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Abstract

We apply unsupervised machine learning to three years of continuous seismic data to unravel the evolution of seismic wavefield

properties in the period of the 2009 L’Aquila earthquake. To obtain sensible representations of wavefield properties variations,

wavefield features, i.e. entropy, coherency, eigenvalue variance, and first eigenvalue, are extracted from the covariance matrix

analysis of continuous array seismic data. The defined wavefield features are insensitive to site-dependent local noise, and

can inform the spatiotemporal properties of seismic waves generated by sources inside the array. We perform a sensitivity

analysis of these wavefield features and build unsupervised learning based on the uncorrelated features to track the evolution

of source properties. By clustering the wavefield features, our unsupervised analysis avoids explicit physical modeling (e.g.

location of events, magnitude estimation) and can naturally separate peculiar patterns solely from continuous seismic data.

The unsupervised learning of wavefield features reveals distinct clusters well correlated with different periods of the seismic

cycle.
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Abstract12

We apply unsupervised machine learning to three years of continuous seismic data to un-13

ravel the evolution of seismic wavefield properties in the period of the 2009 L’Aquila earth-14

quake. To obtain sensible representations of wavefield properties variations, wavefield15

features, i.e. entropy, coherency, eigenvalue variance, and first eigenvalue, are extracted16

from the covariance matrix analysis of continuous array seismic data. The defined wave-17

field features are insensitive to site-dependent local noise, and can inform the spatiotem-18

poral properties of seismic waves generated by sources inside the array. We perform a19

sensitivity analysis of these wavefield features and build unsupervised learning based on20

the uncorrelated features to track the evolution of source properties. By clustering the21

wavefield features, our unsupervised analysis avoids explicit physical modeling (e.g. lo-22

cation of events, magnitude estimation) and can naturally separate peculiar patterns solely23

from continuous seismic data. The unsupervised learning of wavefield features reveals24

distinct clusters well correlated with different periods of the seismic cycle.25

1 Introduction26

Seismological observations are a primary source of information about fault physics27

and its evolution in time and space (Gutenberg & Richter, 1956; Scholz, 2002; Aki & Richards,28

2002). Seismic catalogs are nowadays the main way of labeling seismic data, by associ-29

ation of waveforms with earthquakes occurring in a given position and at a certain time30

(Gutenberg & Richter, 1956; Scholz, 2002; Aki & Richards, 2002). While earthquakes31

catalogs are among the main source of information to study faults, the continuous stream32

of seismic data is likely to hide important additional information about fault physics, which33

cannot be easily summarized into discrete observables. For example, the slow earthquakes34

and tremors show very different wavefield properties compared to that of regular earth-35

quakes, requiring alternative approaches to derive information about their physics (Ide36

et al., 2007; Beroza & Ide, 2011). Therefore, it is worthwhile to explore the potential to37

assess physical properties of faults from direct analysis of continuous seismic wavefields.38

The latter idea has been recently explored in laboratory-scale fracture experiments.39

Indeed, recent studies based on laboratory observations, show that continuous acoustic40

emission (AE) contain essential information about the physical state of the rock (Rouet-41

Leduc et al., 2017; Bolton et al., 2019; Hulbert et al., 2019). In these studies, statisti-42

cal features of the continuous AE signals (e.g. amplitudes, variance etc.), are used for43

supervised or unsupervised machine learning (ML) and classification, to characterize the44

wavefield variations and study the evolution of the (laboratory) seismic cycle (Bolton45

et al., 2019), including the estimation of failure time (Rouet-Leduc et al., 2017).46

In addition to the laboratory studies, unsupervised machine learning has been ap-47

plied to real continuous seismic data in volcanic settings to classify volcanic tremors and48

monitor volcanic activities (Langer et al., 2009; Esposito et al., 2008; Köhler et al., 2010;49

Langer et al., 2011; Carniel et al., 2013; Unglert et al., 2016). Unsupervised machine learn-50

ing can distinguish seismic wavefield of distinct characteristics (e.g. spectral content) gen-51

erated by different volcanic activities, such as pre-, co- and post-eruption, thus permits52

the recognition of different types of volcanic activities directly from continuous seismic53

data.54

In summary, both laboratory experiments (Rouet-Leduc et al., 2017; Bolton et al.,55

