2010; Lee et al., 2014), gen-61 erated as electrons are adiabatically transported Earthward via impulsive injections from 62 the plasma sheet during geomagnetic storms and substorms (e.g. (Sazhin & Hayakawa, 63 1992)). 64

A large number of studies have examined the spatial distribution of whistler-mode 65 chorus wave power as a function of L-shell, MLT, and geomagnetic indices, demonstrat-66 ing that the highest mean wave amplitudes occur in the dawn sector (where injected elec-67 trons gradient-curvature drift about the Earth), near the equator (where the strongest 68 adiabatic temperature anisotropy occurs), and at L-shells of ~ 7 (e.g. (Tsurutani & Smith, 69 1977: Meredith et al., 2001, 2003: Bortnik et al., 2007; Cully et al., 2008; Li et al., 2009. 70 2010, 2011; Meredith et al., 2012; Li et al., 2016; O. V. Agapitov et al., 2015; Meredith 71 et al., 2018)). Several of these studies have demonstrated, using case studies of individ-72 ual plasmapause crossings, that the plasmapause (the outer boundary of the plasmas-73 phere, the cold dense plasma torus about Earth) constitutes an Earthward boundary to 74 chorus wave activity (e.g. (Meredith et al., 2001)). The drop off of whistler-mode cho-75 rus wave power at the plasmapause is starkly visible in statistical wave power studies 76 when chorus wave power near the geomagnetic equator is organized by distance from the 77 plasmapause (Malaspina et al., 2016). 78

While the drop in equatorial whistler-mode chorus wave power at the plasmapause 79 is well documented by case study observations, nearly all statistical studies of the spa-80 tial distribution of whistler-mode chorus power use the plasmapause only as an inner bound-81 ary for the identification of whistler-mode chorus waves (e.g. (Meredith et al., 2012; Li 82 et al., 2016)). In these studies, wave property statistics are parameterized by L-shell, MLT, 83 and geomagnetic indices, effectively averaging over many plasmapause radial locations and 'smoothing away' the physical drop in whistler-mode wave power at the plasmapause. 85 This smoothing effect can be particularly strong because the plasmapause is dynamic 86 in time and space with respect to L-shell. Plasmapause location varies in time through 87 a wide range of L-shells (2 - 7) as a function of geomagnetic conditions, MLT, and the time history of both the solar wind convection electric field and ionospheric refilling (Carpenter 89 & Lemaire, 2004). 90

This raises a question: to what extent does the spatial distribution of near-equatorial whistler-mode chorus wave power depend upon the plasmapause location? For example, the above-referenced studies examining the spatial distribution of whistler-mode chorus wave power all report a gradual drop in lower band whistler-mode wave power Earthward of L = 7. Is this a physical feature of the chorus wave spatial distribution or an artifact of smoothing wave statistics over variable plasmapause locations?

For a different whistler-mode wave in the inner magnetosphere, plasmaspheric hiss, 97 the shape, location, and density profile of the plasmasphere strongly determine the wave 98 power spatial distribution (Malaspina et al., 2016, 2017, 2018). For hiss, wave power modulation by plasmaspheric structure is thought to be largely a consequence of wave refrac-100 tion, which is highly sensitive to the distribution of cold plasma density ((Maxworth & 101 Gołkowski, 2017) and references therein). In contrast, the whistler-mode chorus source 102 region and typical propagation regions are in general well outside the plasmapause (Bortnik 103 et al., 2006; Chen et al., 2013), so the plasmasphere may have a weaker effect on cho-104 rus wave power distributions. 105

This work aims to quantify the impact of plasmapause location on the spatial dis-106 tribution of near-equatorial lower band whistler-mode chorus wave properties. To do so, 107 observations of whistler-mode chorus wave properties are compiled and organized by the 108 location of the plasmapause with respect to Earth (L_{pp}) , distance from the plasmapause 109 (ΔL_{pp}) , and magnetic local time (MLT). These statistics are then compared against wave 110 property statistics organized using L-shell, L_{pp} , and MLT. In this study, the wave data 111 are not explicitly parameterized by geomagnetic indices, though the geomagnetic activ-112 ity level is implicitly included through L_{pp} . 113

Quasi-linear diffusion models of radiation belt dynamics typically ingest statistical models of wave power organized by L-shell, geomagnetic indices, and MLT (Subbotin
& Shprits, 2009; Fok et al., 2011; Horne et al., 2013; Orlova et al., 2014; Glauert et al.,

¹¹⁷ 2014). This work quantitatively tests an assumption commonly used in these models:

- that parameterization by L-shell is the most physically appropriate description of the
- chorus wave spatial distribution.

¹²⁰ 2 Data Set and Processing

This work uses data from the Van Allen Probes mission. These twin spacecraft were 121 launched in August of 2012 and were de-orbited in 2019. During their mission, they or-122 bited Earth between 600 km altitude and ~ 6 Earth radii. They were spin stabilized, ro-123 tating once every ~ 11 s, orbiting Earth every ~ 9 hours, and precessing through all lo-124 cal times every ~ 2 years. Their orbits covered $\pm 20^{\circ}$ of the magnetic equator. The in-125 struments used in this analysis are the Electric and Magnetic Field Instrument Suite and 126 Integrated Science (EMFISIS) (Kletzing et al., 2013) and the Electric Fields and Waves 127 (EFW) instrument (Wygant et al., 2013). 128

This work examines lower band whistler-mode chorus wave power, wave normal angle, and Poynting flux direction as a function of parameters including: spacecraft L-shell location (L), distance between the spacecraft and the plasmapause in units of L-shell (ΔL_{pp}), and the distance of the plasmapause from Earth (L_{pp}).

