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Abstract

We utilized the Match&Locate method to characterize the detailed spatial and temporal evolution of earthquakes before the

July 2019 Mw 6.4 Ridgecrest, California earthquake. The Mw 6.4 mainshock was preceded by 40 foreshocks within ˜2 h (on July

4, 2017 from 15:35:29 to 17:32:52, UTC). The largest foreshock (M 4.0) separates the foreshock activity into two stages with

different nucleation mechanisms. A swarm of repeating earthquakes occurred before the M 4.0 event, implying the earthquake

sequence initiated from an aseismic slip process. The majority of aftershocks of the M 4.0 event as well as the Mw 6.4 mainshock,

occurred within regions of increasing Coulomb stress, indicating that they were triggered by stress transfer. Our observations

demonstrate that neither the preslip model nor the cascade model can explain the entire nucleation process of the Mw 6.4

mainshock. Instead, both mechanisms govern the nucleation process, but at different stages.
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Key points: 16 

 We detected and located 40 foreshocks of the July 2019 Mw 6.4 Ridgecrest earthquake 17 

using the Match&Locate method.  18 

 The detailed spatiotemporal evolution of the foreshocks outlines a complex fault system 19 

accommodating the nucleation of the Mw 6.4 mainshock. 20 

 The nucleation of the Mw 6.4 earthquake could be jointly explained by the preslip and 21 

cascade models. 22 

 23 
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Abstract 25 

We utilized the Match&Locate method to characterize the detailed spatial and temporal 26 

evolution of earthquakes before the July 2019 Mw 6.4 Ridgecrest, California earthquake. The 27 

Mw 6.4 mainshock was preceded by 40 foreshocks within ~2 h (on July 4, 2017 from 15:35:29 28 

to 17:32:52, UTC). The largest foreshock (ML 4.0) separates the foreshock activity into two 29 

stages with different nucleation mechanisms. A swarm of repeating earthquakes occurred before 30 

the ML 4.0 event, implying the earthquake sequence initiated from an aseismic slip process. The 31 

majority of aftershocks of the ML 4.0 event as well as the Mw 6.4 mainshock, occurred within 32 

regions of increasing Coulomb stress, indicating that they were triggered by stress transfer. Our 33 

observations demonstrate that neither the preslip model nor the cascade model can explain the 34 

entire nucleation process of the Mw 6.4 mainshock. Instead, both mechanisms govern the 35 

nucleation process, but at different stages. 36 

 37 

Plain Language Summary 38 

The 2019 Mw 6.4 Ridgecrest, California earthquake was preceded by a significant foreshock 39 

sequence in the ~2 h leading up to the main shock, presenting a question: what is the relationship 40 

between the Mw 6.4 mainshock and its foreshocks? In this study, we comprehensively analyzed 41 

seismograms obtained from nine nearby stations before the Mw 6.4 earthquake using state-of-42 

the-art methods. Our unprecedented high-precision earthquake catalog demonstrates the detailed 43 

spatiotemporal evolution of the foreshocks. We investigated the nucleation mechanism for the 44 

foreshocks based on the relationship between their accurate hypocenters and the nearby stress 45 

changes. Our study suggests that aseismic slip and stress transfer jointly explain the nucleation 46 

mechanism of the Mw 6.4 mainshock.  47 

 48 

1 Introduction 49 

The July 2019 Ridgecrest earthquake sequence broke a nearly 20-year absence of strong 50 

earthquakes in southern California. This sequence included two closely-spaced (about 10 km 51 

apart; Figure 1) mainshocks: an Mw 6.4 event on 4 July, 2019 (at 17:33:49 UTC) and an Mw 7.1 52 

event on 6 July 2019 (at 03:19:53 UTC). The two mainshocks activated a complex fault network, 53 



consisting of the main NW-trending fault with about 65 km surface rupture, the NE-trending 54 

cross fault with 15 km surface rupture, as well as multiple near-orthogonal buried faults which 55 

cut through the main fault (Figure 1) (Liu et al., 2020; Ross et al., 2019; Shelly, 2020; Yang et 56 

al., 2020). The Southern California Seismic Network (SCSN) reported 9 foreshocks in ~2 h 57 

preceding the Mw 6.4 mainshock. Although the foreshock catalog has been further improved 58 

using state-of-the-art techniques, such as the template matching technique (Ross et al., 2019; 59 