2019; Hulbert et al., 2019; Shreedharan et al., 2020) and real volcanic seismic data anal-56

ysis (Esposito et al., 2008; Köhler et al., 2010; Langer et al., 2011; Carniel et al., 2013;57

Unglert et al., 2016) show promising potential to utilize real continuous seismic wave-58

field and ML algorithms to understand physical processes occurring inside the Earth. How-59

ever, to our knowledge, no studies have been performed so far on classification of real60

seismological data to deduce the physical state of real faults in times around major earth-61

quakes.62
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We here present an unsupervised class-membership identification (clustering) of en-63

semble wavefield features, which capture the nature of the seismic wavefield as seen by64

an array of stations. The choice of array features is aimed at reducing the sensitivity of65

single-station statistical features to noise intensity (e.g. daily/weekly variation of human66

activity and variation of meteorological conditions, Cara et al., 2003; Poli et al., 2020)67

and enhancing the identification of spatio-temporal properties of (possibly mixed) seis-68

mic sources (Seydoux, Shapiro, De Rosny, Brenguier, & Landès, 2016; Soubestre et al.,69

2019). We can thus recognize patterns within seismic signals and track their temporal70

evolution, which can be related to particular fault states occurring at different stages of71

the seismic cycle (e.g. earthquake nucleation, afterslip etc.). Differently from laboratory72

experiments (Rouet-Leduc et al., 2017; Hulbert et al., 2019; Shreedharan et al., 2020),73

we have no independent information about the fault state (e.g. stress, friction). That74

is why we use unsupervised analysis and self-learn from the continuous data.75

To test our approach, we used three years of vertical-component seismic data recorded76

in the region of L’Aquila, Italy (Figure 1). We use this region as a test case, as it host-77

ing a magnitude 6 earthquake (6 of April, 2009, Chiarabba et al., 2009; Di Luccio et al.,78

2010) preceded by a long-lasting preparatory phase (Sugan et al., 2014; Vuan et al., 2018).79

Previous studies also reported that the fault properties may have changed dramatically80

in the preparatory phase of the main event due to fluid movement (Di Luccio et al., 2010;81

Chiarabba et al., 2020), velocity change (Baccheschi et al., 2020), and variation of elas-82

tic and anisotropic parameters (Lucente et al., 2010). In addition, this region is well in-83

strumented with permanent seismic stations (Figure 1a), allowing an array-based anal-84

ysis. The complex faulting processes and high quality continuous seismic data make the85

L’Aquila earthquake a perfect test case to investigate the feasibility of tracking fault states86

directly from continuous seismic wavefield.87

We explore spatial wavefield features of long time windows (60 days) and their tem-88

poral evolution with respect to the main earthquake in the area using cluster analysis.89

We highlight different patterns in the wavefield and relate them to the physical processes90

of the fault (e.g. the preparation, afterslip etc.). Our results show the feasibility of us-91

ing array-based wavefield properties to directly assess the fault state and characterize92

different stages of the seismic cycle.93

2 Data and Processing94

We focus on a time period of about 3 years (2008-2010, included) around the Mw95

6.1 L’Aquila earthquake (6 April 2009, Chiarabba et al., 2009; Di Luccio et al., 2010).96

This event has been chosen because it presented a prominent and long-lasting prepara-97

tion period, starting 3-4 months before the mainshock, and including several dozens of98

foreshocks and possible significant changes in the fault rock properties (Di Luccio et al.,99

2010; Lucente et al., 2010; Di Stefano et al., 2011; Herrmann et al., 2011; Sugan et al.,100

2014; Vuan et al., 2018; Chiarabba et al., 2020).101

The three years of continuous vertical-component seismic data (from 2007-11-03102

to 2010-08-23) recorded by the six nearest stations (Figure 1a) were downloaded at a 50103

Hz sampling rate from the Istituto Nazionale Geofisica e Vulcanologia (INGV) data cen-104

ter (INGV Seismological Data Centre, 2006). Data have been transformed into veloc-105

ity using the instrument response and processed to remove gaps and glitches. Spectral106

analysis of the continuous data shows the dominant frequency range of the local earth-107

quakes is around 0.5-18 Hz (Figure 1b), while below 0.5 Hz, micro-seismic noise dom-108

inates. We thus focus on the frequency range of 0.5-18 Hz.109
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Figure 1. (a) Location of the 2009 L’Aquila earthquake and the nearby permanent seismic

array. Yellow star indicates the epicenter of the mainshock. Blue triangles represent the seis-

mic stations. Green square denotes the GPS (Global Positioning System) station. Black dots

show the locations of earthquakes including the foreshocks and aftershocks of the 2009 L’Aquila

earthquake from 2008-2010 in this region (seismic catalog from INGV). Red rectangular in the

bottom-right inserted regional map highlights the current study area. (b) Hour-long example

of vertical ground velocity and corresponding spectrogram recorded at the station FAGN. The

records start at 2009-04-05 10:00:00 (UTC).

