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Abstract

This work presents a methodology for the synthetic generation of rainfall time series based on the copula autoregressive

methodology with multiple lags and for multiple sites. In this model, the multivariate time series is decomposed using pairwise

copula functions to represent the whole cross-dependence, spatial and temporal structure of the data. We explore the advantages

of using this nonlinear method over more traditional approaches that as an intermediate step transform the data to a normal

distribution or usually omit the zero mass characteristics of the data. The use of copulas gives flexibility to represent the serial

variability of the observed data on the simulation and allows for more control of the desired properties. We use discrete zero

mass density distributions to assess the nature of rainfall, alongside a vector generalized linear model for the evaluation of time

series distributions and their time dependence in multiple locations. We found that the copula autoregressive methodology

models in a satisfactory manner the characteristics of the data, including its zero mass characteristics. These results will help

to better understand the fluctuating nature of rainfall and also help to understand the underlying stochastic process.
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Abstract13

This work presents a methodology for the synthetic generation of rainfall time series based14

on the copula autoregressive methodology with multiple lags and for multiple sites. In15

this model, the multivariate time series is decomposed using pairwise copula functions16

to represent the whole cross-dependence, spatial and temporal structure of the data. We17

explore the advantages of using this nonlinear method over more traditional approaches18

that as an intermediate step transform the data to a normal distribution or usually omit19

the zero mass characteristics of the data. The use of copulas gives flexibility to repre-20

sent the serial variability of the observed data on the simulation and allows for more con-21

trol of the desired properties. We use discrete zero mass density distributions to assess22

the nature of rainfall, alongside a vector generalized linear model for the evaluation of23

time series distributions and their time dependence in multiple locations. We found that24

the copula autoregressive methodology models in a satisfactory manner the character-25

istics of the data, including its zero mass characteristics. These results will help to bet-26

ter understand the fluctuating nature of rainfall and also help to understand the under-27

lying stochastic process.28

Keywords— Rainfall simulation, Copula autoregressive model, Multi-site rain-29

fall simulation, multi-lag rainfall simulation, Vector Generalized Linear Model30
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1 Introduction31

Stochastic generation of synthetic rainfall time series is a fundamental tool in areas such32

as hydrology, agriculture, engineering, climate and energy, where it can be used for the33

analysis of complex systems using numerical implementations (D. S. Wilks & Wilby (1999);34

Srikanthan & McMahon (2001)). A correct representation of the stochastic nature of rainfall35

includes its spatial and temporal properties. These characteristics allow for the study of36

several phenomena without the necessity of real intervention; moreover, they support the37

optimal design of larger systems that otherwise would require difficult physical or math-38

ematical models. Furthermore, synthetic generation in multiple locations is applied more39

widely in applications than the single-location counterpart despite the requirement for the40

representation of the spatial dependence between the locations. For example, in energy pro-41

duction and the integration of renewable sources, the correct understanding and modeling42

of the stochastic process for rainfall is crucial for the evaluation of complementary viability43

and reliability in power systems (Tinaikar (2013)).44

The problem of synthetically generating daily rainfall time series has been approached45

with different methodologies during the last 40 years. A detailed description and classifi-46

cation of the models used can be consulted in D. S. Wilks & Wilby (1999), Srikanthan &47

McMahon (2001), Mehrotra et al. (2006) or Vaittinada Ayar et al. (2020). One taxonomy48

is to separate the models between the single-site models that are concerned with the correct49

specification of the statistical properties of observed time series to reproduce them with50

simulated data and the models that extend these properties to the multi-site problem on51

which the spatial relations have to be incorporated.52

The difficulty of the rainfall stochastic process is that it represents two underlying53

events, the occurrence and the amount. When seeing rainfall as a single process, the54

marginal distribution at each time should have a mass on zero, that is, the probability55

of the amount being equal to zero is greater than 0. Some methodologies approach this56

problem using a two-step mechanism that first simulates the occurrence (for example using57

a first-order discrete Markov Chain) and conditionally on this they simulate the amount of58

rainfall (e.g. Richardson (1981), D. Wilks (1998), Mhanna & Bauwens (2012),). As a result59

of this method, the random variables that model the amount of rainfall are conditionally60

independent from the ones that model the occurrence. For example, if there is rain on two61

consecutive days, the amount of rain on the second day is independent from the amount on62
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the first day. This could undermine the representation of some statistical properties such63

as the autocorrelation function when looking at the series conditionally on the occurrence.64

One alternative is to discretize the stochastic process and then use a first or second order65

Markov Chain (e.g. Haan et al. (1976)); however, the main repercussion is the less accurate66

representation of the amount of rainfall in the marginal densities and the addition in compu-67

tational effort needed when using a large number of states. Another branch of models uses68

resampling techniques such as bootstrapping in order to approximate the distribution of69

observed series (e.g.Buishand & Brandsma (2001)). Other strategies are known to assume70

that the non-zero part of the dataset might have normal marginal densities (Zhou et al.71

(2020), Ahn (2020), Ayar et al. (2020)). Once the new data is normal, the derived method-72

ologies take advantage of the well known linear ARIMA (autoregressive integrated moving73

average) stochastic process to construct theoretically robust statistical models. With nor-74

mal time series, it is possible to incorporate temporal and spatial dependence in the first75

two moments of the distributions; however, this strategy depends on the marginal densi-76

ties and the threshold used for censored values and positive rainfall measurements. This77

approach might poorly estimate several characteristics of the actual process (Zhou et al.78

(2019)). Furthermore, rainfall data is unlikely to correlate symmetrically for low and high79

values (Bárdossy et al. (2017)) and the required transformation from the marginals to the80

normal distribution (gaussianization) conditions the behavior of the series (Sarmiento et al.81

(2018)).82

The use of copula functions to model the time or spatial dependence of rainfall time83

series has been explored more during the last years, where several applications in hydrology84

use copula functions to assess the complexity of the data (e.g. Kao & Govindaraju (2008),85