Shelly, 2020) and a machine-learning-based phase picker (Liu et al., 2020), the relationship 60 

between the Mw 6.4 mainshock and its foreshocks (i.e., nucleation mechanism) is not well 61 

understood.  62 

 63 

Two opposing models have been proposed to explain earthquake nucleation: the preslip model 64 

and the cascade model (Beroza & Ellsworth, 1996; Dodge et al., 1996; Ellsworth & Beroza, 65 

1995; Mignan, 2014). In the preslip model, foreshocks are attributed to aseismic slip surrounding 66 

the eventual mainshock hypocenter and may appear as repeating earthquakes. This model 67 

provides the possibility for earthquake prediction (Bouchon et al., 2011; Chen and Shearer, 2013; 68 

Dodge et al., 1996; Kato et al., 2012; McGuire et al., 2005; Savage et al., 2017; Tape et al.,. 69 

2018). In the cascade model, later earthquakes usually occur in regions of increasing stress, 70 

which are triggered by adjacent preceding events (Ellsworth and Bulut, 2018; Felzer et al., 2004; 71 

Helmstetter and Sornetter, 2003; Yoon et al., 2019). In other words, under this model, 72 

earthquakes, even the large ones, are random outcomes of triggering, implying that earthquake 73 

prediction is impossible (Ellsworth & Beroza, 1995). Recently, a combination of both 74 

mechanisms has been proposed to understand the complex nucleation process of some large 75 

earthquakes (Savage et al., 2017; Yao et al., 2020).  76 

 77 

A comprehensive and high-precision earthquake catalog plays a key role in understanding the 78 

underlying earthquake nucleation mechanism. Using a matched filter is a promising technique 79 

for small earthquake detection, and involves the application of cross-correlation (CC) between 80 

the template events and continuous waveforms (Gibbons & Ringdal, 2006). Because this process 81 

assumes that the newly detected earthquakes are co-located with template events, the matched 82 

filter is only capable of detecting closely adjacent earthquakes and cannot provide accurate 83 



location information. Thus, earthquakes must be relocated separately using sequential algorithms 84 

such as cross-correlation and double-difference relocation (e.g., Ellsworth & Bulut, 2018; Yao et 85 

al., 2020; Yoon et al., 2019). Each of the above steps may affect the final earthquake catalog, 86 

from magnitude completeness to location accuracy. For instance, cross-correlation differential 87 

travel times are only maintained for waveform pairs with very high similarity (e.g., CC > 0.7), 88 

which potentially decreases the number of available template phases/stations and lowers the 89 

location resolution. To solve this issue, Zhang and Wen (2015a) developed the Match&Locate 90 

method (M&L) to simultaneously detect and locate earthquakes, using all available components 91 

and stations, by maximizing the stacked waveform coherence based on the delay-and-sum 92 

concept. One remarkable application of this method was the detection and location of a 93 

controversial low-yield nuclear test conducted by North Korea in 2010, providing seismological 94 

evidence of the nuclear explosion along with radionuclide findings (Zhang & Wen, 2015b). 95 

 96 

To understand the nucleation mechanism of the July 2019 Mw 6.4 Ridgecrest mainshock, we 97 

comprehensively investigated the relationship between the Mw 6.4 mainshock and its 98 

foreshocks. By applying the M&L method, we built a comprehensive and high-precision 99 

earthquake catalog of the foreshocks and determined the rupture directivity of the largest ML 4.0 100 

foreshock, by estimating its initial point and centroid point, as well as the initial point of the Mw 101 

6.4 mainshock. Waveform similarity analysis and Coulomb stress change calculations were also 102 

adopted, to investigate the nucleation process.  103 

 104 

2 Detailed spatiotemporal evolution of foreshocks  105 

We used the M&L method to detect and locate earthquakes before the Mw 6.4 mainshock (from 106 

15:35:26 to 17:32:52, UTC on July 4, 2019). Continuous seismic data were collected from nine 107 

permanent stations within 60 km of the Mw 6.4 mainshock (Figure 1). We selected the ML 1.5 108 

foreshock as the template event (EQ 6; see Table S1 in the supporting information), as it had a 109 

moderate magnitude and relatively high similarity to other SCSN cataloged foreshocks. The 110 

location of the template event was extracted from the cross-correlation hypoDD catalog (Shelly, 111 

2020). We adopted the same 1-D velocity model suggested by Shelly (2020). 112 

  113 



To efficiently conduct the M&L method, we built the foreshock catalog in two steps. The first 114 

step involved detecting and roughly locating earthquakes from continuous waveforms, while the 115 

second step involved refining their locations. In the first step, we searched for potential 116 

earthquakes within a 3D region centered at the template location: 0.006° × 0.006° × 600 m in 117 

longitude, latitude, and depth, with a searching interval of 0.0006° laterally (i.e., approximately 118 