3 Decomposition of the Wavefield and Features Extraction110

3.1 Covariance Matrix Analysis of Continuous Seismic Data111

We define a set of features relevant for characterizing the propagation of seismic112

waves beneath the seismic array, over a large frequency range (0.5-18 Hz). Following Seydoux,113

Shapiro, De Rosny, Brenguier, and Landès (2016), we extract these features from the fac-114

torization of the covariance matrix of continuous array seismic data. Such analysis were115

successfully used for detecting and classifying seismovolcanic tremors (Soubestre et al.,116

2018), teleseismic earthquakes (Seydoux, Shapiro, De Rosny, Brenguier, & Landès, 2016),117

and for analyzing ambient noise wavefield (Seydoux, Shapiro, De Rosny, & Landès, 2016).118

The covariance matrix is built from the time average of the Fourier cross-spectra119

matrices calculated over a set of half-overlapping sub-windows (Seydoux, Shapiro, De Rosny,120

Brenguier, & Landès, 2016, and Figure 2a). Two types of time window are involved in121

the calculation of covariance matrix. A short one (sub-window, W1) where the Fourier122

cross-spectra matrix is calculated, and a longer one (averaging-window, W2) used to av-123

erage the cross-spectra matrices, defining the covariance matrix of a particular time scale124

(Figure 2a). We here use a backward-looking approach to time stamp the results: the125

end time of each averaging time window (W2) is assigned as the time stamp associated126

with the covariance matrix of the time window, hence the obtained results are causal.127

The size of W1 depends on the size of seismic array and the frequency range of inter-128

est (Seydoux, Shapiro, De Rosny, Brenguier, & Landès, 2016). In this study, we use a129

W1 of 80 seconds to ensure the slowest waves to fully travel the aperture of the seismic130

array.131

The size of W2 is crucial to define the time resolution of our analysis. We here aim132

at classifying long-lasting patterns in the seismic signals, and thus we average the co-133
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variance matrix over 60 days and shift W2 by one day. Because we want to analyze seis-134

mic sources seen by the ensemble of seismic stations, we apply spectral whitening to the135

daily seismograms before computing the covariance matrix (Seydoux, Shapiro, De Rosny,136

Brenguier, & Landès, 2016; Seydoux, Shapiro, De Rosny, & Landès, 2016). In this way,137

the spectral energy is not taken into account and the analysis mostly relies on the phase138

coherence between the seismic stations, thus cancelling non-propagative signals (e.g. lo-139

cal noise, traffic, wind).140

3.2 Wavefield Features141

From the eigendecomposition of the covariance matrix, the eigenvalues λ(f, t) and142

corresponding eigenvectors v(f, t) are obtained for each frequency f and time t (Figure143

2a). Note that the covariance matrix is inherently Hermitian and positive semi-definite;144

the matrix is therefore always diagonalizable and the eigenvalues are positive and real.145

From the eigenvalues, we define four features: (1) the Shannon entropy, (2) the coherency,146

(3) the eigenvalue variance, and (4) the first eigenvalue.147

1. The Shannon entropy, initially developed in the frame of information theory (Shannon,148

1948) and applied to the case of discrete operators by Von Neumann (1986), provides149

a measurement of the quantity of information present in a multivariate dataset. If we150

consider the normalized covariance matrix eigenvalues pi(f, t) = λi(f, t)/
∑N

i=1 λi(f, t)151

such as
∑N

i=1 pi(f, t) = 1 (where N is the total number of stations in the array and pi152

represents the normalized i-th eigenvalue of the covariance matrix at a given time and153

frequency), we can consider each normalized eigenvalue (pi) to represent the probabil-154

ity of each source (identified by each corresponding eigenvector) to be observed in the155

studied time period. The Shannon entropy is then defined as:156

σe(f, t) = −
N∑
i=1

pi(f, t)ln (pi(f, t)) . (1)157

Following Shannon (1948), the higher the entropy, the more chaotic the wavefield and158

the lower the wavefield spatial coherence. A coherent wavefield generated by only one159

source or many co-located sources in the analyzed time window is likely to be spanned160

by a single dominating eigenvalue (Figure 2b). Therefore, low values of the entropy will161

be observed when the wavefield is dominated by the coherent sources localized in space.162