Bárdossy & Pegram (2009), Zhang & Singh (2019), Serinaldi (2009a), Serinaldi (2009b)).86

The benefits of using the copula function is that they can estimate the underlying stochastic87

process and structure between several rainfall time series independently of their marginal88

distribution functions (Vandenberghe et al. (2010), Balistrocchi & Bacchi (2011)). This89

provides enough flexibility on the relations among variables to overcome some limitations90

of linear Gaussian processes that rely on specific transformations (Bárdossy et al. (2017),91

Sarmiento et al. (2018)). Several studies, such as the one conducted by Zhang & Singh92

(2007) suggest that the copula based distribution function fits the dependence structure of93

observed rainfall characteristics data series better than the multivariate normal probability94

distribution.95
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Copula functions are naturally defined for continuous variables to accommodate the96

estimation for zero inflated distributions. Authors like Serinaldi (2009a), Serinaldi (2009b)97

and Li et al. (2013) use a partition in quadrants of the bivariate uniform distributions to98

generate conditional distributions. These partitions are adaptation of the ideas of Shimizu99

(1993) and Herr & Krzysztofowicz (2005) applied to the copula model for time series. Al-100

though these copula models are a great tool to model the series dependence structure up101

to lag 1 in an autoregressive process, the spatial dependence of multi-site time series is not102

usually modeled directly from the between series and conditional series dependence. These103

dependence structures in daily rainfall time series make it difficult to model over the range104

of observations using only linear correlation coefficients, such as Pearson correlation. In-105

stead, dependence methodologies such as Kendall’s τ are often used to model the correlation106

between locations (i.e Serinaldi (2009a), Serinaldi (2009b)).107

In this paper, we propose a fully copula based methodology to model time series of108

rainfall within an autoregressive process with multiple lags and with spatial dependence109

based also on copula functions. That is, the whole stochastic system can be expressed as a110

multivariate model decomposed in pairwise copula functions using the COPAR methodol-111

ogy (Brechmann et al. (2015)), which bases its calculations on generating all the pair copula112

construction needed for the between series and conditional series dependence among the dif-113

ferent time series for each of the sites following an R-vine structure. In addition, we employ114

a vector generalized linear model (VGLM) to fit a zero inflated continuous distribution in115

terms of temporal variables such as the month of the year. With this method, it is possible116

to estimate the marginal distributions in one model avoiding the possible over-fitting that117

can be created when partitioning the sample and estimating the marginal distributions for118

each month.119

The structure of this paper goes as follows. The methodology used as well as the120

contributions made to the state of the art are described in Section 2. A case study is121

presented in Section 3 along with the evaluation of the results. Finally, section 4 presents a122

discussion about the methodology used and the future work, as well as the conclusions.123

2 Methodology124

The rainfall synthetic data generator is based on a model that has two main components:125

(i) marginal distribution estimation through a VGLM for mixtures of densities with discrete126
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mass distributions (Section 2.1), and (ii) a multivariate copula algorithm for modeling the127

temporal and spatial dependence in one statistical model using decomposition in bivariate128

uniform densities (Section 2.2).129

The rainfall time series is not a stationary process given that, according to a specific lo-130

cation, there are seasons and inter-annual cycles that have to be considered. These seasonal131

components of the series directly affect the distribution of the marginal random variable.132

Contrary to Gaussian time series, on which the seasonal effect is modeled on the mean, the133

copula model allows for a more flexible temporal effect in some (or all) the parameters of the134

distributions. The reason for this is that the temporal and spatial dependencies are mod-135

eled through the uniform variables resulting from using the inverse cumulative probability136

function transformation. Using a VGLM to estimate all rainfall marginal densities permits137

the use of all available data to include the temporal effects as independent variables. Fur-138

thermore, the occurrence process (rain or no-rain) is embedded in the marginal distribution139

by using a mixture model that combines the positive part with the probability mass on zero.140

Once the multivariate rainfall time series is standardized to be uniform [0, 1] for all values, it141

is modeled by the copula functions to express the whole joint probability distribution. This142

distribution has many components (dimensions) that would make it difficult to estimate143

without simplification rules to avoid the curse of dimensionality. We use a decomposition144

in a R-vine structure and limit the numbers of lags that are significant, as done in a linear145

autoregressive (AR) model. This approach extends the previous models in Serinaldi (2009a)146

and Li et al. (2013) that only permit one lag. The same principle can be used to model147

the multivariate distribution applied to the spatial dependence. The copula autoregressive148

methodology models the entire dependence of the time series differing from more tradi-149

tional tools for modeling time series such as autoregressive processes (AR) that transform150

any distribution to normal.151

2.1 Rainfall marginal distribution152

The marginal distributions of ground measured rainfall is modeled using a vector gener-

alized linear model (VGLMs). Unlike the classical generalized linear models (GLMs), there

is not a restriction on the number of parameters in the distributions, and they are purposely

general to allow greater utility (Yee, 2015). Consider the data set expressed as (xi, yi) for

i = 1, . . . , n, where xi is a vector of p explanatory variables and yi is the response for the

observation i. The objective is to fit a generalized regression model involving the parameter

–6–
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νj , where j = 1, . . . , J . The VGLM model, estimates each one of the parameters in the

generalized regression as the function of a linear combination of the explanatory variables:

gj(νj) = βTj x = β(j)1X1 + β(j)2X2 + · · ·+ β(j)pXp , (1)

where gj is a parameter link function. In this study, we estimated the parameters of the153

VGLMs with the Interactively Re-weighted Least Squares (IRLS) algorithm. For a detailed154

explanation of the estimation of the VGLM, the reader is referred to Yee (2015)155

For modeling the marginal probability distribution of rainfall, we selected the zero

adjusted gamma distribution, due to the zero mass characteristics presented in the data.