The TS04D magnetic field model (Tsyganenko & Sitnov, 2005) is used to define 133 L, ΔL_{pp} , and L_{pp} for each wave power observation. The specific L definition used here 134 is McIlwain L-shell (McIlwain, 1961) for 90 degree pitch angle particles. Cold plasma den-135 sity is estimated using the spacecraft floating potential data calibrated each day against 136 densities determined via the upper hybrid resonance line, as in (Malaspina et al., 2016). 137 Following (Moldwin et al., 2002), plasmapause crossings are identified as the most Earth-138 ward sharp density gradient (more than 5x change in density over 0.5 L-shell) on a given 139 inbound or outbound pass of the spacecraft. The quantity ΔL_{pp} is defined as $L - L_{pp}$, 140 where L_{pp} is the plasmapause location determined on a given outbound or inbound pass 141 of the spacecraft. Data from passes without an identified plasmapause crossing are ex-142 cluded in this work. 143

Wave power is determined using the EMFISIS survey power spectra of signals from 144 the three search coil magnetometer (SCM) axes, as calculated on-board. These on-board 145 calculated spectra capture 0.5 seconds of data every 6 seconds, producing power spec-146 tral densities between ~ 2 Hz and ~ 12 kHz in 65 pseudo-logarithmically spaced frequency 147 bins. Lower-band whistler-mode chorus wave power for a given spectra is determined by 148 summing the power spectral densities from all three SCM axes, multiplying by the band-149 width of each frequency bin, and summing data from $0.1f_{ce}$ to $0.5f_{ce}$. Here f_{ce} is the 150 electron cyclotron frequency local to each spectral observation, determined using the mag-151 netic field magnitude as measured by the fluxgate magnetometer. 152

Using SCM wave power data for this study instead of electric field wave data avoids 153 complications associated with nonlinear electrostatic structure wave power in whistler-154 mode frequency bands (Mozer et al., 2013) as well as those associated with non-uniform 155 sensor response along different measurement axes (Hartley et al., 2016). In SCM data, 156 whistler-mode chorus are well-isolated narrow band (on a logarithmic scale) waves. Spec-157 tral bins dominated by magnetosonic waves are excluded using the following criteria on 158 compressibility: B_{\parallel} / B_{\perp} < 0.6. Here, B_{\parallel} is the magnetic field wave amplitude paral-159 lel to the background magnetic field and B_{\perp} is the magnetic field wave amplitude per-160 pendicular to the background magnetic field, in a given spectral frequency bin. Data recorded 161 during times of strong spacecraft charging, eclipse, and thruster firings are excluded from 162 consideration. Data where the signal to noise ratio was less than 5 were excluded from 163 consideration, where the SCM noise level definition from (Malaspina et al., 2017) was 164 used. 165

This study also makes use of wave normal direction and Poynting flux direction for 166 lower band whistler-mode chorus. Both quantities are derived from EMFISIS on-board 167 cross-spectral data. Specifically examined in this study are (i) θ_{kB} , the polar angle be-168 tween the wave normal vector direction and the background magnetic field, and (ii) θ_{SB} , 169 the polar angle between the Poynting flux direction and the background magnetic field. 170 Valid θ_{kB} values range from 0 (parallel/anti-parallel with B) to 90 (perpendicular to B) 171 Valid θ_{SB} values range from 0 (parallel to B) to 180 (anti-parallel to B). θ_{kB} angles are 172 calculated using the single value decomposition (SVD) analysis method (Santolík et al., 173 2003) applied to only the three axis SCM wave data. SVD-method wave normal angle 174 determination was considered to be valid for frequency/time bins with planarity > 0.5, 175 ellipticity > 0.5 and coherence between the two SCM signals orthogonal to the back-176 ground magnetic field > 0.5. These quantities and their derivations are detailed in (Santolík 177 et al., 2003). 178

The lower band whistler-mode chorus wave band can only be fully captured when 179 $0.5 f_{ce}$ is below the upper frequency limit of the EMFISIS on-board power spectra (12) 180 kHz). This condition is generally satisfied for L > 3.5. Closer to Earth than L = 3.5, 181 prior studies indicate (e.g. (Meredith et al., 2018) and references therein), that lower band 182 whistler-mode chorus wave power near the magnetic equator is often negligibly small, 183 though this condition can be violated during periods of high geomagnetic activity. Lower 184 band whistler-mode chorus wave power Earthward of the plasmapause, near the mag-185 netic equator, is considered to be negligible in this study. 186

Data recorded by the Van Allen Probes between October 1, 2012 and March 31, 2018 were used in this study, encompassing nearly three full precessions of the orbit through all local times. Data from Van Allen Probe A after May of 2016 were not used because, in approximately June of 2016, radiation damage to preamplifier electronics degraded the spacecraft potential measurement on Van Allen Probe A to the point where it was not useful for density determination.

