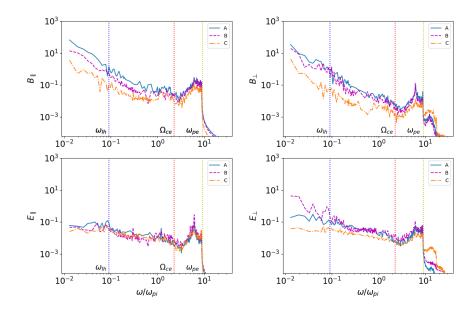
Plasma turbulence generated during particle acceleration in reconnection current sheets with magnetic islands


Qian Xia¹ and Valentina Zharkova¹

¹Northumbria University

November 26, 2022

Abstract

We investigate types of turbulence generated during particle acceleration in 3D Harris-type reconnecting current sheets (RCSs) with magnetic islands, using the particle-in-cell approach. When a guiding magnetic field is present in the RCS, protons and electrons become separated at ejection into the opposite semi-planes, or footpoints of reconnecting magnetic loops, due to the opposite gyration. The particles of the same charge (ions or electrons) ejected from the RCS from the opposite side where they enter called 'transit' particles. They are strongly energized and form unidirectional beams in the pitch-angle distribution. While the particles that move back to the same side where they enter the RCS are called 'bounced' particles. They gain less energy and form more diffusive pitch-angle distributions. In the RCS with magnetic islands, these two groups of particles are ejected from the X-nullpoint at the end of the islands forming the similar asymmetric distributions in the opposite separatrices. The energy difference between 'transit' and 'bounced' particles forms 'bump-on-tail' velocity distributions that naturally generate plasma turbulence. Lower-hybrid waves are generated into the magnetic islands, owing to the two-stream instabilities. The presence of the anisotropic temperature inside the RCS can introduce whistler waves. High-frequency fluctuations, upper hybrid waves or electron Bernstein waves, pile up near X-nullpoints, which are consistent with MMS observations. We present the wavelet analysis and energy spectra of the turbulent electric and magnetic field fluctuations for different frequencies. The results can be beneficial for understanding in-situ observations of energetic particles in the heliosphere with modern space missions.

Plasma turbulence generated during particle acceleration in reconnection current sheets with magnetic islands

1

2

3

4

5

6

Q. Xia¹, V. Zharkova¹

¹Department of Mathematics, Physics and Electrical Engineering, Northumbria University, NE1 8ST Newcastle upon, UK

Corresponding author: Q. Xia, q.xia@northumbria.ac.uk; xiaq0207@gmail.com

7 Abstract

We investigate types of turbulence generated during particle acceleration in 3D Harris-8 type reconnecting current sheets (RCSs) with magnetic islands, using the particle-in-cell 9 approach. When a guiding magnetic field is present in the RCS, protons and electrons 10 become separated at ejection into the opposite semi-planes, or footpoints of reconnect-11 ing magnetic loops, due to the opposite gyration. The particles of the same charge (ions 12 or electrons) ejected from the RCS from the opposite side where they enter called 'tran-13 sit' particles. They are strongly energized and form unidirectional beams in the pitch-14 angle distribution. While the particles that move back to the same side where they en-15 ter the RCS are called 'bounced' particles. They gain less energy and form more diffu-16 sive pitch-angle distributions. In the RCS with magnetic islands, these two groups of par-17 ticles are ejected from the X-nullpoint at the end of the islands forming the similar asym-18 metric distributions in the opposite separatrices. The energy difference between 'tran-19 sit' and 'bounced' particles forms 'bump-on-tail' velocity distributions that naturally gen-20 erate plasma turbulence. Lower-hybrid waves are generated into the magnetic islands, 21 owing to the two-stream instabilities. The presence of the anisotropic temperature in-22 side the RCS can introduce whistler waves. High-frequency fluctuations, upper hybrid 23 waves or electron Bernstein waves, pile up near X-nullpoints, which are consistent with 24 MMS observations. We present the wavelet analysis and energy spectra of the turbulent 25 electric and magnetic field fluctuations for different frequencies. The results can be ben-26 eficial for understanding in-situ observations of energetic particles in the heliosphere with 27 modern space missions. 28

²⁹ 1 Introduction

Magnetic reconnection is a fundamental phenomenon in plasma, during which mag-30 netic field lines change their connectivity releasing magnetic energy in the form of wave, 31 jets and energetic particles (Priest & Forbes, 2000; Somov, 2000). The processes of mag-32 netic reconnection are often observed during eruptive events in the Sun (flares and coro-33 nal mass ejections (CMEs)) (Antiochos et al., 1994; Antiochos, 1998; V. V. Zharkova et 34 al., 2011; Vilmer et al., 2011; Benz, 2017), heliospheric current sheet (V. V. Zharkova 35 & Khabarova, 2012; Zank et al., 2014; Khabarova et al., 2015, 2017), and Earth mag-36 netosphere (Øieroset et al., 2002; Angelopoulos et al., 2008; Chen et al., 2008). Owing 37 to large magnetic field gradients and curvatures surrounding the reconnection sites, com-38 bined with strong gradients of the plasma temperature and density, there are large vari-39 ations of the electric and magnetic fields developing inside reconnecting current sheets 40 (RCSs) during the magnetic reconnection process (Shay et al., 2016; Xia & Zharkova, 41 2020). 42

The energetic particles generated by these processes can be detected via hard X-43 ray (Holman et al., 2011; V. V. Zharkova et al., 2011) and γ -ray (Vilmer et al., 2011) 44 emission in solar flares, which are often obscured by various transport effects of parti-45 cles or radiations. Much more beneficial can be obtained via in-situ observations of the 46 heliospheric structures by WIND or ACE spacecraft, or the observations in magnetosphere 47 current sheets (CSs) by the multi-spacecraft Magnetospheric Multiscale Mission (MMS) 48 (Øieroset et al., 2001; Burch et al., 2016), which can measure particle distributions in-49 side reconnecting current sheets while spacecraft passing through. 50

The theoretical and numerical studies of magnetic reconnection are typically performed using a simplified system of 2D anti-parallel reconnecting magnetic fields with an additional guiding magnetic field in the third dimension (2.5D approach). Such RCSs with a finite B_g are not rare in Earth magnetopause (Silin & Büchner, 2006) and flare CSs at the impulsive phase of CME eruptions (Fletcher et al., 2011). The thin elongated RCSs formed in a diffusion region between the reversed magnetic field lines are shown to often break down by tearing instability into multiple islands, or O-type nullpoints, sep-

arated by X-nullpoints (Furth et al., 1963; Bhattacharjee et al., 2009). The presence of 58 magnetic islands in reconnecting current sheets was demonstrated by magnetohydrody-59 namic (Loureiro et al., 2005; Drake et al., 2006; Lapenta, 2008; Bárta et al., 2011) and 60 kinetic simulations (Y.-M. Huang & Bhattacharjee, 2010; Karimabadi et al., 2011; Markidis 61 et al., 2012). Such the periodic magnetic islands were often identified in many solar flares 62 (J. Lin et al., 2005; Oka et al., 2010; Bárta et al., 2011; Takasao et al., 2012; Nishizuka 63 et al., 2015) and coronal mass ejections (CMEs) (Song et al., 2012). Also, they are con-64 firmed by the in-situ observations of CSs in the heliosphere (V. V. Zharkova & Khabarova, 65 2012; Khabarova et al., 2015) and Earth magnetotail (Zong et al., 2004; Chen et al., 2008; 66 R. Wang et al., 2016). 67

In the case of full 3D RCSs, the guiding field is accepted varying in time and space. 68 In some configurations of 3D RCSs, the out-of-plane variations of the helical magnetic 69 structures become pretty significant, due to the kink instability, obscuring current sheet 70 structures and making hard to define clear X-nullpoints (Daughton et al., 2011a; Egedal 71 et al., 2012). A strong guiding field B_q can suppress the out-of-plane kink instability while 72 leaving the concept of magnetic islands still applicable (Lapenta & Brackbill, 1997; Daughton, 73 1999; Cerutti et al., 2014; Sironi & Spitkovsky, 2014). Nevertheless, further studies have 74 shown that both cases do not significantly change the scenarios of energy conversion and 75 particle acceleration in 3D RCSs, because the dominant mechanisms of particle energi-76 sation remain the same as in the 2.5D scenario (Hesse et al., 2001; V. V. Zharkova et al., 77 2011; Guo et al., 2014; Dahlin et al., 2017). 78

Depending on magnetic field topologies, the presence of a guiding field in an RCS 79 was revealed to cause partial or full charge separation between electrons and ions (V. V. Zharkova 80 81 & Gordovskyy, 2004; Pritchett & Coroniti, 2004) due to the opposite directions of gyration based on their opposite charges. This, in turn, can lead to the preferential ejec-82 tion of the oppositely charged particles into the opposite semiplanes of CSs, or opposite 83 footpoints of reconnecting loops. It makes the hard X-ray sources to be spatially sep-84 arated from the γ -ray sources in the opposite footpoints of reconnecting magnetic loops 85 (R. P. Lin et al., 2003; Hurford et al., 2003, 2006). This charge-separation phenomenon 86 is also confirmed in the laboratory experiments (Zhong et al., 2016). Furthermore, the 87 separation of particles of the opposite charges introduces the polarisation electric field 88 across the reconnection midplane, which is much larger (by two orders of magnitude) than 89 reconnecting electric field itself (Zenitani & Hoshino, 2008; Siversky & Zharkova, 2009; 90 Cerutti et al., 2013). The presence of polarisation electric field in RCSs has been con-91 firmed by in-situ observations of the ion velocity profiles during the spacecraft crossings 92 of the heliospheric CSs, which always follow the profile of polarisation electric field (V. V. Zharkova 93 & Khabarova, 2012; V. Zharkova & Khabarova, 2015). 94

The neutral ambient plasmas are dragged into CSs by the magnetic diffusion process from both sides of reconnecting current scheet. Although, entering the RCS from the opposite boundaries of a CS would also lead to different energy gains by the particles with the same charge (Siversky & Zharkova, 2009; V. V. Zharkova & Khabarova, 2012). The particles that enter an RCS from the side opposite to the that, from which they to be ejected, are classified as "transit" particles, while the particles entering the RCS from the same side where they to be ejected, are classified as "bounced" particles.