This is a special case of zero adjusted distributions on zero and the positive real line. The

zero adjusted gamma distribution is a combination of a discrete value 0 with probability

ν and a gamma GA(µ,σ) distribution with probability (1-ν), where µ is the mean and

σ is the square root of the dispersion parameter according to the exponential family fac-

torization. The probability function of the zero adjusted gamma distribution denoted by

ZAGA(µ(t),σ(t),ν(t)) is given by:

fy(y | µ(t), σ(t), ν(t)) =


ν(t) y = 0

(1− ν(t))fw(y | µ(t), σ(t)) y > 0

(2)

For 0 ≤ y(t) <∞, where µ(t) > 0, σ(t) > 0 , 0 < ν(t) < 1 and W ∼ GA(µ(t),σ(t)) has

a gamma distribution with density:

fw(y | µ(t), σ(t)) =
y

1
σ2
−1 exp

(
−y
σ2µ

)
(σ2µ)Γ( 1

σ2 )
y > 0 , (3)

where the dependence of the parameters on t is left implicit for simplicity. The mean of the

ZAGA distribution is (1− ν(t))µ and the variance is (1− ν(t))µ2(ν+σ2). The independent

variable t represents the yearly seasons that change the marginal distributions. In our case,

we model t as the month of the year using a factor with values (1-12). The default link

functions that relate the parameter (µ,σ,ν) depending on the time are:

log(µ) = βTµ t (4)

log(σ) = βTσ t (5)

log(ν) = βTν t (6)
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2.2 The copula autoregressive model156

The COPAR model proposed by Brechmann et al. (2015) exploits the flexibility of vine157

copulas for non-linear and asymmetric modeling of serial and between-series dependence.158

The fundamental pieces to build the autoregressive model are the bivariate copulas, which159

are distributions on the unit square [0, 1]2 such that both marginals are uniform U(0,1).160

The theorem by Sklar (1959) explains that for any given variables X and Y with joint161

distribution FX,Y (x, y) and marginals cumulative distribution functions (CDF) FX(x) and162

FY (y) respectively, there exists a unique copula function CXY (·, ·) that connects FX,Y (·, ·)163

to FX(·) and FY (·) via FX,Y (x, y) = CXY (FX(x), FY (y)). Therefore, the information in the164

joint distribution is decomposed into that of the marginal distributions and the one of the165

copula function, where the latter captures the entire dependence structure between X and166

Y (Chen & Fan, 2006). For a detailed explanation on copula theory the reader is referred167

to Nelsen (1999).168

2.2.1 Pair-copula decomposition for univariate time series169

Let {Xt}t=1,··· ,T be a univariate stationary time series of continuously distributed data,

with marginal distribution function FXt and density function fXt . The joint distribution of

{Xt} can be decomposed by selecting models for the conditionals as:

f(x1, · · · , xT ) = f(x1)

T∏
t=2

f(xt | xt−1, · · · , x1). (7)

Smith et al. (2010) outline that this expression can be used to obtain a general decomposition

in terms of bivariate copulas, as for every s < t exists a copula density ct,s such that:

f(xt, xs | xt−1, · · · , xs+1) = ct,s(F (xt | xt−1, · · · , xs+1), F (xs | xt−1, · · · , xs+1))·

f(xt | xt−1, · · · , xs+1), f(xs | xt−1, · · · , xs+1) , (8)

where F (Xt | Xt−1, · · · , Xs+1) and F (Xs | Xt−1, · · · , Xs+1) are the conditional distributions

functions of Xt and Xs respectively. This expression is the density of the Sklar theorem,

conditional upon {Xt−1, · · · , Xs+1}. Rearranging terms in Equation (8) gives:

f(xt | xt−1, · · · , xs) = ct,s(F (xt | xt−1, · · · , xs+1), F (xs | xt−1, · · · , xs+1))·

f(xt | xt−1, · · · , xs+1). (9)
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By recursive conditioning on s = 1; 2; · · · , t− 1 we obtain:

f(xt | xt−1, · · · , x1) =

t−2∏
j=1

{ct,j(F (xt | xt−1, · · · , xj+1), F (xj | xt−1, · · · , xj+1))}·

ct,t−1(F (xt), F (xt−1))f(xt). (10)

For notation simplicity, denote ut|j = F (Xt | Xt−1, · · · , Xj) and uj|t = F (Xj | Xt, · · · , Xj+1)

as the projections backwards and forwards t − j steps, respectively. Also, by denoting

ut|t = F (Xt), the joint density function in equation (7) can be written as:

f(x1, · · · , xT ) =

T∏
t=2

t−1∏
j=1

{ct,j(ut|j+1, uj|t−1)}f(Xt)

 f(X1). (11)

This decomposition of the joint density function of the time series allows the method-170

ology to achieve very flexible models, as no restrictions are necessary in the selection of the171

copula families. Nonetheless, copulas corresponding to the same time lag must be identical172

to assure that the simulated time series is stationary. This particular pair-copula decompo-173

sition is known as D-vine and takes part in a more general class of decomposition known as174

R-vines, which is a graphic theoretic model to establish which pair-copulas are included in175

the decomposition of a time series. An R-vine on d variables is a sequence of d − 1 linked176

trees (connected acyclic graphs) that satisfy several conditions. R-vine theory is described177

in detail by Bedford (2001) and H Joe (2011).178

2.2.2 The COPAR model for multivariate time series179

Although the model works in general for any number of dimensions, we explain the cop-180

ula autoregressive model for two univariate time series {Xt}t=1,··· ,T and {Yt}t=1,··· ,T jointly181

distributed at time point t = 1, · · · , T for brevity in the exposition. A flexible multivariate182

distribution of {Xt} and {Yt} is presented, which allows the nonlinear dependence-serial as183

well as between-series dependence structure to be constructed. The model is based on a184

particular R-vine structure that has the following components (Brechmann et al., 2015).185

1. Marginal distributions FX and FY of {Xt} and {Yt}186

2. An R-vine for the serial and between-series dependence of {Xt} and {Yt}, with the187

selection of the following pair-copulas:188

(a) Serial dependence of {Xt}:

Xs, Xt | Xs+1, · · · , Xt−1 ∀ 1 ≤ s ≤ t ≤ T (12)