2.1 Analysis

193

Figure 1 shows data from one orbit of Van Allen Probe B on 01 September, 2014 194 when the orbit apogee was near dawn. Figure 1a shows the derived cold plasma density. 195 with vertical red dashed lines indicating the identified plasmapause crossings on the in-196 bound and outbound legs of the orbit. Between 14:00 and 16:00 UTC, a weak spacecraft 197 charging event influenced the plasma density estimate. Figure 1b shows the total power 198 spectral density from the two components of the electric field measured in the spacecraft 199 spin plane. The frequencies 0.5 f_{ce} and 0.1 f_{ce} are overlaid in white solid lines, f_{ce} is shown 200 as a dashed white line. Broadband signals corresponding to kinetic electric field struc-201 tures such as phase space holes and kinetic Alfvén waves pervade the electric field wave 202 data (Mozer et al., 2013; Chaston et al., 2015), especially near 11:00 and 15:00 UTC. Fig-203 ure 1c shows the total power spectral density from all three SCM axes. Plasmaspheric 204 hiss is observed Earthward of the plasmapause on both legs of the orbit, between ~ 150 205 Hz and 2 kHz on the outbound leg and between ~ 50 Hz and 2 kHz on the inbound leg. 206 Figure 1d shows the band-integrated (0.1 f_{ce} to 0.5 f_{ce}) lower-band whistler-mode mag-207 netic field wave power. Lower-band whistler-mode wave power is located outside the plas-208 masphere, between 0.1 f_{ce} and 0.5 f_{ce} , and is well-separated in frequency from other wave 209 modes in the SCM data. While the lower-band whistler-mode waves show extended pe-210 riods of activity, the variation in wave power during those periods can be as high as four 211 orders of magnitude. This behavior is typical of whistler mode chorus (Santolík et al., 212 2010, 2014). 213

To compare lower-band whistler-mode properties under L-shell parameterization with those same properties under ΔL_{pp} parameterization, statistics of wave power, θ_{kB} , and θ_{SB} are presented. The full data set, after the exclusions described in the prior sec-

Figure 1. Plasma waves and density variation during one orbit of Van Allen Probe B on 01 September, 2014. (a) Plasma density derived from the spacecraft floating potential calibrated against the upper hybrid resonance line, (b) spectrogram of electric field wave power, (c) spectrogram of magnetic field wave power, (d) band-integrated wave power during this interval between 0.1 and 0.5 times the electron cyclotron frequency. Dashed white lines in (b) and (c) indicate the electron cyclotron frequency (f_{ce}) and solid white lines indicate $0.5f_{ce}$ and $0.1f_{ce}$.

tion, consists of $\sim 3.12 \times 10^7$ 0.5 s samples of lower-band whistler-mode waves distributed across L-shell, MLT, and geomagnetic activity level.

Wave property statistics are divided into four MLT sectors: Dawn (3 < MLT <9), Noon (9 < MLT < 15), Dusk (15 < MLT < 21), and Midnight (21 < MLT < 24)and 0 < MLT < 3). The statistics are also divided into four bins based on the location of the plasmapause with respect to Earth: $2 < L_{pp} < 3$, $3 < L_{pp} < 4$, $4 < L_{pp} <$ 5, and $5 < L_{pp} < 6$. The geomagnetic activity level is convolved with this binning, as heavily eroded plasmapheres occur when geomagnetic activity is high, and extended plasmaspheres occur when geomagnetic activity is low.

Figure 2 shows histograms of lower-band whistler-mode wave occurrence as a function of wave power and L-shell for data recorded in the Dawn sector (3 < MLT < 9). Plots in the left column show data organized by L-shell, while plots in the right column

Figure 2. Histograms of lower-band whistler-mode wave occurrence as a function of wave power and L-shell for (a,b,c,d) data organized by L-shell and (f,g,h,i) data organized by distance to the plasmapause, shifted by the midpoint plasmapause location ($\Delta L_{pp} + L_{pp,midpoint}$), so that the data are directly comparable to (a,b,c,d). (a,f) data for plasmapause locations between L = 2and L = 3, (b,g) data for plasmapause locations between L = 3 and L = 4, (c,h) data for plasmapause locations between L = 4 and L = 5,(d,i) data for plasmapause locations between L = 5 and L = 6. (e,j) Mean wave power as a function of L-shell derived from the distributions in (a,b,c,d) and (f,g,h,i).

show data organized by distance from the plasmapause, shifted by the value of L_{pp} at the midpoint of the plasmapause location bin ($L_{pp,midpoint} = 2.5, 3.5, 4.5, \text{etc.}$). This shift enables the plasmapause-sorted data to be directly compared with the L-sort data. The top row shows data where $2 < L_{pp} < 3$, the second row data where $3 < L_{pp} < 4$, the third row data where $4 < L_{pp} < 5$, and the fourth row data where $5 < L_{pp} < 6$. In each case, $L_{pp,midpoint}$ is indicated by a vertical dashed black line.

We choose not to collapse over the wave amplitude dimension when displaying these statistics because whistler-mode chorus wave amplitude distributions are known to be heavily tailed (Watt et al., 2017), with the probability of observing a particular amplitude decreasing toward higher amplitudes. The bottom row shows the mean wave power per L-shell bin for each L_{pp} condition: black = 2 < L_{pp} < 3, blue = 3 < L_{pp} < 4, green = 4 < L_{pp} < 5, and red = $5 < L_{pp} < 6$. While taking the mean collapses the amplitude dimension, mean wave power is often the most relevant quantity for quasi-linear representations of radiation belt modeling (Subbotin & Shprits, 2009; Fok et al., 2011; Horne et al., 2013; Orlova et al., 2014; Glauert et al., 2014).

The most striking feature of Figure 2 is the strong similarity between the left and 245 right columns. Independent of whether the data are organized by L-shell or ΔL_{pp} , the 246 highest amplitude waves are most likely to occur near L = 6, and the likelihood of ob-247 serving high amplitude waves falls toward Earth. This trend persists for all L_{pp} bins. The 248 overall shape of the amplitude/L-shell wave power distribution remains the same as L_{pp} 249 varies, for both the L-sorted data and the ΔL_{pp} -sorted data. The only impact of L_{pp} vari-250 ation is to set the Earthward cutoff of an otherwise weakly changing (in L-shell) distri-251 bution. 252

The two panels in the bottom row show that the mean wave amplitudes drop toward Earth, and they drop as L_{pp} increases, consistent with an overall change in geomagnetic activity. The drop in mean wave power beyond $L \approx 6.5$ occurs because the Van Allen Probes' orbital apogee rarely exceeds this value and the statistical coverage of these high-L bins is poor. The data in Figure 2e and Figure 2j are compared directly in Figure 5.

