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Abstract

A novel approach to improve seasonal to interannual sandy shoreline predictions is presented, whereby model free parameters

can vary in time, adjusting to potential non-stationarity in the underlying model forcing. This is achieved by adopting a suitable

data assimilation technique (Dual State-Parameter Ensemble Kalman Filter) within the established shoreline evolution model,

ShoreFor. The method is first tested and evaluated using synthetic scenarios, specifically designed to emulate a broad range of

natural sandy shoreline behavior. This approach is then applied to a real-world shoreline dataset, revealing that time-varying

model free parameters are linked through physical processes to changing characteristics of the wave forcing. Greater accuracy

of shoreline predictions is achieved, compared to existing stationary modelling approaches. It is anticipated that the wider

application of this method can improve our understanding and prediction of future beach erosion patterns and trends in a

changing wave climate.
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 A data-assimilation Dual State-Parameter Ensemble Kalman Filter (EnKF) methodology is 12 

integrated within an established shoreline model  13 

 Non-stationary model parameters are obtained, with the accuracy and sampling frequency of 14 

shoreline data critical to overall EnKF skill 15 

 Time-varying model parametrizations are physically linked to non-stationary wave forcing, 16 

resulting in more accurate shoreline predictions 17 
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Abstract  19 

A novel approach to improve seasonal to interannual sandy shoreline predictions is presented, 20 

whereby model free parameters can vary in time, adjusting to potential non-stationarity in the 21 

underlying model forcing. This is achieved by adopting a suitable data assimilation technique 22 

(Dual State-Parameter Ensemble Kalman Filter) within the established shoreline evolution model 23 

ShoreFor. The method is first tested and evaluated using synthetic scenarios, specifically 24 

designed to emulate a broad range of natural sandy shoreline behavior. This approach is then 25 

applied to a real-world shoreline dataset, revealing that time-varying model free parameters are 26 

linked through physical processes to changing characteristics of the wave forcing. Greater 27 

accuracy of shoreline predictions is achieved, compared to existing stationary modelling 28 

approaches. It is anticipated that the wider application of this method can improve our 29 

understanding and prediction of future beach erosion patterns and trends in a changing wave 30 

climate.  31 

Plain Language Summary 32 

Understanding and predicting future changes along sandy coastlines worldwide is highly relevant 33 

for coastal management in the context of climate change. In the future, the changing occurrence 34 

of storms – and over longer timescales, rising sea levels - are expected to result in new patterns 35 

of shoreline erosion. It is very common for shoreline change models to use past records of 36 

measured shorelines and waves to match mathematical equations to these existing observations. 37 

However, the validity of these types of shoreline models to predict the future is questionable, 38 

when waves and storm patterns around the world in coming decades are expected to be different 39 

to those observed in the past. A new methodology is presented to address this issue by exploring 40 

how a mathematical shoreline model can self-adjust to wave climates that vary through time. The 41 

proposed methodology is shown to be successful at improving shoreline predictions. 42 

  43 
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1 Introduction 44 

Coastal managers have an increasing need for reliable tools that predict the response of sandy 45 

coastlines worldwide to the impacts of extreme storm events, shifting regional wave climates and 46 

rising sea levels. Semi-empirical shoreline models are proving to be increasingly successful at 47 

predicting shoreline variability and evolution at seasonal to multiyear timescales (e.g., Splinter et 48 

al., 2014; Yates et al., 2009). However, the complex spatio-temporal interactions of the different 49 

processes driving shoreline change make multi-decadal predictions challenging (Montaño et al., 50 

2020), limiting our confidence in shoreline predictions at timescales extending to decades and 51 

beyond (Ranasinghe, 2020). 52 

 53 

The present generation of shoreline models typically rely on a single period of past wave forcing 54 

and observed shoreline measurements to establish the optimal magnitude of model free 55 

parameters (e.g.,  Davidson et al., 2019; Long & Plant, 2012). It is then assumed that differences 56 

between predicted and measured shorelines arise from further unresolved morphological 57 

processes, inaccuracy in shoreline measurements and/or uncertainty in wave 58 

modelling/measurements (Montaño et al., 2020). But crucially, by this approach it is implicitly 59 

assumed that all model free parameters are stationary, even though the calibrated model may 60 

then be used to explore past and future shoreline patterns and trends (e.g., Antolínez et al., 2019; 61 

Vitousek et al., 2017). This use of a time-invariant approach to model free parameter estimation 62 

necessarily introduces potential biases associated with the particular time period and/or duration 63 

of the selected wave and shoreline dataset (D’Anna et al., 2020; Splinter et al., 2013) that is used 64 

to perform the calibration. Recent work (D’Anna et al., 2020; Montaño et al., 2020) confirms 65 

that shoreline hindcasting and forecasting is highly dependent on the selected calibration period. 66 