–9–
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(b) Between series dependence:

Xs, Yt | Xs+1, · · · , Xt ∀ 1 ≤ s ≤ t ≤ T (13)

and

Ys, Xt | X1, · · · , Xt−1;Ys+1, · · · , Yt−1 ∀ 1 ≤ s ≤ t ≤ T (14)

(c) Conditional serial dependence of {Yt}:

Ys, Yt | X1, · · · , Xt;Ys+1, · · · , Yt−1 ∀ 1 ≤ s ≤ t ≤ T (15)

As mentioned before, pair-copulas with equal lag must be identical. It is important to189

notice that {Xt} has a pivotal role in this modeling approach because the serial dependence190

of {Xt} is modeled unconditionally, meanwhile that of {Yt} is specified conditionally on191

{Xt}. The selection of the copulas is performed sequentially since, for example, cXtXt−2|Xt−1
192

depends on the copula cXtXt−1
. Finally, the order of the model (k) is selected if all pair-193

copulas corresponding to a lag length greater than k are independence copulas.194

2.2.3 Pair-copula estimation of variables with zero mass195

One of the contributions of this paper is the inclusion of variables with zero mass in196

the copula autoregressive modeling for time series shown in section 2.2.2. In order to model197

these particular distributions, we selected a zero adjusted gamma distribution for the daily198

rainfall data, which is a mixture distribution that combines a Bernoulli and a Gamma prob-199

ability distribution, dependent on the parameter ν(t) which models the probability of zero200

or non-zero values. This distribution is explained in depth in section 2.1. The zero mass201

characteristics of the data makes the density probability function fY (y) to have a jump202

discontinuity on zero, (Figure 1). For modeling the copula joint distribution, however, it is203

necessary to evaluate this function and calculate the respective distribution function FY (y),204

since the results of this calculation should be a continuous uniform variable. Moreover, to205

generate synthetic data, the inverse function F−1
Y has to be applied on random numbers.206

To address this issue, we adopt the approach described in Faugeras (2012), from which207

the bivariate copula estimation of the autoregressive model explained in section 2.2 can be208

assessed with some fundamental considerations. In particular, for the points that have a209

mass value at ν(t) , a uniform variable is generated when evaluating FY to fill the gaps210

created by the jumps. In this case, it is clear that FY (0) = ν, and therefore, for the purpose211

of evaluation and simulation, it is replaced by a uniform random variable between 0 and212

–10–
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ν. Figure 2 presents the evaluation of FY (y) for all the points in Figure 1, where ν = 0.6.213

Also, Figure 2 presents the respective histogram. Figure 3 show the counterparts after using214

the randomization procedure. The proposed strategy to use copula functions with mixed215

random variables with probability mass in zero is explained in algorithm 1.216

217

for t← 1 to T do

ut|t = Fy =


ν(t) y = 0

ν(t) + (1− ν(t))γ(σ(t)−2,yµ(t)−1σ(t)−2)
Γ(σ(t)−2) y > 0

(16)

end

for t← 1 to T do

if ut|t = ν(t) then

ut|t = runif(0, ν(t))

end

end

Algorithm 1: Synthetic non zero uniform data generation

218

Where Fy = (y | µ(t), σ(t), ν(t)) is the distribution function of the zero adjusted gamma219

distribution for 0 ≤ y(t) < ∞, with µ(t) > 0, σ(t) > 0 , 0 < ν(t) < 1. Also, runif is a220

random uniform variable between 0 and ν(t).221
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Figure 1. Scatter plot (LEFT) and histogram (RIGHT) of density function for distribution

ZAGA(sigma=0.5, ν=0.6)
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Figure 2. Scatter plot (LEFT) and histogram (RIGHT) of CDF function w/o Algorithm 1 for

distribution ZAGA(sigma=0.5, ν=0.6)
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Figure 3. Scatter plot (LEFT) and histogram (RIGHT) of CDF function w/ Algorithm 1 for

distribution ZAGA(sigma=0.5, ν=0.6)

If X and Y are two jointly distributed variables with probability mass on zero, the

probability distribution function (CDF) FXY (x, y) may be defined conditionally on four

cases with respective probabilities: P00 = P (X = 0, Y = 0), P10 = P (X > 0, Y = 0),

P01 = P (X = 0, Y > 0) and P1 = P (X > 0, Y > 0). Therefore, it is possible to write it as:

FXY (x, y) = P00 + P10HX(x) + P01HY (y) + P11HXY (x, y) , (17)
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where HXY = C11
XY (F 1

X(x), F 1
Y (y)) can be modeled as a bivariate continuous copula function222

(conditional on both variables being positive), with F 1
X(x) = P (X ≤ x|X > 0, Y > 0) and223

F 1
Y (y) = P (Y ≤ y|X > 0, Y > 0). According to this, the resulting bivariate copula function224

to represent FXY (x, y) can be also decomposed in quadrants. That is, if X and Y are both225

marginally distributed ZAGA with px = ν(X) = P (X = 0), and py = P (Y = 0), then226

FX,Y = CXY (u, v), where u = FX(x), and v = FX(y). Let cXY (·, ·) be the correspondent227

bivariate density of CXY (·, ·), then it would look as Figure 4. With this function, it is possible228

to define the conditional cumulative distributions of Y given X, and their respective inverse,229

using the splitting mechanism described in Herr & Krzysztofowicz (2005) and Serinaldi230

(2009a).231

P01

• Depends on Y

• Does not depend on X

P11

• Join distribution

P00

• Bivariate uniform 
distribution
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• Depends on X
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Figure 4. Bivariate copula density for two variables with ZAGA distributions. In the left, the

quadrants are represented. In the right, the empirical bivariate copula density for real rainfall data

Note that the same partition can be applied directly to the density cXY (u, v), where:232

cXY (u, v) = P00 + P10cu

(
u− px
1− px

)
+ P01cv

(
v − py
1− py

)
+ (18)