Figure 3 has a similar format to Figure 2, except that the quantity examined is θ_{kB} . 259 the angle between the SVD-determined wave normal vector and the background mag-260 netic field vector. Two distinct populations are present, a quasi-field aligned population 261 with $\theta_{kB} < 30^{\circ}$, and an oblique population with $50^{\circ} < \theta_{kB} < 80^{\circ}$. The two pop-262 ulations separate more distinctly closer to Earth, and merge for 5 < L < 6, the dis-263 tance where the strongest wave amplitudes also occur. The wave normal angles of lower-264 band whistler-mode waves in the radiation belt are often well-described in terms of cold 265 plasma theory, and have been examined extensively in other works (e.g. (Hartley et al., 266 2015; Li et al., 2016; O. V. Agapitov et al., 2016)). 267

The bottom row shows the peak value of the θ_{kB} distributions as a function of Lshell for the portion of the distribution where $\theta_{kB} < 45^{\circ}$. The data in Figure 3e and Figure 3j are compared directly in Figure 5.

The feature of interest for this study is, again, how similar the L-sorted data (left column) are to the ΔL_{pp} -sorted data (right column). The spatial morphology of the θ_{kB} distributions exterior to the plasmapause appear to be approximately static in L-shell as the plasmapause location varies. The portions of the distribution Earthward of the plasmapause are removed in response to outward motion of the plasmapause.

Figure 4 has the same format as Figure 3, and the quantity examined is θ_{SB} , the angle between the wave Poynting vector and the background magnetic field vector.

One population approximately parallel to \vec{B} , and one population approximately 278 anti-parallel to \vec{B} , are present. The two populations are separated at all distances from 279 Earth, but least so for 5 < L < 6, the distance where the strongest wave amplitudes 280 also occur. The parallel and anti-parallel populations of whistler-mode chorus near the 281 magnetic equator have been well-documented and interpreted as whistler-mode chorus 282 moving away from a magnetic equator source region (e.g. (Santolík et al., 2005; O. Agapi-283 tov et al., 2010)). As with wave power and θ_{kB} , the θ_{SB} distributions are strongly sim-284 ilar between the L-sorted data and ΔL_{pp} -sorted data. 285

The bottom row shows the peak (most likely to be observed) θ_{SB} value as a function of L-shell for the portion of the distribution where $\theta_{SB} < 45^{\circ}$. The data in Figure 4e and Figure 4j are compared directly in Figure 5.

Figure 3. Same format as Figure 2, but for the quantity θ_{kB} . (e,j) Peak value of θ_{kB} for $\theta_{kB} < 45^{\circ}$ as a function of L-shell, for the distributions in (a,b,c,d) and (f,g,h,i).

Plots similar to Figure 2, Figure 3, and Figure 4, but for the other three quadrants (Noon, Dusk, Midnight) are included in the supplementary material. Each of these plots show the same behavior, in that (i) the L-shell and ΔL_{pp} distributions are strikingly similar, and (ii) the plasmapause acts to truncate the distribution toward Earth, but does not strongly influence other characteristics of the distribution (e.g. L-shell location of the largest amplitude waves).

²⁹⁵ 3 Discussion

Figure 5 shows comparisons between the mean wave power (left column), peak θ_{kB} below 45° (center column), and peak θ_{SB} below 45° (right column) for L-sorted data (black traces) and ΔL_{pp} -sorted data (red traces, with x-axis of $\Delta L_{pp} + L_{pp,midpoint}$). The four rows (top to bottom) show data for $2 < L_{pp} < 3$, $3 < L_{pp} < 4$, $4 < L_{pp} < 5$, and $5 < L_{pp} < 6$. These data are from the Dawn sector, and correspond to the data plotted in the bottom rows of Figures 2, 3, and 4. In all cases, there is close agreement between the L-sort and ΔL_{pp} -sort traces.

Small (< 0.5*L*) offsets are present, due to the 1*L* finite width of the L_{pp} bins. When translating the ΔL_{pp} -sorted data onto an L-shell-based x-axis, the bin-middle $L_{pp,midpoint}$

Figure 4. Same format as Figure 2, but for the quantity θ_{SB} . (e,j) Peak value of θ_{SB} for $\theta_{SB} < 45^{\circ}$ as a function of L-shell, for the distributions in (a,b,c,d) and (f,g,h,i).

value was used (e.g. $L_{pp,midpoint} = 2.5$ for $2 < L_{pp} < 3$). This can introduce a small offset in L-shell when the distribution of L_{pp} values in a given L_{pp} bin is skewed more toward the high end of the bin (as with $2 < L_{pp} < 3$).

The preceding analyses demonstrate that the distributions of lower band whistler mode chorus wave power, θ_{kB} and θ_{SB} retain a similar shape and spatial organization with respect to L-shell outside of the plasmapause, whether or not organization with respect to plasmapause position is considered. This is true even for locations close to the plasmapause. This result indicates that the primary role of the plasmapause in shaping the statistical spatial distribution of equatorial lower band whistler mode chorus wave properties is to define an Earthward boundary for wave activity.