2. The coherency function, commonly used in exploration geophysics (Gersztenkorn163

& Marfurt, 1999), is defined as the ratio between dominating wavefield component (first164

eigenvalue) and the full wavefield (sum of all eigenvalues), and reports the wavefield co-165

herence:166

σc(f, t) =
λ1(f, t)∑N
i=1 λi(f, t)

. (2)167

3. To estimate the flatness of covariance matrix eigenvalues distribution, we define168

the eigenvalue variance as:169

σv(f, t) =

∑N
i=1 (λi(f, t) − µ)

2

N
, (3)170

where µ =
∑N

i=1 λi(f, t)/N is the mean eigenvalue at a given time and frequency. The171

eigenvalue variance is related to both wavefield coherence and source energy (Figures 2b-172

2d). For example, for one dominating source in the studied time window (W2), the cor-173

responding eigenvalue variance will be large and the wavefield is coherent as well.174

4. Finally, we use the first eigenvalue:175

σf (f, t) = λ1(f, t). (4)176
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Theoretically this value defines the coherence of a single source over the time window177

W2. As it is resulting from phase multiplication, this value can be affected by noise, for178

example biasing the estimation of the phase correlation. There is thus an imprint of the179

frequency dependent signal-to-noise level in this measure. For example, stronger source180

and/or a large number of co-located coherent sources in the studied time window (W2)181

will result in larger phase correlations (because of higher signal-to-noise ratio after av-182

eraging) and thus lead to a larger eigenvalue. Therefore, the first eigenvalue provides a183

measurement of the strength of the dominating source in the wavefield.184

These four features are obtained at each time step (1 day) and frequency (from 0.5185

to 18 Hz). We thus have a time-frequency representation of the wavefield (Figure 2a),186

which can be used to track its evolution. As mentioned above, the features contain in-187

sights about the wavefield spatio-temporal properties, and thus provide insights on the188

seismic signals generated inside the array. Since the wavefield features are calculated us-189

ing a long window (60 days), many seismic sources can exist in the same time window190

of analysis. Among the different potential scenarios, we can distinguish the following ex-191

treme cases.192

If many seismic sources occur in a small region with respect to the wavelength and193

the array aperture (e.g. an earthquake swarm or co-located sources), the average covari-194

ance matrix will exhibit a dominant eigenvalue while the other eigenvalues will be small195

(scenario illustrated in Figure 2b), giving small values for the entropy and high values196

for the coherency, eigenvalue variance and first eigenvalue.197

If many independent seismic sources are acting in the same time window (W2) and198

scattered in a vast area with respect to the array aperture, the eigenvalue distribution199

will follow a steadily decaying distribution (scenario illustrated in Figure 2c) specific to200

the array geometry, the structure of the underlying medium and the duration of the av-201

eraging window W2 (Seydoux, Shapiro, De Rosny, Brenguier, & Landès, 2016). In this202

situation, the entropy and first eigenvalue will be high and the coherency and eigenvalue203

variance will be small, indicating an incoherent ensemble wavefield with many incoher-204

ent seismic sources in the analyzed time scale (W2).205

Finally, if the records only contain electronic noise or spatially distributed incoher-206

ent perturbations (e.g. rain, wind, road traffic etc.), the covariance matrix eigenvalues207

will be approximately equal and small (scenario illustrated in Figure 2d) depending on208

the estimation parameters (Menon et al., 2014). In this situation, the entropy will be209

high and the coherency, eigenvalue variance and first eigenvalue will be small, indicat-210

ing an incoherent ensemble wavefield with no sources in the analyzed time scale (W2).211