In the context of a changing  climate - and as a result, anticipated temporal variability in the key 67 

wave and water-level drivers of shoreline evolution (Wong et al., 2014) - this assumption of 68 

model free parameter stationarity must be further examined.  69 

 70 

Other fields of geophysical research provide useful guidance on the implementation and physical 71 

interpretation of non-stationary model parametrization. For example, Gove & Hollinger (2006) 72 

applied a dual state-parameter Unscented Kalman Filter to explore the time evolution of model 73 

parameters in problems of surface-atmosphere exchange, in which the observed changes were 74 
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linked to seasonal atmospheric-driven variability. More recently, hydrological applications have 75 

examined the adjustment of rainfall-runoff parametrizations to improve model prediction 76 

capabilities resulting from dynamic catchments (e.g., Grigg & Hughes, 2018; Pathiraja et al., 77 

2016a) and climate variability (e.g., Stephens et al., 2019; Xiong et al., 2019). Applied to 78 

shoreline modelling, Splinter et al. (2017) used a simplified methodology of split-calibration 79 

spanning two consecutive 4-year time periods at the Gold Coast, Australia. By this exploratory 80 

approach, a substantial difference between the two time periods in one of the key model free 81 

parameters (frequency response) was observed. This was found to be consistent with further 82 

analysis that revealed a significant difference in the occurrence and distribution of storm wave 83 

events between the two consecutive calibration periods. As illustrated in Figure 1, it was 84 

observed that the shoreline response shifted from a distinctly seasonally-dominated mode 85 

(annual cycle) to a more storm-dominated (~monthly) mode of behavior, highlighting the 86 

challenge of assuming wave climate stationarity when applied to multi-year shoreline prediction 87 

and forecasting.  88 
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 89 

Figure 1. (a) Modelled vs measured shoreline evolution; and (b) breaking significant wave 90 

height Hs,b for an 8-year period at the Gold Coast, Australia, adapted from Splinter et al., (2017). 91 

The shoreline model was found to significantly underestimate the observed shoreline erosion 92 

from 2005 onwards when calibrated to the 4-year (2001-2004) period only. Subsequent analysis 93 

of the Gold Coast wave climate found that this time period coincided with a distinct shift from a 94 

seasonal wave climate towards increased intra-annual variability in storm frequency. A second 95 

calibration based on the 2005-2008 period only significantly improved model forecasts. Only by 96 

applying this ‘split calibration’ approach could reasonable hindcasts of shoreline behaviour 97 

spanning the full 8 years be achieved.    98 

In a recent review of climate change-driven coastal erosion modelling, Toimil et al. (2020) 99 

concluded that uncertainty across all constituents of the modelling framework, including model 100 

parameters, should be considered. To achieve this objective, data assimilation techniques offer 101 

the potential to continuously adjust model parameters as additional state (i.e., shoreline) 102 

observations become available (Evensen, 2010). In the new work presented here, a novel 103 

methodology to enhance sandy shoreline modelling is developed, in which a suitable data 104 

assimilation technique is integrated within an established shoreline evolution model. A Dual 105 

State-Parameter Ensemble Kalman Filter (EnKF) (Pathiraja et al., 2016b) is adapted for this 106 
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purpose, and implemented within the generalized version of the cross-shore ShoreFor model 107 

(Splinter et al., 2014). The approach is first tested using synthetic wave climate scenarios, 108 

specifically designed to emulate a range of distinct and naturally occurring sandy shoreline 109 

behavior. The technique is then applied to a real-world observational dataset, where it is 110 

determined that the time-variation in model free parameters can be linked through physical 111 

processes to the changing characteristics of the wave forcing at this long-term study site. 112 

2 Methods 113 

2.1 Shoreline Model 114 

ShoreFor (Davidson et al., 2013) is a semi-empirical model based on the behavioral concept that 115 

shorelines continuously evolve towards a time-varying equilibrium position. In the generalized 116 

form of this model (Splinter et al., 2014; hereafter SPLI14), the cross-shore rate of shoreline 117 

change (dx/dt) is given by: 118 

𝑑𝑥

𝑑𝑡
= 𝑐𝑎𝐹𝑎 + 𝑐𝑒𝐹𝑒 + 𝑏  (1) 119 

whereby the forcing term 𝐹𝑎,𝑒 = 𝑃0.5 𝛥𝛺𝑎,𝑒 𝜎𝛥𝛺⁄  accounts for the wave power (P) and the 120 

disequilibrium dimensionless fall velocity (ΔΩ), which in turn dictates the potential direction 121 

either offshore (ΔΩe, when 𝛥𝛺 < 0) or onshore (ΔΩa, for 𝛥𝛺 > 0) of cross-shore sediment 122 

transport. Within this forcing term the disequilibrium component 𝛥𝛺 =  (𝛺𝑒𝑞  −  𝛺) and its 123 

associated standard deviation 𝜎𝛥𝛺 are computed from the dimensionless fall velocity 𝛺 at the 124 

break point (i.e., the seaward edge of the surf zone)  and a time-varying equilibrium expression 125 

(after Wright et al., 1985) given by:  126 

𝛺𝑒𝑞 = [∑ 10−𝑖/𝜙2𝜙
𝑖=1 ]