The transit particles gain significantly more energy because they become acceler-102 ated on their way to the midplane where the main acceleration occur, while bounced par-103 ticles lose their energy while they approach the midplane and become gaining energy from 104 reconnection electric field (V. V. Zharkova & Gordovskyy, 2005; Siversky & Zharkova, 105 2009; V. V. Zharkova & Khabarova, 2012). The energy difference between the transit 106 and bounced particles creates particle beams with 'bump-on-tail' energy distributions, 107 which could trigger the Buneman instability (Buneman, 1958) and generate plasma tur-108 bulence. In turn, this plasma turbulence can potentially contribute to further particle 109

acceleration or modify the parameters of accelerated particles (V. V. Zharkova & Agapitov, 2009; Drake et al., 2010; Muñoz & Büchner, 2016; C. Huang et al., 2017).

The target of this research is to study plasma instabilities in RCSs due to the pres-112 ence of energetic particle beams extending from the X-nullpoint into magnetic islands. 113 Because the plasma turbulence introduced by instabilities, in general, is inherently a 3D 114 problem in realistic systems (Goldreich & Sridhar, 1995), it requires the simulation do-115 main to be 3D. As mentioned before, the out of reconnection plane variations in 3D could 116 obscure the CS structures, such as a clear X-nullpoint. Hence we implemented a strong 117 B_q to the RCSs to suppress the development of the kink mode and to stabilize the mag-118 netic island structures along the out-of-plane direction (Xia & Zharkova, 2020). Further-119 more, anisotropic electric and magnetic fluctuations are expected in the presence of a 120 local mean magnetic field \mathbf{B}' (Howes et al., 2008; Boldyrev et al., 2013). Thus we will 121 explore the variances developed both along and perpendicular to the mean magnetic field. 122 Besides, particles have non-Maxwellian distributions in the phase space due to the de-123 veloped instabilities. Ng et al. (2011) has shown that a triangular-shaped distribution 124 could found close to the diffusion region in the electron velocity space, in which the fil-125 amentary structures correspond to different groups of particles oscillating across the RCS 126 midplane. However, such structures would disappear outside of the diffusion region in 127 the presence of a weak B_g (Ng et al., 2012; S. Wang et al., 2016). Thus, the implemen-128 tation of a strong B_q could also help the energetic particle beams to maintain the pres-129 sure anisotropy (Le et al., 2013). 130

Similar to our previous study of electron pitch-angle distributions (PADs) in the 131 RCSs (Khabarova et al., 2020; Xia & Zharkova, 2020), we intend to consider the data 132 133 collected by a hypothetical spacecraft crossing the simulation domain, which allow us to analyze the electric and magnetic field fluctuations with respect to the local mean mag-134 netic field \mathbf{B}' . Because the streaming instabilities can be generated in the separatrices 135 and later extend to the exhaust region (Cattell et al., 2005; Lapenta et al., 2011; Markidis 136 et al., 2012; Zhang et al., 2019), the positions of the virtual spacecraft are set to be in 137 the exhaust close to the separatrices at different distances away from the X-nullpoints 138 that form magnetic island. So we can obtain the evolution of plasma turbulence from 139 the X-nullpoint to the O-nullpoint. 140

This paper is organized as follows. The magnetic field topology and the simulation model are described in section 2. The results of simulations are analyzed in section 3. A general discussion and conclusions are drawn in section 4.

¹⁴⁴ 2 Simulation model

To investigate turbulence generated inside RCSs with magnetic islands, let us re-145 produce a 3D RCS model and explore the dynamics of particles accelerated during their 146 passage through this magnetic field topology. We used the models described in our pre-147 vious papers including (Xia & Zharkova, 2020), which studied particle acceleration in 148 coalescent and squashed magnetic islands. Similarly to (Siversky & Zharkova, 2009), the 149 authors introduced static background electric and magnetic fields in the PIC code (Verboncoeur 150 et al., 1995; Bowers et al., 2008). Then they followed particle acceleration and their in-151 duced electric and magnetic fields in 3D RCSs with a single or multiple X-nullpoints (mag-152 netic islands). This approach allowed us to separate the original magnetic field config-153 uration of the reconnection from that induced by the plasma feedback due to the accel-154 erated particles and to discover triggers of plasma turbulence inside these complex mag-155 netic configurations. 156

In the current paper, we do not separate the original and induced electromagnetic fields and adopt the self-consistent PIC simulation to investigate particle acceleration in magnetic islands generated by magnetic reconnection. We extend the 3D simulation region to a larger domain comparing to the previous 2.5D studies by Muñoz and Büchner (2016). The simulations start with a Harris-type current sheet (CS) in the x-z plane:

$$\mathbf{B}_{x} = -\frac{2L_{x}}{L_{z}}\delta B_{0}\sin\left(2\pi\frac{z-0.5L_{z}}{L_{z}}\right)\cos\left(\pi\frac{x}{L_{x}}\right), \\
\mathbf{B}_{y} = B_{0y}, \\
\mathbf{B}_{z} = B_{0z}\tanh\left(\frac{x}{d_{cs}}\right) + \delta B_{0}\cos\left(2\pi\frac{z-0.5L_{z}}{L_{z}}\right)\sin\left(\pi\frac{x}{L_{x}}\right), \tag{1}$$

where d_{cs} is the half thickness of RCS. The B_{0y} is the initial guiding field, which is perpendicular to the reconnection plane. In the presented simulation $b_g = B_{0y}/B_{0z} = 1.0$. The initial density variation across the CS is:

$$n = n_b + n_0 \operatorname{sech}^2(\frac{x}{d_{cs}}).$$
⁽²⁾

We chose a mass ratio $m_i/m_e = 100$, a temperature ratio $T_i/T_e = 5$, a background plasma density $n_b/n_0 = 0.2$, and a frequency ratio $\omega_{pe}/\Omega_{ce} = 1.5$. The RCS initially has $d_{cs} = 0.5d_i$, where d_i is the ion inertial length. The simulation box size is $L_x \times L_y \times$ $L_z = 51.2d_i \times 1.6d_i \times 12.8d_i$ with grid number $2048 \times 64 \times 512$ using 100 particles per cell. Along x, the conducting boundary condition for the electromagnetic field and open boundary condition for particles are used. The periodic boundary conditions are applied to both the electromagnetic field and particles along z- and y-directions.

To trigger magnetic reconnection, let us introduce a small interruption at the be-172 ginning of the simulation, which is written in terms of $(\delta B_0...)$ in Eq. (1), where $\delta B_0 =$ 173 $0.03B_{0z}$. It comes from an out-of-plane vector potential, $\delta \mathbf{B}_0 = \nabla \times \delta A_y$, where $\delta A_y \propto \cos\left(2\pi \frac{z-0.5L_z}{L_z}\right)\cos\left(\pi \frac{x}{L_x}\right)$ satisfying $\nabla \cdot \mathbf{A} = 0$. This spatial distribution helps us to 174 175 set the fast reconnection to occur near the centre of the simulation box in Figure. 1(a-176 d), similar to that reported earlier (Daughton et al., 2011b). Multiple small magnetic 177 islands formed, and later merged into the island across the periodic boundary as shown 178 in the density and energy distributions of electrons in Figure. 1(c - h). The width of this 179 crossing-boundary island increased with time. Due to the periodic boundary condition 180 at both ends of the z-axis, the simulation domain represents the RCSs with a chain of 181 magnetic islands, rather than a single X-nullpoint geometry with open exhausts. The 182 energy distributions of electrons at $t = 24, 32\Omega_{ci}^{-1}$ show a clear asymmetry with respect 183 to the midplane, due to the presence of the strong guiding field. 184

The reconnection process is still weakly affected by the kink instability at a larger 185 time, as evidenced in the isosurface of the electron energy distribution in Figure. (2a). 186 The distributions are similar in the different x-z planes along the y-direction. If the 187 guiding field is weak, the flux ropes would be strongly interrupted. For example, we ob-188 served the twist of the flux ropes in the simulation box after the same running time in 189 the $B_g = 0$ case shown in Figure. (2b). Thus the locations and the sizes of magnetic 190 islands, if there is any, in different x - z planes would change, which makes it hard to 191 make statistical analysis depending on the distance from the X-nullpoint on different x-192 z planes along the y-direction. Therefore, we will stick to $b_g = 1$ case in the follow-193 ing discussions as we explained in the Introduction. 194

¹⁹⁵ **3** Simulation results

196

3.1 Wavenumber spectra of electromagnetic fields

¹⁹⁷ During the magnetic reconnection events as shown in Figure. 1(a-h), ion-scale mag-¹⁹⁸ netic islands are formed in our simulations. For example, the size of the largest magnetic ¹⁹⁹ island reaches ~ $36d_i$ after $t = 32\Omega_{ci}^{-1}$ in Figure. 1(g, h). It thus allows us to study ²⁰⁰ the plasma turbulence developed in the downstream > $15d_i$ from the X-nullpoint.

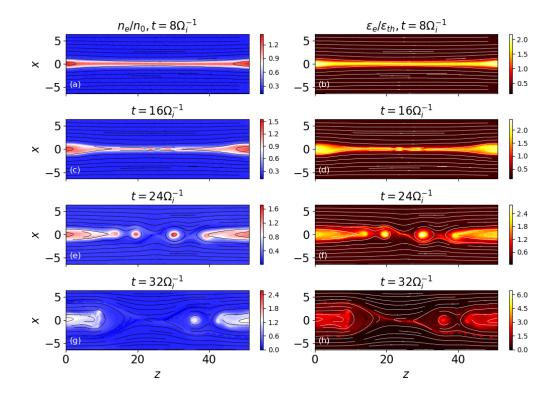


Figure 1. Density (left column) and energy (right column) distributions of electrons on the x - z plane at y = 0 at different time: (a, b) $t = 8\Omega_{ci}^{-1}$, (c, d) $t = 16\Omega_{ci}^{-1}$, (e, f) $t = 24\Omega_{ci}^{-1}$, (g, h) $t = 32\Omega_{ci}^{-1}$ for $b_g = 1$.

In Figure. (3), the power spectrum of electric (magnetic) fields of the whole box are measured at $t = 32\Omega_{ci}^{-1}$ as $|\mathbf{E}|^2(k)$ ($|\mathbf{B}|^2(k)$) in the Fourier space, where k stands for the wavenumber in the reconnection plane. In this session, we did not discuss the anisotropic problem $(k_{\parallel}, k_{\perp}$ to the local magnetic field) in this session, because there is no uniform background magnetic field across the domain as studied in homogeneous plasma turbulence problem, where the local magnetic field $\mathbf{B}(x, y, z) \approx \mathbf{B}' + \delta \mathbf{B}(x, y, z)$ (Goldreich & Sridhar, 1995).

