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Abstract

The development of parameterizations is a major task in the development of weather and climate models. Model improvement

has been slow in the past decades, due to the difficulty of encompassing key physical processes into parameterizations, but also

of calibrating or â\euro tuningâ\euro the many free parameters involved in their formulation. Machine learning techniques

have been recently used for speeding up the development process. While some studies propose to replace parameterizations

by data-driven neural networks, we rather advocate that keeping physical parameterizations is key for the reliability of climate

projections. In this paper we propose to harness machine learning to improve physical parameterizations. In particular we

use Gaussian process-based methods from uncertainty quantification to calibrate the model free parameters at a process level.

To achieve this, we focus on the comparison of single-column simulations and reference large-eddy simulations over multiple

boundary-layer cases. Our method returns all values of the free parameters consistent with the references and any structural

uncertainties, allowing a reduced domain of acceptable values to be considered when tuning the 3D global model. This tool allows

to disentangle deficiencies due to poor parameter calibration from intrinsic limits rooted in the parameterization formulations.

This paper describes the tool and the philosophy of tuning in single-column mode. Part 2 shows how the results from our

process-based tuning can help in the 3D global model tuning.
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Figure 5.
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Key Points:14

• We apply Uncertainty Quantification to Single-Column Model/LES comparison15

to calibrate free parameters16

• We revisit model development strategy with an emphasis on processes for model17

calibration18

• The proposed tuning tool allows to formalize the complementary use of multicases19

with various metrics20

A major task in the development of atmospheric models is the development of pa-21

rameterizations to account for processes not resolved by the dynamical core. The im-22

provement of model is slow partly due to the difficulty of encompassing key processes23

into parameterizations and because parameterizations contain ‘free’ parameters that must24

be calibrated or ‘tuned’. Considering the number of parameters in a model, their cal-25

ibration is a complicated task, generally done manually. Recently, machine learning has26

been proposed as a replacement for these parameterizations. However, when models are27
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to be used for long-term projections, exploring states far from the training data, sole use28

of machine learning might be dangerous. It also seems counter-intuitive to replace our29

strong physical understanding with unconstrained systems. Our proposition consists in30

retaining parameterizations but adjoining new tools relying on machine learning to ac-31

celerate model development. In particular we use Gaussian process-based methods from32

uncertainty quantification to calibrate the free parameters at a process level. To achieve33

this, we focus on the comparison of single-column simulations and reference large-eddy34

simulations over multiple boundary-layer cases. This paper describes the tools and the35

philosophy of tuning in single-column mode. Part 2 emphasizes how this framework can36

help accelerate model development.37

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract38

The development of parameterizations is a major task in the development of weather and39

climate models. Model improvement has been slow in the past decades, due to the dif-40

ficulty of encompassing key physical processes into parameterizations, but also of cal-41

ibrating or ‘tuning’ the many free parameters involved in their formulation. Machine learn-42

ing techniques have been recently used for speeding up the development process. While43

some studies propose to replace parameterizations by data-driven neural networks, we44

rather advocate that keeping physical parameterizations is key for the reliability of cli-45

mate projections. In this paper we propose to harness machine learning to improve phys-46

ical parameterizations. In particular we use Gaussian process-based methods from un-47

certainty quantification to calibrate the model free parameters at a process level. To achieve48

this, we focus on the comparison of single-column simulations and reference large-eddy49

simulations over multiple boundary-layer cases. Our method returns all values of the free50

parameters consistent with the references and any structural uncertainties, allowing a51

reduced domain of acceptable values to be considered when tuning the 3D global model.52

This tool allows to disentangle deficiencies due to poor parameter calibration from in-53

trinsic limits rooted in the parameterization formulations. This paper describes the tool54

and the philosophy of tuning in single-column mode. Part 2 shows how the results from55

our process-based tuning can help in the 3D global model tuning.56

1 Introduction57

Atmospheric global or regional circulation models used either for numerical weather

prediction (NWP) or climate studies encompass a dynamical core and a physical com-

ponent. The dynamical core computes the spatio-temporal evolution of atmospheric state

variables by solving a discrete version of the fluid dynamic equations. The physical com-

ponent quantifies the impact on the resolved variables of radiative, thermodynamical and

chemical processes, as well as dynamical processes that occur at scales smaller than the

computational grid. These processes are handled by a suite of sub-models, most often

referred to as parameterizations, which provide source terms in the resolved-scale equa-

tions. Parameterizations (e.g., turbulence, convection, radiation, microphysics) are of-

ten based on a mixture of physical principles and heuristic description of the involved

processes, of their interactions and of their impact on the larger resolved scales. Although

it is difficult to trace back the origin of the term “parameterization” in climate modelling,
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it semantically points to the fact that the sub-models summarize the processes as func-

tions of the model state vector x (typically the value of zonal and meridional wind, sur-

face pressure, temperature and water phases at each point of the 3D model grid) that

depends on some free parameters. These free parameters arise from the simplification

of the complex nature of the subgrid processes (e.g., assuming a bulk thermal plume in-

stead of a population of plumes, stationarity). The atmospheric model can be summa-

rized as

∂x

∂t
= D(x) +

∑
p

Pp(x,λp) (1)

where D stands for the discretized form of the fluid dynamic equations, Pp for the source58

term provided by the parameterization of the process p and λp for the associated free59

parameters. This equation may however be too simplistic, as, in reality, a given param-60

eterization often depends on intermediate variables provided by other parameterizations61

(e.g., cloud fraction used in radiation, turbulence variance used in the cloud scheme) and62

computes additional prognostic variables (e.g., turbulence kinetic energy). Nevertheless,63

with this simplified framework, improving models through parameterization development64

means both to propose more appropriate functional forms Pp and to identify acceptable65

or better values of the free parameters λp.66

Among the different parameterizations, those involved in the representation of tur-67

bulence, convection and clouds still challenge state-of-the art NWP and climate mod-68

els (Holtslag et al., 2013; Nam et al., 2012; Nuijens et al., 2015; Klein et al., 2017; Ran-69

dall et al., 2003; Bony et al., 2015). Innovative and diverse concepts and ideas have been70

proposed over the past decade to improve this representation (Rio et al., 2019). A de-71

tailed understanding of the physical processes leading to the formation of low-level clouds72

can be obtained by Large-Eddy simulations (LES) (Guichard & Couvreux, 2017), which73

reproduce, with high fidelity, the turbulent dynamics within the clouds (e.g., Siebesma74

& Cuijpers, 1995; Neggers, Duynkerke, & Rodts, 2003; Wang & Feingold, 2009). LES75

are therefore increasingly used to derive and evaluate the conceptual models at the root76

of boundary-layer and shallow cloud parameterizations. The choice of the parameter-77

ization free parameters is also crucial for the simulation of clouds. Their calibration or78

“tuning” consists in searching for acceptable or optimal values of these parameters, such79

that the associated model configuration has a realistic behavior under various conditions80

and compared to a suite of observations (Mauritsen et al., 2012). Calibration is there-81

fore a fundamental aspect of NWP or climate model development. However, it is often82
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conducted without much control on the way it modifies the parameterization behavior83

at the process level as the calibration focuses more on regional or global constraints, such84

as the radiative balance of the Earth System for climate models, or performance met-85

rics (e.g. root mean square error, skill scores) for NWP models. Hourdin et al. (2017)86

compile the tuning strategies of several climate groups and emphasize that most of the87

parameters used to tune climate models (droplet size, fall velocity, entrainment rate) are88

related to clouds (see also Golaz et al., 2013), i.e. the most uncertain processes that af-89

fect radiation, the primary engine of the atmospheric circulation.90

Given the societal needs for reliable climate simulations and weather forecasts, the91

progress achieved by the global atmosphere modeling community has been found slow92

(Jakob, 2010). Several systematic errors in state-of-the-art models have been modestly93

reduced, such as those regarding the surface temperature over the eastern oceans (Richter,94

2015), the rainfall distribution in the Tropics (Flato et al., 2013), the variability of the95

liquid water path (Jiang et al., 2012) and the low clouds (Nam et al., 2012). The dead-96

lock of the cloud parameterization, highlighted by Randall et al. (2003), is still an issue97

today. This too slow improvement of models can be attributed to remaining deficiencies98

in the structure of the parameterization itself (the function Pp) but also to the calibra-99

tion of model parameters that can be considered as a bottleneck in model development.100

On the one hand, the calibration may not be done efficiently enough, and on the other101

hand, tuning may induce error compensations that contribute to slow model develop-102

ment. Indeed, a new model development usually starts with a model score degradation103

by breaking this compensation, as often experienced in the weather prediction centers104

where strong weight on well-established metrics slows down the implementation of new105

model development in the operational version (Sandu et al., 2013).106

Various avenues have been proposed to get around these difficulties and acceler-107

ate climate model improvement. A first avenue seeks to exploit the high resolution, ex-108

plicitly resolving convection, to reduce the number of involved parameterizations. With109

the recent increase of computer power, it is nowadays possible to run global kilometer-110

scale resolution simulations over a few months (Satoh et al., 2008, 2019; Stevens et al.,111

2019). However, the explicit simulation of the fluid dynamics associated with the life cy-112

cle of a cumulus requires grid resolution of the order of several tens of meters. Such res-113

olution will not be accessible in the foreseeable future for climate change projections which114

require simulations of the global Earth System covering at least several hundreds of years115