−1
∑ 𝛺𝑖10−𝑖/𝜙2𝜙

𝑖=1      (2) 127 

Note that the additional term b in (1) simply accounts for any unresolved processes. Importantly, 128 

the model in Equation 1 includes three wave-driven cross-shore sediment transport-related 129 

parameters 𝑐𝑎, 𝑐𝑒 and 𝜙 that require calibration. The magnitude rate parameters 𝑐𝑎 and 𝑐𝑒 (in 130 

𝑚1.5𝑠−1𝑊−0.5) are proxies for the accretion/erosion sediment transport efficiency and the 131 

frequency rate parameter 𝜙 (in days) represents a response time. Based on extensive testing of 132 

the ShoreFor model at a diverse range of seasonal and storm-dominated sandy coastlines in 133 

Australia, Europe and the USA, SPLI14 proposed generalized parametrizations for these rate 134 
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parameters based on the mean interannual (≥ ~5 years) �̅�, consistent with well-established 135 

relationships (e.g., Wright and Short, 1984) between modal beach states and cross-shore 136 

processes. Conceptually, mild-slope beaches experience slower rates of shoreline changes (i.e. 137 

𝜙 > 100 days) and decreased sediment exchange efficiency (lower 𝑐𝑎 and 𝑐𝑒 values) between 138 

the surf zone and beach face. Conversely, the breaker line tends to be closer to the beach face at 139 

steeper beaches, enhancing efficient (larger 𝑐𝑎 and 𝑐𝑒 magnitudes) and rapid (i.e. 𝜙 < 100 days) 140 

sediment exchange. Within this framework, Davidson et al., (2013) found that 𝜙 ≅ 100 days 141 

usefully defines the approximate transition between storm-dominated and more seasonal 142 

shoreline response. To calibrate the ShoreFor model for a specific time period, SPLI14 assumes 143 

𝑐𝑒 is proportional to 𝑐𝑎 and determines the remaining parameters via least-squares optimization 144 

for pre-computed timeseries of 𝛺𝑒𝑞(𝜙)  in the range of 𝜙 = 5 to 1000 days. In the present work, 145 

parameters are allowed to independently vary in time within the EnKF recursion (Section 2.3). 146 

The reader is referred to Davidson et al., (2013) and SPLI14 for a complete description of the 147 

model.  148 

2.2 Synthetic scenarios with the ShoreFor model 149 

Ten shoreline timeseries each spanning 20-years at 3-hourly sampling intervals were generated 150 

using ShoreFor (Equation 1), forced by a set of synthetic wave records (See Figure S1, 151 

Supporting Information) based on observations from three different sites characterizing  seasonal 152 

(e.g., Pacific North West - USA, Ruggiero et al., 2016), storm (e.g., Sydney - Australia, Short & 153 

Trenaman, 1992) and mixed seasonal-storm wave climates (e.g., Gold Coast - Australia). It is 154 

anticipated (see Figure S2b, Supporting Information) that model parameter variability may be 155 

modulated at both multi-year (O(5-10 years)) and longer inter-decadal timescales, responding to 156 

climate patterns (e.g. ENSO) as well as longer-term trends in wave climate (e.g., Young & Ribal, 157 

2019). As is summarized in Figure 2a, four shape functions were developed to represent differing 158 

modes of parameter variability and longer-term trends: simple time-invariant (Shape 1), a linear 159 

negative trend (Shape 2), a sinusoidal function with a representative period of 10 years (Shape 3) 160 

and a step-wise function (Shape 4). To generate the 10 synthetic scenarios, these four parameter 161 

shapes and three different wave climates were then combined with increasing degrees of 162 

complexity. A full description of this process is detailed in the accompanying Supporting 163 

Information. As the focus here is on the non-stationarity of cross-shore wave-driven parameters, 164 
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for all ten scenarios the b term (see Equation 1) is omitted from the model. Figures S3–S5 in the 165 

accompanying Supporting Information present the synthetic shoreline and parameter timeseries 166 

for all 10 scenarios. 167 

The resulting shoreline timeseries are then subsampled at time intervals (dt) of 1, 7, 15 and 30 168 

days, representative of a range of typical sampling frequencies used for ongoing shoreline 169 

monitoring programs worldwide (e.g., Holman & Stanley, 2007; Turner et al., 2016) and random 170 

noise added (~𝑁(0, 𝑅2), R=1:1:12 m) to characterize the accuracy of various shoreline 171 

measurement methods that are typically used (see Harley et al., 2011).  The final result is a total 172 

of 480 individual test cases with known parameter non-stationarity.   173 

2.3 Dual State-Parameter Ensemble Kalman Filter 174 

To explore  parameter non-stationarity within the context of an established shoreline model, the 175 

Dual State-Parameter EnKF algorithm proposed by Pathiraja et al., (2016b, 2016a) was 176 

implemented. While it is possible to define a parameter evolution model within the EnKF, this 177 

requires some a priori knowledge about the parameter non-stationarity (Pathiraja et al., 2016b). 178 

Here it is assumed no information about temporal parameter variability is available so instead a 179 

random-walk approach is applied. 180 

 181 

The full details of the methodology are summarized in Figure S6 of the accompanying 182 