In this model, the wave-number spectrum of the magnetic field formed a quasi-stable 208 range from $kd_i = 1$ down to above $kd_e = 1$. A least square fitting of $|\mathbf{B}|^2(k) \propto k^{\alpha}$ 209 over this range indicates the slope $\alpha \approx -2.7$. The spectrum of the electric fields drops 210 significantly at scales near the electron inertial scale (the solid line, $k_{d_e}(n_0)$, and dashed 211 line, $k_{d_e}(n_b)$, on the right side of the spectra are calculated from the RCS density and 212 background density). It suggests that during the selected time the large-scale waves are 213 quasi-stable. Meanwhile, the spectra show that the electromagnetic energy is strongly 214 damped at the electron characteristic scale. 215

3.2 Phase space distributions

As soon as particles became accelerated and were ejected from the X-nullpoint, they form the beams with different energies defined by the difference in energy gains of transit and bounced particles (Xia & Zharkova, 2020) forming 'bump-on-tail' energy distributions. These beams with two-peak energy distributions can naturally trigger Buneman instabilities. In addition, highly anisotropic energy distributions in the beams, and

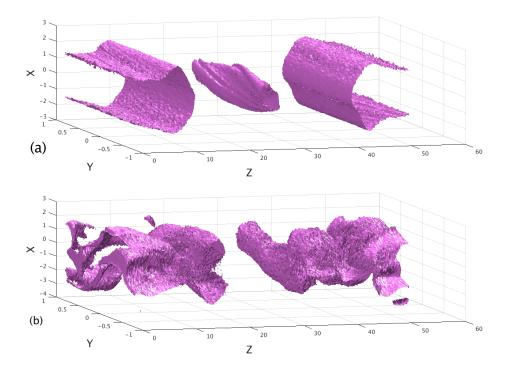


Figure 2. Upper plot: Isosurface of the electron energy distribution (the 35% contour of the max energy) in the simulation box of Figure. (1) at $t = 28\Omega_{ci}^{-1}$. Bottom plot: Isosurface of the electron energy distribution after the same running time from a similar simulation using $b_q = 0$.

the presence of a large density gradient between the beams and ambient plasma would introduce other instabilities, which tend to prevent beams from propagating as beams and generate plasma turbulence.

We examined the changes in the $v_y - x$ phase space for both ions and electrons along the cuts perpendicular to the reconnection midplane at different distances away from the X-nullpoint as shown in Figure 4. The non-Maxwellian feature first showed up in Figure 4(c): at z = 15 (or $\Delta z \sim 7$ away from the main X-nullpoint), electron holes are formed in the phase space near x = -1.5 to 1.0, which is triggered by the beamdriven lower hybrid instability.

Then as the inspecting plane moves deeper into the magnetic island, the perturbation in the ion phase space was found at z = 10 (or $\Delta z \sim 12$ away from the X-nullpoint) in Figure 4(b), where the arcs in the x = 0 to 2 region represent different groups of ion beams. We did not find any clear ion holes in the phase space, but those arcs disappear quickly further in the downstream, which suggest the ion beams are also suppressed by plasma turbulence.

3.3 Frequency analysis

238

3.3.1 Wavelet analysis

The plasma turbulence introduced by beam instabilities can also be studied using electric and magnetic fluctuations in the frequency domain. After we identified the instability signals in the particle phase space, we took the advantage of wavelet analysis,

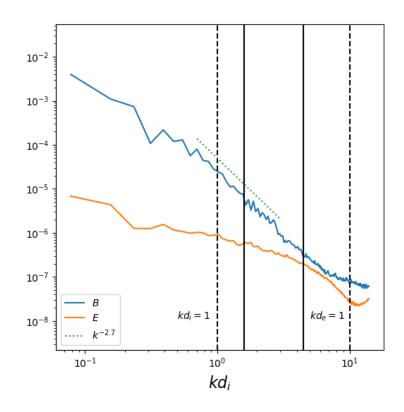


Figure 3. Power spectra of the electric (normalized by $B_0^2 V_A^2$) and magnetic fields (normalized by B_0^2). The wave vector is normalized to d_i^{-1} of n_0 . The corresponding $k_{d_i}(n_0)$, $k_{d_e}(n_0)$ are marked in dash lines. The solid lines indicate the ion gyroscale $k_{\rho_i}^{-1}$ (left) and electron inertial scale calculated by the background density $k_{d_e}(n_b)^{-1}$ (right).

which is a powerful tool to analyse time-series data collected by a pinpoint in the domain, to study the fluctuations using discrete wavelet transform (Farge, 1992).

We explored the fluctuations of electric and magnetic fields in the exhaust obtained 244 during the acceleration of particles in the RCS. The signals at different grids along the 245 y-direction were transformed to wavelet power spectra using Morlet wavelet. Then the 246 results were averaged along the out-of-plane y-axis. The wavelet power spectra of both 247 electric and magnetic field components shared the same features. For example, Figure. 248 (5) shows the results using the data of the B_x component recorded at point B (z = 15, x =249 0.25, where the electron holes were observed in the phase space in Figure. 4(c)) for a pe-250 riod of $5\Omega_{ci}^{-1}$. 251

²⁵² Comparing to the wavenumber spectra of electromagnetic fields from the whole re-²⁵³ gion (section 3.1), the wavelet analysis showed that the dominant fluctuations have long ²⁵⁴ periods (or low-frequency, $\ll \Omega_{ce}$). Furthermore, the wavelet transform revealed richer ²⁵⁵ features in the high-frequency region. Figure. (4) depicts several high-frequency signals ²⁵⁶ represented by dark purple stripes, which reached electron characteristic frequency. Thus, ²⁵⁷ the electromagnetic fields spectra in wavenumber and via wavelet transform both indi-²⁵⁸ cate the important role of electrons in plasma turbulence developed in magnetic islands.

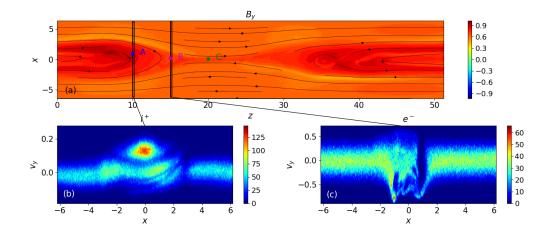
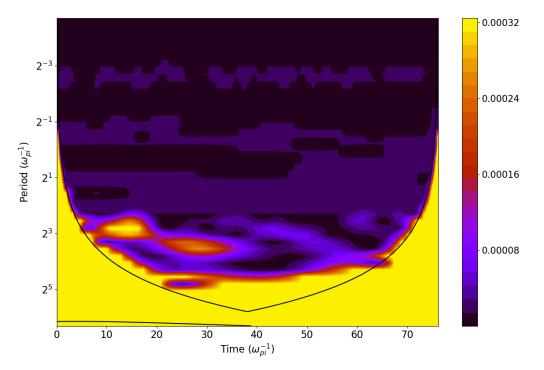



Figure 4. Phase-space distribution functions of the (b) ions and (c) electrons at difference locations at $t = 36\Omega_i^{-1}$. The out-of-plane magnetic field component B_y at y = 0 is coloured in panel (a) with the in-plane magnetic field topology (black solid lines). The electromagnetic fields at A, B, and C are recorded for further analysis. The phase space structures in (b) and (c) are captured in the vertically elongated boxes with a width of $\Delta y = 0.2d_i$. The main X-nullpoint is located at z = 22, x = 0. This simulation started with a strong guiding field $(b_g = 1)$.

Figure 5. Local wavelet power spectrum of B_x (the purple point B at z = 15, x = 0.25 in Figure. 4) of the time series of B_x components, using Morlet wavelet. The solid dark curve encloses the regions of > 95% confidence.

3.3.2 Frequency spectra of electromagnetic fields

259

260

Furthermore, let us split now the electric and magnetic fields to the parallel and perpendicular components based on the local mean magnetic field \mathbf{B}' . This idea comes 261

from plasma turbulence concepts that fluctuations exhibit anisotropic features in the pres-262 ence of a strong background field (sometimes also called the guide field, but it is differ-263 ent from the concept of the guiding field B_q in magnetic reconnection). In this section, 264 this local mean magnetic field was averaged over both the space and the time: the sur-265 veyed box size was $\Delta L_x (= 0.2d_i) \times L_y \times \Delta L_z (= 0.2d_i)$ surrounding the selected points 266 in Figure. (4); the values were also averaged over $5\Omega_{ci}^{-1}$ period of simulation time. Then 267 the **B** and **E** components on every grid are projected to this \mathbf{B}' to get the parallel and 268 perpendicular components. The the results in Figure. (6) were averaged over the Fourier 269 spectra of the electric and magnetic field components from the surveyed grid points. 270

In this session, we assumed virtual spacecraft staying at three different locations: 271 A, B, and C as shown in Figure. 4. From point $C \to A$, the selected points are further 272 away from the X-nullpoint. The most obvious changes are in the low-frequency part: right 273 below Ω_{ce} , we could find large enhancement in the amplitude of B_{\perp} (and a spike in E_{\parallel}), 274 which could contribute to the generation of whistler waves in the region near points A 275 and B. Further down in the lower frequency region, the amplitudes of B_{\parallel} , B_{\perp} , and E_{\perp} 276 are much larger over a large range. The small bump near ω_{lh} (especially in the electric 277 fields near point A at z = 10, x = 1) represent the lower hybrid waves. 278

In the very-high-frequency part ($\geq \omega_{pe}$), we first noticed that the perpendicular 279 electric field E_{\perp} at $f > \omega_{pe}$ is damped significantly as it moves away from the X-nullpoint. 280 In other words, these waves represented by E_\perp are only observable near X-nullpoints. 281 Furthermore, both high-frequency fluctuations of $\delta \mathbf{E}$ and $\delta \mathbf{B}$ are mainly perpendicular 282 to **B'**. Further analysis of the fluctuations on the perpendicular plane showed that E_{\perp}, B_{\perp} 283 are right-hand polarized, which are consistent with electron circular direction in the plane. 284 In the sub-high-frequency region, $\Omega_{ce} < f < \omega_{pe}$, we found several distinct spikes in 285 all the fields at three locations. Considering that the periodic boundary condition along 286 z-axis stands for simulating a chain of magnetic islands, it suggests that the magnetic 287 island pool is fulfilled with these electromagnetic fluctuations above Ω_{ce} . Besides, we also 288 noticed that the enhancement near $f \approx \omega_{lh}$, $f < \Omega_{ce}$, and $\Omega_{ce} < f < \omega_{pe}$ are consis-289 tent with the dark horizontal stripes in the wavelet power spectrum in Figure. (5). By 290 splitting the electromagnetic fluctuations into the parallel and perpendicular direction, 291 here we further identified the differences between those stripe signals appeared in the 292 wavelet analysis. 293