In summary, the defined wavefield features permit to discern the behavior of the212

wavefield over different frequencies and as a function of time. We use these features to213

track the evolution of the wavefield during the seismic cycle (short term in this case, 3214

years), and to assess if seismic signals contain information about the evolution of the fault215

state.216

4 Feature Analysis and Clustering217

4.1 Feature Relationship and Sensitivity Analysis218

The extracted wavefield features over the full dataset are shown in Figure 3 as a219

function of time and frequency over the 3 years centered on the L’Aquila earthquake.220

In particular, the coherency and entropy features (Figures 3a and 3b) are increasing and221

dropping respectively before the mainshock, suggesting the activation of localized sources222

in the 3 months before the mainshock at 1-10 Hz. After the strike of the mainshock, dur-223

ing the aftershock sequence, the frequency content of the coherent wavefield moves to224

a lower frequency range (below 5 Hz). The eigenvalue variance and first eigenvalue fea-225
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Figure 2. (a) Workflow of wavefield features extraction and analysis, which includes: 1. seis-

mic data processing (e.g. filtering etc.) and time window determination, 2. covariance matrix

calculation, 3. eigendecomposition of covariance matrix, and 4. wavefield feature extraction.

Right panel shows three representative scenarios of source distribution and the corresponding

eigenvalue distribution of covariance matrix in the time window of analysis, which are (b) many

co-located seismic sources, (c) many independent (spatially scattered) seismic sources, and (d)

electronic or local non-seismic sources. Blue triangles indicate seismic stations and red stars

indicate seismic sources.
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Figure 3. The extracted wavefield features using an averaging window of 60 days. For each

sub-figure, the top panel shows the feature with respect to time and frequency (frequency axis in

log scale, ranges from 0.5 to 18 Hz), and the bottom panel shows the features averaged in three

different frequency bands. The horizontal axis shows time (ranges from 2008-01-01 to 2010-08-

23). The red dashed line and star highlight the origin time of the 2009 L’Aquila earthquake. (a)

Coherency; (b) Entropy; (c) Eigenvalue variance; (d) First eigenvalue.

tures (Figures 3c and 3d) indicate that the fault is most active during the aftershock pe-226

riods. In addition, the eigenvalue variance tends to increase as the mainshock is approach-227

ing, especially in the frequency range of 1-10 Hz, suggesting an activation of relatively228

strong sources in the area (Figure 3c). The overall time-frequency evolution of the wave-229

field features in the studied region visually suggests that different physical processes are230

acting during the pre- and post-seismic stages.231

To quantitatively asses if features can isolate different stages of the seismic cycle232

(e.g. pre- and post-seismic) we apply an unsupervised class-membership identification233

(clustering). Our approach is similar to the clustering of laboratory data of Bolton et234

al. (2019). Our scope is to naturally separate periods with potential different physical235

processes in the fault region, solely from data. We thus avoid any explicit physical mod-236

eling (e.g. location of events, magnitude estimation) and time constrain (e.g. before and237

after the earthquake), and learn relevant characteristics with implicit models from the238

data itself.239

Visually, some of the proposed features show some similarities (e.g. entropy and240

coherency, Figure 3), and will be likely redundant in the identification of classes. To quan-241

tify any redundancy in our dataset, we analyze the relationship between wavefield fea-242

tures and select the uncorrelated ones (i.e. features that are independent and respon-243

sible for different source properties) for clustering.244
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Figure 4. Correlation analysis between different features. (a) Cross-plot of different features

at frequency band: 2-2.1 Hz (corresponds to the lower triangular part of the correlation coeffi-

cient matrix in (b)). (b) Average correlation coefficients between different features over the full

frequency range (0.5-18 Hz). Correlation coefficients are first calculated based on the average fea-

tures of 0.1 Hz frequency bins, and then are averaged to obtain the final correlation coefficients

over the whole frequency band.

To that scope, we calculate the correlation coefficients between different features245

in different frequency ranges. The results of this analysis are reported in Figure 4. The246

entropy and coherency (which all provide estimate of the wavefield coherence) are well247

correlated with each other over a large frequency range (0.5-18 Hz) with an average cor-248

relation coefficient of 0.7. The eigenvalue variance shows an average correlation coeffi-249

cient of 0.57 and 0.59 with the coherency and first eigenvalue, which indicates it contains250

information about the wavefield coherence and the source energy at the same time.251