Supporting Information. Briefly, for each EnKF experiment (i.e. model run) the method 183 

initializes system states (i.e., shorelines) and model parameters as random variables created from 184 

n ensemble members of known mean and error characteristics at t=0, and propagates these in 185 

time as a Monte Carlo application of the well-known Kalman Filter (Evensen, 2010). At each 3-186 

hourly time-step, the shoreline model first uses inflated (i.e. process noise included) background 187 

parameter ensembles modeled as a random-walk to estimate shorelines at the next time-step. 188 

This continues until a new shoreline observation is available, which in turn is dependent on the 189 

particular sampling frequency (dt). At this point, parameter ensembles are updated based on the 190 

shoreline observation ensembles (i.e. mean with error statistics mirroring the measurement 191 

accuracy, R in Section 2.2). These updated parameters are then used to provide new shoreline 192 

estimates, which are then state-updated using the same observations of the parameter update 193 

step. Importantly, Pathiraja et al., (2016b) found that the magnitude of parameter ensemble 194 
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inflation (process noise) added at each time step was critical to successfully track parameter 195 

changes, otherwise updated estimates with lower variance than the previous time-step resulted in 196 

nearly time-invariant parametrizations (e.g., Long & Plant, 2012; Vitousek et al., 2017). In the 197 

present work, the approach of Xiong et al., (2019) was implemented, in which the magnitude of 198 

process noise was sufficiently high to track time-varying parametrizations. Further details are 199 

provided in the Supporting Information (S3).   200 

 201 

Initial parameter ensembles are generated from truncated normal distributions to ensure that 202 

parameters fall within their feasible range (Splinter et al., 2014). Rather than correcting for 203 

erroneous initial parameter values, the purpose is to assess the EnKF performance for tracking 204 

the potential non-stationarity of some or all model parameters. Therefore, the optimum initial 205 

conditions with standard deviation spanning the range of values previously determined by 206 

SPLI14 were implemented. The exceptions to this approach were for Scenarios 1 and 2, since 207 

these cases are fully time-invariant, so instead random initial conditions sampled from a uniform 208 

distribution were adopted. An analysis (see Supporting Information S4) for Scenario 10 using 209 

different ensemble sizes (n=10, 25, 50, 100, 250 and 500) and number of experiments (NE =1, 210 

10, 25 and 50) showed that single experiments (i.e. NE=1) provide good EnKF skill at 211 

sufficiently large ensemble-sizes (n = 500), necessary to minimize covariance inflation by under-212 

sampling (e.g. Keller et al., 2018). For the purposes of this work we adopt NE=1 and n=500. 213 

Thus, a total of 480 individual experiments were used to explore the EnKF performance to 214 

varying wave climate, shoreline measurement frequency and accuracy, and degrees of parameter 215 

variability. 216 
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 217 

Figure 2. Ten synthetic shoreline scenarios generated with ShoreFor and sampled at a range 218 

of frequencies, incorporating increasingly complex combinations of parameter variability and 219 

a range of synthetic wave climates. (a) The four shape functions are: time-invariant (Shape 220 

1), a linear negative trend (Shape 2), a sinusoidal function with a representative period of 10 221 

years (Shape 3) and a step-wise function (Shape 4). As is tabulated, these are then applied in 222 

an increasingly complex combination of time-varying model parameters and either a 223 

seasonal, storm-driven or mixed seasonal-storm wave climate. For scenarios 7, 8 and 10, 𝑐𝑎 224 

is modulated by both sinusoidal and linear negative trend shapes. (b) EnKF skill expressed as 225 

the percentage of time within acceptable limits (PTWL), when applied at different sampling 226 

frequencies dt = 1, 7, 15 & 30 days.  These results are summarised for the three ShoreFor 227 

wave-driven parameters 𝑐𝑎, 𝑐𝑒 , 𝜙 (top to bottom) as a function of shoreline measurement 228 

accuracy R (horizontal axes). Note that higher PTWL values indicate superior algorithm 229 

performance. Triangles (circles) correspond to cases generated by the seasonal (storm) 230 
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dominated wave climate scenarios 1 - 8. Diamonds correspond to the mixed seasonal-storm 231 

wave climates in scenarios 9 and 10. 232 

3 Results 233 

3.1 Synthetic Cases 234 

The performance of the EnKF is summarized in Figure 2b for the three wave-dependent 235 

parameters 𝑐𝑎, 𝑐𝑒 , 𝜙 (from top to bottom), different shoreline time-sampling dt = 1, 7, 15 and 236 

30 days (from left to right) and shoreline measurement accuracy R = 1:1:12 m (horizontal axes). 237 

The percentage of time the ensemble mean is within acceptable limits (denoted PTWL, after 238 

Pathiraja et al., 2016b)  is used as the performance metric, such that PTWL values closer to 239 

100% indicate higher skill. Acceptable limits are defined for time t as 𝜃𝑡
∗ + 𝜌𝑑𝑝, where 𝜃𝑡