²⁹⁴ 4 Discussion and Conclusions

In this paper, we simulated 3D RCSs with magnetic islands generated from a Harris-295 type CS equilibrium. Our goal was to track the plasma turbulence development following the ejection of energetic particles in magnetic islands, from the X-nullpoint to the 297 O-nullpoint. This can provide more signatures for us to identify RCS structures, which 298 is a challenging problem in space plasma due to the limited opportunities of spontaneous 299 multiple spacecraft observation within a single RCS. In our previous study, we have studied the pitch-angle distributions of electrons and found characteristic signals, such as counter-301 streaming strahls and heat flux dropouts, which depends on the specific magnetic field 302 topology (Khabarova et al., 2020; Xia & Zharkova, 2020). Here we shift our attention 303 to the electric and magnetic field fluctuations in the frequency domain, with growing in-304 terests and available data in the community. 305

Particles that drift into the RCSs from opposite boundaries would gain different energy gains in the presence of a magnetic guiding field Siversky and Zharkova (2009). Previous 2.5D PIC simulation by Siversky and Zharkova (2009) of particle acceleration near a single X-nullpoint have shown these accelerated particle beams with different energies form a bump-on-tail distribution at the ejection, which leads to Buneman instabilities (Buneman, 1958) and generates turbulence (Jaroschek et al., 2004; Siversky & Zharkova, 2009; Drake et al., 2010). Later Muñoz and Büchner (2016) showed that non-

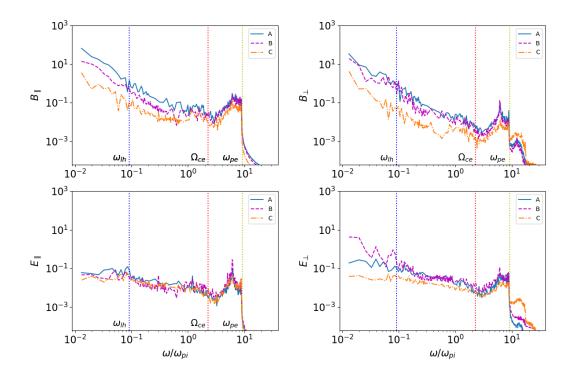


Figure 6. The spectra of different **E** and **B** components at selected points (marked in corresponding colors in Figure. 4) as functions of the frequency (normalized to ω_{pi}): B_{\parallel} , E_{\parallel} , B_{\perp} , E_{\perp} with respect to the local mean magnetic field in 3D. The characteristic lower-hybrid frequency ω_{lh} , electron gyro frequency Ω_{ce} , and electron plasma frequency ω_{pe} are labelled as vertical dotted lines.

Maxwellian distributions appeared in the electron phase space at a distance $\sim 6d_i$ away from the X-nullpoint, generating lower hybrid waves. Therefore, we set a larger 3D simulation domain, in which magnetic reconnection generated a large magnetic island with size $\sim 32d_i$. A strong guiding field B_g is implemented to suppress the kink instability and keep the geometry quasi-similar on each x - z plane. It allows us to get statistical results by averaging the data collected from 64 grid points along the y-direction.

In this large 3D simulation box, the turbulent magnetic field in the RCS formed 319 a steady spectral slope $\propto k^{-2.7}$ near the ion inertial length, and a steeper cascade at electron scales at $t = 36\Omega_{ci}^{-1}$, which is consistent with the other 3D PIC simulations(Karimabadi 320 321 et al., 2013; X. Li et al., 2019), suggesting quasi-stable turbulence is built up at this mo-322 ment. Hence we inspected the phase space of particles at this selected time, and iden-323 tified two regions with clear non-Maxwellian distributions: the electron beams evolved 324 into phase-space holes $\sim 7d_i$ away from the main X-nullpoint, which indicates that stream-325 ing instabilities broke the beam structures. This was consistent with the previous nu-326 merical findings (Drake et al., 2003; Muñoz & Büchner, 2016) and observations in the 327 Earth's magnetotail (Khotyaintsev et al., 2010). Furthermore, we also that found the 328 arc-shape distributions, which represent different ion beams, showed up in the phase space 329 at $12d_i$ from the X-nullpoint and disappeared shortly in the further downstream. Thus 330 the ion beams would also be quickly suppressed by two-stream instabilities. The differ-331 ence between the electron and ion phase space suggests that to understand the full pic-332 ture of plasma turbulence due to magnetic reconnection, it requires the simulation size 333 to be much bigger than the diffusion region (Eastwood et al., 2018; Zhang et al., 2019). 334

By analysis the changes of the electric and magnetic fields at different locations, 335 we could connect these non-Maxwellian features with distinct fluctuations. The electric 336 and magnetic field information collected by a virtual spacecraft between the X-nullpoint 337 and the O-nullpoint were transformed to the frequency domain. The wavelet power spec-338 trum in the exhaust showed that low-frequency fluctuations dominate the region. Sev-339 eral distinct groups of fluctuations with higher frequencies could be identified within the 340 surveyed period. Because of the anisotropy of plasma turbulence in the presence of a strong 341 magnetic field (Boldyrev et al., 2013; Loureiro, Nuno F. & Boldyrev, Stanislav, 2017), 342 we compared the parallel and perpendicular components of the electric and magnetic field 343 data separately. These data are collected by three virtual spacecraft, which are positioned 344 from near X-nullpoint to deep in the exhaust region. 345

The electron beams are found to introduce high-frequency electromagnetic fluctu-346 ations above Ω_{ce} , which are observed through all of the three surveyed points in Figure. 347 (3). These fluctuations spread from the electron gyro frequency to upper hybrid frequency. 348 Similar signals are found in the inflow region close to the X-nullpoint rather than the 349 exhaust by Lapenta et al. (2020). It suggests that these high-frequency harmonic sig-350 nals could result from the periodic boundary condition, which represents a region filled 351 with magnetic island structures in the RCS. It thus prevents the waves from escaping 352 to the open field regions. 353

Such high-frequency harmonics above Ω_{ce} have recently been discovered by MMS 354 satellites near the electron diffusion region in the magnetopause (Dokgo et al., 2019). The 355 authors identified these high-frequency fluctuations as the harmonics of upper hybrid waves, 356 although they exhibited electromagnetic features. On the other hand, W. Y. Li et al. (2020) 357 reported the signals in E_{\perp} and B_{\perp} power spectra peak at the harmonics of $n\Omega_{ce}$, where 358 $n = 1, 2, 3, \dots$ near an electron diffusion region in the magnetotail. Thus they are con-359 tributed to electron Bernstein waves. One difference in the observation is that $\omega_{pe}/\Omega_{ce} \approx$ 360 27 in the magnetosphere, which keeps those two signals well separated. But this ratio 361 is much low in most PIC simulations (here it is 3.5) so we could not distinguish them-362 clearly. 363

The frequency spectra of electric and magnetic fields obtained at different locations 364 also revealed that turbulence was changing in the outflow from the X-nullpoint to O-nullpoint. 365 The ultra-high frequency electrostatic fluctuations in the E_{\perp} component, e.g. the high 366 harmonics of electron Bernstein waves (Bernstein, 1958; Gusakov & Surkov, 2007), were 367 found to only exist near the X-nullpoint. This is consistent with the MMS observations 368 mentioned above. As the observer moved away from the X-nullpoint, the whistler waves were developing into peaks near the sub- Ω_{ce} (Fujimoto & Sydora, 2008; Muñoz & Büchner, 370 2016; Graham et al., 2016). These waves could be generated by the temperature anisotropic 371 instabilities (Garv & Karimabadi, 2006) and are also consistent with the electron holes 372 in the phase space (Goldman et al., 2014). Meanwhile, low-frequency waves dominated 373 the regions further in the outflow. The amplitudes of the fluctuations increased near the 374 lower-hybrid frequency (Rogers et al., 2000). The lower-hybrid waves could be generated 375 by two-stream instabilities as shown in the energy distribution of Figure. (2b) (Papadopoulos 376 & Palmadesso, 1976; Zhou et al., 2014; Xia & Zharkova, 2020), or due to the strong den-377 sity gradient near the separatrices and in the outflow (Scholer et al., 2003; Divin et al., 378 379 2015).

In summary, we have identified the plasma turbulence in the RCS with magnetic islands and linked the characteristic fluctuations to the non-Maxwellian distributions of particles in phase space. The observed waves vary as a function of the distance away from the X-nullpoint. The high-frequency perpendicular fluctuations damp quickly out of the electron diffusion region, and the lower-frequency whistler and lower-hybrid waves are developing because of the streaming instabilities and strong plasma temperature anisotropy and density gradient. These signals offer new observational evidence of the existing of local particle acceleration due to magnetic reconnection in the solar wind. These works

- potentially benefit the in-situ study of RCSs near the Sun from Parker Solar Probe (Phan
- et al., 2020).

390 Acknowledgments

- ³⁹¹ The authors acknowledge the funding for this research provided by the U.S. Air Force
- grant *PRJ02156*. This work used the DiRAC Complexity system, operated by the Uni-
- versity of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (*www.dirac.ac.uk*).
- ³⁹⁴ This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1
- and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National
- ³⁹⁶ e-Infrastructure.