P11c
11
XY

(
1− px
P11

[(
u− px
1− px

)
− Cu(u)

P10

1− px

]
,

1− py
P11

[(
v − py
1− py

)
− Cv(v)

P01

1− py

])
, (19)

where c11
XY (u, v) is the corresponding density function of C11

XY (u, v), that is defined on the233

condition that both variables X and Y are greater than zero. Cu and Cv are the cumulative234

distribution functions of cu and cv respectively, where235
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Cu(u) = P

(
FX(X) ≤ u− px

1− px

∣∣∣X > 0, Y = 0

)
= P

(
pxZ + (1− px)F 1

X

[
H−1
X (Z)

]
≤ u− px

1− px

)
,

(20)

where Z ∼ Uniform(0, 1). Analogously,

Cv(v) = P

(
FY (y) ≤ v − py

1− py

∣∣∣X = 0, Y > 0

)
= P

(
pyZ + (1− py)F 1

Y

[
H−1
Y (Z)

]
≤ v − py

1− py

)
.

(21)

2.3 Discrete copula CDF and inverse CDF236

The at-site rainfall daily generator is based on the simulation from mixed discrete-237

continuous conditional distribution, which is deduced from a copula-based discrete-continuous238

conditional bivariate distribution. Moreover, this study is an extension of the research done239

by Serinaldi (2009b), Serinaldi (2008), Serinaldi (2009a), Herr & Krzysztofowicz (2005).240

The main contribution to these methodologies is that when we model the temporal and241

spatial (multi-site) conditional series dependencies, we model the whole multivariate time-242

series with copula relations (COPAR methodology). The resulting methodology models the243

dependence structure directly from the conditional dependence generated in the construc-244

tion of the R-vine pair-copula structure following the specified structures in Brechmann245

et al. (2015). For an in depth description and mathematical background in the construc-246

tion of bivariate copula-based discrete-continuous conditional distribution and the copula247

autoregressive methodology, the reader is referred to the previous authors mentioned.248

The main building block for simulating time series based on a copula based autore-

gressive model is the conditional bivariate copula. For example, for a stationary univariate

time series, let Ct,t−k(v|vk) be the bivariate copula of the variable v with its respective

lag k, for instance, when k takes the value of 1, we define the copula of v = FX(Xt) with

v1 = FX(Xt−1). To generate the value v conditioned on v1, it is necessary to define the

function:

ht,t−1 =
δCt,t−1(v, v1)

δv1
, (22)

and its respective inverse h−1
t,t−1. Note that according to the time series decomposition pre-249

sented in equation 11, when k > 1, ht,t−k correspond to the derivative of the conditional250

bivariate copula Ct,t−k(v, vk|vk+1, . . . , v1). When the original variables have mass on zero,251

these derivatives have to be adapted in order to account for the partition in quadrants (Fig-252

ure 4). This section illustrates the estimation of the conditional copula CDF (ht,j) and its253
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inverse (h−1
t,j ) for the mixed discrete-continuous copula, and then how to use this function254

in order to build the multivariate time series synthetic generation algorithm. The construc-255

tion of the conditional CDF is presented in Algorithm 2, and conditional inverse CDF is256

explained in Algorithm 3, for v = Fx(xt|xj+1, . . . , xt−1) and vj = Fx(xj |xj+1, . . . , xt−1).257

if vj ≤ pvj then

if v ≤ pv then

ht,j = P00

P00+P01

(
v
pv

)
else

ht,j = P00

P00+P01
+ P01

P00+P01
Cv (v)

end

else

ψ = P10

P10+P11
cvj (vj)

if v ≤ pv then

ht,j =
(
vj
pvj

)
ψ

else

ṽ = 1−pv
P11

[(
v−pv
1−pv

)
− Cv (v) P10

1−pv

]
ṽj =

1−pvj
P11

[(
vj−pvj
1−pvj

)
− Cvj (vj)

P10

1−pvj

]
ht,j = ψ + (1− ψ)

δC11
Xt,Xj

(ṽ,ṽj)

δṽj

end

end

Algorithm 2: Continuous-Discrete bivariate copula-based CDF.

258
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if vj ≤ pvj then

if v ≤ P00/(P00 + P01) then

h−1
t,j = P00+P01

P00
pvv

else

h−1
t,j = C−1

v

(
v −

P00
P00+P01

1− P00
P00+P01

)
end

else

ξ = P10

P10+P11
cvj (vj)

if v ≤ ξ then

h−1
t,j = pvv/ξ

else

ṽ = G−1
v (v)

ṽj =
1−pvj
P11

[(
vj−pvj
1−pvj

)
− Cvj (vj)

P10

1−pvj

]
h−1
t,j = ξ + (1− ξ)

δC11
Xt,Xj

(ṽ,ṽj)

δṽj

−1

end

end

Algorithm 3: Continuous-Discrete bivariate copula-based inverse CDF.

259

Where pv = P00 + P01 and pvj = P00 + P10, and:

Gv(a) =
1− pv
P11

[(
a− pv
1− pv

)
− Cv (a)

P10

1− pv

]
. (23)

The discrete copula distribution function and the inverse function are conditionally esti-260

mated from the probabilities of each of the quadrants and the respective empirical distri-261

butions. That is, Cu and Cv can be estimated directly from the uniform variables. For262

the top right quadrant (where both variables are continuous), the estimation is done with263

parametric copulas using the correspondent conditional values. Thus, δC
11(u,v)
δu is the copula264

function where both marginals take non-zero values. We limit the parametric families used265

for the P11 quadrant to be: 0 = independence copula, 1 = Gaussian copula, 2 = Student266

t copula (t-copula), 3 = Clayton copula, 4 = Gumbel copula, 5 = Frank copula and 6 =267

Joe copula. However, the analysis could be performed with any family, in particular copula268

families with long tails such as the Plackett copula.269
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2.3.1 Simulation algorithm270

This section presents the simulation algorithm based on the copula autoregressive271

model. First, we introduce the algorithm for univariate time series from Smith et al. (2010),272

after that, we explain the adjustment that was assessed for two jointly observed time series.273