∗ is the 240 

true synthetic parameter magnitude, 𝑑𝑝 is the feasible range of parameters magnitude (SPLI14) 241 

and 𝜌 is the 10% fraction. Following the same approach as Pathiraja et al. (2016b), a benchmark 242 

of PTWL ≥ 70% is selected here to define cases where the EnKF methodology could be 243 

reasonably anticipated to succeed when applied to real-world datasets. Accordingly, 89% of the 244 

cases fulfil this condition. In general, results indicate that the EnKF performance is highly 245 

dependent on the quality of the observational data, whereby more frequently sampled and less-246 

noisy measured shorelines result in higher PTWL for the majority of scenarios. 247 

 248 

To explore this general conclusion in further detail, representative results for the highest quality 249 

shoreline data (dt = 1 day, R = 1 m) are shown in Figure 3a-d for increasingly complex Scenarios 250 

4, 5, 9 and 10, respectively. From top to bottom, panels show the EnKF estimations (shown in 251 

black) of shoreline timeseries as well as the parameters  𝑐𝑎, 𝑐𝑒 and 𝜙, compared to their true 252 

synthetic values (red dashed lines). Time-invariant (Shape 1), negative trend (Shape 2), 253 

sinusoidal (Shape 3) and step-wise parameter functions (Shape 4) are well estimated by the 254 

EnKF for the full range of idealized seasonal, storm and mixed wave climates.  255 

 256 

Examples of parameter estimation sensitivity to varying shoreline measurement accuracy (R = 1, 257 

4, 8 and 12 m, dt = 7 days) and frequency (dt = 1, 7, 15 and 30 days, R = 4 m) are shown in 258 

Figure 3e-f for the complex Scenario 10. As anticipated, EnKF performance decreases for higher 259 

levels of R (e.g. 𝜙 , Figure 3e). With decreasing observational quality data, parameter 260 
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convergence is slower as the EnKF algorithm weights the model equations more than the 261 

observations (e.g., Long & Plant, 2012; see also S2 in Supporting Information).   262 

 263 

The effect of decreasing the frequency of shoreline observations (i.e. increasing dt) is also 264 

apparent, resulting in less accurate and time-lagged parameter estimations (e.g. 𝜙 , Figure 3f). 265 

However, Figure 2b demonstrates that results are more sensitive to observation accuracy (R) 266 

rather than observation frequency (dt), with this being most pronounced for variations in 𝜙 267 

(lower panels). The time-lag between true and estimated parameters is assessed through the 268 

convergence time of initially random sampled parameters at Scenarios 1 and 2 (fully time-269 

invariant). For all values of R and dt, 68% of the time-invariant cases (Figure 2, blue circles and 270 

triangles) converge within 2 years (i.e. PTWL > 90%). Notably, convergence and the ability to 271 

capture time variability are inversely dependent on the level of process noise. For example, 272 

adopting a lower process-noise (e.g., Long & Plant, 2012; Vitousek et al., 2017) results in 92% 273 

of the time-invariant cases converging, however, this low level of noise severely limits the EnKF 274 

performance on non-stationary parametrizations (Pathiraja et al., 2016b). It is therefore 275 

concluded that the approach presented here is well suited to identifying and interpreting model 276 

parameter non-stationarity using the established ShoreFor model at timescales down to 277 

interannual. Notably, this convergence time is similar to Long and Plant (2012) who used an 278 

Extended Kalman Filter applied to synthetic monthly-sampled shorelines of R = 0.5 m accuracy. 279 

The new and more extensive analyses presented here provides the encouraging result that, for 280 

shoreline measurement accuracy that can be more realistically obtained in the field (i.e., R up to 281 

12 m) the EnKF performs well. Results for Scenarios 9 and 10 (Figure 2b) also indicate that 𝜙 282 

estimations are in general less accurate than those for 𝑐𝑎 and 𝑐𝑒. This is because the time-varying 283 

equilibrium expression given by Equation 2 is relatively insensitive for values of 𝜙 > 100 days, 284 

resulting in the potential for parameter equifinality and lower parameter estimation quality (e.g., 285 

Figure 3f, ~year 11).  286 

 287 

The effect of differing wave climate characteristics can be also explored for varying levels of 288 

shoreline measurement accuracy. Selecting a representative sampling interval of dt = 7 days and 289 

comparing similar parameter combinations forced by the seasonally-dominated Scenario 5 290 

(Figure 3g) versus the storm-dominated Scenario 6 (Figure 3h), results indicate an overall higher 291 
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skill level for the seasonal cases, up to and including the least-accurate shoreline data considered 292 

here (R = 12 m). This observation is attributed to the more frequent and rapidly varying 293 

characteristics of an episodic storm wave climate, compared to the more slowly evolving 294 

characteristics of a seasonal wave climate. 295 

 296 

 297 
Figure 3. Representative results of the EnKF algorithm. Examples for the highest quality 298 

shoreline data (R = 1 m and dt = 1 day) are shown in (a)-(b)-(c)-(d) (from top to bottom, 299 

shorelines, 𝑐𝑎, 𝑐𝑒 and 𝜙, note that 𝑐𝑎 >   𝑐𝑒) for Scenarios 4, 5, 9 and 10, respectively. Black 300 

lines are the EnKF estimates, red dashed lines are the true synthetic values and grey bands 301 
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indicate uncertainty, represented by the standard deviation of the ensemble. Algorithm sensitivity 302 

to dt and R is shown (Scenario 10) for (e) varying R (at dt = 7 days) and (f) varying dt (at R = 4 303 

m). Depictive examples for algorithm sensitivity to wave climate characteristics are shown for 304 