397 **References**

- Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey,
 H., ... Kepko, L. (2008, August). Tail Reconnection Triggering Substorm
 Onset. Science, 321, 931. doi: 10.1126/science.1160495
- Antiochos, S. K. (1998, August). The Magnetic Topology of Solar Eruptions. Astro *physical Journal, Letters*, 502, L181-L184. doi: 10.1086/311507
- Antiochos, S. K., Dahlburg, R. B., & Klimchuk, J. A. (1994, January). The magnetic field of solar prominences. Astrophysical Journal, Letters, 420, L41-L44.
 doi: 10.1086/187158
- Bárta, M., Büchner, J., Karlický, M., & Skála, J. (2011, August). Spontaneous Current-layer Fragmentation and Cascading Reconnection in Solar Flares. I. Model and Analysis. Astrophysical Journal, 737, 24. doi: 10.1088/0004-637X/737/1/24
- Benz, A. O. (2017, December). Flare Observations. Living Reviews in Solar Physics,
 14, 2. doi: 10.1007/s41116-016-0004-3
- Bernstein, I. B. (1958, January). Waves in a Plasma in a Magnetic Field. *Physical Review*, 109(1), 10-21. doi: 10.1103/PhysRev.109.10
- Bhattacharjee, A., Huang, Y.-M., Yang, H., & Rogers, B. (2009). Fast reconnection in high-lundquist-number plasmas due to the plasmoid instability. *Physics* of *Plasmas*, 16(11), 112102. Retrieved from https://doi.org/10.1063/ 1.3264103 doi: 10.1063/1.3264103
- Boldyrev, S., Horaites, K., Xia, Q., & Perez, J. C. (2013, November). Toward a
 Theory of Astrophysical Plasma Turbulence at Subproton Scales. Astrophysical Journal, 777(1), 41. doi: 10.1088/0004-637X/777/1/41
- Bowers, K. J., Albright, B. J., Yin, L., Bergen, B., & Kwan, T. J. T. (2008, May).
 Ultrahigh performance three-dimensional electromagnetic relativistic kinetic
 plasma simulationa). *Physics of Plasmas*, 15, 055703. doi: 10.1063/1.2840133
- Buneman, O. (1958, Jul). Instability, turbulence, and conductivity in current carrying plasma. *Phys. Rev. Lett.*, 1, 8–9. Retrieved from https://link.aps
 .org/doi/10.1103/PhysRevLett.1.8 doi: 10.1103/PhysRevLett.1.8
- Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. (2016, March). Magne tospheric Multiscale Overview and Science Objectives. Space Science Reviews,
 199(1-4), 5-21. doi: 10.1007/s11214-015-0164-9
- Cattell, C., Dombeck, J., Wygant, J., Drake, J. F., Swisdak, M., Goldstein, M. L., 430 ... Balogh, A. (2005).Cluster observations of electron holes in association 431 with magnetotail reconnection and comparison to simulations. Journal of 432 Geophysical Research: Space Physics, 110(A1). Retrieved from https:// 433 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JA010519 doi: 434 10.1029/2004JA010519 435
- Cerutti, B., Werner, G. R., Uzdensky, D. A., & Begelman, M. C. (2013, June).
 Simulations of Particle Acceleration beyond the Classical Synchrotron Burnoff
 Limit in Magnetic Reconnection: An Explanation of the Crab Flares. Astro-

439	physical Journal, 770(2), 147. doi: 10.1088/0004-637X/770/2/147
440	Cerutti, B., Werner, G. R., Uzdensky, D. A., & Begelman, M. C. (2014, Febru-
441	ary). Three-dimensional Relativistic Pair Plasma Reconnection with Radia-
442	tive Feedback in the Crab Nebula. Astrophysical Journal, 782(2), 104. doi:
443	10.1088/0004-637X/782/2/104
444	Chen, LJ., Bhattacharjee, A., Puhl-Quinn, P. A., Yang, H., Bessho, N., Imada, S.,
445	Georgescu, E. (2008, January). Observation of energetic electrons within
446	magnetic islands. Nature Physics, 4, 19-23. doi: 10.1038/nphys777
447	Dahlin, J. T., Drake, J. F., & Swisdak, M. (2017, September). The role of
448	three-dimensional transport in driving enhanced electron acceleration dur-
449	ing magnetic reconnection. <i>Physics of Plasmas</i> , $24(9)$, 092110. doi:
450	10.1063/1.4986211
451	Daughton, W. (1999, April). The unstable eigenmodes of a neutral sheet. Physics of
452	Plasmas, 6(4), 1329-1343. doi: 10.1063/1.873374
453	Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen,
454	B., & Bowers, K. J. (2011a, July). Role of electron physics in the development
455	of turbulent magnetic reconnection in collisionless plasmas. Nature Physics, 7,
456	539-542. doi: 10.1038/nphys1965
457	Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen,
458	B., & Bowers, K. J. (2011b, July). Role of electron physics in the development
459	of turbulent magnetic reconnection in collisionless plasmas. Nature Physics, 7,
460	539-542. doi: 10.1038/nphys1965
461	Divin, A., Khotyaintsev, Y. V., Vaivads, A., André, M., Markidis, S., & Lapenta, G.
462	(2015, April). Evolution of the lower hybrid drift instability at reconnection
463	jet front. Journal of Geophysical Research (Space Physics), 120(4), 2675-2690.
464	doi: 10.1002/2014JA020503
465	Dokgo, K., Hwang, KJ., Burch, J. L., Choi, E., Yoon, P. H., Sibeck, D. G., & Gra-
466	ham, D. B. (2019, July). High-Frequency Wave Generation in Magnetotail
467	Reconnection: Nonlinear Harmonics of Upper Hybrid Waves. Geophysics
468	Research Letters, 46(14), 7873-7882. doi: 10.1029/2019GL083361
469	Drake, J. F., Opher, M., Swisdak, M., & Chamoun, J. N. (2010, February). A Mag-
470	netic Reconnection Mechanism for the Generation of Anomalous Cosmic Rays.
471	Astrophysical Journal, 709, 963-974. doi: 10.1088/0004-637X/709/2/963
472	Drake, J. F., Swisdak, M., Cattell, C., Shay, M. A., Rogers, B. N., & Zeiler,
473	A. (2003). Formation of electron holes and particle energization dur-
474	ing magnetic reconnection. Science, 299(5608), 873–877. Retrieved
475	from https://science.sciencemag.org/content/299/5608/873 doi:
476	10.1126/science.1080333
477	Drake, J. F., Swisdak, M., Che, H., & Shay, M. A. (2006, October). Electron ac-
478	celeration from contracting magnetic islands during reconnection. Nature, 443,
479	553-556. doi: 10.1038/nature05116
480	Eastwood, J. P., Mistry, R., Phan, T. D., Schwartz, S. J., Ergun, R. E., Drake,
481	J. F., Russell, C. T. (2018). Guide field reconnection: Exhaust structure
482	and heating. Geophysical Research Letters, 45(10), 4569-4577. Retrieved
483	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
484	2018GL077670 doi: 10.1029/2018GL077670
485	Egedal, J., Daughton, W., & Le, A. (2012, April). Large-scale electron accelera-
486	tion by parallel electric fields during magnetic reconnection. Nature Physics, 8,
487	321-324. doi: 10.1038/nphys2249
488	Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual
489	Review of Fluid Mechanics, 24(1), 395-458. Retrieved from https://doi.org/
490	10.1146/annurev.fl.24.010192.002143 doi: 10.1146/annurev.fl.24.010192
491	.002143
492	Fletcher, L., Dennis, B. R., Hudson, H. S., Krucker, S., Phillips, K., Veronig, A.,
493	Temmer, M. (2011, September). An Observational Overview of Solar Flares.