This procedure can be extended to any number of variables and eany number of lags.274

Going back to the D-vine decomposition shown in section 2.2.1, the critical aspect is the

evaluation of ut|j+1 and uj|t−1 from Equation (11). In this regard, it is worth mentioning

the following property H Joe (2011): let u1 = F (X1) and u2 = F (X2) be conditional

distribution functions, and F (X1, X2) = C(u1, u2; θ) where C is a bivariate copula function

with parameters θ, then F (X1 | X2) = h(u1 | u2; θ) is defined as in equation 22. For j ≤ t,

application of this property gives the following recursive relationships:

ut|j = F (xt | xt−1, · · · , xj) = ht,j(Ut|j+1 | Uj|t−1; θt,j) (24)

uj|t = F (xj | xt, · · · , xj+1) = ht,j(Uj|t−1 | Ut|j+1; θt,j) . (25)

From Equations (24) and (25), all values of uj|t and ut|j can be obtained, since they275

correspond to a forward and backward recursion respectively. A more detailed explanation276

of this process is presented in algorithm 4.277

for t← 1 to T do

Set ut|t = F (xt)

end

for k ← 1 to T − 1 do

for i← k + 1 to T do

Backward recursion : ui|i−k = hi,i−k(ui|i−k+1 | ui−k|i−1; θi,i−k)

Forward recursion : ui−k|i = hi,i−k(ui−k|i+1 | ui|i−k+1; θi,i−k)

end

end

Algorithm 4: Recursion Algorithm for determining uj|t and ut|j

278

The conditional distribution function of xt given the previous values, can be obtained

from Equation (24) as F (xt | xt−1, · · · , x1) = ut|1 = ht,1(ut|2 | u1|t−1; θt,1) where ut|2 =

F (xt | xt−1, · · · , x2). Recursively, the conditional distribution function of Xt given the
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previous variables on the series can be expressed as:

F (xt | xt−a, · · · , x1) = ht,1 o ht,2 o · · · ht,t−1 o F (xt) . (26)

For evaluating all ht,j functions, the values of u1|t−1, · · · , ut−1|t−1 must be computed, hence279

the importance of Algorithm 4. Assuming that the series is Markovian of order p, the280

distribution function can be simplified as F (xt | xt−1, · · · , x1) = F (xt | xt−1, · · · , xt−q)281

where q = min(p, t − 1). Therefore, uniformly distributed random numbers between 0 and282

1 (wt) are generated and a realization of the time series is computed as xt = F−1(wt |283

xt−1, · · · , xt−q). This methodology for univariate time series simulation is presented in284

algorithm 5.285

for t← 1 to T do

Generate wt ∼ Uniform(0,1)

if t = 1 then

Set x1 = F−1(w1)

else

Set xt = F−1 o h−1
t,t−1 o · · · o h

−1
t,t−q(wt | ui−q|i−1)

end

end

Algorithm 5: Simulation Algorithm for univariate time series

286

As the objective of this study is to simulate multi-site rainfall time series using the287

estimation of the COPAR model, algorithm 5 must be modified for simulating a multivariate288

time series. Although we present the methodology for a bivariate case, this procedure can be289

extended to any number of variables as stated before. First consider {Xt} as the time series290

of a particular rainfall station and FX(·) as its marginal distribution function. Also consider291

Yt as the series of a different rainfall station for t = 1, · · · , T and FV (·) as its marginal292

distribution function. We re-order the elements of both time series into a univariate series293

W = (W1, · · · ,WN ) with N = 2T in which we interpolate the values of both series i.e. W =294

(X1, Y1, · · · , XT , YT ). Recalling the model from section 2.2.2, we fit a COPAR (k) model to295

the data in which the serial dependence of {Xt} is modeled unconditionally and that of Yt is296

modeled conditionally on {Xt}. Then, we store the copulas in two categories. The first one297

(C
(1)
t,j ) corresponds to the copulas from Equations (12) and (14), i.e. the ones for modeling298

{Xt} given previous values of {Xt} and {Yt}, whereas the second category (C
(2)
t,j ) corresponds299

to the copulas from Equations (13) and (15), i.e. the ones for modeling {Yt} given previous300
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values of {Xt} and {Yt}. The simulation algorithm is modified in the following manner:301

for t← 1 to 2T do

Generate ωt ∼ Uniform(0,1)

Set q = min(((k + 1) ∗ 2)− 1, t− 1)

Set m = t mod 2

if t = 1 then

Set x1 = F−1
V (ω1)

else

if m = 1 then

Set xt = F−1
V o h

−1(1)
t,t−1 o · · · o h−1(1)

t,t−q (ωt | ui−q|i−1)

else

Set xt = F−1
θ o h

−1(2)
t,t−1 o · · · o h−1(2)

t,t−q (ωt | ui−q|i−1)

end

end

end

Algorithm 6: Simulation Algorithm for bivariate time series

302

3 Implementation and Analysis of Results303

In this section, we present the case study as well as the results and the comparisons304

between the observed and simulated rainfall time series. We analyze rainfall time series from305

ground measured data in three stations in the province of Trentino, Italy, with locations306

shown in 5. The first site is located at Pergine Valsugana (Convento) (Variable Z) in307

Latitude (46.01◦N) and Longitude (11.23◦E) with an elevation of 475m. The second site is308

located at Cles (Convento) (Variable Y) in Latitude (46.35◦N) and Longitude (11.02◦E)309

with an elevation of 665m. Finally, the last site is located at Trento (Laste) (Variable X)310

in Latitude (46.07◦N) and Longitude (11.01◦E) with an elevation of 312m. The province311

of Trentino is a region with multiple variable meteorological characteristics. These ground312

stations measured data that consist of daily time series from 1961 to 1990. The data313

set trentino is available in the R software package RMAWGEN (Cordano & Eccel, 2017).314

These stations were chosen in particular because of the heterogeneity of the statistics of315

the records and also due to their high spatial correlation. The resolution of the data is316