Scenarios 5 and 6 which are generated from (g) seasonal and (h) storm-dominated wave climate, 305 

respectively. Note that parameter confidence bands in (e), (f), (g) and (h) were not included to 306 

better facilitate visualization. 307 

 308 

3.2 Application to a real-world shoreline dataset 309 

The EnKF technique is now applied to a dataset of measured shorelines and waves at the Gold 310 

Coast in southeast Australia spanning the 8-year period 2001-2008. This same shoreline dataset 311 

was previously described in Splinter et al., (2017; hereafter SPLI17) and is also shown in Figure 312 

1, being notable because of the observation that shoreline variability switched from a distinctly 313 

seasonally-dominated mode to an episodic storm-dominated mode mid-way through the 8-year 314 

measurement period. To obtain this dataset, 1 km alongshore-averaged shorelines were measured 315 

on a weekly basis (dt = 7 days) using ARGUS video imagery (Holman & Stanley, 2007) with a 316 

cross-shore accuracy of R ~ 5 m (Turner & Anderson, 2007). Wave buoy and shoreline 317 

observations are assimilated into the ShoreFor model equations. As this is a real-world dataset, in 318 

contrast to the synthetic cases (Section 3.1) the last term in Equation 1 is no longer fixed as b = 319 

0, to account for the possibility of secondary processes. However, it is anticipated that most of 320 

the shoreline variability can be explained by cross-shore related parameters since minimal 321 

alongshore-transport gradients have been suggested for this portion of coastline (e.g., Splinter et 322 

al., 2011). The focus of the results presented here therefore remains on the primary wave-driven 323 

cross-shore model parameters. To apply the new EnKF methodology, initial model parameter 324 

estimates were obtained via the generalized parametrizations provided in SPLI14 applied to the 325 

first 4-years of the wave record, along with an initial seed value of b = 0. To explore and 326 

compare the new non-stationary EnKF results to the SPLI14 time-invariant calibration 327 

methodology (Section 2.1), three additional ShoreFor model runs are presented: 1) a single 328 

calibration spanning the full 8-year dataset; 2) split-sample calibration of the two consecutive 329 

time-periods T1 (2001-2004) and T2 (2005-2008) as reported in SPLI17 (see Figure 1); and 3) 330 

use of the stationary model free parameters derived for T1 to forecast the shoreline variability in 331 

T2. 332 

 333 
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A summary of these results is presented in Figure 4. From top to bottom, Figure 4a shows the 334 

shoreline predictions for the four different ShoreFor model outputs, along with Figure 4b-d the 335 

corresponding values of non-stationary/stationary model free parameters 𝑐𝑎 (continuous lines), 336 

𝑐𝑒 (dashed lines) , 𝜙 and b .  As was previously observed in SPLI17, Figure 4 demonstrates that 337 

shoreline and parameter estimation is sensitive to the selected calibration period, bringing into 338 

question the validity of the assumption of stationarity. Encouragingly, comparison of the new 339 

non-stationary EnKF approach (Figure 4a, black line) that now enables the model free 340 

parameters to continuously evolve in time, can be seen to result in enhanced model skill (EnKF8-341 

year, 𝜌=0.95, NMSE=0.10, RMSE=4.89 m) when compared to the stationary calibration (Figure 342 

4a, magenta line) based on the 8-year dataset (ShoreFor8-year, 𝜌 =0.82, NMSE=0.33, RMSE=8.84 343 

m). A similar improvement in error statistics results when comparing EnKF predictions to the 344 

stationary-calibrations from individual T1/T2 periods (see Figure 4 caption for full details). 345 

 346 

SPLI17 relied on subjective visual observation to distinguish the two time periods of T1 and T2 347 

to undertake the reported split calibration. A key advantage of the new EnKF approach is that it 348 

is able to continuously vary model parameters to best fit the shoreline observations. In particular, 349 

after an initial period (2001-2003) of increasing magnitudes in 𝑐𝑎 and 𝑐𝑒, the multi-year 350 

variability of both parameters from 2004 onwards (Figure 4b, black lines) converges more 351 

closely to the magnitudes obtained in the T2 stationary calibration. Both 𝑐𝑎 and 𝑐𝑒 also show 352 

shorter-term variability (~seasonal) which remains unexplained and outside the scope of the 353 

present work. These changes suggest a relationship of this variability in 𝑐𝑎 and 𝑐𝑒 and an 354 

underlying change in the forcing wave climate that requires further investigation (See 355 