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(model spin-up plus transient simulations in response to anthropogenic forcing). The super-116

parameterization approach (Randall et al., 2003) proposes an intermediate pathway by117

introducing a convection-permitting model in each column of a conventional general cir-118

culation model (GCM) to replace the deep convection parameterization (Khairoutdinov119

et al., 2005). The use of a large-eddy model instead of a convection-permitting model120

in such framework further removes the boundary-layer and shallow convection param-121

eterizations (Grabowski, 2016; Parishani et al., 2017). A second avenue recently explored122

the potential of machine learning approaches, which ultimately envisions to replace some123

parameterizations by neural networks or similar algorithms, properly trained on convection-124

permitting model simulations or superparameterized GCM (Krasnopolsky et al., 2013;125

Brenowitz & Bretherton, 2018; Gentine et al., 2018).126

A third proposition consists in retaining parameterizations in models but adjoin-127

ing new tools relying on machine learning to accelerate model development. This choice128

is motivated by the fact that parameterizations summarize our current understanding129

of the dynamics and physics of atmospheric processes and offer the power of interpre-130

tation, crucial to build our confidence in the extrapolation beyond observed conditions131

realized by any climate projections. The ESM2.0, proposed by Schneider et al. (2017),132

belongs to this category. The authors defend that the major progress in Earth-System133

model development should come from a more systematic use of global observations and134

high-resolution simulations thanks to machine learning algorithms. They also underline135

the importance of climate model calibration. In particular, they stress that their new136

Earth System modeling framework comes with challenges such as developing innovative137

learning algorithms, identifying the best metrics, combining information from observa-138

tions and high-resolution, innovating in the design of parameterizations such that they139

can more easily benefit from new observations or evolution of the models (e.g., refine-140

ment of resolution).141

Along the same lines, we propose, in this paper, a new approach which allows the142

development of the parametrizations and their calibration to be tackled at the same time.143

We argue that a major slowdown of model improvement resides in the difficulty to clearly144

identify parameterization deficiencies and to properly disentangle them from the inher-145

ent calibration of their adjustable parameters at the process and global scales. It is likely146

that process-scale parameterization improvements are often hidden by the unavoidable147

full model retuning, required to maintain a reasonable radiative balance or acceptable148
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scores. In the proposed approach, machine learning is harnessed in a principled way to149

calibrate parameterizations at process level. We promote a more systematic use of the150

multi-case comparison between Single-Column Model (SCM) and LES to evaluate and151

calibrate parameterizations, as we advocate that a lot still remains to be learnt from this152

comparison. Such a systematic use is not feasible however without more objective and153

automatic methods than the traditional trial/error approach used to fix parameter val-154

ues during the parameterization development. Indeed, this trial/error approach is only155

applicable to one piece of a particular parameterization and one or two relevant cases156

at most. Here, we aim at assessing a set of parameterizations Pp for a series of test cases,157

which can be formalized as the question of the existence of a sub-space of the param-158

eters λp that allows to match metrics between SCM and LES results for the series of cases,159

within a given tolerance to error.160

Hourdin et al. (2017) reviewed the general practice for climate model calibration161

and proposed three different levels of calibration in a model development: a first cali-162

bration at the level of individual parameterizations, then a calibration of each compo-163

nent of the Earth System model and eventually a calibration of the full Earth System164

model. Distinguishing those three levels may avoid compensating errors that could arise165

if the calibration is only done at the last level. In this paper, we propose a methodol-166

ogy to address the first phase, i.e. the process-level calibration and defend that it can167

be part of the elaboration of a well-defined calibration strategy based on solid physical168

and statistical methodologies. By doing so, we tackle model development and param-169

eter calibration together rather than independently as currently done for most climate170

model development.171

Machine learning has already been proposed to calibrate free parameters (e.g., en-172

semble Kalman filters as in Schneider et al., 2017). The methodology retained here for173

model calibration uses history matching with Gaussian processes. History Matching is174

an efficient way to explore and reduce the domain of free parameters λp and document175

how a model physics, namely the suite of functions Pp, behaves within this domain. Williamson176

et al. (2013) applied History Matching to tune the Hadley Climate Model and stressed177

its advantage: it accounts for the various sources of uncertainties in assessing the com-178

patibility of the model with the reference: namely the reference uncertainty itself, the179

uncertainty introduced by the Gaussian process representation of the parametrization,180

and the intrinsic ability of the model to represent the reference (often referred to as struc-181
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tural error or model discrepancy). History matching inherently deals with the overcon-182

fidence issue, which emerges when model calibration is addressed as an optimization prob-183

lem (Salter et al., 2019). It has been widely used to calibrate models in astrophysics (Vernon184

et al., 2010), epidemiology (Andrianakis et al., 2017) and hydrocarbon reservoirs (Craig185

et al., 1996). It has been applied to climate models (Williamson et al., 2015, 2017) and186

is starting to be used to find biases in models (McNeall et al., 2019).187

Whilst history matching has been applied to calibrate 3D models, it has not been188

harnessed for process-level tuning, as we advocate here through application to SCM/LES189

comparison. The SCM approach provides confidence in the model’s ability to represent190

some of the key processes whereas a direct calibration of the 3D global model targeting191

large-scale constrains may hide compensating errors (as discussed in Williamson et al.,192

2017). SCM calibration is able to reduce the domain of the free parameters for a param-193

eterization, information that can be used for efficiently calibrating the full 3D global model194

(as we demonstrate in part II). The breakthrough proposed here was only possible thanks195

to a strong collaboration between the Uncertainty Quantification community and the at-196

mospheric modelers.197

The present paper focuses on parameterizations involved in the representation of198

boundary-layer clouds. Indeed, well-established case studies exist for such regimes and199

LES have been shown to realistically represent the main processes. However, this method-200

ology can be easily expanded to other parameterizations and other objectives in the Earth201

System.202

The paper is organized as follows: the next section describes the SCM/LES frame-203

work highlighting its advantages, recalls the different steps used in the development of204

a parameterization and details the new philosophy advocated here. Section 3 presents205

the statistical tool, with a focus on its philosophy and its main ingredients. Section 4206

presents a guideline for its use based on a simple illustration. The paper ends with con-207

clusions in Sect. 5. A companion paper (part II) illustrates the significant advances in208

model development offered by this tool. It exploits process-based calibration for model209

development and shows how this tool provides guidance for the tuning of a 3D global210

model.211
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2 A systematic use of the SCM/LES comparison212

Observations only provide a sparse view, in time, space and variables, of the phys-213

ical processes responsible for convection and clouds. In contrast, LES have the advan-214

tage of providing coherent 3D fields characterizing the dynamical and thermodynami-215

cal state of the atmosphere. Of course, LES models include turbulence and microphysics216

parameterizations and thus contain modeling uncertainties, but they have been shown217

to reproduce the turbulent dynamics of the clouds with high fidelity (e.g., Neggers, Duynkerke,218

& Rodts, 2003; Heus et al., 2009). As a result, LES have become a central tool in the219

development and evaluation of parameterizations of convection and clouds. Their anal-220

ysis has helped in building the conceptual models behind several parameterizations (e.g.,221

Neggers et al., 2002; Rio et al., 2010). LES are also used for the evaluation of the pa-222

rameterizations in particular those involved in the representation of boundary layers and223

shallow clouds (e.g., Ayotte et al., 1996; Golaz et al., 2002; Hourdin et al., 2002; Neg-224

gers et al., 2004; Siebesma et al., 2007; Rio & Hourdin, 2008; Caldwell & Bretherton, 2009;225

Neggers, 2009; Pergaud et al., 2009; Rio et al., 2010; Suselj et al., 2013; Neggers et al.,226

2017; Tan et al., 2018; Suselj et al., 2019).227

For their evaluation, parameterizations are often tested in a single-column frame-

work, particularly relevant for global circulation model parameterizations, which are fun-

damentally 1D. SCM are built by extracting, from a 3D model, a single atmospheric col-

umn, which integrates the same set of subgrid parameterizations (boundary-layer, shal-

low convection, deep convection and microphysics schemes) and is run in a constrained

large-scale environment (Zhang et al., 2016). The state vector of the SCM simulation

is then a restriction to one column xc of the full 3D state vector x and Eq. 1 reduces

to Eq. 2. The dynamical term D(x) becomes a source term Fc specified as a function

of time and altitude z; we however discard this dependency in the notation for simplic-

ity. It can also depend on the column full state vector, Fc(xc), if for instance the large-

scale advection is separated between a prescribed horizontal advection and a vertical ad-

vection computed as -w∂xc/∂z, where w is an imposed vertical velocity. During the SCM

integration, some parameterizations can be deactivated in which case the correspond-

ing source term is either neglected or included in the forcing Fc. It is the case for instance

when the radiative heating is imposed rather than being computed interactively by the

model radiation scheme or when turbulent surface fluxes are imposed rather than com-

puted by the model bulk paramerizations. What really matters in the SCM/LES approach
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is that both models use the exact same initial and boundary conditions and forcing terms.