This behavior is markedly different from plasmaspheric hiss, where the plasmaspheric density profile (Breneman et al., 2015; Malaspina et al., 2018) and plasmapause location (Malaspina et al., 2016) strongly determine the hiss wave power distribution. The differing behaviors of chorus and hiss spatial distributions are consistent with: (i) an equatorial lower band whistler mode chorus wave power spatial distribution that is co-located with the L-shell organization of particles driving wave growth (in agreement with prior studies such as (Li et al., 2010; Lee et al., 2014)) and, (ii) an equatorial plas-

Figure 5. Comparison between wave mean power (left column), θ_{kB} (middle column), and θ_{SB} (right column) for L-sorted wave data (black traces) and ΔL_{pp} + $L_{pp,midpoint}$ -sorted data (red traces). (a,e,i) data for plasmapause locations between L = 2 and L = 3, (b,f,j) data for plasmapause locations between L = 4 and L = 5, (d,h,l) data for plasmapause locations between L = 5 and L = 6.

maspheric hiss wave power spatial distribution that is determined by whistler-mode propagation effects and consequently, the refractive properties of the plasma within the plasmasphere (Chen et al., 2012; Malaspina et al., 2018). One exception to this dichotomy is low frequency hiss (< 150Hz), which has been shown to be co-located with the particles driving its wave growth (Shi et al., 2017).

327 4 Conclusions

Understanding the spatial distribution of equatorial lower band whistler-mode chorus wave power statistically is important for our understanding of radiation belt dynamics, in that whistler-mode waves play a significant role in both relativistic electron acceleration and electron scattering. It is well-understood from prior observations that whistlermode chorus wave power drops at the plasmapause, but the plasmapause is a dynamic boundary in both space and time with respect to L-shell.

The goal of this study was to compare statistical distributions of lower band whistlermode chorus wave properties using L-shell sorting and plasmapause-based sorting of the data. The primary result is that the plasmapause location does not play a strong role in shaping the statistical spatial distribution of equatorial lower band whistler mode chorus outside of the plasmapause. In the Van Allen Probes data, whistler-mode chorus mean wave amplitudes peak near the apogee of the Van Allen Probes orbit and fall Earthward
 of that location, regardless of whether the plasmapause location is considered.

The lack of systematic difference between the data when sorted by L-shell or by distance from the plasmapause supports the long-used assumption that equatorial lower band whistler mode chorus wave properties are physically organized by L-shell. Therefore, quasi-linear diffusion models of radiation belt dynamics are expected to produce similar results whether they use L-sorted data or plasmapause-sorted data for lower band whistler mode chorus waves.

347 Acknowledgments

The authors thank the Van Allen Probes team, especially the EFW and EMFISIS teams for their support. This work was funded by NASA award NNX17AI51G. All Van Allen Probes data used in this work are available from the EFW and EMFISIS team websites, which one can link to here: http://rbspgway.jhuapl.edu. The authors acknowledge the International Space Sciences Institute (ISSI) and the participants in a 2020 ISSI workshop in Bern.

354 **References**

355	Agapitov, O., Krasnoseiskiki, V., Zaližnyak, Y., Angelopoulos, V., Le Contel, O.,
356	& Ronand, G. (2010, June). Chorus source region localization in the Earth's
357	Outer magnetosphere using THEMIS measurements. Annules Geophysicae, 0.0(6) 1277 1286 doi: 10.5104/annue 28.1277 2010
358	20(0), 1577-1580. doi: 10.5194/angeo-26-1577-2010
359	Agaptov, O. V., Artemyev, A. V., Mourenas, D., Mozer, F. S., & Krashoselskiki, V. (2015, December). Empirical model of lower hand shows were distribution.
360	v. (2015, December). Empirical model of lower band chorus wave distribution in the outer rediction helt — <i>Journal of Computing Research (Space Drusies)</i>
361	190 10 doi: 10 1002/20151A021820
362	120, 10. doi: 10.1002/2010JA021029
363	Evaluation principle for very oblique and parallel lower band cherus waves.
364	<i>physical Research Letters</i> (2(21), 11,112,11,120, doi: 10,1002/2016CL071250
305	Bortnik I Inan II S & Boll T E (2006 February) Landau damping and recul
300	tant unidirectional propagation of chorus waves <i>Combusical Research Letters</i>
368	33 L03102 doi: 10.1029/2005GL024553
360	Bortnik J. Thorne B. M. & Meredith N. P. (2007 August) Modeling the
370	propagation characteristics of chorus using CRRES suprathermal electron
371	fluxes. Journal of Geophysical Research (Space Physics), 112, A08204. doi:
372	10.1029/2006JA012237
373	Breneman, A. W., Halford, A., Millan, R., McCarthy, M., Fennell, J., Sample, J.,
374	Kletzing, C. A. (2015, July). Global-scale coherence modulation of
375	radiation-belt electron loss from plasmaspheric hiss. Nature, 523, 193-195.
376	doi: 10.1038/nature14515
377	Burtis, W. J., & Helliwell, R. A. (1969). Banded chorus-A new type of VLF radi-
378	ation observed in the magnetosphere by OGO 1 and OGO 3. Journal of Geo-
379	physical Research, 74, 3002. doi: 10.1029/JA074i011p03002
380	Carpenter, D., & Lemaire, J. (2004, December). The Plasmasphere Boundary Layer.
381	Annales Geophysicae, 22, 4291-4298. doi: 10.5194/angeo-22-4291-2004
382	Chaston, C. C., Bonnell, J. W., Kletzing, C. A., Hospodarsky, G. B., Wygant, J. R.,
383	& Smith, C. W. (2015, October). Broadband low-frequency electromagnetic
384	waves in the inner magnetosphere. Journal of Geophysical Research (Space
385	<i>Physics</i>), 120, 8603-8615. doi: 10.1002/2015JA021690
386	Chen, L., Li, W., Bortnik, J., & Thorne, R. M. (2012, April). Amplification of
387	whistler-mode hiss inside the plasmasphere. Geophysical Review Letters, 39,
388	L08111. doi: $10.1029/2012$ GL051488