4.2 Cluster Analysis252

According to the sensitivity analysis of all features (Section 4.1), the coherency, eigen-253

value variance and first eigenvalue are poorly correlated (Figure 4) indicating a sensi-254

tivity to different properties of the wavefield (Figures 2 and 3). These three features are255

thus selected for the unsupervised analysis. For each time window, the number of fre-256

quency points is large (2800 points), therefore defining a very large feature space of 3257

x 2800 dimensions. In order to reduce the dimension of the feature space, we focus on258

the sensitive frequency range (0.5-10 Hz) and average each feature in frequency bins of259

0.1 Hz from 0.5 to 10 Hz. We end up with 95 frequency bins for each of the three fea-260

tures. In addition, we linearly normalize the feature magnitude in the interval [0, 1] with261

the feature maximum over all the frequencies in order to balance the information pro-262

vided by each feature (e.g. Bolton et al., 2019). In this way, the relative amplitude of263

the features in different frequency bins is kept. Finally, the three normalized features are264

combined together, forming a feature space of 285 dimensions (3 x 95) for cluster anal-265

ysis.266

We extract 966 samples (time segments of W2) in total over the dataset for clus-267

tering. The clusters found in seismic data are likely to be unbalanced, because the dif-268

ferent physical processes may occur with different timescales (e.g. seismic data are mostly269

composed by noise). Yet, many clustering approaches are essentially based on the clus-270

–9–
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Figure 5. (a) Dendrogram of hierarchical clustering. Different clusters are marked by different

colors and annotated using the cluster labels: A-F. The color-code and label of different clusters

are consistent with that in Figure 7. The sample index correspond to the date index. (b) Varia-

tion of average silhouette score with the number of clusters. Red dashed line indicates that when

the number of clusters is 6, the silhouette score reaches to a maximum of about 0.54. (c) Silhou-

ette scores of the data points in each cluster when the number of cluster is 6. Different colors

correspond to different clusters. Red dashed line shows the average silhouette score. Most data

points in the six clusters have a silhouette score larger than the average score, which indicates a

decent clustering result.

ter size balance in order to evaluate the clustering quality (for instance K-Means). More271

generally, class imbalance is a general issue in clustering, and only few algorithms allow272

to overcome this problem. Hierarchical clustering (Maimon & Rokach, 2005) is recog-273

nized as one of the most powerful approach to cluster unevenly distributed class of data.274

This is done by building a hierarchy of nested clusters by successively merging or split-275

ting data samples based on any pairwise distance between the data points. In this study,276

we use an agglomerative strategy which treats each data sample as a cluster and suc-277

cessively merges the two clusters with the smallest distance until all clusters are gath-278

ered by a root cluster (Pedregosa et al., 2011). We use L1 distance to measure the dis-279

tances between data samples.280

The hierarchy of our clustering can be represented by a dendrogram, which indi-281

cates the distance and splitting between clusters (Figure 5a). We then use a silhouette282

analysis (Rousseeuw, 1987) to determine the optimal number of clusters (Figures 5b and283

5c). The average silhouette scores (measured using L1 distance) inform on the separa-284

tion between clusters. We vary the number of clusters between 3 to 15, and found that285

6 clusters allow to achieve the best separation (Figures 5b and 5c).286

–10–
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Figure 6. PCA of all the input features. (a) Black line shows the explained data variance (in

percentage) of the first 20 principal components (correspond to the left axis). Blue line shows the

cumulative explained data variance for the number of principal components used (correspond to

the right axis). Red dashed line highlights 95% cumulative percentage. (b) The correlation coef-

ficients between the first four principal components and the features in different frequency bins.

The number marked on each section shows the cumulative correlation coefficient over the whole

adopted frequency range (0.5-10 Hz) for the coherency, eigenvalue variance and first eigenvalue

feature, respectively.

4.3 Clustering Results287

Because the dimension of the feature space is large, we propose to visualize the clus-288

tering results from the two main principal features components. We extract these com-289

ponents with principal component analysis (PCA) as shown in Figure 6. PCA projects290

data from the original feature space into a principal component (PC) space. Each PC291

is a linear combination of all the original features, scaled by a corresponding correlation292

coefficient. PCA also allows to observe the data variance explained by each component.293

In our case, we see that the first three PCs (PC1-PC3) respectively explain about 80%,294