In a simplified formalism, the SCM thus corresponds to

∂xc
∂t

=
∑

pactivated

Pp(xc,λp) + Fc(xc) (2)

and the LES to

∂y

∂t
= L(y) + Fc(y) (3)

with

xc(t = 0) = y(t = 0) (4)

where y stands for the full LES state vector, L(y) to the LES model equations (which228

include the LES parameterizations) and y to the horizontal-domain average of the LES229

state vector. The SCM/LES framework thus provides a rigorous comparison between230

both simulations, as it removes the uncertainties, which may arise from different initial231

conditions or large-scale forcing when directly comparing SCM to observations. This con-232

strained framework avoids the need to disentangle parameterization contributions from233

their coupling with the large-scale dynamics. Another important aspect of the method234

is that SCM simulations are computationally very cheap. The joint utilization of LES235

and SCM was first advocated by Randall et al. (1996); Ayotte et al. (1996) and has been,236

since then, widely used within the Global Energy and Water Exchanges (GEWEX) Cloud237

System Study (GCSS; Browning et al. (1993) community, now renamed the Global At-238

mospheric System Studies, GASS, community). One of the most important legacies of239

this group for the atmospheric modeling community is an ensemble of test cases that con-240

nect observations, LES and SCM, and which sample many typical situations over the globe,241

thought to be of importance for the climate system (e.g., Siebesma & Cuijpers, 1995;242

Brown et al., 2002; Duynkerke et al., 2004). As such, this framework has been increas-243

ingly used in model development (e.g., Hourdin et al., 2013; Gettelman et al., 2019; Hour-244

din et al., 2020; Roehrig et al., 2020), all the more so as SCM simulations have been shown245

to reproduce uniquely the behaviour of their GCM justifying the use of SCM simulations246

for improving weather and climate models (Hourdin et al., 2013; Neggers, 2015; Gettel-247

man et al., 2019).248

Traditionally, parameterizations are often tested over a few specific cases for which249

high-resolution simulations are available (e.g., Ayotte et al., 1996). Recently, the im-250

portance of using a wide benchmark of cases covering the different regimes encountered251

in reality instead of only a limited number of cases has been stressed (e.g., Neggers et252
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al., 2012). We also highlight here the importance of using an extensive ensemble of cases.253

The use of multi-case is indeed essential for exploring the various degrees of freedom of254

the parameterization package. A stable boundary-layer case will constrain the turbulent255

diffusion; the combination of cloud free and cumulus topped convective boundary lay-256

ers will ensure that cloud cover is obtained for a good representation of convection; tran-257

sition cases from stratocumulus to cumulus will ensure the extension to stratocumulus258

regimes, etc. Combining multi cases and multi metrics is a much more robust assessment259

of model performance as also highlighted by (Neggers et al., 2017). To better use multi-260

cases, one important technical aspect is a common definition, in a predefined acknowl-261

edged format, for the description of the setup of reference cases, to be used both to per-262

form SCM simulations or LES. This definition should include the description of the ini-263

tial profiles and large-scale forcing but also contain information on the configuration to264

be used (e.g. the type of surface boundary conditions, the existence of any nudging to-265

wards reference vertical profiles, the way large-scale forcings are provided). An interna-266

tional initiative is ongoing to agree on the description of the format for this definition267

file. Sharing a standard to define cases will ease the realization of cases by any model268

and facilitate the share of new cases. The importance of creating libraries of high-resolution269

simulations representing different climate is another important aspect already identified270

as a goal by the GCSS community and stressed in Schneider et al. (2017). A common271

format and the libraries of LES are an important pre-requisite for the tool presented here.272

In addition, both will contribute to bringing the process-scale community and the com-273

munity developing global models more closely together.274

When comparing SCM and LES, the modeler has to decide which metrics to con-275

sider. Various types of metrics can be used. One can directly compare components of276

the SCM state vector xc to their equivalent in LES, the horizontal domain-average state277

vector y (e.g., vertical profiles of potential temperature, specific humidity and less of-278

ten wind components). Assessing the ability of the parameterizations to reproduce the279

time evolution of xc for a given forcing is indeed the ultimate goal. By doing so, one not280

only tests the behavior of one particular parmaterization but also its coupling with the281

other parameterizations activated in the SCM. However, it may make the determination282

of the behavior of the targeted parameterization more difficult and can hide compensat-283

ing errors: for example, a given temperature turbulent flux can be obtained by differ-284

ent contributions from organized structures and small-scale turbulence when represented285
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by two different parameterizations such as in the Eddy-Diffusivity Mass-Flux framework286

(Hourdin et al., 2002; Siebesma et al., 2007; Neggers, 2009; Pergaud et al., 2009). An-287

other type of metrics targets parameterization-oriented variables, such as mass fluxes,288

heating source associated with one part of the motion only, subgrid-scale distribution289

of temperature or water, cloud vertical structure, updraft vertical velocity, area fraction290

or entrainment and detrainment rates. The metric, from the SCM point-of-view, is no-291

longer derived from the model state variables but corresponds to an internal variable to292

the parameterizations. However, additional uncertainty arises from the way such vari-293

ables and associated metrics can be derived from LES. For example, clouds can be char-294

acterized in an LES as all the grid cells containing condensed water (e.g., Siebesma &295

Cuijpers, 1995). Combined with thresholds on the vertical velocity, cloudy updrafts can296

be separated from cloudy downdrafts. The analysis of the joint distribution of variables297

(Chinita et al., 2018) or the use of ad-hoc passive tracers can also be used in the LES298

to identify objects relevant with the conceptual model of the parameterization (e.g., Cou-299

vreux et al., 2010; Rio et al., 2010; Chinita et al., 2018; Brient et al., 2019). Such parameterization-300

oriented diagnostics have helped in the refinement of the conceptual model at the root301

of the parameterization (e.g., Rio et al., 2010; Jam et al., 2013; Rochetin et al., 2014).302

However, a question arises if such diagnostics should also be used as metrics in the cal-303

ibration process. Answering this question on the relative importance to give to one type304

of metrics or another requires efficient algorithms, as the one proposed here, to explore305

the various options. Note also that using state vector-based metrics on a large set of cases306

that are more or less sensitive to one aspect of the parameterization may help avoid the307

error compensation issue. Neggers et al. (2017) propose to combine simple metrics on308

a unique score metric through the use of the bias and the root-mean square errors on309

each metric. As will be detailed later, we have decided to explicitly keep the individual310

information brought by each metric.311

In line with Neggers et al. (2012), we advocate that, although not a new approach,312

the power of SCM/LES comparisons is largely underestimated and under-exploited. Ap-313

plying history matching to this comparison is a way to fully take advantage of the SCM/LES314

on a large multi-case ensemble and explore whether there exists a sub-space of the pa-315

rameter space for which the SCM is able to reproduce a series of LES simulations within316

a given uncertainty. Note that the metrics can be different from one case to the other.317

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

This tool offers the possibility to revisit the different intercomparison exercises documented318

in the literature and to benefit from this rich database still underused.319

Eventually, a point that becomes crucial when using LES for parameterization eval-320

uation and tuning is the assessment of LES reliability and its uncertainties. Although321

it has been shown, through the comparison to observations, that LES is able to correctly322

reproduce boundary-layer processes and shallow clouds (Couvreux et al., 2005; Neggers,323

J, & Siebesma, 2003; Heus & Jonker, 2008), LES, as in many models, come with uncer-324

tainties associated to the advection scheme and the parameterizations still active in such325

simulations concerning small-scale turbulence, microphysics, radiation and surface fluxes.326

Sullivan and Patton (2011) have shown that a horizontal resolution of a few tens of me-327

ters for convective boundary layers is enough to get convergence for the mean, fluxes and328

variances but 10m resolution is needed in order to get convergence on skewness. The sen-329

sitivity of LES of shallow convection to resolution, size of the domain, subgrid model and330

advection scheme has been widely investigated (Brown, 1999; Matheou et al., 2011; Pres-331

sel et al., 2017; Zhang et al., 2017; Wurps et al., 2020). In particular, it has been shown332

that most of the ensemble-averaged turbulence statistics are reasonably insensitive, al-333

lowing one to use LES results to develop and evaluate convection parameterizations. How-334

ever, some characteristics of the cloud fields (e.g. size distribution of individual clouds)335

are more sensitive to resolution or advection scheme (Brown, 1999; vanZanten et al., 2011).336

Uncertainty around this reference should be documented so that history matching can337

explicitly take it into account.338

3 High-Tune Explorer (htexplo), a statistical tool to calibrate model339

parameters and more340

3.1 Overview341

The present section describes the tool proposed to perform process-based calibra-342

tion. Its objective is twofold: (i) characterize the domain of the model parameter val-343

ues that allows the model to appropriately capture process-level metrics and which can344

be used for subsequent calibration of the global model, and (ii) identify the model pa-345

rameters that limit model performance and thus highlight the need for model param-346

eterization revision. The tool relies on history matching approach developed by Vernon347

et al. (2010) and first used for climate studies by Williamson et al. (2013). This method348

aims at removing “unphysical” regions of parameter space iteratively, refocusing the search349
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for “acceptably tuned” models at each step. The tool finds the subspace of the model350

parameter space containing simulations consistent with the reference metrics, acknowl-351

edging the various sources of uncertainty. This tool has already been successfully applied352

to identify the acceptable range of model parameter values in the 3D configuration of353

the Hadley Centre climate model (Williamson et al., 2013, 2015) or in the NEMO oceanic354

model (Williamson et al., 2017). It is here used for the first time in the context of the355