Discussion). As was previously determined for the synthetic cases (Section 3.1), 𝜙  is the most 356 

challenging parameter to estimate primarily because the model is relatively insensitive for 𝜙 >357 

100 days (see Section 2.1). In the Gold Coast real-world application presented here (Figure 4c), 358 

during the time period T1 the time-evolving 𝜙 remains large (𝜙 ≅ 1000 days) and relatively 359 

constant, corresponding to a more seasonally dominated mode of shoreline behavior. In contrast, 360 

during the following T2 period this parameter can be seen to deviate and vary substantially from 361 

this value, oscillating towards lower magnitudes (𝜙 ≅ 100 days) that are more indicative of a 362 

period of storm-dominated shoreline behavior. As was previously anticipated, the b term (Figure 363 

4d, black line) shows minimal variability over the 8-year period within the EnKF, in which a 364 
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mild negative trend starting in 2005 can be attributed to further unresolved processes driving 365 

shoreline erosion. 366 

 367 

The final model realization depicted in Figure 4 shows the effect of transferring stationary model 368 

free parameters calibrated from the initial time period T1 into the following T2, analogous to the 369 

forecasting of future shoreline behavior (e.g., Davidson et al., 2013). Unlike the EnKF 370 

continuous parameter adjustment, the time-invariant approach indicates that the T2 shoreline 371 

forecast (Figure 4a, red dotted line) continues to track the general multi-year variability observed 372 

during T1, but underestimates shorter-term erosive periods that are encountered during T2 (e.g. 373 

2008). As anticipated, this result highlights the inherent weakness in the assumption of parameter 374 

stationarity when semi-empirical shoreline models are applied to out-of-calibration shoreline 375 

prediction. 376 
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 377 

 378 

Figure 4. EnKF application to a real observational shoreline dataset at the Gold Coast, Australia, 379 

and compared to 3 different time-invariant SPLI14 ShoreFor runs: 1) overall 8-year period 380 

(magenta lines); 2) split-sample calibration (after SPLI17) of  two consecutive time-periods T1 381 

(2001-2004, red lines) and T2 (2005-2008, blue lines); and 3) T2 model forecast obtained from 382 

T1 model calibration (red dotted lines in panel a). From top to bottom a) Shoreline observations 383 

(pink dots), shoreline EnKF estimates (black line), T1 model hindcast (red continuous line), T2 384 

model hindcast (blue line), complete 8-year hindcast period (magenta line) and T2 forecast 385 
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obtained from T1 model calibration (red dotted line). b) 𝑐𝑎  (continuous lines) and 𝑐𝑒 (dashed 386 

lines) with line colours as described for panel (a). Note that horizontal lines represent time-387 

invariant approaches. Similarly, panels (c) and (d) show the frequency rate parameter (𝜙) and the 388 

b term estimated with the EnKF and from time-invariant  approaches. Grey bands indicate  389 

uncertainty, represented by the standard deviation of the ensemble. (e) Running mean (4-year) 390 

dimensionless fall velocity at the wave breaking position. The EnKF predictions result in the 391 

following improved error statistics: 392 

EnKF8yr: 𝜌=0.95 NMSE=0.10 RMSE=4.89 m ShoreFor8yr: 𝜌 =0.82 NMSE=0.33 RMSE=8.8 m 393 

EnKFT1∶ 𝜌=0.86 NMSE=0.26 RMSE=4.91m ShoreForT1: 𝜌=0.74 NMSE=0.45 RMSE=6.44 m 394 

EnKFT2: 𝜌=0.95 NMSE=0.09 RMSE=4.88 m ShoreForT2: 𝜌=0.86 NMSE=0.26 RMSE=8.15 m 395 

4 Discussion and Conclusions 396 

Analysis of 480 test cases, comprising ten synthetic shoreline timeseries derived from an 397 

increasingly complex mix of four distinct parameter functions, three wave climate characteristics 398 

and differing levels of observation accuracy and time-sampling (Section 2.2), confirms that the 399 

EnKF technique is suitable for tracking non-stationary parametrizations (PTWL ≥ 70%) to 400 

predict the cross-shore movement of shorelines at multi-year timescales (Section 3.1). 401 

Exceptions to this general conclusion include cases where the observation shoreline data is either 402 

too noisy (R > ~6 m) or measured too infrequently (dt > ~15 days), with measurement accuracy 403 

and frequency become decreasingly important for beaches exposed to more seasonal compared 404 

to storm-dominated wave climates. The overall improvement in the ability to predict shoreline 405 

behavior using the EnKF is illustrated by the real-world application at the Gold Coast presented 406 

in Figure 4, where the use of time-varying parameters and their uncertainty result in higher 407 

accuracy shoreline predictions spanning the total 8-year observation period. A salient 408 

characteristic of the EnKF is that ensemble inflation by sufficiently high magnitudes of process 409 

noise (Section 2.3) allows for non-stationary parameter estimation. While previous Kalman Filter 410 

applications to shoreline modelling (Long & Plant, 2012; Vitousek et al., 2017) have relied on 411 

the assumption of low process noise to achieve time-invariant parameter convergence and 412 

uncertainty reduction, the new advancement here is that the EnKF approach continuously 413 

explores potential parameter changes as new observations become available (e.g. Gove & 414 