10% and 6% of the total data variance, while all other PCs account for less than 1% of295

the total data variance each (Figure 6a). Since the first two PCs account for almost 90%296

of the data variance together, we can thus effectively represent and visualize our data297

in a 2D PC space.298

We use PCA to identify the most relevant wavefield features and frequency ranges299

to each PC by looking at the linear combination coefficients of the original features, which300

is useful to interpret the clustering results in a more physical way (Figure 6b). The PCA301

results indicate that the first PC is highly correlated with the first eigenvalue (Figure302

6b), while the second PC is highly related to the wavefield coherence (Figure 6b).303

In Figure 7 the wavefield features clustering results are visualized in the 2D PC space.304

Six clusters are presented along with other independent measurements, i.e. GPS displace-305

ment and seismic catalog (Figure 7c). As shown in Figure 7a, the six clusters are well306

separated in the PC space indicating there are clear and well recognizable patterns in307

the continuous seismic wavefield. The distribution of different clusters in the original fea-308

ture space also demonstrates the clustering results are a natural partition according to309

the wavefield property variations (Figures S1 and S2 in supplemental materials). The310

temporal evolution of the clustered data points is shown in the PC space (Figure 7b) and311

corresponding to each measurement (i.e., PC1-PC3, GPS and seismic catalog, Figure 7c).312

In Figure 7c, the different PCs, GPS measurements and seismic catalog are color-coded313
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according to the identified clusters to better observe differences among the different clus-314

ters.315

Before discussing the properties for each cluster, it is worth to remind that the fea-316

tures are extracted from 60 days of data, and each point in Figure 7 is at the end of the317

time window. Thus, each point has seen data for the preceding 60 days (see Figure 7c),318

and for example, cluster C contains a mixture of signals from times prior and after the319

mainshock.320

Cluster A identified with a low wavefield coherency (Figures 3a, 3b, and S2) and321

small first eigenvalues (Figures 3d and S2), corresponds to a quiet period (low seismic-322

ity). Cluster B exhibits increased wavefield coherency (especially in the frequency band323

of 1-10 Hz, see in Figures 3a, 3b, and S2), eigenvalue variance (Figure 3c and S2), and324

first eigenvalues (Figures 3d and S2). It corresponds to the increment of seismic activ-325

ity prior the 2009 L’Aquila earthquake. During this period, the earthquake rate increased326

in this region (Sugan et al., 2014; Vuan et al., 2018) and the earthquakes also tend to327

localize around the fault (Figures 7c and S2).328

Clusters C is likely resolving the last period before the main event, but is also af-329

fected by the mainshock and some aftershocks. It is showing clear differences respect to330

A and B, in particular an increment of first eigenvalue and a reduction of coherency (Fig-331

ures 3a, 3d, and 7c). The group D, which shows strong wavefield coherency in the low332

frequency range (0.5-1 Hz) and large first eigenvalues (Figures 3a, 3d, and 7c), correspond333

to the aftershock sequences of the 2009 L’Aquila earthquake.334

Cluster E shows increasing wavefield coherency (at 1-10 Hz) and decreasing first335

eigenvalues (Figures 3 and 7c). This behavior suggests an evolution of the aftershock be-336

havior. During this period, the earthquake rate is much lower than the previous after-337

shock stages (C and D) and seismicity becomes swarmy (Figures 7c and S2).338

The last cluster (F) shows low wavefield coherency and steady decreasing first eigen-339

values (Figures 3 and 7). During this period, the aftershocks sequence reduces and the340

earthquake rate in the region starts to recover to a background level (Figures 7c and S2).341

As shown in the dendrogram (Figure 5a) and in Figure 7a, the A and F clusters are close342

to each other and belong to the same root cluster. Compared to the other clusters which343

are more seismically unrest, they correspond to quieter periods.344

5 Discussion345

We show the existence of a time and frequency evolution of wavefield features de-346

rived from continuous seismic records, and how the analysis of these features reveals dis-347

tinct clusters well correlated with different periods of the seismic cycle (Figure 7).348

As the used features have physical meanings, they can provide important informa-349

tion about the processes occurring in each cluster. For example, cluster B, which is char-350

acterized by increasing coherence and first eigenvalue, suggests the activation of local-351

ized sources prior to the main event (see Figures 2, 3 and 7). This behavior agrees with352

previous studies on L’Aquila earthquake, suggesting the occurrence of localized foreshocks353