SCM/LES comparison for a given set of cases.356

As already stated in the previous section, we focus here on the parameterizations357

involved in the representation of boundary-layer clouds (turbulence, convection, cloud358

micro and macrophysics, radiation). However, this methodology can be easily expanded359

to other parameterizations and other objects of the Earth system as soon as reliable ref-360

erences are available.361

Figure 1 sketches the main steps of the High-Tune Explorer (htexplo in the follow-362

ing for an explorer to use High-resolution simulation to improve and Tune parameter-363

izations) tool:364

• 1. Metric selection and references First, the cases and associated target met-365

rics are selected. The relevant reference for each metric is then identified and the366

associated uncertainty is estimated. In the present case, the reference is an LES367

and the associated uncertainty is based on an LES ensemble. Observations could368

also be used with an associated error when an LES is not available. This phase369

is not model-specific and could be shared between different models.370

• 2. Selection of model parameters The model parameters to be calibrated are371

identified and their possible range of values are determined.372

• 3. Experimental design and SCM runs The experimental design consists of373

defining the ensemble of experiments (or SCM) to be run. The goal is to optimally374

sample the parameter space and provide a small set of parameter values for which375

the single-column model will be run. Metrics are computed from each of the SCM376

simulations and form the training data-set on which emulators are built.377

• 4. Building emulators, i.e. construction of surrogate models, also called “em-378

ulators”, one for each metric. Each emulator is based on a Gaussian Process (GP)379

and predicts the corresponding metric value at any point of the full parameter space,380

without running the SCM. The GP statistical model also provides a probability381
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distribution of its prediction, thus quantifying the prediction uncertainty for use382

in calibration.383

• 5. History matching The comparison between the reference metrics and those384

inferred with the emulators is based on a distance that accounts for reference un-385

certainty, modeler tolerance to error or model discrepancy (induced by e.g., mis-386

representation of specific processes, inaccuracy of numerical solvers, model reso-387

lution) and emulator uncertainty. History matching rejects parameter values that388

lead to unacceptable model behavior (too large distance from the reference) and389

thus defines a not-ruled out yet (NROY) space, the model parameter space that390

cannot be further reduced given the sources of uncertainty.391

• 6. Iterative refocusing To reduce the emulator uncertainty, but only where needed,392

new iterations (or waves) following steps 3 to 5 are performed, sampling the NROY393

space obtained at the end of the previous wave for the design and only construct-394

ing emulators over the NROY domain.395

Details on the different steps are given below. For simplicity, we first describe them for396

the first iteration and only one metric. Subsequent iterations and the addition of other397

metrics are discussed in Sect. 3.7. This section ends with a discussion about the rela-398

tionship between the present tool and more common tools used for calibration and sen-399

sitivity analysis.400

3.2 Step 1: Metric selection and references401

The metrics used to evaluate the SCM behavior depend on the physical situation402

considered and the parameterization hypothesis. Scalar metrics based on a dynamical403

or thermodynamical variable (e.g., potential temperature, water vapor mixing ratio, wind404

speed, cloud fraction) sampled at a given time can be used, such as the value at a given405

vertical level, the average or the maximum over a given layer (e.g., boundary layer, cloud406

layer), or the maximum over the whole atmospheric column. Radiation-oriented met-407

rics are particularly relevant to enhance the link between the present process-oriented408

model calibration and the calibration of the corresponding 3D configuration. Ideally, the409

chosen metric should be as insensitive as possible to the model vertical resolution. In that410

regard, integrals (or averages) are good candidates for scalar metrics, as will be illustrated411

in Part II. Root-mean square errors are not encouraged for two reasons, i/ there are usu-412
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Figure 1. Schematic of the different steps of the htexplo tool

ally associated to a smaller signal to noise ratio and ii/ the Implausibility (see Sect. 3.6)413

is already a kind of root-mean square error. The number of metrics to be used is gen-414

erally of the order of ten, but it can be many more.415

More complex metrics such as vertical profiles, time series or spatial fields, can also416

be considered. In that case, methods are used to reduce the dimensions of the outputs417

and principal component decomposition is one option (e.g., Salter et al., 2019). How-418

ever, scalar metrics, taken at a given time, or averaged over a short period of time, seem419

often sufficient to robustly constrain most of the SCM simulations (Personal communi-420

cation O Audouin). Therefore, in the present paper and in Part II, only scalar metrics421

will be used. They include boundary-layer average potential temperature and maximum422

cloud fraction.423

References and their associated uncertainty are estimated from an LES ensemble.424

There are a priori two possibilities to build such an ensemble, which can be combined.425

The first consists in building the ensemble from simulations performed by different large-426
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eddy models, as has been done in several GCSS intercomparison exercises (Brown et al.,427

2002; Siebesma et al., 2003; vanZanten et al., 2011; Pressel et al., 2017). The reference428

thus corresponds to the LES ensemble mean, while the uncertainty is quantified by the429

LES ensemble variance. The second option, used in this paper, relies on only one large-430

eddy model and estimates the uncertainty around the reference model configuration by431

performing sensitivity experiments to horizontal and vertical resolution, domain size, and432

parameterization options (e.g., turbulence, microphysics, surface fluxes, radiation). In433

this study, we have chosen to use the simulation realized with the higher resolution over434

the largest domain and with the most relevant parameterization options as the reference,435

but the ensemble mean could also be used. The large-eddy model used in this study is436

the LES-configuration of Meso-NH (Lac et al., 2018). It makes use of a fourth-order cen-437

tered discretization associated with an explicit fourth-order Runge-Kutta time integra-438

tion. Figure 2 illustrates the spread obtained from a Meso-NH LES ensemble exploring439

the sensitivity to horizontal, vertical resolution, domain size and options in the turbu-440

lence and cloud schemes for one given case, namely the ARM Cumulus case, which is441

a golden case for the study of continental cumulus (Brown et al., 2002). Table A2 in the442

Appendix describes in detail the different simulations used to estimate the uncertainty.443

Consistently with the literature (Brown et al., 2002; Matheou et al., 2011; vanZanten et444

al., 2011; Zhang et al., 2017), domain-average conserved thermodynamical quantities are445

weakly sensitive to changes in resolution, domain size and parameterization choices while446

the domain-average liquid water content and cloud fraction exhibit more spread. Met-447

rics derived from those latter quantities will therefore be associated to a larger uncer-448

tainty. Figure 2 also indicates in grey shading the spread obtained from the LES inter-449

comparison of Brown et al. (2002) highlighting a similar uncertainty estimate between450

the two methods mentioned above. Similar results are obtained for LES ensembles of other451

intercomparison exercises (not shown). For a given metric f , rf is the reference metric452

value, estimated from the reference LES simulation or the average of the LES ensem-453

ble and σ2
r,f is the associated square error estimated from the LES ensemble. Note that,454

in the absence of available LES, observations can also be used as a reference to be com-455

pared to the SCM runs as illustrated in Ahmat Younous et al. (2018) but the observa-456

tion error needs to be quantified.457
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Figure 2. Vertical profile of (a) potential temperature, (b) water vapour mixing ratio, (c) liq-

uid water content and (d) cloud fraction averaged over the horizontal domain at the 10th hour of

the simulation (1530 LT) and time series of (f) the cloud top and (e) the maximum cloud fraction

over the atmospheric column. The grey shading corresponds to the results of the Brown et al.

(2002) intercomparison. The different color lines correspond to different sensitivity tests realized

with Meso-NH changing either, one by one, the size of the domain, the vertical or horizontal reso-

lution and some option in the cloud scheme, microphysics scheme or turbulence scheme (detailed

in Table A2).
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3.3 Step 2: Selection of model parameters458

The number of model parameters can be large (generally on the order of 10 for each459

parameterization). Estimating the prior range of values that needs to be explored for460

each of them requires the modeler’s expertise and experience about the model and pa-461

rameterizations. The definition of this range is an important step as the results are only462

valid in this predefined parameter space (Williamson et al., 2013). So, we advise to choose463

a range as wide as possible in the absence of physical reasons or numerical concerns for464

constraining it. Nevertheless, the user might consider some tradeoff as the smaller the465

ranges, the smaller the space to explore.466

As the tool samples any parameter independently from the others (see Step 3), the467

method remains efficient even though a parameter with no influence on the results was468

included. A sensitivity analysis (Oakley & O’Hagan, 2004) could be used as a prelim-469

inary step in order to reduce the number of parameters selected but may not be a good470

idea in general (see Sect. 3.8). Depending on the predefined range of parameter values,471

the user can consider either linear or logarithmic variations of the parameter values.472

In the following, we consider a set of parameters λ = (λk)k, which is a subset of473

the model parameters (λp)p (see Sect. 1).474

3.4 Step 3: Experimental design and SCM runs475

Once the model parameters are selected and their range of values defined, an ex-476

perimental design is built. It corresponds to the selection of a relatively small set of val-477

ues for the model parameters (λi)i=1,...,n, usually on the order of ten times the number478

of parameters. It explores the initial (or input) space of the parameter values in the range479

given for each parameter. An SCM simulation is performed for each of them and pro-480

vides the state vector xc(λi). The objective is to ”fill” the parameter space as uniformly481

as possible maximizing the minimum distance between points. Here, as classically used482

for the design of computer experiments, a Latin Hypercube (LHC) (Williamson et al.,483

2015) is used to efficiently sample the input parameter space. Classically, a LHC for a484

n-member ensemble uniformly divides each dimension of the input space into n bins that485

are sampled once each and only once. All the parameters are thus varied simultaneously486

in contrast to other sensitivity analysis approaches such as in the Morris sensitivity anal-487

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ysis (Saltelli, 2002), where parameters are varied one by one. The LHC sampling used488

here maximizes the minimum distance between the selected points of the input space.489

More precisely, here we use k-extended latin hypercubes as proposed by Williamson490

(2015). It consists in producing several LHCs, added sequentially, which ensure that each491

additional LHC samples an area of the space that has not been sampled yet by the pre-492

vious LHCs. Such a design provides the advantage of being able to robustly check the493

GP performance on well-designed sub-LHCs.494

3.5 Step 4: Building emulators495

The selected metric (see Step 1) is computed for each SCM simulation, noted f(λi)496

for i = 1, . . . , n. These numbers serve as a training dataset for the building of an em-497

ulator. The emulator is then used to predict the metric values f(λ) for any vector of pa-498

rameter values λ in the input space.499

Specifically, we use a Gaussian process (GP), a well known statistical model which

has the advantage of interpolating observed model runs and provides a probabilistic pre-

diction. The emulator gives a probability distribution for f written as:

f(λ) | β, σ2, δ ∼ GP
(
m(λ,β), k(·, ·, σ2, δ)

)
,

where m(λ,β) is a prior mean function with parameters β = (βi)i and k a specified

kernel (a covariance function describing the covariance between any 2 points). The ker-

nel has a parameter that normally controls variance, σ2, and parameters δk for each di-

mension of the input parameter λk that control the correlation attributed to each input.