60 m) and 60 m vertically. Both P and S phases were utilized in the M&L method. We used the 119 

TauP software to calculate the theoretical P- and S-wave arrival times for the template event, as 120 

well as their horizontal and vertical slowness (Crotwell et al., 1999; Zhang and Wen, 2015a). 121 

The template windows were 0.2 s before and 1.8 s after their theoretical arrival times. Such 122 

window settings enable us to separate P and S phases into corresponding time windows. We kept 123 

the default 100 Hz sampling interval for this step. We filtered the template and continuous 124 

waveforms from 2 to 12 Hz to improve the signal-to-noise ratio. With an empirical CC threshold 125 

of 0.35, we detected and located 39 foreshocks with magnitudes ranging from -0.39 to 4.0 126 

(Figure 1; Table S1). Here, both location and magnitude were determined relative to the template 127 

event (see detailed method introduction in Zhang and Wen, 2015a). The second step focuses on 128 

refining the location of the events detected in the first step. Waveforms of the 39 detected events 129 

were cut from 5 s before and 25 s after their origin time. Earthquake locations were further 130 

refined within a smaller 3D region, with a finer search grid size centered at the optimal locations 131 

determined in the first step: 0.001° × 0.001° × 100 m in longitude, latitude, and depth with a 132 

searching interval of 0.00001° laterally (i.e., approximately 1 m) and 1 m vertically. To match 133 

this high spatial resolution, we interpolated the template and continuous waveforms from 100 to 134 

5000 Hz. All 39 earthquakes were relocated with high precision, which can be verified by 135 

waveform comparison between them and the template event along with their CC spatial 136 

convergence (see Text S1). Based on a bootstrapping analysis, the horizontal and vertical 137 

location uncertainties are determined to be 3–8 m and 3–10 m, respectively (see Text S1). All 35 138 

events reported in the CC hypoDD catalog were recovered with the M&L method (Shelly, 2020). 139 

Even though they are independently located with different algorithms and slightly different 140 

stations, the common events are consistent in space with an average hypocentral separation of 141 

34.2 m, except for the 20190704T17:16:50 event, which was mislocated in the hypoDD catalog 142 

(Figures S1-2).  143 

 144 



This unprecedented high-precision catalog enables us to reveal detailed spatiotemporal migration 145 

of foreshocks and delineate the fine-scale structure of the fault zone (Figures 2a-e and Movie 146 

S1). On July 4, 2019 at 15:35:26 (UTC), a burst of small earthquakes began activating near the 147 

hypocenter of the Mw 6.4 mainshock (Figure 2a). After 45 min of silence, the largest ML 4.0 148 

foreshock nucleated nearby (Figure 2b). In the following 9 min, its early aftershocks occurred 149 

along a SW-dipping fault around its hypocenter (Figure 2b). Later on, a NW-trending shallow 150 

fault strand and a nearly north-trending deep low-dip fault strand were sequentially activated, 151 

and were gradually connected by later earthquakes before the occurrence of the Mw 6.4 152 

mainshock, forming a throughgoing fault structure (Figure 2d).  153 

 154 

3 Rupture directivity analysis of ML 4.0 foreshock 155 

We conducted rupture directivity analysis for the ML 4.0 earthquake. Based on the empirical 156 

Green’s function method, similar to the relative directivity inversion method proposed by Xu and 157 

Wen (2019), we directly estimated the initial rupture point and centroid point of the ML 4.0 158 

earthquake using the M&L method. However, instead of minimizing the CC travel-time residual, 159 

the M&L method determines the two points by grid-searching the optimal location to maximize 160 

the averaged CC coefficient between the target event and the master event. Here, we kept the ML 161 

1.5 event as our master event because of its high signal-to-noise ratio, high similarity, and 162 

suitable magnitude. We utilized the initial P phases and full P and S phases to investigate the 163 

initial rupture point and centroid point, respectively. We used the same data processing 164 

techniques that were used to build the foreshock catalog in step 2. The centroid point was 165 

extracted directly from our high-precision foreshock catalog. In the initial point estimation, we 166 

manually picked the first P-wave arrivals on vertical components and set a template window of 167 