0.1mm, so that any observation less than this threshold is taken to be a dry day. The data317

was preprocessed and cleaned for outliers and missing observations. The methodologies or318

–19–



manuscript submitted to Water Resources Research

algorithms proposed in this paper do not depend on the selected data; this data was selected319

with the purpose of showcasing the characteristics of the observed data compared to the320

simulated data.321

Figure 5. Case study stations in Trento, Italy

The first part of the results consists of the analysis of the marginal distribution estima-322

tions. Figure 6 shows the results for the parameter estimation for each of the parameters323

needed in the ZAGA Distribution using the VGLM methodology. Parameters µ and σ are324

related to the gamma distribution (shape and scale respectively), and parameter ν is re-325

lated to the probability of the Bernoulli distribution that models the occurrence portion of326

the process. These results show the seasonality of the process throughout the months of327

the year; moreover, we can see that this site in particular presents a lower probability of328

rainfall at midyear, and a higher amount of rainfall in the rest of the months of the year.329

This phenomena is also present in the observed and simulated data. Figure 7 present the330

density plots for the non-zero values of the rainfall data for the observed and simulated time331

series. We can see that the simulation data correctly models the density function of the332

monthly non-zero rainfall time series. Although the max values per month are sometimes333

underestimated due to the restrictions imposed by the gamma distribution used to model334

the non-zero characteristics, we can see that the methodology correctly models the reduc-335
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tion of rainfall amount at midyear and the increase of rainfall amount for the other months.336

Further improvement in this matter can be assessed and a further discussion can be found337

in Section 4.338

339

A further analysis can be conducted when analyzing the mean, standard deviation and340

density of the data alongside its characteristics. Table 2 presents the sample mean and341

standard deviation of the rainfall time series for the Pergine Valsugana site (variable Z)342

for both observed (Obs) and simulated (Sim) values discriminated for every month for all343

the years of the study. We also calculated the column m(mean) and m(sd) which are the344

relative error of the simulation compared to the observed values for the mean and standard345

deviation on each of the months (Sarmiento et al., 2018). The discrepancies of the mean346

and standard deviation (SD) could be caused by the difference of the maximum values mod-347

eled by the zero adjusted gamma distribution as explained before; however, for most of the348

months the mean and standard deviation of rainfall is captured adequately. The respective349

results for the Cles and Trento sites (Variables Y and X) can be found in Section 5. An in350

depth analysis of the monthly max values for the observed and simulated data is presented351

in Figure 8. This figure shows the empirical distributions of the monthly maximum values352

for the observed and simulated rainfall for the variable Z. When looking at the monthly353

maximum values, the simulation method has a tendency to produce some sparse values.354

Although more research needs to be done on this issue, we hypothesize that this is an effect355

of the type of continuous gamma distribution used to model the non-zero values of the dis-356

tribution, since the actual process of the data has longer tails. The respective results for the357

Cles and Trento sites (Variables Y and X) can be found in Section 5; moreover, as stated358

before, an in depth discussion of this matter is conducted in Section 4. Figure 9 include359

a time-series plot, a box-plot and an histogram of the rainfall for the daily, monthly and360

yearly observed data as well as the simulated data for the Pergine Valsugana site using the361

methodology proposed in this paper. These results show that the distribution of the vari-362

ables could be reproduced using this methodology and also the methodology could model363

the non-stationarity characteristics of the series. The respective results of Variables Y and364

X for this analysis can be found in Section 5.365

366

Following these results, another key factor for comparing the simulated and observed367

data is observing the autocorrelation and partial autocorrelation functions as well as the368
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correlation between sites. Figure 10 show the autocorrelation and partial autocorrelation369

function for the sites of the study. This figure shows that the two lags modeled are sim-370

ulated correctly; moreover, the correlation between sites is presented in Table 1. Finally,371

Figure 11 show the 2D density plots of the bivariate distribution for variables Z and Y. The372

correspondent 2D density plots for the other bivariate distributions (Z - X and Y - X) can373

be found in Section 5.374

375

Pergine Valsugana (Variable Z) Cles (Variable Y) Trento (Variable X)

(Variable Z) 1.0000 0.8270 0.7605

(Variable Y) 0.8270 1.0000 0.8535

(Variable X) 0.7605 0.8535 1.0000

(Variable Z) 1.0000 0.7732 0.7143

(Variable Y) 0.7732 1.0000 0.8522

(Variable X) 0.7143 0.8522 1.0000

Table 1. Observed (TOP) and simulated (BOTTOM) data linear correlation for the 3 sites
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Figure 6. VGAM parameter estimation of ZAGA distribution for Pergine Valsugana
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Month Obs mean Obs sd Sim Mean Sim sd m(mean) m(sd)

1 Jan 1.82 6.68 1.46 4.55 -0.20 -0.32

2 Feb 2.09 8.70 1.99 7.43 -0.05 -0.15

3 Mar 2.40 7.60 2.43 6.92 0.01 -0.09

4 Apr 3.21 8.95 2.05 5.62 -0.36 -0.37

5 May 3.77 9.16 2.95 7.73 -0.22 -0.16

6 Jun 3.23 6.99 2.53 6.68 -0.22 -0.04

7 Jul 2.90 7.11 2.66 7.37 -0.08 0.04

8 Aug 3.16 7.97 3.67 8.74 0.16 0.10

9 Sep 2.79 8.96 2.42 7.90 -0.13 -0.12

10 Oct 3.03 9.85 2.94 10.71 -0.03 0.09

11 Nov 3.36 10.03 3.18 9.60 -0.05 -0.04

12 Dec 1.75 6.75 0.98 5.02 -0.44 -0.26

Table 2. Montly mean and sd comparisson Pergine Valsugana (Convento)
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Figure 8. Monthly maximum rain fall plot Pergine Valsugana
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Figure 9. Observed (TOP) and simulated (BOTTOM) monthly plots Pergine Valsugana (Con-

vento)
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Figure 10. Simple (ACF) and Partial autocorrelation function (PACF) plots for observed and

simulated data.
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4 Discussion and Conclusions376