Hollinger, 2006). The adopted EnKF process noise also performs well over time-invariant cases 415 

(e.g. Fig 3a-c, c
e
), confirming that any observed non-stationarity (e.g. Fig 4) reflects the 416 

continuous model adjustment to differing time-periods. 417 

 418 
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It is of interest to now briefly explore this parameter adjustment to the underlying morphological 419 

processes that may be occurring at a coastal site. For example, the Gold Coast application in 420 

Section 3.2 reveals time periods commencing in mid-2004 when the magnitude of 𝜙 shifted from 421 

essentially constant to an overall decrease in magnitude and increase in variability (Figure 4c), 422 

corresponding to the previously identified switch in the wave climate and resulting shoreline 423 

behavior from seasonal to storm-dominated (SPLI17). In addition, the EnKF captures  a 424 

multiyear variability in 𝑐𝑎 and 𝑐𝑒 that roughly follows the magnitude changes between T1/T2 425 

periods of stationary calibration, with an  initial  increasing trend (2001-2003), and then roughly 426 

constant with some seasonal variability (2004-onwards). The previous stationary approach 427 

detailed in SPLI14 dictates that different magnitudes of the accretionary rate term 𝑐𝑎  are linked 428 

to modal beach states, represented as a function of the mean dimensionless fall velocity (�̅�) at a 429 

site (Section 2.1), and then assumes that the erosive rate term 𝑐𝑒 is simply proportional to 𝑐𝑎. 430 

According to SPLI14 parametrizations, magnitude increases in 𝑐𝑎 would necessarily implicate 431 

negative trends in the multi-year �̅�. This multiyear relationship between 𝑐𝑎 and �̅�, as well as the 432 

assumed proportionality of 𝑐𝑎 and 𝑐𝑒 appears to be captured by the EnKF during the initial 433 

2001-2003 period. However, in the latter half of the data (2005-2008) these two terms appear to 434 

oscillate on a seasonal frequency but in opposite directions (e.g. 2006, Figure 4b), suggesting 435 

that these short-lived parameter fluctuations appear as a consequence of unresolved processes in 436 

the model. While this requires further fundamental physical-process investigation, it is of interest 437 

to recall that 𝑐𝑎 and 𝑐𝑒 in the ShoreFor model encapsulate cross-shore sediment transport 438 

efficiency (Section 2.1), so this temporal variability may be linked to unresolved processes 439 

associated with nearshore morphology. For example, Ruessink et al., (2009) used video images 440 

to observe the decay of an outer bar at this same site in early 2006. The resulting loss of a 441 

‘protective’ outer bar and the formation of a new bar close to the shoreline matches with 442 

increased/reduced efficiency in erosive (𝑐𝑒) and accretive (𝑐𝑎) processes, respectively that have 443 

been captured here by the EnKF. 444 

 445 

Synthetic and real-world results presented here emphasize the need for shoreline model 446 

structures that can adjust to potential changes in the underlying physical forcing. Results suggest 447 

that the EnKF method is able to capture this variability when applied over long-term datasets 448 

subjected to natural variability at interannual scales and beyond, and for which waves are the 449 
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driver of the observed and/or anticipated shorelines changes. The inclusion of time-varying 450 

parametrizations (and their uncertainty) offers the opportunity to ensure consistency between 451 

modelled coastal evolution drivers and the underlying physical processes (Toimil et al., 2020), 452 

and now warrants the EnKF application as a method to explore parameter changes and 453 

investigate strategies to improve shoreline models in view of climate variability. This is 454 

motivated by the advent of newly available  global-scale shoreline detection methods using 455 

satellite remote sensing (e.g., Kelly & Gontz, 2019; Vos et al., 2019) and the increasing public 456 

availabiltiy of high resolution long-term shoreline datasets (e.g., Ludka et al., 2019; Turner et al., 457 

2016). It is anticipated that the approach presented here will be useful for exploring cross-shore 458 

parameter variability as a first step for training model parameters and empirically relating their 459 

variability to natural changes in forcing (e.g. Splinter et al., 2014) to ensure model transferability 460 

during forecast periods.   461 

 462 

Shoreline models will benefit from a clearer understanding and inclusion of cross-shore model 463 

parametrizations, ensemble-based wave forcing (e.g. Davidson et al., 2017) and also from the 464 

inclusion of additional processes such as alongshore sediment transport and sea level rise (e.g., 465 

Robinet et al., 2018; Vitousek et al., 2017). The approach presented here offers the potential to 466 

provide a robust structure to account for uncertainty across all constituents of the shoreline 467 

modeling framework (Toimil et al., 2020) and to predict future shoreline change and trends in 468 

the face of inter-decadal shifting waves (Morim et al., 2019) and intensified climate 469 

teleconnections patterns (Barnard et al., 2015; Mentaschi et al., 2017), with the the end-goal of 470 

achieving realiable multi-decadal shoreline projections.  471 
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