0.03 s before and 0.03 s after the P-wave arrivals. The results indicate that the ML 4.0 foreshock 168 

ruptured unilaterally along the NW fault with a rupture length of 630 m (i.e., twice the distance 169 

between the initial rupture point and centroid point), which is consistent with one of the reported 170 

nodal fault planes (SCSN; Figures 3a-b). Similarly, we determined the initial rupture point for 171 

the Mw 6.4 mainshock, which is located about 75 m SE of the master event (Figures 3c-d). Here, 172 

station SLA was not adopted due to the poor similarity between the Mw 6.4 event and the master 173 



event (Figure S3). The centroid point of the Mw 6.4 mainshock cannot be estimated in this way 174 

because of the complexity of its rupture in space and time. 175 

 176 

4 Nucleation of the Mw 6.4 mainshock and its foreshocks  177 

We conducted further studies to determine whether the preslip model or cascade model could 178 

explain the nucleation mechanism of the Mw 6.4 mainshock. Repeating earthquakes (REs) 179 

occur on the same or overlapping fault areas (patch) and support the preslip model, but cannot be 180 

explained by the cascade model (Ellsworth & Beroza, 1995). Thus, the identification of REs 181 

plays a critical role in distinguishing the two nucleation mechanisms.  182 

 183 

REs are identified using two sequential criteria: 1) events must have high waveform similarity 184 

and 2) events must rupture on overlapping faults/patches (Uchida, 2019; Uchida and Burgmann, 185 

2019). To perform similarity analysis, we calculated the pairwise cross-correlation for the 40 186 

foreshocks based on the vertical component of the closest station, B918 (Figure 1). Waveform 187 

windows were cut from 1 s before and 6 s after the first P-wave arrivals, including the whole S-188 

wave phases and most coda waves. A maximum 0.2 s lag was adopted during the cross-189 

correlation. Based on a CC threshold of 0.9 (Uchida and Burgmann, 2019), we grouped 190 

corresponding events into clusters using the equivalency class algorithm (Press et al., 1986). Two 191 

candidate earthquake clusters were identified: six events before the ML 4.0 earthquake (EQ 2–7; 192 

Table S1) and twelve shallow events following the ML4.0 earthquake (Figure 2f). Here, we have 193 

assigned the first earthquake (EQ 1) of the whole sequence to the first cluster, even though it 194 

possesses a relatively low CC coefficient (0.65–0.73) with others in the cluster. This is because 195 

the event is located very close to the center of the cluster (Figure 2a and Movie S1). The low CC 196 

value is caused by waveform overlapping (the event was closely followed by a larger event with 197 

an origin time separation of 3 s) (Figure 2f). Therefore, we have seven earthquakes in the first 198 



cluster. The seven events occurred within a radius of 25 m, which is less than the theoretical 31-199 

m rupture radius of the largest event (ML1.5) among the cluster (Figure 2a; see Text S2). In other 200 

words, their rupture patches were at least partially overlapping. Thus, we regard them as an RE 201 

cluster. The second cluster of events shows an NW-trending extent of ~200 m (Figure 2d), which 202 

is far beyond the theoretical 50-m rupture radius of the largest event (ML 2.15) among the cluster 203 

(see Text S2). Thus, we rule out the possibility that they belong to an RE cluster, based on the 204 

second criterion. Based on the above analysis, we suggest that the foreshock sequence was 205 

activated from a cluster of REs and earthquakes before the ML 4.0 event initiated from an 206 

aseismic-slip process.  207 

 208 

To determine whether the cascade model can explain the events following the ML4.0 earthquake 209 

and the Mw 6.4 mainshock, we verified the potential triggering mechanism by investigating the 210 

relationship between the hypocenters of those events and the nearby stress changes. Two 211 

different approaches were applied to estimate the stress changes. In the first approach, we 212 

inverted the Coulomb stress change according to the focal mechanism solution of the ML4.0 213 

event (Lin & Stein, 2004). The initial rupture point of the ML4.0 foreshock estimated by the 214 

M&L method, one of the fault planes that matched rupture directivity (i.e., strike = 318°, rake = 215 

167°, and dip = 81°; SCSN), and a recommended friction coefficient of 0.4 were adopted in the 216 

Coulomb stress change inversion (Lin & Stein, 2004; Toda et al., 2005). The majority of the 217 

aftershocks of the ML 4.0 event, as well as the Mw 6.4 mainshock, nucleated in the regions with 218 

increasing Coulomb stress (Figures 4a-c), which suggests they were triggered by stress transfer. 219 