(Sugan et al., 2014). However, differently from previous studies, no explicit modeling is354

involved in our analysis, and we show how this information emerges naturally from our355

chosen representation of the seismic wavefield. Much different is the behavior observed356

in clusters D and E, which show a reduction of the coherency. This behavior suggests357

that seismicity is spread around the fault, as stress is redistributed (Marsan, 2005). A358

similar phenomenon has been recently observed for the Ridgecrest earthquake (Trugman359

et al., 2020), but again, our observation is model free.360
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Figure 7. Clustering results shown in the 2D PC space with horizontal axis showing the first

PC and vertical axis showing the second PC. Six clusters are color-coded using different colors

and marked with labels of A-F (consistent with Figure 5). (b) Temporal variation of the clus-

tered points in the 2D PC space. The data points are color-coded according to the days relative

to the mainshock as indicated by the colorbar at the bottom. The star highlights the day when

the 2009 L’Aquila earthquake occurred. (c) Temporal variation of the principal components,

GPS measurements and number of seismic events per day. The red dashed lines exhibits the ori-

gin time of the 2009 L’Aquila earthquake. The first to third rows show the variation of the first

three PCs with time. The fourth row shows the ground displacements in the vertical direction

measured by a GPS station in L’Aquila (location shown in Figure 1a). The fifth row shows the

detected number of seismic events per day in the INGV catalog. The different measurements are

color-coded according to the corresponding cluster. The time window (60 days) for extracting

wavefield features at the last data sample in each cluster is highlighted by the black arrow and

the corresponding color-coded bar in the top panel.
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More complex is the interpretation of cluster C, which partially covers the last pre-361

seismic period and part of time after the event. This issue comes from the limitation of362

our methodology to a given timescale. In fact, the use of a long-term window (60 days)363

with daily step, reduces the possibility of resolving short-lasting clusters and focuses on364

long-lasting processes. Attempting to reduce the time window will be the subject of fu-365

ture research. However, despite this limitation the method is clearly highlighting differ-366

ent parts of the seismic cycles (including the quiet period, clusters A and F), without367

the need of modeling and will be tested on other earthquakes.368

As in stick-slip rock failure experiments in laboratory (Bolton et al., 2019), our study369

highlights that fault state can be tracked from continuous seismic data. The ability of370

unrevealing peculiar patterns in seismic data, extend the laboratory-based idea that con-371

tinuous data are rich enough to inform us about evolution of physical properties of the372

fault (e.g. Rouet-Leduc et al., 2017; Bolton et al., 2019). In contrast with the labora-373

tory setting, real data cannot be associated with other boundary conditions (e.g. abso-374

lute stress level), and only part of the seismic cycle can be resolved. It is thus unlikely375

that our features-based approach will permit any kind of machine learning based pre-376

diction of the rupture (e.g. Rouet-Leduc et al., 2017). It will however permit to rapidly377

parse large amount of data and extract peculiar patterns, which can be related to other378

estimates (e.g. geodetic data) to better characterize different stages of the seismic cy-379

cle. Our features can also be used to regress seismic data into other information (e.g. GPS380

displacement, Frank et al., 2015) to explore slip rate during aseismic slip episodes.381

Finally, in the present study, we defined spatial features for exploring spatially dis-382

tributed sensors. One of the main advantage is the ability to easily identify propagative383

signals and to disregard any site-dependent patterns that may bias the analysis (e.g. lo-384

cal noise level). Given the large number of seismic arrays deployed worldwide, the de-385

velopments of features that account for spatial properties of the wavefield is of great in-386

terest and will be in the scope of future studies.387

6 Conclusions388

We analyze the wavefield properties with unsupervised machine learning to directly389

assess fault states and its temporal evolution from continuous seismic data. Unlike tra-390

ditional statistical features calculated from single station, we extract frequency-dependent391

wavefield features from the array covariance matrix analysis, which have interpretable392

physical meanings relating to source properties. The array-based wavefield features en-393

able to analyze the overall source properties and its temporal evolution for understand-394

ing the fault activities in the study region. Our study shows the value of advanced ar-395

ray processing and machine learning analysis to excavate information embedded in the396

continuous seismic data. Our study builds a bridge between the laboratory experiments397

and the real earthquake observations and is a step towards understanding the fault physics.398

Our future work involves further unraveling hidden signals in continuous seismic data399

for studying fault physics.400
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