 magnetic reconnection. Geophysics Research Letters, 35(19), L19112. doi: .1029/2008GL035201 Furth, H. P., Killeen, J., & Rosenbluth, M. N. (1963, April). Finite-Resistivity stabilities of a Sheet Pinch. Physics of Fluids, 6(4), 459-484. doi: 10.1063 .1706761 Gary, S. P., & Karimabadi, H. (2006, November). Linear theory of electric temperature anisotropy instabilities: Whistler, mirror, and Weibel. Jonal of Geophysical Research (Space Physics), 111(A11), A11224. doi: 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Cerenkov Emission of Querparallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.1102 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. doi: 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jonal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retries from https://agupubs.onlinelibrary.vileg.com/doi/abs/10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of His Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1028/071.13245/005 Hesse, M., Kuznetsova, M. W. & Uou, J. 2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holma	494	Space Science Reviews, 159(1-4), 19-106. doi: 10.1007/s11214-010-9701-8
 I.029/2008GL035201 Furth, H. P., Killeen, J., & Rosenbluth, M. N. (1963, April). Finite-Resistivity stabilities of a Sheet Pinch. <i>Physics of Fluids</i>, 6(4), 459-484. doi: 10.1065 I.706761 Gary, S. P., & Karimabadi, H. (2006, November). Linear theory of electr temperature anisotropy instabilities: Whistler, mirror, and Weibel. <i>Jonal of Geophysical Research (Space Physics)</i>, <i>111</i>(A11), A11224. doi: 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. <i>Physical Review Letters</i>, <i>112</i>(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. <i>Astrophysical Journal</i>, <i>438</i>, 763. doi: 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. <i>Jonal of Geophysical Research: Space Physics</i>, <i>121</i>(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Hz Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. <i>Physica and Control Fusion</i>, <i>49</i>(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatis of three-dimensional collisionless magnetic reconnection. <i>Joural of Geophys Research</i>, <i>106</i>, 29831-29842. doi: 10.1029/201JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kont E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obsertions for Electron Acceleration and Propagation in Solar Flares. <i>Space Sc</i>	495	Fujimoto, K., & Sydora, R. D. (2008, October). Whistler waves associated with
 Furth, H. P., Killeen, J., & Rosenbluth, M. N. (1963, April). Finite-Resistivity stabilities of a Sheet Pinch. Physics of Fluids, 6(4), 459-484. doi: 10.1065 1.706761 Gary, S. P., & Karimabadi, H. (2006, November). Linear theory of electric temperature anisotropy instabilities: Whistler, mirror, and Weibel. Jonal of Geophysical Research (Space Physics), 111 (A11), A11224. doi: 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. doi: 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jonal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retries from https://agupubs.onlinelibrary.viley.com/doi/abs/10.1002/2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Hz Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. doi: 10.1013/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1028/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA00075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M	496	magnetic reconnection. Geophysics Research Letters, 35(19), L19112. doi: 10
 Furth, H. P., Killeen, J., & Rosenbluth, M. N. (1963, April). Finite-Resistivity stabilities of a Sheet Pinch. Physics of Fluids, 6(4), 459-484. doi: 10.1065 1.706761 Gary, S. P., & Karimabadi, H. (2006, November). Linear theory of electric temperature anisotropy instabilities: Whistler, mirror, and Weibel. Jonal of Geophysical Research (Space Physics), 111 (A11), A11224. doi: 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. doi: 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jonal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retries from https://agupubs.onlinelibrary.viley.com/doi/abs/10.1002/2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Hz Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. doi: 10.1013/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1028/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA00075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M	497	.1029/2008GL035201
 stabilities of a Sheet Pinch. Physics of Fluids, 6(4), 459-484. doi: 10.1063 .1706761 Gary, S. P., & Karimabadi, H. (2006, November). Linear theory of electric temperature anisotropy instabilities: Whistler, mirror, and Weibel. Jonal of Geophysical Research (Space Physics), 111(A11), A11224. doi: 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Cerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. IL Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. d 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jonal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of H Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d 10.103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1029/2001JA00075 Holsma, G. D., Aschwanden, M. J., Auras, H., Battaglia, M., Grigis, P. C., Kont E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes	498	
 I.1706761 Gary, S. P., & Karimabadi, H. (2006, November). Linear theory of electi temperature anisotropy instabilities: Whistler, mirror, and Weibel. Jonal of Geophysical Research (Space Physics), 111(A11), A11224. doi: 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. doi: 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jonal of Geophysical Research: Space Physics, 12(3), 1934-1954. Retrieve from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Lin, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. doi: 10.103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Konti E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obsertions for Electron Acceleration and Propagation in Solar Flares. Space Scien	499	
 Gary, S. P., & Karimabadi, H. (2006, November). Linear theory of electric temperature anisotropy instabilities: Whistler, mirror, and Weibel. Jounal of Geophysical Research (Space Physics), 111 (A11), A11224. Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Cerenkov Emission of Querparallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112 (14), 145002. doi: 10.110 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. doi:10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jonal of Geophysical Research: Space Physics, 121 (3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of He Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113 (15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1029/2001JA000075 Hosse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophysical Coll. doi: 10.1027/2015JA021239 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontte, P., Zharkova, V. V. (2011, September). Implications of X-ray Obsertions for Electron Acceleration and Propagation in Solar Flares. Space Science Reviews Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065009 Howes, G. G., Dorland, W., Cowle	500	
 temperature anisotropy instabilities: Whistler, mirror, and Weibel. Jo nal of Geophysical Research (Space Physics), 111(A11), A11224. Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Cerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. do 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. do 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kont E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser- tons for Electron Acceleration and Propagation in Solar Flares. Space Scies Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.06500	501	
 nal of Geophysical Research (Space Physics), 111 (A11), A11224. 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. <i>Physical Review Letters</i>, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. <i>Astrophysical Journal</i>, 438, 763. doi:10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. <i>Jo nal of Geophysical Research: Space Physics</i>, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of H Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. <i>Physical Review Letters</i>, 113(15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. <i>Plasma Physics and Control Fusion</i>, 49(5), 631-639. doi: 10.1008/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. <i>Journal of Geophys Research</i>, 106, 29831-29842. doi: 10.1029/2001JA0000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontt E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. <i>Space Scie Reviews</i>, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hamm		
 10.1029/2006JA011764 Goldman, M. V., Newman, D. L., Lapenta, G., Anderson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Qua parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. d 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of He Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-333/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kont E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Sciet Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic o	503	
 Goldman, M. V., Newman, D. L., Lapenta, G., Andersson, L., Gosling, J. T., Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Que parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. <i>Physical Review Letters</i>, <i>112</i>(14), 145002. doi: 10.116 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. <i>Astrophysical Journal</i>, <i>438</i>, 763. doi: 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. <i>Jo nal of Geophysical Research: Space Physics</i>, <i>123</i>(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of He Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. <i>Physical Review Letters</i>, <i>113</i>(15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. <i>Plasma Physics and Control Fusion</i>, <i>49</i>(5), 631-639. doi: 10.1028/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. <i>Journal of Geophys Research</i>, <i>106</i>, 29831-29842. doi: 10.1029/2001JA000075 Hohma, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kont; E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. <i>Space Scies Reviews</i>, <i>159</i>, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astroph	504	
 Eriksson, S., Ergun, R. (2014, April). Čerenkov Emission of Qua parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. <i>Physical Review Letters</i>, <i>112</i>(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. <i>Astrophysical Journal</i>, <i>438</i>, 763. doi: 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. <i>Jo nal of Geophysical Research: Space Physics</i>, <i>121</i>(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. <i>Physical Review Letters</i>, <i>113</i>(15), 155005. doi 0.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. <i>Plasma Physics and Control Fusion</i>, <i>49</i>(5), 631-639. doi: 10.1028/2011JA000075 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. <i>Journal of Geophys Research</i>, <i>106</i>, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. <i>Space Scies Reviews</i>, <i>159</i>, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihn, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatis of Magnetized Turbulence in Astrophysical Plasmas. <i>Physical Review Lettet</i> <i>100</i>(505	
 parallel Whistlers by Fast Electron Phase-Space Holes during Magnetic Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.116 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. d 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121 (3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kont E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu,		
 Reconnection. Physical Review Letters, 112(14), 145002. doi: 10.110 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. d 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retrieve from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of He Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kont: E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tons for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochilin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Phy		
 PhysRevLett.112.145002 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. d 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. R		
 Goldreich, P., & Sridhar, S. (1995, January). Toward a Theory of Interstellar T bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. d 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontt E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2		
 ⁵¹¹ bulence. II. Strong Alfvenic Turbulence. Astrophysical Journal, 438, 763. d 10.1086/175121 ⁵¹² Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist ⁵¹⁴ emission in the separatrix regions of asymmetric magnetic reconnection. Jo ⁵¹⁵ nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev ⁵¹⁶ from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ ⁵¹⁷ 2015JA021239 doi: 10.1002/2015JA021239 ⁵¹⁸ Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha ⁵¹⁹ Power Laws in the Energetic Particle Spectra Resulting from Relativistic ⁵²⁰ Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d ⁵²¹ 10.1103/PhysRevLett.113.155005 ⁵²² Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon ⁵²⁴ geneous plasma at the upper hybrid resonance. Plasma Physics and Control ⁵²⁵ Fuses, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic ⁵²⁶ of three-dimensional collisionless magnetic reconnection. Journal of Geophys ⁵²⁷ Research, 106, 29831-29842. doi: 10.1029/2001JA000075 ⁵²⁸ Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontt ⁵²⁹ E., Zharkova, V. V. (2011, September). Implications of X-ray Obser ⁵²⁰ tions for Electron Acceleration and Propagation in Solar Flares. Space Scient ⁵²¹ Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 ⁵²² Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., ⁵²⁴ Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic ⁵²⁵ of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette ⁵²⁶ 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 ⁵²⁷ Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I ⁵²⁸ velopment of turbulent magnetic reconnection in a magnetic island. The A ⁵²⁹ trophysical Journal, 835(2), 245. Retrieved from https://doi.org/1		
 10.1086/175121 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontt E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrod		
 Graham, D. B., Vaivads, A., Khotyaintsev, Y. V., & Andr, M. (2016). Whist emission in the separatrix regions of asymmetric magnetic reconnection. Jo nal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retriev from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatid of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lettet 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in th		
 emission in the separatrix regions of asymmetric magnetic reconnection. Jonal of Geophysical Research: Space Physics, 121(3), 1934-1954. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontze, P., Zharkova, V. V. (2011, September). Implications of X-ray Obsertions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The Atrophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F2855%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic hydrodynamic reconnection in the high-lundquist-number, plasmoid-unstable regime. Physics of Plasmas, 17(6), 062104.		
 nal of Geophysical Research: Space Physics, 121 (3), 1934-1954. Retrieve from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. do 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in amagnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F35%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatio of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/8535/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 2015JA021239 doi: 10.1002/2015JA021239 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. <i>Physical Review Letters</i>, <i>113</i>(15), 155005. doi: 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. <i>Plasma Physics and Control</i> <i>Fusion</i>, <i>49</i>(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. <i>Journal of Geophys</i> <i>Research</i>, <i>106</i>, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. <i>Space Scien</i> <i>Reviews</i>, <i>159</i>, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. <i>Physical Review Lette</i> <i>100</i>(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. <i>The</i> <i>trophysical Journal</i>, <i>835</i>(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357/2F835/2F2/2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. <i>Physics of Plasmas</i>, <i>17</i>(6), 062104. Retrieved from 		
 Guo, F., Li, H., Daughton, W., & Liu, YH. (2014, October). Formation of Ha Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. <i>Physical Review Letters</i>, 113(15), 155005. d 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. <i>Plasma Physics and Control Fusion</i>, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. <i>Journal of Geophys Research</i>, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. <i>Space Scien Reviews</i>, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. <i>Physical Review Letter</i> 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. <i>The A</i> <i>trophysical Journal</i>, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F2835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. <i>Physics of Plasmas</i>, 17(6), 062104. Retrieved from 		
 Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Physical Review Letters, 113(15), 155005. Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obsertions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The Atophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic hydrodynamic reconnection in the high-lundquist-number, plasmoid-unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		,
 Magnetic Reconnection. Physical Review Letters, 113(15), 155005. d 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhon geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser- tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 10.1103/PhysRevLett.113.155005 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 Gusakov, E. Z., & Surkov, A. V. (2007, May). Induced backscattering in an inhom geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatic of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontz E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 geneous plasma at the upper hybrid resonance. Plasma Physics and Control Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulatio of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Konta E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser- tions for Electron Acceleration and Propagation in Solar Flares. Space Scien Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatio of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Lette 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magn tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		, -
 Fusion, 49(5), 631-639. doi: 10.1088/0741-3335/49/5/005 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulation of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Kontzer, E. P., Zharkova, V. V. (2011, September). Implications of X-ray Observations for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The Atrophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F2855%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic hydrodynamic reconnection in the high-lundquist-number, plasmoid-unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 Hesse, M., Kuznetsova, M., & Birn, J. (2001, December). Particle-in-cell simulation of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Konta E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obsertions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. The Astrophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid-unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 of three-dimensional collisionless magnetic reconnection. Journal of Geophys Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Konta E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser- tions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 Research, 106, 29831-29842. doi: 10.1029/2001JA000075 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Konta E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obser- tions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 Holman, G. D., Aschwanden, M. J., Aurass, H., Battaglia, M., Grigis, P. C., Konta E. P., Zharkova, V. V. (2011, September). Implications of X-ray Observations for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 E. P., Zharkova, V. V. (2011, September). Implications of X-ray Obsertions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). Invelopment of turbulent magnetic reconnection in a magnetic island. The Action Science of the Action		
 tions for Electron Acceleration and Propagation in Solar Flares. Space Scient Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. Physical Review Letter 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 Reviews, 159, 107-166. doi: 10.1007/s11214-010-9680-9 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. <i>Physical Review Letter</i> 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. <i>The Astrophysical Journal</i>, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic hydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. <i>Physics of Plasmas</i>, 17(6), 062104. Retrieved from 		
 Howes, G. G., Dorland, W., Cowley, S. C., Hammett, G. W., Quataert, E., Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulatic of Magnetized Turbulence in Astrophysical Plasmas. <i>Physical Review Letter</i> <i>100</i>(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. <i>The A</i> <i>trophysical Journal</i>, <i>835</i>(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. <i>Physics of Plasmas</i>, <i>17</i>(6), 062104. Retrieved from 		
 Schekochihin, A. A., & Tatsuno, T. (2008, February). Kinetic Simulation of Magnetized Turbulence in Astrophysical Plasmas. <i>Physical Review Letter</i> 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. <i>The Astrophysical Journal</i>, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid-unstable regime. <i>Physics of Plasmas</i>, 17(6), 062104. Retrieved from 		
 of Magnetized Turbulence in Astrophysical Plasmas. <i>Physical Review Letter</i> 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). In velopment of turbulent magnetic reconnection in a magnetic island. <i>The A</i> <i>trophysical Journal</i>, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. <i>Physics of Plasmas</i>, 17(6), 062104. Retrieved from 		
 100(6), 065004. doi: 10.1103/PhysRevLett.100.065004 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 Huang, C., Lu, Q., Wang, R., Guo, F., Wu, M., Lu, S., & Wang, S. (2017, feb). I velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 velopment of turbulent magnetic reconnection in a magnetic island. The A trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
 trophysical Journal, 835(2), 245. Retrieved from https://doi.org/10.384 2F1538-4357%2F835%2F2%2F245 doi: 10.3847/1538-4357/835/2/245 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. Physics of Plasmas, 17(6), 062104. Retrieved from 		
5392F1538-4357%2F835%2F2%2F245doi: 10.3847/1538-4357/835/2/245540Huang, YM., & Bhattacharjee, A.(2010).Scaling laws of resistive magnetic reconnection in the high-lundquist-number, plasmoid-541tohydrodynamic reconnection in the high-lundquist-number, plasmoid-542unstable regime.Physics of Plasmas, 17(6), 062104.		
 Huang, YM., & Bhattacharjee, A. (2010). Scaling laws of resistive magnetic tohydrodynamic reconnection in the high-lundquist-number, plasmoid- unstable regime. <i>Physics of Plasmas</i>, 17(6), 062104. Retrieved free 		
541tohydrodynamic reconnection in the high-lundquist-number, plasmoid-542unstable regime.Physics of Plasmas, 17(6), 062104.Retrieved free		
unstable regime. <i>Physics of Plasmas</i> , 17(6), 062104. Retrieved free		
Hurford, G. J., Krucker, S., Lin, R. P., Schwartz, R. A., Share, G. H., & Smith,		,
		D. M. (2006, June). Gamma-Ray Imaging of the 2003 October/November So-
	545	lar Flares. Astrophysical Journal, Letters, 644, L93-L96. doi: 10.1086/505329
	547	Hurford, G. J., Schwartz, R. A., Krucker, S., Lin, R. P., Smith, D. M., & Vilmer,
Hurford, G. J., Schwartz, R. A., Krucker, S., Lin, R. P., Smith, D. M., & Vilmer,	548	N. (2003, October). First Gamma-Ray Images of a Solar Flare. Astrophysical