In the second approach, we empirically inferred the stress change imparted by the ML4.0 event in 220 

space based on a simple circular crack (Kanamori & Anderson, 1975). From our previous 221 

directivity analysis, we know that the largest possible rupture radius of the ML4.0 event is 315 m 222 

(blue circle in Figure 4d). Earthquakes following the ML4.0 earthquake as well as the Mw 6.4 223 

mainshock, dominantly occurred outside of the rupture zone of the ML4.0 event (Figure 4d), 224 

which usually indicates increased stress (Ellsworth & Bulut, 2018; Yoon et al., 2019). The two 225 

independent analyses suggest that the majority of aftershocks of the ML 4.0 earthquake and Mw 226 



6.4 mainshock were triggered by stress transfer, which is in line with the cascade model. We also 227 

noticed that a few earthquakes likely re-ruptured the source zone of the ML4.0 event (Figure 4d), 228 

which may be explained by aseismic slip or rupture heterogeneity (Ellsworth & Bulut, 2018).  229 

 230 

5 Discussion   231 

Direct and robust evidence indicates that the preslip model and cascade model jointly governed 232 

the nucleation process of the Mw 6.4 mainshock. A cluster of REs preceding the largest ML 4.0 233 

foreshock occurred within a radius of 25 m (Figure 2a), consistent with the small nucleation zone 234 

of an ML 4.0 earthquake (Dodge et al., 1996; Ellsworth & Beroza, 1995). The magnitude of the 235 

members in the RE cluster shows an overall increasing trend prior to the occurrence of the ML 236 

4.0 foreshock (Figure 2e), in accordance with the reported accelerating slip process (Kato et al., 237 

2012, 2016; Tape et al., 2018). The majority of aftershocks of the ML 4.0 earthquake, as well as 238 

the Mw 6.4 mainshock, were triggered by the stress change imparted by the ML 4.0 event (Figure 239 

4), consistent with the cascade triggering process described in previous studies (Ellsworth & 240 

Bulut, 2018; Yao et al., 2020; Yoon et al., 2019). A similarly complex nucleation process was 241 

also observed in the foreshock sequence of the 2010 Mw 7.2 EI Mayor-Cucapah earthquake 242 

(Yao et al., 2020). Here, as a complete explanation for the nucleation process of the Mw 6.4 243 

earthquake, we suggest that the aseismic slip process initiated the nucleation, and cascade 244 

triggering dominated the following events. The coalescence of aseismic slip and transferred 245 

stress triggering in earthquake nucleation has been implied from laboratory experiments and 246 

numerical models (Dublanchet, 2018; McLaskey, 2019; McLaskey & Lockner, 2014; Noda et 247 

al., 2013). Our study bridges the gap between laboratory experiments and field observations.    248 

 249 

Immature fault systems that are transitioning into new major tectonic boundaries are usually 250 

characterized by a geometrically complex fault distribution and slow earthquake rupture (Crider 251 

& Peacock, 2004). Source inversion suggests that the Mw 6.4 and Mw 7.1 events ruptured with a 252 

slow velocity of about 1-2 km/s (Chen et al., 2020; Goldberg et al., 2020; Ross et al., 2019; Yang 253 

et al., 2020). Goldberg et al. (2020) concluded that the 2019 Ridgecrest sequence occurred on an 254 

immature fault. In this study, our foreshock catalog reveals a complex seismogenic structure, 255 

consisting of at least three fault strands with variable orientations (Figure 2), which 256 



independently supports the notion that the 2019 Ridgecrest sequence nucleated on an immature 257 

fault system. These individual fault strands are in fact small and may not be optimally oriented 258 

for large-scale earthquake failure (Crider & Peacock, 2004). However, a throughgoing fault 259 

structure was connected by the earthquakes following the Mw 4.0 event (Figure 2d), and 260 

accommodated the Mw 6.4 mainshock (Goldberg et al., 2020; Manighetti et al., 2007; Perrin et 261 

al., 2016; Thomas et al., 2013; Wesnousky, 1988).  262 

 263 

6 Conclusions  264 

We applied the M&L method to comprehensively investigate the detailed spatiotemporal 265 

evolution of foreshocks of the Mw 6.4 earthquake and to directly estimate rupture directivity and 266 

rupture length of its largest foreshock (ML 4.0). We identified 40 foreshocks that occurred ~2 h 267 

before the mainshock, with magnitudes ranging from −0.39 to 4.0. The largest ML 4.0 foreshock 268 

separated the sequence into two stages with different nucleation mechanisms. The nucleation 269 

process was initiated by a swarm of repeating earthquakes, prior to the ML 4.0 event, which 270 

suggests aseismic slip and fits with the preslip model. Following the ML4.0 event, the majority of 271 

its aftershocks, and the Mw 6.4 earthquake, were triggered by stress transfer, indicating a 272 

cascade triggering mechanism. Our observation suggests that the nucleation of the Mw 6.4 273 

mainshock and its foreshocks can be jointly explained by the preslip and cascade models.   274 
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 423 