To start with, we assume a stationary kernel, i.e., the covariance only depends on the

distance between points and not the absolute position. The GP is such that any finite

collection f(λ1), . . . , f(λn) has a multivariate normal distribution with mean vector m(λ1,β), . . . ,m(λn,β),

and variance matrix Σ with Σij = k(λi,λj , σ
2, δ). Let the training data be F = (f(λi))i=1,...,n,

then

f(λ) | F ,β, σ2, δ ∼ GP
(
m∗(λ,β), k∗(·, ·, σ2, δ)

)
,

where there are well-known closed form expressions for m∗ and k∗ (Williamson et al.,500

2017). Note that m∗ and k∗ are the updated mean and covariance representing what the501

emulator has ‘learned’ from the data, F .502
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Whilst there are many possible prior choices of m and k, htexplo uses a 2-phase503

approach. First, we impose a structured mean surface m(λ,β) = βTg(λ) as a linear504

combination of simple functions of the input parameters contained in the vector g(λ)505

(e.g. monomials, Fourier functions and interaction terms are chosen through the forwards506

selection and backwards elimination method described in Williamson et al. (2013)). In507

the second stage, we use the squared exponential kernel function and Hamiltonian Monte508

Carlo (HMC, implemented in Stan – Carpenter & Coauthors, 2017) to sample from the509

posterior distribution of the parameters β, σ2, and δ given F (note that the mean sur-510

face m(λ,β) is not directly fitted in phase 1, but its structure is chosen, with Bayesian511

inference ultimately used in fitting for phase 2).512

The choice of HMC implemented in Stan was motivated by requiring robust au-513

tomation of emulator building across many metrics and cases, without needing the con-514

stant statistical expertise to diagnose MCMC convergence issues and to fix them by hand515

each time. Stan affords us with the ability to specify flexible and intuitive priors, and516

we use weakly informative priors as advocated by Gelman (2006). With the exception517

of the intercept term (which is uniform), our prior for each β is N(0, 10) and we use the518

OLS fitted values as starting values for the HMC. We set δk ∼ Gamma(4, 4) for all k519

to allow a wide range of potential correlation structures (this is a weakly informative prior)520

whilst penalising very small values that typically have high likelihoods, but lead to em-521

ulators with no predictive power (for discussion, see Volodina, 2020). Our prior for σ2
522

is a truncated Normal (at 0), with mean at the residual from our OLS fits, and variance523

set using the variability of the ensemble (full details for these choices in Volodina, 2020).524

The emulator is then tested using standardized Leave One Out diagnostics on the525

training data. These tests remove one point at a a time from the training set and use526

the emulator fitted on the remaining data to predict the removed point. Repeated over527

the training set, we then check whether the majority of left out points lie within 95%528

prediction intervals (we would expect 5% to miss). We also remove sub-designs from the529

training set and attempt to predict the whole sub-design, again checking to see if we have530

good posterior coverage of the ensemble. If the emulator fails these checks we revisit the531

computation of the emulator. For example, the procedure described in Volodina and Williamson532

(2020) (and available in htexplo ) can be used to derive an appropriate non-stationary533

kernel k before refitting the emulator by HMC. Once fitted, the GP expectation E [f(λ)]534
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provides an estimation of the metric for any given λ, and its variance Var [f(λ)] provides535

an uncertainty around this estimation.536

SCM runs are computationally cheap, but the fitted emulators are even cheaper537

and thus allow the computation of millions of predictions, with associated uncertainties,538

in a short time (a few minutes). This enables us to numerically define the space contain-539

ing acceptable sets of parameters with respect to the chosen metrics and in particular,540

to visualize it (Step 5). The choice of Stan has proven effective for this project, though541

it does not scale well to larger ensembles. Going forward, a new version of the tools de-542

faulting to MAP estimation and using efficient parallel implementation has just been re-543

leased enabling millions of predictions in just a few seconds (Williamson & Volodina, 2020).544

3.6 Step 5: History matching545

The htexplo tool relies on the history matching technique, which seeks to rule out

parameter values from the input space that are “implausible”, given the SCM behav-

ior for these parameter values and the sources of uncertainty. These sources include the

reference (observation) error, treated as a random quantity with mean 0 and variance

σ2
r,f , and the SCM discrepancy, which has mean 0 (unless the user knows the direction

in which the model is biased) and variance σ2
d,f (Sexton et al., 2011). The emulator is

used to estimate the model behavior on a much larger sample of the input space than

possible with the SCM. To history match the SCM behavior, we introduce the “Implau-

sibility” measure for the metric f (Williamson et al., 2013), If (λ), which is a distance

between the metric prediction f(λ) by the emulator at λ, and the reference metric value,

rf , with respect to the norm induced by our second-order uncertainty specification, noted

|| ||H below. The Implausibility reads

If (λ) = ||rf − f(λ)||H =
|rf − E [f(λ)] |√

Var [rf − E [f(λ)]]

=
|rf − E [f(λ)] |√

σ2
r,f + σ2

d,f + Var [f(λ)]
.

(5)

The model discrepancy for the metric f , σd,f , accounts for the model structural546

error due to the inherent inability of the SCM to reproduce the LES exactly (due to un-547

resolved physics or missing processes, for example). It could be defined as the minimum548

error possible when exploring the full set of parameters, however, this could permit the549

SCM to be close to the reference for the wrong reasons and does not account for mul-550

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

tiple metrics and cases, so we avoid this definition. Instead it is typically defined to be551

the uncertainty left in the difference between the SCM metric when the parameters are552

fixed at their best values (fixed the same for all metrics) and the references. This quan-553

tity is perhaps the target of model development in the first place and, as such, is unknown.554

For example, suppose we want to test the ability of a new parameterization to capture555

the behaviour of the reference. With the standard definition of discrepancy, the uncer-556

tainty needed so that the new parameterization captures the behaviour of the reference,557

it is not clear how to proceed with testing. Our approach instead is to treat model dis-558

crepancy as a “tolerance to error” as detailed in Williamson et al. (2017). The tolerance559

to error is the distance between model results and the reference that the modeler would560

be satisfied with, enabling modellers to place confidence in certain metrics/parts of their561

parameterization, and relax restrictions on others as needed. As illustrated in Sect. 4562

and Part II, defining this tolerance to error can be a difficult a-priori task; however ex-563

perimenting with this value provides important insights into the behavior and its inher-564

ent limitations. The most attractive feature of this approach to discrepancy is that, for565

a given tolerance to error, if the induced NROY space is empty it means that the pa-566

rameterization is not able to reproduce the reference under the given tolerance. Either567

the tolerance can be relaxed, accepting the limitations of the current set of parameter-568

izations, or the parameterization can be revisited.569

The implausibility defines a membership rule for NROY space after the first iter-

ation:

NROY1
f = {λ | If (λ) < T}.

where T is a chosen threshold (or cutoff). For scalar metrics, it is standard to use T =570

3 justified using Pukelsheim’s rule that states 95% of the probability density for any uni-571

modal distribution is within 3 standard deviations of the mean (Pukelsheim, 1994). Us-572

ing this threshold makes it unlikely that good parameter values are ruled out by chance.573

To measure and visualize NROY space the Implausibility If (λ) is calculated on a ran-574

dom LHC sampling of a large number (on the order of hundreds of thousands or millions)575

of vectors λ.576

Note that If (λ) can be smaller than the chosen threshold T either because E [f(λ)]577

is close to the reference or because the sum of the different errors is large. When the un-578

certainty of the emulator is larger than the tolerance to error and observation error, points579
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that should be ruled out are kept in the NROY. In this case, further iterations are de-580

sirable in order to increase the density of the sampling of NROY and hence improve the581

emulator quality and reduce the associated uncertainty.582

3.7 Iterative refocusing and multi-metrics583

One advantage of this method is to progressively optimize the design of simulations584

to be run. New simulations are iteratively added only where it is useful to increase the585

emulator accuracy. This is performed by iterating the same process previously described586

several times in ”waves”, (this is termed ”iterative refocusing” and is a fundamental part587

of the history matching approach). Each new iteration n starts from the remaining space588

NROYn−1
f estimated at the end of the previous wave. Because of its complex geometry,589

a LHC sampling, as in the first wave, cannot be applied, and therefore the remaining space590

is re-sampled uniformly. A new SCM simulation ensemble is performed with this design591

and is used to proceed with steps 4 and 5. The new emulator is only valid in the new592

parameter space, namely NROYn−1
f . Outside this space, we rely on the emulators from593

the previous waves. As in Step 5, to measure and visualize NROYn
f , the implausibility594

is computed over a large number of points in the input space. The threshold T may be595

varied between waves, but we advise to keep it to 3 as long as the process has not con-596

verged (i.e. the emulator variance within the current NROY space remains large – see597

also Sect. 4 and Part II). The iterative refocusing stops when the convergence of the se-598

quence (NROYn
f )n has been qualitatively achieved.599

So far, we have considered only one metric, but several metrics (fk)k can be com-

bined at the same time. An Implausibility is then computed for each metric and the to-

tal NROYn space is the intersection of the NROYn
fk

associated with each metric:

NROYn =
⋂
k

NROYn
fk

=
{
λ | #{k | Infk(λ) > T} ≤ τ

}
,

# represents the number of metrics fulfilling the condition indicated into brackets (where600

the implausibility is greater than the threshold) and τ , the number of metrics for which601

the model is allowed to be far from the reference while still kept in the NROY space. If602

τ = 0, all metrics must satisfy our implausibility cutoff. If there are a large number of603

metrics then τ should be increased (τ ≥ 1) to avoid multiple testing problems mean-604

ing that too many good parameter values are ruled out by chance. If a modeller seeks605

to prioritize certain metrics, they can either be introduced in early waves, ensuring that606
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the NROY space satisfies priority metrics first before introducing new ones, or the tol-607

erance to error, which is defined for each metric, can be used to impose priorities (a larger608

tolerance to error induces a less constraining metric).609

3.8 Sensitivity analysis provided by the tool610

The htexplo tool provides its own sensitivity analysis, which, due to the use of multi-611

wave history matching, is rather different from traditional methods applied to models612

throughout the literature. Traditional methods, either derivative-based (Saltelli, 2002),613

or variation-based (Oakley & O’Hagan, 2004), essentially seek to identify which param-614

eters modify model output. This can help focus further study, model development or even615

observation collection to help understand these parameters. Note that the htexplo tool616

provides at the first iteration a sensitivity analysis over the entire space where correla-617

tion among parameters is included as the parameters are not varied one at a time.618

However, for calibration purposes, once history matching is considered as a valid619

approach for a given model, the sensitivity analysis should not be done on the full model620

input space. By using history matching, we acknowledge that there is a large part of the621

model parameter space that is not useful for understanding reality. The Gaussian pro-622

cesses remove this uninformative space in order to target the space where the model be-623

comes useful. Once we have this useful subspace, the usual and important questions that624

are posed by sensitivity analysis should be considered. For example, how is the model625

output changing as we move through parameter space and which parameters are respon-626

sible for these changes? As all models within the NROY space are consistent with our627

metrics, sensitivity analysis as described here is now really focused on the relevant sub-628

space. Note that sensitivity analysis on the original input space does not answer these629

questions. Seen through the history matching lens, on the full space, sensitivity anal-630

ysis is showing us which parameters are responsible for the variability in the space we631

are about to cut. Whilst informative for helping us cut the space efficiently, sensitivity632

analysis is not necessary at this stage. Our methods are already efficiently able to do this.633

Performing variance-based sensitivity analysis in NROY space is not trivial and we634

are not aware of any methods that are currently able to do this. Variance-based sensi-635

tivity analysis requires independent input spaces (which is what we always start with636

in wave 1). But after cutting space, we have complex relationships between the param-637
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eters. NROY space may not even be simply connected, and can be highly non-linear. Ef-638

ficient methods for calculating sensitivity in these unusual spaces would be interesting639

to apply for history matching as an avenue for further research.640

As a practical tool, the density plots such as those given in Fig. 5, provide their641

own type of second-order sensitivity analysis. They allow us to see, as we move in two642

dimensions of a parameter space, how the shape is changing and, moreover, which com-643

binations of parameters it is important to get right and, not usually included in a sen-644

sitivity analysis, how they need to be set in order to get sensible answers. As well as all645

of the benefits we have for tuning, we would argue that history matching is achieving646

many of the same things that a sensitivity analysis achieves in terms of informing the647

modelling, but concentrated only on the model input space that is consistent with the648

observations.649

3.9 On the use of history matching and the avoidance of optimization650

Whilst History matching is well established and is being used in a growing num-651

ber of climate studies, other methods of calibration are more popular and we believe should652

be avoided for process-based model development. Whilst many methods based on op-653

timizing a cost function exist (Hourdin et al., 2017), the most popular in the UQ com-654

munity is Bayesian calibration (Kennedy & O’Hagan, 2001). Bayesian calibration requires655

a similar set up to history matching (emulators, observation errors and model discrep-656

ancy) and then jointly finds the posterior probability distribution of the “best” value of657

the input parameters and the model discrepancy (strong prior information on the dis-658

crepancy is required to make this sensible, Brynjarsdóttir & O’Hagan, 2014). Optimiza-659

tion methods like these do not afford us with the chance to falsify a parameterization660

(they always find the best value), nor do they give all parameter values that are consis-661

tent with the observations (in our case reference LES) that can then be used when tun-662

ing the 3D model (see Part II).663

4 Illustration of htexplo on a simple case664

In this section, the use of htexplo is illustrated for the ARPEGE-Climat 6.3 atmo-665

spheric model based on a single 1D case. More comprehensive exploitation of the tool666

will be given in Part II.667
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4.1 Model, parameters and case-study668

ARPEGE-Climat 6.3 is the atmospheric component of the CNRM-CM6-1 climate669

model (Voldoire et al., 2019; Roehrig et al., 2020). It has 91 vertical levels, 15 of them670

below 1500 m. The model time step is 15 minutes. Here, we use its SCM version and671

focus on its representation of a clear convective boundary layer. To simulate the processes672

involved in the boundary layer, the model combines a turbulence scheme with a mass-673

flux scheme, thus following the Eddy-Diffusivity Mass-Flux framework (e.g. Hourdin674

et al., 2002; Soares et al., 2004; Siebesma et al., 2007; Pergaud et al., 2009). The mass-675

flux scheme represents convection in a unified way from the clear convective boundary676

layer regime to the shallow cumulus and deep convection regimes (Piriou et al., 2007;677

Gueremy, 2011). In this section, we aim at analyzing the importance of the values of free678

parameters of the turbulence scheme on the simulation of an idealized clear boundary679

layer. A boundary-layer-top vertical entrainment is activated in the default version of680

ARPEGE-Climat 6.3 (see (Roehrig et al., 2020)). For the sake of simplicity of the present681

illustration, and also because this parameterization is weakly active in the analyzed case,682

it is fully deactivated in the following section. Similar results are obtained when it is ac-683

tivated.684

The turbulence scheme is based on Cuxart et al. (2000) which aims at providing

the vertical turbulent fluxes from which the turbulent source term is derived for the prog-

nostic variables (see more details in Roehrig et al., 2020). The scheme relies on a prog-

nostic equation of the grid-scale turbulence kinetic energy, e:

∂e

∂t
=
−1

ρ

∂(ρw′e′)

∂z
− (w′u′

∂u

∂z
+ w′v′

∂v

∂z
) + βw′θ′vl −

e3/2

Lε
(6)

where the advection terms, the pressure fluctuations and the diffusion transport have

been neglected. ρ is the air density, w the vertical velocity, u and v the zonal and merid-

ional wind components, β is the buoyancy parameter (equal to g

θ
with g the gravitational

constant, θ being the potential temperature), θvl is the liquid virtual potential temper-

ature and Lε the dissipation length. Primes indicate fluctuations with respect to the grid-

scale values indicated with overbars. The different turbulent vertical fluxes are diagnosed

using e following, for any variable ϕ:

w′ϕ′(z) = −Kϕ
∂ϕ(z)

∂z
(7)

with

Kϕ =
√
eLmAϕΦϕ (8)
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with Φϕ a stability function also computed at each altitude (for more details see Cuxart685

et al. (2000)) and Aϕ a free parameter. The mixing length, Lm, is computed following686

Bougeault and Lacarrere (1989); it consists in computing the vertical displacement an687

air parcel can travel upwards and downwards with its available turbulence kinetic en-688

ergy according to the thermal stratification. Also, Lε in Eq. 6 is defined by Lε = Aε×689

Lm with Aε another free parameter. Finally, we have selected three parameters for this690

analysis namely, Aε controlling the expression of the dissipation length-scale as a func-691

tion of the mixing length-scale and AU and AT that respectively enter into the expres-692

sion of the exchange coefficient in Eq. 8 for the wind and the temperature (the same co-693

efficient, AU , is used for both the zonal and meridional component of the wind). The range694

of variation explored for each parameter is indicated in Table 1 and the parameters are695

varied linearly in those ranges (when parameter ranges span many orders of magnitude,696

we typically vary them on a log scale and htexplo is set up to do this). The turbulence697

parameterization includes other free parameters but to keep the example simple, the three698

most influencial parameters for this case have been selected and no free parameters of699

the mass-flux scheme are considered.700

Table 1. List of the free parameters of the turbulence scheme that are varied in this example

with default values and range of variation

Names AU Aε AT

Default 0.126 0.85 0.14

Minimum 0.01 0.1 0.01

Maximum 0.4 3. 1.