549	Journal, Letters, 595, L77-L80. doi: 10.1086/378179
550	Jaroschek, C. H., Treumann, R. A., Lesch, H., & Scholer, M. (2004, March). Fast
551	reconnection in relativistic pair plasmas: Analysis of particle acceleration in
552	self-consistent full particle simulations. <i>Physics of Plasmas</i> , 11(3), 1151-1163.
553	doi: 10.1063/1.1644814
554	Karimabadi, H., Dorelli, J., Roytershteyn, V., Daughton, W., & Chacón, L. (2011,
555	July). Flux Pileup in Collisionless Magnetic Reconnection: Bursty Interaction
556	of Large Flux Ropes. <i>Physical Review Letters</i> , 107(2), 025002. doi: 10.1103/
557	PhysRevLett.107.025002
558	Karimabadi, H., Roytershteyn, V., Daughton, W., & Liu, YH. (2013, October).
559	Recent Evolution in the Theory of Magnetic Reconnection and Its Con-
560	nection with Turbulence. Space Science Reviews, 178(2-4), 307-323. doi:
561	10.1007/s11214-013-0021-7
562	Khabarova, O., Zank, G. P., Li, G., le Roux, J. A., Webb, G. M., Dosch, A., & Ma-
563	landraki, O. E. (2015, August). Small-scale Magnetic Islands in the Solar
564	Wind and Their Role in Particle Acceleration. I. Dynamics of Magnetic Islands
565	Near the Heliospheric Current Sheet. Astrophysical Journal, 808, 181. doi:
566	10.1088/0004-637X/808/2/181
567	Khabarova, O., Zharkova, V., Xia, Q., & Malandraki, O. E. (2020, may). Coun-
568	terstreaming strahls and heat flux dropouts as possible signatures of local
569	particle acceleration in the solar wind. The Astrophysical Journal, $894(1)$,
570	L12. Retrieved from https://doi.org/10.3847%2F2041-8213%2Fab8cb8 doi:
571	10.3847/2041-8213/ab8cb8
572	Khabarova, O. V., Zank, G. P., Malandraki, O. E., Li, G., le Roux, J. A., & Webb,
573	G. M. (2017, January). Observational evidence for local particle acceleration
574	associated with magnetically confined magnetic islands in the heliosphere - a
575	review. Sun and Geosphere, 12, 23-30.
576	Khotyaintsev, Y. V., Vaivads, A., André, M., Fujimoto, M., Retinò, A., &
577	Owen, C. J. (2010, Oct). Observations of slow electron holes at a mag-
578	netic reconnection site. Phys. Rev. Lett., 105, 165002. Retrieved from
579	https://link.aps.org/doi/10.1103/PhysRevLett.105.165002 doi:
580	10.1103/PhysRevLett.105.165002
581	Lapenta, G. (2008, June). Self-Feeding Turbulent Magnetic Reconnection
582	on Macroscopic Scales. <i>Physical Review Letters</i> , 100(23), 235001. doi:
583	10.1103/PhysRevLett.100.235001
584	Lapenta, G., & Brackbill, J. U. (1997, December). A kinetic theory for the drift-kink
585	instability. Journal of Geophysics Research, 102(A12), 27099-27108. doi: 10
586	.1029/97JA02140
587	Lapenta, G., Markidis, S., Divin, A., Goldman, M. V., & Newman, D. L. (2011,
588	September). Bipolar electric field signatures of reconnection separatrices for a
589	hydrogen plasma at realistic guide fields. Geophysics Research Letters, $38(17)$,
590	L17104. doi: 10.1029/2011GL048572
591	Lapenta, G., Pucci, F., Goldman, M. V., & Newman, D. L. (2020, January). Lo-
592	cal Regimes of Turbulence in 3D Magnetic Reconnection. Astrophysical Jour-
593	nal, 888(2), 104. doi: 10.3847/1538-4357/ab5a86
594	Le, A., Egedal, J., Ohia, O., Daughton, W., Karimabadi, H., & Lukin, V. S. (2013,
595	Mar). Regimes of the electron diffusion region in magnetic reconnection.
596	Phys. Rev. Lett., 110, 135004. Retrieved from https://link.aps.org/doi/
597	10.1103/PhysRevLett.110.135004 doi: 10.1103/PhysRevLett.110.135004
598	Li, W. Y., Graham, D. B., Khotyaintsev, Y. V., Vaivads, A., André, M., Min, K.,
599	Burch, J. L. (2020, January). Electron Bernstein waves driven by electron
600	crescents near the electron diffusion region. Nature Communications, 11, 141.
601	doi: 10.1038/s41467-019-13920-w
602	Li, X., Guo, F., Li, H., Stanier, A., & Kilian, P. (2019, October). Formation of
603	Power-law Electron Energy Spectra in Three-dimensional Low- β Magnetic

604	Reconnection. Astrophysical Journal, 884(2), 118. doi: 10.3847/1538-4357/
605	ab4268
606	Lin, J., Ko, YK., Sui, L., Raymond, J. C., Stenborg, G. A., Jiang, Y., Man-
607	cuso, S. (2005, April). Direct Observations of the Magnetic Reconnection Site
608	of an Eruption on 2003 November 18. Astrophysical Journal, 622, 1251-1264.
609	doi: 10.1086/428110
610	Lin, R. P., Krucker, S., Hurford, G. J., Smith, D. M., Hudson, H. S., Holman, G. D.,
611	Vilmer, N. (2003, October). RHESSI Observations of Particle Acceleration
612	and Energy Release in an Intense Solar Gamma-Ray Line Flare. Astrophysical
	Journal, Letters, 595, L69-L76. doi: 10.1086/378932
613	Loureiro, N. F., Cowley, S. C., Dorland, W. D., Haines, M. G., & Schekochihin,
614	
615	· · · · · · · · · · · · · · · · · · ·
616	Tearing Mode Reconnection. <i>Physical Review Letters</i> , 95(23), 235003. doi: 10.1102/PhysRevLett.05.225003
617	10.1103/PhysRevLett.95.235003
618	Loureiro, Nuno F., & Boldyrev, Stanislav. (2017, June). Role of Magnetic Reconnec-
619	tion in Magnetohydrodynamic Turbulence. <i>Physical Review Letters</i> , 118(24),
620	245101. doi: 10.1103/PhysRevLett.118.245101
621	Markidis, S., Lapenta, G., Divin, A., Goldman, M., Newman, D., & Andersson,
622	L. (2012, March). Three dimensional density cavities in guide field colli-
623	sionless magnetic reconnection. Physics of Plasmas, $19(3)$, 032119 . doi:
624	10.1063/1.3697976
625	Muñoz, P. A., & Büchner, J. (2016, October). Non-Maxwellian electron distri-
626	bution functions due to self-generated turbulence in collisionless guide-field
627	reconnection. Physics of Plasmas, $23(10)$, 102103. doi: 10.1063/1.4963773
628	Ng, J., Egedal, J., Le, A., & Daughton, W. (2012). Phase space structure of the
629	electron diffusion region in reconnection with weak guide fields. <i>Physics</i>
630	of Plasmas, 19(11), 112108. Retrieved from https://doi.org/10.1063/
631	1.4766895 doi: 10.1063/1.4766895
632	Ng, J., Egedal, J., Le, A., Daughton, W., & Chen, LJ. (2011, Feb). Kinetic struc-
633	ture of the electron diffusion region in antiparallel magnetic reconnection.
634	Phys. Rev. Lett., 106, 065002. Retrieved from https://link.aps.org/doi/
635	10.1103/PhysRevLett.106.065002 doi: 10.1103/PhysRevLett.106.065002
636	Nishizuka, N., Karlický, M., Janvier, M., & Bárta, M. (2015, February). Particle Ac-
637	celeration in Plasmoid Ejections Derived from Radio Drifting Pulsating Struc-
638	tures. Astrophysical Journal, 799, 126. doi: 10.1088/0004-637X/799/2/126
639	Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E., & Bale, S. D. (2002, Oct). Ev-
640	idence for electron acceleration up to ~ 300 keV in the magnetic reconnection
641	diffusion region of earth's magnetotail. Phys. Rev. Lett., 89, 195001. Retrieved
642	from https://link.aps.org/doi/10.1103/PhysRevLett.89.195001 doi: 10
643	.1103/PhysRevLett.89.195001
644	Øieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., & Lepping, R. P. (2001, July).
645	In situ detection of collisionless reconnection in the Earth's magnetotail. Na-
646	ture, 412(6845), 414-417. doi: 10.1038/35086520
647	Oka, M., Phan, TD., Krucker, S., Fujimoto, M., & Shinohara, I. (2010, May). Elec-
648	tron Acceleration by Multi-Island Coalescence. Astrophysical Journal, 714,
649	915-926. doi: 10.1088/0004-637X/714/1/915
650	Papadopoulos, K., & Palmadesso, P. (1976). Excitation of lower hybrid waves
651	in a plasma by electron beams. The Physics of Fluids, $19(4)$, 605-606. Re-
652	trieved from https://aip.scitation.org/doi/abs/10.1063/1.861501 doi:
653	10.1063/1.861501
654	Phan, T. D., Bale, S. D., Eastwood, J. P., Lavraud, B., Drake, J. F., Oieroset, M.,
655	Velli, M. (2020, February). Parker Solar Probe In Situ Observations of
656	Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal,
657	Supplement, 246(2), 34. doi: 10.3847/1538-4365/ab55ee
	Priest, E., & Forbes, T. (2000). Magnetic Reconnection. Cambridge University
658	These, 2., & FOFOES, T. (2000). Mugnetic feedbacketon. Cambridge University