Figure 1. Map view of the study region. Epicenters and focal mechanisms of the Mw 6.4 and 424 

Mw 7.1 earthquakes are indicated by purple stars and beach balls, respectively. Black triangles 425 

denote the seismic stations used in this study. Red lines mark the surveyed surface ruptures 426 

(Kendrick et al., 2019). Three-component seismograms of the template event are plotted close to 427 

their corresponding stations. (left bottom inset) The 40 identified foreshocks, along with the Mw 428 

6.4 mainshock, are shown in the zoomed-in area (white rectangle in main figure). The top-right 429 

displays a regional map of the United States, with the red rectangle indicating the study region.  430 

 431 



 432 

Figure 2. Detailed spatial-temporal evolution of foreshocks and their waveform similarity 433 

analysis. (a) Left panel shows the map-view epicenters of foreshocks (purple dots) that occurred 434 

on July 4, 2019, from 15:35:25 to 17:02:55 (UTC; EQ 1-7). The right panel displays a 3D view, 435 

with a view angle indicated by the black arrow in the left panel. All event locations are relative 436 

to the hypocenter of the template event. (b) Similar to (a), but for the foreshocks that occurred 437 

from 17:02:55 to 17:11:32 (UTC; EQ 8-15). Black dots represent events that occurred within the 438 

previous time window. (c) Similar to (b), but for the foreshocks that occurred from 17:11:32 to 439 

17:13:26 (UTC; EQ 16-20). (d) All foreshocks that occurred before the Mw 6.4 mainshock, 440 

colored by depth. (e) Magnitude-time distribution of the foreshocks in our catalog (dots), along 441 

with the Mw 6.4 event (red star). Red dots indicate events that are only cataloged by the SCSN. 442 

(c) (d)

(e) (f)

(a) (b)



(f) Pairwise CC coefficients for 40 foreshocks. Event IDs are ordered by their origin time (see 443 

Table S1). 444 

  445 

 446 

 447 

Figure 3. Rupture directivity analysis of the ML 4.0 event and the initial rupture point of the Mw 448 

6.4 mainshock determined by the M&L method. (a) Rupture directivity (white arrow) of the ML 449 

4.0 event. The black star indicates the epicenter of the reference event. Red and blue stars 450 

represent the initial rupture point and centroid point of the ML 4.0 foreshock, respectively. The 451 

distributions of their averaged CC coefficients are shown with the corresponding color bars. 452 

Beach ball shows the focal mechanism solution of the ML 4.0 event (SCSN). All locations are 453 



relative to the epicenter of the master event, in meters. (b) Initial P phase comparison between 454 

the ML 4.0 event (red) and the ML 1.5 reference event (blue) after travel time correction by 455 

M&L, which is used for the initial rupture point determination of the ML 4.0 event. Initial P 456 

phases are plotted along with their early P phases over an extended time window (bottom two 457 

traces). Dark-green triangles represent the stations used for location determination by the M&L 458 

method. (c) Similar to (a), but for the initial rupture point determination of the Mw 6.4 459 

mainshock. (d) Similar to (b), but for the initial rupture point determination of the Mw 6.4 460 

mainshock. Gray triangle represents the discarded station. 461 

 462 



 463 

Figure 4. Earthquake triggering mechanism following the ML 4.0 event. (a) Coulomb stress 464 

change imparted by the ML 4.0 earthquake at a depth of 11.87 km. Event epicenters (gray dots) 465 

are relative to the epicenter of the ML 1.5 master event. (b) Similar to (a), but for the seismicity 466 

at a depth of 12.63 km. (c) Similar to (a), but for the depth of the initial rupture point of the Mw 467 

6.4 mainshock (12.14 km). The purple star shows the epicenter of the initial rupture point of the 468 

Mw 6.4 mainshock. (d) Cross-section of the foreshock distribution along the strike direction of 469 

the ML 4.0 event (A–B in (c)). The blue circle represents the possible rupture region of the ML 470 