To keep the example simple, only one case is used here. This case is a dry ideal-701

ized case of a convective boundary layer with a constant-in-time large surface sensible702

heat flux of 0.24 Kms−1 with a strongly capped boundary layer documented in Ayotte703

et al. (1996), called 24SC in the following. The importance of combining different cases704

will be illustrated in part II.705

We first document a sequence of three waves where additional metrics are added706

at each iteration (Experiment 1). We will then discuss the results obtained when adding707

all the metrics directly at wave 1 (Experiment 2), varying the threshold used to deter-708
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mine the NROY (Experiment 3 see also Sect. 3.5), using more SCM runs (Experiment709

4), and varying the tolerance to error (Experiments 5 and 6).710

4.2 Three consecutive waves adding metrics progressively711

For the first iteration (or wave in the following) of Experiment 1, 30 SCM simu-712

lations of the 24SC case were realized by varying values for the three parameters explor-713

ing at best (using a LHC sampling, see Sect. 3.4) the range of each parameters (Table 1).714

Figure 3 illustrates that the parameters are randomly sampled as indicated by the dis-715

tribution of the black dots along the different x-axes. Three different metrics are used716

to characterize the turbulent mixing in the boundary layer and are progressively intro-717

duced through the successive waves. The first chosen metric is the potential tempera-718

ture averaged over the layer 400-600 m. It is a good proxy for the boundary-layer po-719

tential temperature, which is well mixed between the surface and the boundary-layer top,720

located around 1300 m. This metric is computed for the 30 SCM runs; these computa-721

tions serve as training data for the construction of the emulator. The prior mean func-722

tion (see Sect. 3.5), m for this emulator is a sum of linear and quadratic functions of the723

parameters. The stationary squared-exponential kernel provides a sufficient fit to the data724

according to the leave-one-out methodology explained in Sect. 3.5. Figure 3 presents the725

variation of the metric as a function of the parameters: some first-order relationships ap-726

pear with the boundary-layer potential temperature increasing with AU and AT to a lesser727

extent AT (due to an increased mixing associated to a larger diffusivity and larger fluxes)728

and decreasing with Aε (due to a reduced mixing because of the increased dissipation).729

For this metric, we have chosen a tolerance to error of 0.5 K, a difference between SCM730

results and LES we are satisfied with. This may be a bit large for this very idealized case731

(with no moisture, an already convective initial state) but this is an error we will be sat-732

isfied with generally for boundary-layer potential temperature. Given this tolerance to733

error (indicated by the dashed horizontal grey line), the metric does not provide much734

constraint on the model behavior and the entire initial parameter space is kept (c.f. Ta-735

ble 2). Note that this tolerance to error is much larger than the uncertainty around the736

LES (σr,f = 0.075 K) and the emulator (Var [f(λ)] = 0.042 K). Sect. 4.3 details the737

effect of a reduced tolerance to error.738

A second wave is realized, with 30 runs sampling the NROY space of the first wave

(the previous 30 SCM runs could also have been used for efficiency), which is in fact the
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Table 2. Description of the model discrepancy (Disc.) of the given metric (indicated in the

2nd, 3rd and 4th columns), the Cutoff, threshold used for Implausibility (5th column), the Not-

Ruled-out-Yet Space (fraction in % of initial space of parameters, 6th column) and the emulator

uncertainty quantified as the emulator standard deviation for each metric (7th column) for each

Experiment and wave.

No Expt Disc. Disc. Disc. Cutoff NROY= % of Emulator Error

No Wave θBL [K] Ayθ [Kms−1] wsBL [m s−1] initial space for θBL / Ayθ / wsBL

Exp1-1 0.5 - - 3 100 0.042/-/-

Exp1-2 0.5 0.05 - 3 30 0.022/0.014/-

Exp1-3 0.5 0.05 1 3 23 0.069/0.023/0.049

Exp2-1 0.5 0.05 1 3 40 0.042/0.019/0.22

Exp2-2 0.5 0.05 1 3 38 0.033/0.017/0.06

Exp2-3 0.5 0.05 1 3 27 0.13/0.036/0.14

Exp3-1 0.5 0.05 1 3 72 0.022/0.063/0.019

Exp3-2 0.5 0.05 1 3 32 0.060/0.021/0.15

Exp3-3 0.5 0.05 1 2.5 22 0.092/0.026/0.054

Exp3-4 0.5 0.05 1 2. 15 0.076/0.019/0.061

Exp4-1 0.5 0.05 1 3 27 0.038/0.013/0.033

Exp5-1 0.25 0.025 0.5 3 32 0.043/0.020/0.21

Exp6-1 0.1 0.01 0.25 3 31 0.041/0.020/0.21
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Figure 3. The three metrics, boundary-layer potential temperature (a–c), entrainment metric

(d–f) and boundary-layer windspeed (g–i) are plotted as a function of the value of each param-

eter, AU (a, d, g), Aε (b, e, h) and AT (c, f, i). A different color is used for the different waves

of Experiment 1 (black for Wave 1, red for Wave 2, green for Wave 3 and blue for Wave 4). The

vertical dashed blue line corresponds to the default value of the parameter used in the model,

the horizontal thin full grey line correspond to the reference metric and the dotted lines indicates

the uncertainty around this reference from the different LES simulations while the dashed lines

indicate the tolerance to error around the reference.
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entire initial parameter space as the first metric did not constrain the parameter space.

Two metrics are computed from those 30 runs: the potential temperature averaged be-

tween 400 m and 600 m as in the first wave and the entrainment metric, A, quantify-

ing the overshoot of the boundary layer relative to the initial profile as defined in Ayotte

et al. (1996). A is computed as:

A =

∫H
zi(t0)

(θ(z, tf )− θ(z, t0))dz

tf − t0
=

∫H
0

(max(θ(z, tf )− θ(z, t0), 0))dz

tf − t0

t0 being the initial time, tf the time at which the metric is computed and H the top of739

the model or a level largely above the boundary-layer top. This metric is less commonly740

used for evaluating models and it was more difficult to specify a tolerance to error which741

was taken as 0.05 K.m s−1. An emulator is built for each metric. The second metric is742

more restrictive and the NROY space is now reduced to 30% of the initial parameter space743

(Table 2). The obtained NROY (not shown) is not very different from the one obtained744

for the third wave. It excludes values of the parameters that lead to simulations with745

too large or too small entrainment metric as indicated by the differences between the red746

dots and the green ones in Fig. 3.747

A third wave is realized, with 30 new SCM runs sampling the new NROY. Three748

metrics are computed from those 30 runs: the two previous ones plus the wind speed av-749

eraged between 400 m and 600 m. For this last metric, we fixed the tolerance to error750

to 1 m s−1. After this third iteration, the NROY is 23% of the initial space. As shown751

in Fig. 4, the spread of the different simulations that sampled the parameter values re-752

duces progressively throughout the different waves and this tool allows to discard val-753

ues of parameters that induce a too deep boundary layer. The wind-speed profiles did754

not completely converge and this is associated to the observation uncertainty which has755

been fixed to 1 ms−1.756

The final NROY space after the third wave is shown in Fig. 5. The metrics tend757

to reject preferentially low values of Aε with high values of AU or high values of Aε with758

low values of AU underlying some correlation between these two parameters. Note the759

default values of the parameters are within the NROY space confirming that they cor-760

respond to an acceptable calibration of the turbulence scheme, given the chosen toler-761

ance to error and the LES uncertainty. This is also confirmed by the simulations of the762

last wave having a behavior similar to the default simulation as shown in Fig. 4.763

–32–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 4. Vertical profile of (a) potential temperature and (b) wind speed for the last hour of

the simulation with the spread of the ensemble of simulations used for the different waves indi-

cated in different color shadings for Exp 1, the default simulation is in black, the reference LES

in thick dark blue and the different elements of the LES ensemble in thin blue lines.
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The uncertainty around the LES obtained from eight different LES runs with slightly764

different configurations, detailed in the appendix, is 0.075 K for θBL, 0.014 K m s−1 for765

Aθ and 0.083 m s−1 for wsBL, on the same order of magnitude of the emulator uncer-766

tainty. For the first metric and third metric, the tolerance to error is much larger than767

the uncertainties of the reference and the emulator while for the second metric the three768

uncertainties are of the same order of magnitude. Concerning the tolerance errors, we769

can conclude that for this case and the selected metrics,the SCM is good enough for a770

sub-domain of the initial parameter space.771

4.3 Robustness772

In this subsection, we analyze the sensitivity of the results to i) the sequence of in-773

troduction of metrics (Experiment 2 uses the three metrics directly at wave 1), ii) the774

threshold used to determine the NROY space (Experiment 3), iii) the number of SCM775

runs used to form the training dataset (Experiment 4), and, iv) the tolerance to error776

(Experiments 5 and 6).777

If the three metrics are introduced directly in the first wave (Experiment 2), the778

NROY space is similar to the one obtained after three waves (see Table 2 and Fig. 5)779

although the NROY space is larger (40% against 23%). Repeating more waves with the780

same metrics allows to progressively converge to the same NROY space. Note that a test781

with only one metric but the most constraining one, namely the entrainment metric, leads782

to very similar result (NROY = 43%) for the first wave (not shown). Although not il-783

lustrated for this case, introducing one by one the metric, is sometimes important: i/784

it can allow to give some priority among the metrics, finding first a space consistent with785

the first metric in which the second metric is then used as a constraint and ii/ if one met-786

ric has a strong non-linear behaviour reducing the initial parameter spaces with other787

metrics may ease the capacity of the emulator to reproduce the metric behaviour. These788

results also indicate that adding a new metric in the core of the process does not alter789

the selection, allowing to add supplementary metrics if one realizes that some behavior790

of the SCM is not constrained enough, a fundamental aspect of history matching.791

In Experiment 3, we first realize two waves as in Experiment 2 and then progres-792

sively reduce the threshold used to determine the NROY space from 3 to 2.5 in Wave793

3 and from 2.5 to 2 in Wave 4 (see Table 2) to explore the impact of less conservative794
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threshold (a threshold of 3 corresponds to ruling out what exceeds three times the un-795

certainties and keeps 95% of the probability for any unimodal probability distribution).796