659	Press, UK.
660	Pritchett, P. L., & Coroniti, F. V. (2004, January). Three-dimensional collisionless
661	magnetic reconnection in the presence of a guide field. Journal of Geophysical
662	Research (Space Physics), 109, A01220. doi: 10.1029/2003JA009999
663	Rogers, B. N., Drake, J. F., & Shay, M. A. (2000, October). The onset of turbulence
664	in collisionless magnetic reconnection. Geophysics Research Letters, 27(19),
665	3157-3160. doi: 10.1029/2000GL000038
666	Scholer, M., Sidorenko, I., Jaroschek, C. H., Treumann, R. A., & Zeiler, A. (2003).
667	Onset of collisionless magnetic reconnection in thin current sheets: Three-
668	dimensional particle simulations. <i>Physics of Plasmas</i> , 10(9), 3521-3527. Re-
669	trieved from https://doi.org/10.1063/1.1597494 doi: 10.1063/1.1597494
670	Shay, M. A., Phan, T. D., Haggerty, C. C., Fujimoto, M., Drake, J. F., Malakit, K.,
671	Swisdak, M. (2016). Kinetic signatures of the region surrounding the x line
672	in asymmetric (magnetopause) reconnection. Geophysical Research Letters,
673	43(9), 4145-4154. Retrieved from https://agupubs.onlinelibrary.wiley
674	.com/doi/abs/10.1002/2016GL069034 doi: 10.1002/2016GL069034
675	Silin, I., & Büchner, J. (2006, January). Three-dimensional Vlasov-code simulations
676	of magnetopause-like current sheets. Advances in Space Research, 37(7), 1354-
677	1362. doi: 10.1016/j.asr.2005.05.025
678	Sironi, L., & Spitkovsky, A. (2014, Mar). Relativistic Reconnection: An Efficient
679	Source of Non-thermal Particles. Astrophysical Journal, Letters, 783(1), L21.
680	doi: 10.1088/2041-8205/783/1/L21
681	Siversky, T. V., & Zharkova, V. V. (2009, October). Particle acceleration in a re-
682	connecting current sheet: PIC simulation. Journal of Plasma Physics, 75, 619-
683	636. doi: 10.1017/S0022377809008009
684	Somov, B. V. (Ed.). (2000). Cosmic Plasma Physics (Vol. 251). doi: 10.1007/978-94
685	-015-9592-6
686	Song, HQ., Chen, Y., Li, G., Kong, XL., & Feng, SW. (2012, April). Co-
687	alescence of Macroscopic Magnetic Islands and Electron Acceleration
688	from STEREO Observation. Physical Review $X, 2(2), 021015.$ doi:
689	10.1103/PhysRevX.2.021015
690	Takasao, S., Asai, A., Isobe, H., & Shibata, K. (2012, January). Simultane-
691	ous Observation of Reconnection Inflow and Outflow Associated with the
692	2010 August 18 Solar Flare. Astrophysical Journal, Letters, 745, L6. doi:
693	10.1088/2041-8205/745/1/L6
694	Verboncoeur, J. P., Langdon, A. B., & Gladd, N. T. (1995, May). An object-
695	oriented electromagnetic PIC code. Computer Physics Communications, 87,
696	199-211. doi: 10.1016/0010-4655(94)00173-Y
697	Vilmer, N., MacKinnon, A. L., & Hurford, G. J. (2011, September). Properties of
698	Energetic Ions in the Solar Atmosphere from γ -Ray and Neutron Observations.
699	Space Science Reviews, 159, 167-224. doi: 10.1007/s11214-010-9728-x
700	Wang, R., Lu, Q., Nakamura, R., Huang, C., Du, A., Guo, F., Wang, S. (2016,
701	3 1). Coalescence of magnetic flux ropes in the ion diffusion region of magnetic $10(2)$ 262 267 dai 10.1028 (malass2578)
702	reconnection. Nature Physics, $12(3)$, $263-267$. doi: $10.1038/nphys3578$
703	Wang, S., Chen, LJ., Bessho, N., Kistler, L. M., Shuster, J. R., & Guo, R. (2016).
704	Electron heating in the exhaust of magnetic reconnection with negligible guide
705	field. Journal of Geophysical Research: Space Physics, 121(3), 2104-2130.
706	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
707	10.1002/2015JA021892 doi: $10.1002/2015$ JA021892 Xia O & Zharkova V (2020 March) Partiala acceleration in conlegant and
708	Xia, Q., & Zharkova, V. (2020, March). Particle acceleration in coalescent and
709	squashed magnetic islands II. Particle-in-cell approach. Astronomy and Astro- physics, 635, A116.
710	Zank, G. P., le Roux, J. A., Webb, G. M., Dosch, A., & Khabarova, O. (2014, De-
711	cember). Particle Acceleration via Reconnection Processes in the Supersonic
712 713	Solar Wind. Astrophysical Journal, 797, 28. doi: 10.1088/0004-637X/797/1/
.13	

714	28
715	Zenitani, S., & Hoshino, M. (2008, April). The Role of the Guide Field in Relativis-
716	tic Pair Plasma Reconnection. Astrophysical Journal, 677(1), 530-544. doi: 10
717	.1086/528708
718	Zhang, Q., Drake, J. F., & Swisdak, M. (2019). Instabilities and turbulence in low-
719	guide field reconnection exhausts with kinetic riemann simulations. <i>Physics</i>
720	of Plasmas, 26(10), 102115. Retrieved from https://doi.org/10.1063/
721	1.5121782 doi: 10.1063/1.5121782
722	Zharkova, V., & Khabarova, O. (2015, April). Additional acceleration of solar-wind
723	particles in current sheets of the heliosphere. Annales Geophysicae, 33, 457-
724	470. doi: 10.5194/angeo-33-457-2015
725	Zharkova, V. V., & Agapitov, O. V. (2009, April). The effect of magnetic topology
726	on particle acceleration in a three-dimensional reconnecting current sheet:
727	a test-particle approach. Journal of Plasma Physics, 75, 159-181. doi:
728	10.1017/S002237780800771X
729	Zharkova, V. V., Arzner, K., Benz, A. O., Browning, P., Dauphin, C., Emslie, A. G.,
730	Vlahos, L. (2011, September). Recent Advances in Understanding Particle
731	Acceleration Processes in Solar Flares. Space Science Reviews, 159, 357-420.
732	doi: 10.1007/s11214-011-9803-y
733	Zharkova, V. V., & Gordovskyy, M. (2004, April). Particle Acceleration Asymmetry
734	in a Reconnecting Nonneutral Current Sheet. Astrophysical Journal, 604, 884-
735	891. doi: 10.1086/381966
736	Zharkova, V. V., & Gordovskyy, M. (2005, January). Energy spectra of par-
737	ticles accelerated in a reconnecting current sheet with the guiding mag-
738	netic field. Monthly Notices of the RAS , 356, 1107-1116. doi: 10.1111/
739	j.1365-2966.2004.08532.x
740	Zharkova, V. V., & Khabarova, O. V. (2012, June). Particle Dynamics in the
741	Reconnecting Heliospheric Current Sheet: Solar Wind Data versus Three-
742	dimensional Particle-in-cell Simulations. Astrophysical Journal, 752, 35. doi:
743	10.1088/0004-637X/752/1/35
744	Zhong, J. Y., Lin, J., Li, Y. T., Wang, X., Li, Y., Zhang, K., Zhang, J. (2016).
745	Relativistic electrons produced by reconnecting electric fields in a laser-driven
746	bench-top solar flare. The Astrophysical Journal Supplement Series, $225(2)$,
747	30. Retrieved from http://stacks.iop.org/0067-0049/225/i=2/a=30
748	Zhou, M., Li, H., Deng, X., Huang, S., Pang, Y., Yuan, Z., Tang, R. (2014).
749	Characteristic distribution and possible roles of waves around the lower hy-
750	brid frequency in the magnetotail reconnection region. Journal of Geophys-
751	ical Research: Space Physics, 119(10), 8228-8242. Retrieved from https://
752	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA019978 doi:
753	10.1002/2014JA019978 Zong O. C. Evitz, T. A. Bu, Z. V. Ev. S. V. Bakar, D. N. Zhang, H.
754	Zong, QG., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H.,
755	Reme, H. (2004, September). Cluster observations of earthward flow- ing plasmoid in the tail. <i>Geophysics Research Letters</i> , 31, L18803. doi:
756	
757	10.1029/2004GL020692