4.0 foreshock inferred from twice the distance between its initial rupture point (red dot) and 471 



centroid point (blue dot). The purple star shows the initial rupture point of the Mw 6.4 472 

mainshock. Gray dots represent the hypocenters of events that occurred after the ML 4.0 event 473 

and before the Mw 6.4 mainshock. The three red dashed lines mark the depths shown in Figures 474 

4a-c.  475 
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Text S1.  Earthquake locaiton uncertainty 32 
Location uncertainty is essential for evaluating the confidence of earthquake locations. However, there 33 
is no standard method for assessing the uncertainty of locations obtained with waveform-based 34 
methods. To estimate the location uncertainty of foreshocks listed in the Match&Locate (M&L) catalog, 35 
we conducted a bootstrapping analysis for the two detections with the highest and lowest averaged 36 
cross-correlation (CC) values (EQ 3 with CC of 0.8851 and EQ 30 with CC of 0.3635; See event ID in Table 37 
S1), which roughly represent the best and worst location results, respectively. The principle is to 38 
repeatedly perform the M&L relocation and remove one phase (P or S) recorded at one three-39 
component station in each round. We adopted nine stations (18 phases and 54 components) in the M&L 40 
relocation, which means the M&L relocation was repeated 18 times, with one phase removed each 41 
time. The detailed procedure was the same as step 2 of the foreshock catalog creation (see Section 2 in 42 
the main text). The results of the bootstrapping analysis indicate that the event with the highest CC 43 
value has a location uncertainty of approximately 3 m, both horizontally and vertically, and the event 44 
with the lowest CC value has a slightly larger location uncertainty, of 8 m horizontally and 10 m vertically 45 
(Figure S4). We assumed the location uncertainty of the other foreshocks was within the range of these 46 
two events. Thus, our horizontal and vertical location uncertainties are 3–8 m and 3–10 m, respectively.  47 
Following Zhang and Wen (2015a), we show the plan-view CC convergence and waveform comparison 48 
between each event with the template event (ML 1.5) after relatively travel-time correction based on 49 
their location difference (Figure S5-43). 50 

Text S2. Estimation of rupture radius from local magnitude  51 

We estimated the rupture dimensions for the 𝑀!1.5 and 𝑀! 2.15 events based on their local magnitude 52 
(𝑀!) and a simple circular crack model. We first converted the 𝑀! to the scalar moment (𝑀") based on 53 
the moment-magnitude relationship (Abercrombie, 1996) in the region, as below: 54 

log(𝑀") = 9.8 +𝑀!               (1) 55 

We then estimated the rupture radius 𝑟 from 𝑀", based on a simple circular crack model and the scaling 56 
relationship proposed by Kanamori & Anderson (1975) : 57 

						𝑟 = ( #$!
%&∆(

)%/*                           (2) 58 

Here, an empirical stress drop (∆𝜎) of 3 MPa was adopted in the calculation of the rupture radius (Yoon 59 
et al., 2019). Thus, the rupture radiuses of the 𝑀!1.5 and 𝑀! 2.15 events were 31 m and 50 m, 60 
respectively. 61 



 62 

Figure S1. (a) Plan-view comparison of locations of the 35 foreshocks common to both the M&L catalog 63 
(blue dots) and the hypoDD catalog (red dots). Event locations are relative to the hypocenter of the ML 64 
1.5 event. The corresponding event-pairs in the two catalogs are connected by black lines. (b) Similar to 65 
(a), but for the cross-section along AA’, which corresponds to one of the fault planes of the ML 4.0 66 
foreshock. (c) Similar to (b), but for the cross-section along BB’. The event-pair with a large location 67 
difference is further analyzed in Figure S2. 68 
 69 
 70 



 71 

Figure S2. Investigation of the location reliability for the event pair with large location difference in 72 
Figure S1 (see main text). We allocated the corresponding locations and origin times, listed in the M&L 73 
and hypoDD catalogs, to the event, and compared its waveforms with the ML 1.5 event after location 74 
correction. (a–c) Red and black waveforms represent the three-component seismograms of the event 75 
located by M&L and the reference event (ML 1.5), respectively. The two black dashed lines highlight the 76 
template windows used in the M&L method. (d-f) Similar to (a–c), but for the hypoDD location. Clearly, 77 
the event was mislocated in the hypoDD catalog.   78 
 79 
 80 
 81 
 82 
 83 



 84 

 85 

Figure S3. Comparison of the early P phases between the ML 1.5, ML 4.0 foreshocks, and the Mw 6.4 86 
mainshock. All traces were aligned at the manual P first arrivals. 87 
 88 
 89 
  90 