The differences in the NROY space of the first wave with Exp2-1 indicates that 30 SCM797

runs are probably not enough to robustly constrain the first iteration and more itera-798

tions are needed. Then, reducing the cutoff induces a smaller NROY space but the change799

is not radical. This was expected from the lower left figures of Fig. 5 that show the min-800

imum value of the Implausibility for any variations of the other parameters (here, the801

third parameter). Indeed, the area with minimum value of If (λ) > 3 (i.e. the points802

that are excluded from the NROY space whatever the value of the third parameter) is803

very similar to the area with minimum value of If (λ) > 2.804

All of the previous experiments have been realized using a rather small training dataset805

of 30 SCM runs (ten times the number of parameters). Experiment 4 has tested the im-806

pact of using 90 SCM runs instead of 30 for wave 1. This experiment produces directly807

a smaller NROY space (see Fig. 6) at the first wave than obtained from 30 SCM runs808

(see Exp3-1 or Exp2-1 in Table 2). Also, the emulator uncertainty is smaller for the first809

wave of Experiment 4 than the ones of the first wave of Experiment 2 or 3. A compro-810

mise must be found between a larger ensemble of simulations that increases robustness811

but is more costly.812

The sensitivity to the tolerance to error is illustrated in Table 2 and Fig. 6 with813

Experiments 5 and 6. When reducing the tolerance to error by a factor of two the NROY814

space is 32% of the initial space in Exp5-1 (using the three metrics at once, so to be com-815

pared to 40%). The NROY space (31% of the initial space) is not much reduced further816

when reducing the tolerance to error twice more (Exp6-1), because the tolerance to er-817

ror is not anymore the limiting uncertainty. It is interesting to note that even when strongly818

reducing the tolerance to error, the default values for the three selected parameters are819

still in the NROY space validating the choice of parameter values used in the control sim-820

ulation. The lower left panel of the subfigures in Fig. 5 and Fig. 6 indicates the mini-821

mum Implausibility along the other dimensions of the space and as illustrated in Fig. 6,822

reducing the tolerance error (when larger than the other errors) induces a reduction of823

the denominator in the Implausibility and therefore an increase of Implausibility.824
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Figure 5. The left panel corresponds to the result of Exp1-3 and the right panel to Exp2-2.

The upper right triangle contains 3 subfigures showing 2D sub-matrix. Each sub-matrix is a re-

striction to 2 parameters, the name of which are given in the diagonal of the main figure, and

presents in colors the fraction of points with implausibility smaller than the threshold (here a

value of 3). This fraction is obtained by fixing the two parameters at values of the x-axis and

y-axis of the plotted location and searching the other dimensions (here the third dimension as

we have only three parameters) of the parameter space. This allows to visualize in 2-D the full

NROY which is 3-D here but can be n-D if n parameters are selected. The lower left triangle

(with also 3 subfigures) presents the minimum value of Implausibility. These plots are orien-

tated the same way as those on the upper triangle, for easier visual comparison. The black dots

correspond to the default values used in the model.
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Figure 6. Same as Fig. 5 but for the sensitivity to the number of SCM runs (Experiment 4,

left panel) and to the tolerance error (Experiment 5, right panel).

5 Conclusion825

In this paper, we make a proposal to accelerate weather and climate model devel-826

opment. Our proposal tackles model development and calibration jointly. For that pur-827

pose, we have developed a tool that formalizes a process-based calibration, the High-Tune828

Explorer made available to the other modeling groups. It extensively exploits the SCM/LES829

comparison on a multicases, multi-metrics basis and benefits from machine learning tech-830

niques. In contrast with other recent proposals to use machine learning techniques in cli-831

mate modeling, we keep parameterizations as key ingredients of these models because832

they summarize our current understanding of the main physical processes This choice833

is motivated in particular by the confidence needed when extrapolating the model re-834

sults to a future climate.835

The tool allows us to define the sub-domain of the parameter values for which SCM836

matches LES on selected metrics for a series of cases within a given uncertainty. The ex-837

ploration of the free-parameter space is facilitated using Gaussian process emulators. These838

–37–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

emulators, once trained on a limited number of real simulations, predict the SCM with839

uncertainty in a much shorter time than required to run the SCM. History matching us-840

ing the emulator is performed iteratively to progressively shrink the space of acceptable841

parameter values. This iterative approach contrasts with the more traditional tuning strat-842

egy based on optimization, which i) seeks an individual “best” value where the SCM min-843

imizes a cost function computed for given metrics, ii) is strongly dependent on the weights844

given to the metrics and iii) is highly sensitive to the choice of metrics. By pursuing a845

strategy for discarding parameter values, we are left with a free parameter domain that846

is (i) consistent with the metrics we have chosen, (ii) can be further reduced by intro-847

ducing new metrics or altering our tolerance to model error, and (iii) does not claim a848

single best simulation which may be over-fitted to one or more metrics, needlessly bi-849

asing the simulation and potentially leading to less physical behavior, as the model is850

projected into different regimes, than other choices in our not-ruled-out-yet space. Our851

tool formalizes the consideration of the different sources of uncertainties associated to852

the reference, the statistical tool and the model. For the latter, we take a “tolerance to853

error” approach, allowing the question of whether a parameterization can match our ref-854

erence as well as we think it ought to (based on any physical limitations we believe should855

be there), and enabling us to revisit those expectations and to understand the model’s856

limitations throughout the process.857

In the present study, we present applications of the High-Tune Explorer to the SCM/LES858

framework, focused on the repesention of the atmospheric boundary layer. We have il-859

lustrated how this tool allows us to objectively verify choices that have been made by860

model developers for the free-parameter values. Experimenting with the combination of861

the metrics with this tool allows us to clarify the importance of a given metric, the num-862

ber or combination of metrics that should be used, and the possible redundancy between863

metrics all in an efficient way that was not possible without it. The tool also enables us864

to include new metrics at a new iteration so that we can pursue the calibration exercise,865

even though one realizes an important deficiency of the model is not addressed by the866

previously selected metrics. Our framework allows a progressive addition of metrics, cases867

or a gradual reduction of the tolerance to error and is therefore very flexible.868

Although this new framework is tested here for the improvement of boundary-layer869

processes (turbulent transport in Part I and cloud representation in Part II) by running870

the full atmospheric physics on one model column considering well established test cases871
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for which LES are particularly relevant, it has much broader application. It can be used872

for instance to calibrate elementary pieces of parameterization (e.g., entrainment formu-873

lation) without time integration. This methodology can be easily expanded to other pa-874

rameterizations as well. The key ingredient for doing this is a reliable reference with doc-875

umented uncertainty. This reference could come either from a detailed modeling of the876

process, as done here with LES, or from observations as long as the other sources of dis-877

crepancy as the uncertainty coming form the case definition are documented. Propos-878

ing new relevant metrics and estimation of associated uncertainties will become valuable879

now that we know how to include them in the model improvement process. An effort is880

currently done in that direction in parallel to the work presented here, consisting in pro-881

viding reference radiative transfer computations on the classical cloud test cases currently882

used for parameterization development or (here) tuning. The development of the param-883

eterization of boundary layer and clouds based on SCM/LES comparisons was indeed884

focused so far on the prepresentation of atmospheric transport and macrophyics of clouds,885

but the radiative transfer computations run in LES models were often not more reliable886

than those used in GCM. By developing fast and accurate radiative tools that accounts887

for the full 3D radiative transfer in LES cloud schene, as proposed by Villefranque et al.888

(2019), we can compute many types of radiative metrics, from monochromatic, local, and889

directional observable to integrated energetic quantities. The use of such radiative met-890

rics will allow us to tackle calibration of radiative parameterizations but also to better891

link the calibration realized at the level of the parameterizations itself with the one re-892

alized for the final full 3D model calibration, which mainly targets the radiative forcing893

of the atmospheric general circulation.894

To sum-up, the appication of the High-Tune Explorer on SCM/LES comparisons895

allows us: (i) to quantify the parametric uncertainty at process level, (ii) to identify pa-896

rameters which limit model performance, whatever their value, and should be replaced897

by a more physical parameterization, and (ii) to reduce the domain of acceptable val-898

ues of free parameters used in the final tuning of the global model.899

We show indeed in Part II how the tool applied first to SCM/LES comparisons,900

on a multicase basis, can be used to reduce the range of acceptable values for the cal-901

ibration of the complete 3D model configuration and considerably accelerate the resource902

and time consumption for this step of model development. The final 3D tuning becomes903
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a part of the history matching process, by adding new metrics or constraints using the904

exact same codes.905

We believe that this tool is a breakthrough for model development as it allows us906

to place the importance of the physical understanding of the processes at the heart of907

model development, based on an extensive use of the SCM/LES comparison, whilst har-908

nessing important techniques in machine learning and uncertainty quantification. We909

advocate that the approach presented here leads to a well-defined strategy for calibra-910

tion of the full model that may change the way we do climate modeling and result in a911

significant acceleration in model improvement.912

Appendix A The different Large-Eddy Simulations913

In total, eight different simulations have been run with Meso-NH (Lac et al., 2018),914

varying the resolution, domain size, turbulence formulation, intensity of the white noise915

introduced at the first level and initial time to trigger turbulence, activation of subgrid916

condensation and changes in the microphysics scheme for the cloudy cases. The Table A1917

lists the different simulations of the Ayotte case used in Sect. 4 to estimate the uncer-918

tainty associated to the reference LES and the Table A2 lists the different simulations919

of the ARMCU case used in Sect. 3 to estimate the uncertainty associated to the ref-920

erence LES. The reference LES is highlighted in bold.921
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