389	Chen, L., Thorne, R. M., Li, W., & Bortnik, J. (2013, March). Modeling the wave
390	normal distribution of chorus waves. Journal of Geophysical Research (Space
391	<i>Physics</i>), 118, 1074-1088. doi: 10.1029/2012JA018343
392	Cully, C. M., Bonnell, J. W., & Ergun, R. E. (2008, June). THEMIS obser-
393	vations of long-lived regions of large-amplitude whistler waves in the in-
394	ner magnetosphere. Geophysical Research Letters, 35, L17S16. doi:
395	10.1029/2008GL033643
396	Fok, MC., Glocer, A., Zheng, Q., Horne, R. B., Meredith, N. P., Albert, J. M., &
397	Nagai, T. (2011, July). Recent developments in the radiation belt environment
398	model. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 1435-1443.
399	doi: 10.1016/j.jastp.2010.09.033
400	Glauert, S. A., Horne, R. B., & Meredith, N. P. (2014, January). Three-dimensional
401	electron radiation belt simulations using the BAS Radiation Belt Model with
402	new diffusion models for chorus, plasmaspheric hiss, and lightning-generated
403	whistlers. Journal of Geophysical Research (Space Physics), 119, 268-289. doi:
404	10.1002/2013JA019281
405	Hartley, D. P., Chen, Y., Kletzing, C. A., Denton, M. H., & Kurth, W. S. (2015,
406	February). Applying the cold plasma dispersion relation to whistler mode
407	chorus waves: EMFISIS wave measurements from the Van Allen Probes.
408	Journal of Geophysical Research (Space Physics), 120(2), 1144-1152. doi:
409	10.1002/2014JA020808
410	Hartley, D. P., Kletzing, C. A., Kurth, W. S., Bounds, S. R., Averkamp, T. F.,
411	Hospodarsky, G. B., Watt, C. E. J. (2016, May). Using the cold plasma
412	dispersion relation and whistler mode waves to quantify the antenna sheath
413	impedance of the Van Allen Probes EFW instrument. Journal of Geophysical
414	Research (Space Physics), 121, 4590-4606. doi: 10.1002/2016JA022501
415	Horne, R. B., Glauert, S. A., Meredith, N. P., Boscher, D., Maget, V., Heynderickx,
416	D., & Pitchford, D. (2013, April). Space weather impacts on satellites and
417	forecasting the Earth's electron radiation belts with SPACECAST. Space
418	Weather, 11, 169-186. doi: 10.1002/swe.20023
419	Horne, R. B., & Thorne, R. M. (1998). Potential waves for relativistic electron
420	scattering and stochastic acceleration during magnetic storms. Geophysical Re-
421	search Letters, 25, 3011-3014. doi: 10.1029/98GL01002
422	Horne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A.,
423	Smith, A. J., Decreau, P. M. E. (2005, September). Wave acceleration
424	of electrons in the Van Allen radiation belts. <i>Nature</i> , 437, 227-230. doi:
425	10.1038/nature03939
426	Jaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto'aniu, T. M.,
427	Ali, A. F., Reeves, G. D. (2015, September). Source and seed pop-
428	ulations for relativistic electrons: Their roles in radiation belt changes.
429	Journal of Geophysical Research (Space Physics), 120, 7240-7254. doi:
430	10.1002/2015JA021234
431	Kasahara, S., Miyoshi, Y., Yokota, S., Mitani, T., Kasahara, Y., Matsuda, S.,
432	Shinohara, I. (2018, February). Pulsating aurora from electron scattering by
433	chorus waves. Nature, 554, 337-340. doi: 10.1038/nature25505
434	Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B.,
435	Averkamp, T., Tyler, J. (2013, November). The Electric and Magnetic
436	Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space
437	Science Reviews, 179, 127-181. doi: 10.1007/s11214-013-9993-6
438	Lee, DH., Lee, DY., Shin, DK., Kim, JH., & Cho, JH. (2014, December).
439	A Statistical Test of the Relationship Between Chorus Wave Activation and
440	Anisotropy of Electron Phase Space Density. Journal of Astronomy and Space
441	Sciences, 31 , 295-301. doi: 10.5140/JASS.2014.31.4.295
442	Li, W., Bortnik, J., Thorne, R. M., & Angelopoulos, V. (2011, December). Global
443	distribution of wave amplitudes and wave normal angles of chorus waves using