 91 

Figure S4. Location uncertainty of the two events with the highest and lowest CC values. (a) Red 92 
diamonds represent the epicentral location of the event located with the M&L method with the highest 93 
CC value (EQ 3 with a CC of 0.8851; See event ID in Table S1). Blue dots indicate the relocations based on 94 
the bootstrapping analysis. Blueness is proportional to the number of overlapping locations. The black 95 
error bar indicates the horizontal location uncertainty revealed by the bootstrapping analysis. (b–c) 96 
Similar to (a) but for the two cross-sections along the WE and NS directions. Black error bars represent 97 
the vertical location uncertainty. (d-e) Similar to (a-c) but for the event with the lowest CC value (EQ 30 98 
with CC of 0.3635; See event ID in Table S1). 99 
  100 
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 101 

Figures S5. Horizontal CC convergence of EQ 1 (see event ID in Table S1) and its waveform comparison 102 
with the template event (ML 1.5). (a) Black and blue stars represent the epicenters of the template and 103 
detected events, respectively. The distribution of averaged CC coefficients is shown with a color bar. (b) 104 
Waveform comparison of P phases (top panel) and S phases (bottom panel) between EQ 1 (red) and 105 
template (black) event, from nine three-component stations after relative travel time correction.  106 
  107 
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Figures S6. Smilar to Figure S5, but for EQ 2. 109 
 110 
 111 
 112 
  113 



 114 

Figures S7. Smilar to Figure S5, but for EQ 3. 115 
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Figures S8. Smilar to Figure S5, but for EQ 4. 130 
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Figures S9. Smilar to Figure S5, but for EQ 5. 147 
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Figures S10. Smilar to Figure S5, but for EQ 7. 163 
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Figures S11. Smilar to Figure S5, but for EQ 8. 180 
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Figures S12. Smilar to Figure S5, but for EQ 9. 196 
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Figures S13. Smilar to Figure S5, but for EQ 10. 212 
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Figures S14. Smilar to Figure S5, but for EQ 11. 228 
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Figures S15. Smilar to Figure S5, but for EQ 12. 244 
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Figures S16. Smilar to Figure S5, but for EQ 13. 260 
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Figures S17. Smilar to Figure S5, but for EQ 14. 276 
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Figures S18. Smilar to Figure S5, but for EQ 15. 292 
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Figures S19. Smilar to Figure S5, but for EQ 16. 308 
 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 



 323 

Figures S20. Smilar to Figure S5, but for EQ 17. 324 
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Figures S21. Smilar to Figure S5, but for EQ 18. 340 
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Figures S22. Smilar to Figure S5, but for EQ 19. 356 
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Figures S23. Smilar to Figure S5, but for EQ 20. 372 
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Figures S24. Smilar to Figure S5, but for EQ 21. 389 
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Figures S25. Smilar to Figure S5, but for EQ 22. 406 
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Figures S26. Smilar to Figure S5, but for EQ 23. 422 
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Figures S27. Smilar to Figure S5, but for EQ 24. 438 
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Figures S28. Smilar to Figure S5, but for EQ 25. 454 
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Figures S29. Smilar to Figure S5, but for EQ 26. 470 
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Figures S30. Smilar to Figure S5, but for EQ 27. 486 
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Figures S31. Smilar to Figure S5, but for EQ 28. 503 
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Figures S32. Smilar to Figure S5, but for EQ 29. 519 
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Figures S33. Smilar to Figure S5, but for EQ 30. 535 
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Figures S34. Smilar to Figure S5, but for EQ 31. 551 
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Figures S35. Smilar to Figure S5, but for EQ 32. 567 
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Figures S36. Smilar to Figure S5, but for EQ 33. 583 
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Figures S37. Smilar to Figure S5, but for EQ 34. 599 
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Figures S38. Smilar to Figure S5, but for EQ 35. 615 
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Figures S39. Smilar to Figure S5, but for EQ 36. 631 
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Figures S40. Smilar to Figure S5, but for EQ 37. 647 
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Figures S41. Smilar to Figure S5, but for EQ 38. 663 
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Figures S42. Smilar to Figure S5, but for EQ 39. 679 
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Figures S43. Smilar to Figure S5, but for EQ 40. 695 
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Table S1. The M&L foreshock catalog.  724 

Movie S1. 3D movie showing detailed spatiotemporal distribution of these foreshocks listed in the M&L 725 
catalog (also see Figure 2). 726 
 727 
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