We proposed a rainfall time series simulation strategy using the copula autoregressive377

methodology (COPAR) proposed by Brechmann et al. (2015) implemented into the discrete-378

continuous conditional bivariate estimation problem. The results presented in this paper are379

promising and might help to better understand the rainfall simulation phenomena. Overall,380

the stochastic properties of the series are replicated in terms of the spatial and temporal381

dependence, as well as the marginal distributions. Using copula functions to model the382

pairwise dependence of all variables provides a flexible framework to generate more realistic383

series. This is true in particular because: (i) the model can be estimated in one stage,384

without separating the occurrence and the amount processes; (ii) copula functions may385

exploit non-linear relations that are flexible and solve one of the fundamental problems386

when using transformations of linear (gaussian) time series; and (iii) the whole multivariate387

time series can be integrally modeled using the same copula based model, no matter the388

number of dimensions (locations) and the number of lags in the autoregressive process,389

meaning that no post-estimation introduction of spatial dependency is necessary.390

It is important to notice that in our research, we found that the gamma distribution391

underestimates the maximum values of the simulated rainfall series. This could be improved392

by using a different zero adjusted distribution that better fits the non-zero long tailed393

characteristics of the data. Future research in this matter would be to explore the properties394

of the proposed model with hybrid exponential and generalized Pareto distributions, as395

proposed in Li et al. (2013). In addition, the exploration of copula functions could be more396

flexible to account for spatial and temporal tail dependence, such as meta-elliptical copulas397

(Genest et al., 2007) or v-transformed copulas (Bárdossy & Pegram, 2009).398

A main difference from previous approaches used to model rainfall time series is that the399

methodology we propose allows us to estimate the inner and cross dependencies between400

the different sites directly from the conditional dependencies of the rainfall observations.401

This estimation is assessed by one model that accounts for all the dependence structures402

without the need of partitioning the estimation procedure into several models. Although403

this is an advantage in terms of the reduction of overfitting, the estimation of the pair copula404

construction can be computationally expensive.405

The construction of all the pair copula functions needed for this study as well as the406

simulation procedure had a total computational time of around 30 minutes using a 2.2 Ghz407
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Intel core i7-4702MQ 7 Gen processor with 16Gb of RAM. An automated algorithm for408

generating the complete pair-copula R-vine structure for each month and the simulation409

structure required was also generated. When modeling the discrete-continuous conditional410

bivariate distribution, we use the empirical estimation of the distribution function for the411

joint marginal P01 and P10 distributions. A further improvement in the method could be412

gained by upgrading this approach, for instance, by using right skewed distributions with413

longer tails. However, it is important to state that the results found using the empirical414

approach were satisfactory.415

Finally, we performed different experiments using non parametric Bernstein copula416

functions, but the computational time was severely compromised; moreover, the grid used417

for the discretization of the unitary square may have resulted in some sparse large values418

that could imply over estimations. Nevertheless, after using parametric copula functions or419

combinations of these, we mitigated the issue and improved the computational time signifi-420

cantly. For future work, this methodology could be applied to a random fields model where421

rainfall series could be interpolated in a certain space correctly maintaining the stochastic422

properties and nature of the data.423
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Figure 12. Observed and Simulated monthly plots Y variable
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Figure 13. Observed and Simulated monthly plots X variable
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Figure 14. Monthly maximum rain fall plot Cles and Trento sites
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Figure 15. Observed and simulated non-zero rainfall mean density plot Cles
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Figure 16. Observed and simulated non-zero rainfall mean density plot Trento

Month Obs mean Obs sd Sim Mean Sim sd m(mean) m(sd)

1 Jan 1.66 5.97 1.42 4.72 -0.15 -0.21

2 Feb 1.62 6.35 1.66 6.38 0.03 0.01

3 Mar 1.85 5.65 1.79 4.98 -0.03 -0.12

4 Apr 2.54 6.50 1.69 4.69 -0.34 -0.28

5 May 2.97 6.91 2.42 6.81 -0.19 -0.01

6 Jun 3.04 6.91 2.33 6.92 -0.23 0.00

7 Jul 2.43 6.31 2.37 6.17 -0.02 -0.02

8 Aug 2.80 6.95 3.14 7.09 0.12 0.02

9 Sep 2.55 9.10 2.67 10.24 0.05 0.13

10 Oct 3.02 9.33 3.16 11.46 0.05 0.23

11 Nov 3.14 9.14 3.22 9.92 0.02 0.09

12 Dec 1.70 6.09 1.09 5.07 -0.36 -0.17

Table 3. Montly mean and sd comparisson Y variable
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Month Obs mean Obs sd Sim Mean Sim sd m(mean) m(sd)

1 Jan 1.71 5.61 1.68 4.97 -0.02 -0.11

2 Feb 1.81 5.94 1.75 5.93 -0.03 -0.00

3 Mar 1.96 5.99 2.24 6.47 0.14 0.08

4 Apr 2.66 6.53 2.05 5.95 -0.23 -0.09

5 May 3.65 8.03 2.76 7.23 -0.24 -0.10

6 Jun 3.55 7.02 2.85 7.58 -0.20 0.08

7 Jul 2.67 7.03 3.15 8.48 0.18 0.21

8 Aug 3.35 8.47 4.38 10.03 0.31 0.18

9 Sep 2.82 9.39 2.90 10.10 0.03 0.08

10 Oct 3.12 9.09 3.35 11.33 0.07 0.25

11 Nov 3.35 9.48 3.53 10.42 0.05 0.10

12 Dec 1.74 5.72 1.07 4.45 -0.39 -0.22

Table 4. Montly mean and sd comparisson X variable
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Figure 17. Uniform bivariate density observed (LEFT) simulated (RIGHT) data variables Y -

X
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Figure 18. Uniform bivariate density observed (LEFT) and simulated (RIGHT) data variables

Y - X
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