444	THEMIS wave observations. Journal of Geophysical Research (Space Physics),
445	116, A12205. doi: 10.1029/2011JA017035
446	Li, W., Santolik, O., Bortnik, J., Thorne, R. M., Kletzing, C. A., Kurth, W. S., &
447	Hospodarsky, G. B. (2016, May). New chorus wave properties near the equator
448	from Van Allen Probes wave observations. Geophysical Research Letters, 43,
449	4725-4735. doi: 10.1002/2016GL068780
450	Li, W., Thorne, R. M., Angelopoulos, V., Bortnik, J., Cully, C. M., Ni, B.,
451	Magnes, W. (2009, May). Global distribution of whistler-mode chorus
452	waves observed on the THEMIS spacecraft. Geophysical Research Letters,
453	36, L09104. doi: 10.1029/2009GL037595
454	Li, W., Thorne, R. M., Nishimura, Y., Bortnik, J., Angelopoulos, V., McFadden,
455	J. P., Auster, U. (2010, June). THEMIS analysis of observed equatorial
456	electron distributions responsible for the chorus excitation. Journal of Geo-
457	physical Research (Space Physics), 115, A00F11. doi: 10.1029/2009JA014845
458	Malaspina, D. M., Jaynes, A. N., Boulé, C., Bortnik, J., Thaller, S. A., Ergun, R. E.,
459	Wygant, J. R. (2016, August). The distribution of plasmaspheric hiss wave
460	power with respect to plasmapause location. Geophysical Review Letters, 43,
461	7878-7886. doi: 10.1002/2016GL069982
462	Malaspina, D. M., Jaynes, A. N., Hospodarsky, G., Bortnik, J., Ergun, R. E., &
463	Wygant, J. (2017, August). Statistical properties of low-frequency plasmas-
464	pheric hiss. Journal of Geophysical Research (Space Physics), 122, 8340-8352.
465	doi: 10.1002/2017JA024328
466	Malaspina, D. M., Ripoll, JF., Chu, X., Hospodarsky, G., & Wygant, J. (2018,
467	September). Variation in Plasmaspheric Hiss Wave Power With Plasma
468	Density. Geophysical Research Letters, 45, 9417-9426. doi: 10.1029/
469	2018GL078564
470	Maxworth, A. S., & Gołkowski, M. (2017, July). Magnetospheric whistler mode ray
471	tracing in a warm background plasma with finite electron and ion tempera-
472	ture. Journal of Geophysical Research (Space Physics), 122, 7323-7335. doi:
473	$10.1002/2016 \mathrm{JA}023546$
474	McIlwain, C. E. (1961, November). Coordinates for Mapping the Distribution of
475	Magnetically Trapped Particles. Journal of Geophysical Research, 66, 3681-
476	3691. doi: $10.1029/JZ066i011p03681$
477	Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001, July). Substorm depen-
478	dence of chorus amplitudes: Implications for the acceleration of electrons to
479	relativistic energies. Journal of Geophysical Research, 106, 13165-13178. doi:
480	10.1029/2000JA900156
481	Meredith, N. P., Horne, R. B., Kersten, T., Li, W., Bortnik, J., Sicard, A., &
482	Yearby, K. H. (2018, June). Global Model of Plasmaspheric Hiss From Mul-
483	tiple Satellite Observations. Journal of Geophysical Research (Space Physics),
484	123, 4526-4541. doi: 10.1029/2018JA025226
485	Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., &
486	Thorne, R. M. (2012, October). Global model of lower band and upper band
487	chorus from multiple satellite observations. Journal of Geophysical Research
488	(Space Physics), 117, A10225. doi: 10.1029/2012JA017978
489	Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003, August).
490	Favored regions for chorus-driven electron acceleration to relativistic energies
491	in the Earth's outer radiation belt. Geophysical Research Letters, 30, 1871.
492	doi: 10.1029/2003GL017698
493	Moldwin, M. B., Downward, L., Rassoul, H. K., Amin, R., & Anderson, R. R. (2002,
494	November). A new model of the location of the plasmapause: CRRES re-
495	sults. Journal of Geophysical Research (Space Physics), 107, 1339. doi:
496	10.1029/2001JA009211
497	Mozer, F. S., Bale, S. D., Bonnell, J. W., Chaston, C. C., Roth, I., & Wygant,
498	J. (2013, December). Megavolt Parallel Potentials Arising from Double-

	Learn Streams in the Fauth's Outer Delistics Delt - Dhusing Letters
499	Layer Streams in the Earth's Outer Radiation Delt. <i>Physical Review Letters</i> , $111(92)$, 225002 , doi: 10.1102/DhysPayLett 111.225002
500	Orlova K. Spacojovia M. fr Shprita V. (2014 June) Activity dependent global
501	model of electron loss incide the plasmosphere. <i>Coenhusical Review Letters</i> 11
502	2744 2751 doi: 10.1002/2014CI.060100
503	Desuge C. Spanse H.F. Handerson M.C. Friedel D.H.W. Funsten H.O.
504	Delver D. N. Merley S. K. (2012 August) Electron Acceleration in
505	Baker, D. N., Morley, S. K. (2013, August). Electron Acceleration in the Heart of the Van Allen Dediction Delta Science 2/1, 001,004 doi:
506	the field of the valiation fields. $Science, 541, 991-994$. doi: 10.1126/asigned 1927742
507	Sontolik O. Currett D. A. Dickett J. S. Crimold S. Déeroou, P. M. F. Par
508	solutions, O., Guinett, D. A., Fickett, J. S., Ginnald, S., Decreau, T. M. E., Fai- rot M Equivalence Λ (2010 August) Wave particle interactions in the
509	ocustorial source region of whistler mode emissions <u>Lewral of Combusical</u>
510	Research (Space Physica) 115 A00E16 doi: 10.1020/2000IA015218
511	Santolir O Cumpett D A Dielectt J S Damot M & Compilion Webrlin N
512	Santonk, O., Gurnett, D. A., Fickett, J. S., Farrot, M., & Cornineau- Wenrini, N.
513	(2005, July). Spatio-temporal structure of storm-time chorus. Journal of Coonbusieal Research (Space Physics) 108, 1278, doi: 10.1020/20021A000701
514	Geophysical Research (Space Flysics), 108, 1278. doi: 10.1029/2002JA009791
515	Santonk, O., Gurnett, D. A., Pickett, J. S., Parrot, M., & Cornineau-wenrin,
516	N. (2005, January). Central position of the source region of storm-time choice $D_{anatomic and}$ Central position of the source region of storm-time
517	i per 2004 00 056
518	J.pss.2004.09.000 Cantalda O. Manéžané E. Kalmažané I. Camillana Wahalin N. Ja Canaha V.
519	Santolik, O., Macusova, E., Kolmasova, I., Cornilleau-wenrill, N., & Conchy, Y.
520	Van Allen helt. Systematic analysis of 11 years of multi component data from
521	the Cluster encourage the Coordinate Research Letters (1, 2720, 2727) doi:
522	10 1002/2014CI 050815
523	10.1002/2014GL059615
524	Sazinin, S. S., & Hayakawa, M. (1992, May). Magnetospheric chorus emissions - A
525	review. Functury and space science, 40 , $081-097$. doi: $10.1010/0052-0055(92)$
526	Sabrivar D. Ashour Abdalla, M. Coroniti, F. V. LaBoouf, I. N. Dooul, V.
527	Traviack P Eaglerlay A N (2010 August) Conception of whistler
528	mode emissions in the inner magnetosphere: An event study — <i>Journal of Geo</i> -
529	mode emissions in the inner magnetosphere. An event study. Journal of Geo- mbusical Research (Space Physics) 115 A00F17 doi: 10.1020/2000IA014032
550	Shi B. Li W. Ma O. Boovos C. D. Klotzing, C. A. Kurth, W.S. Claudo
531	nierre S. G. (2017 October) Systematic Evaluation of Low-Frequency Hiss
532	D(U) = U, D , V , U
E 2 2	and Energetic Electron Injections Iournal of Geophysical Research (Space
533	and Energetic Electron Injections. Journal of Geophysical Research (Space Physics) 122, 10, doi: 10,1002/2017JA024571
533 534	and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits Y X Subbotin D A Meredith N P & Elkington S B (2008 Novem-
533 534 535	and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, Novem- ber) Beview of modeling of losses and sources of relativistic electrons in the
533 534 535 536	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss Journal of Atmospheric
533 534 535 536 537 538	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014
533 534 535 536 537 538 538	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of
533 534 535 536 537 538 539 540	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Badiation Belt (VERB) code
533 534 535 536 537 538 539 540	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather 7, S10001. doi: 10.1029/2008SW000452
533 534 535 536 537 538 539 540 541	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, B. M. & Xiao, F. (1998, September). Relativistic theory.
533 534 535 536 537 538 539 540 541 542 543	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in
533 534 535 536 537 538 539 540 541 542 543	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research 103, 20487-20500. doi:
533 534 535 536 537 538 539 540 541 542 543 544 545	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740
533 534 535 536 537 538 540 541 542 543 544 545 546	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740 Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740 Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of wave-particle interactions. Geophysical Review Letters, 37, 22107. doi: 10.1011/10.001
533 534 535 536 537 538 539 540 541 542 543 544 545 546 546 547 548	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740 Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of wave-particle interactions. Geophysical Review Letters, 37, 22107. doi: 10.1029/2010GL044990
533 534 535 536 537 538 539 540 541 542 543 544 545 546 545 546 549	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740 Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of wave-particle interactions. Geophysical Review Letters, 37, 22107. doi: 10.1029/2010GL044990 Tsurutani, B. T., & Smith, E. J. (1977, November). Two types of magnetospheric
533 534 535 536 537 539 540 541 542 543 544 545 545 546 547 548 549 550	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740 Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of wave-particle interactions. Geophysical Review Letters, 37, 22107. doi: 10.1029/2010GL044990 Tsurutani, B. T., & Smith, E. J. (1977, November). Two types of magnetospheric ELF chorus and their substorm dependences. Journal of Geophysical Research
533 534 535 537 538 540 541 542 543 544 545 545 546 547 548 549 550 551	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740 Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of wave-particle interactions. Geophysical Review Letters, 37, 22107. doi: 10.1029/2010GL044990 Tsurutani, B. T., & Smith, E. J. (1977, November). Two types of magnetospheric ELF chorus and their substorm dependences. Journal of Geophysical Research, 82, 5112-5128. doi: 10.1029/JA082i032p05112
 533 534 535 536 537 538 540 541 542 543 544 545 546 547 548 549 550 551 552 	 and Energetic Electron Injections. Journal of Geophysical Research (Space Physics), 122, 10. doi: 10.1002/2017JA024571 Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., & Elkington, S. R. (2008, November). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1694-1713. doi: 10.1016/j.jastp.2008.06.014 Subbotin, D. A., & Shprits, Y. Y. (2009, October). Three-dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code. Space Weather, 7, S10001. doi: 10.1029/2008SW000452 Summers, D., Thorne, R. M., & Xiao, F. (1998, September). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, 20487-20500. doi: 10.1029/98JA01740 Thorne, R. M. (2010, November). Radiation belt dynamics: The importance of wave-particle interactions. Geophysical Review Letters, 37, 22107. doi: 10.1029/2010GL044990 Tsurutani, B. T., & Smith, E. J. (1977, November). Two types of magnetospheric ELF chorus and their substorm dependences. Journal of Geophysical Research, 82, 5112-5128. doi: 10.1029/JA082i032p05112 Tsyganenko, N. A., & Sitnov, M. I. (2005, March). Modeling the dynamics of the in-

554	Research (Space Physics), 110, A03208. doi: 10.1029/2004JA010798
555	Watt, C. E. J., Rae, I. J., Murphy, K. R., Anekallu, C., Bentley, S. N., & Forsyth, C.
556	(2017, September). The parameterization of wave-particle interactions in the
557	Outer Radiation Belt. Journal of Geophysical Research (Space Physics), 122,
558	9545-9551. doi: 10.1002/2017JA024339
559	Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D.,
560	Tao, J. B. (2013, November). The Electric Field and Waves Instruments
561	on the Radiation Belt Storm Probes Mission. Space Science Reviews, 179,

⁵⁶² 183-220. doi: 10.1007/s11214-013-0013-7