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Abstract

Targeted observation is an appealing procedure for improving model predictions through the assimilation of additional collected

measurements. However, studies on targeted observations in the oceanic field have been largely based on modeling efforts, and

there is a need for field validating operations. Here, we report the results of a field program that is designed based on the

sensitive areas identified by the Conditional Nonlinear Optimal Perturbation (CNOP) approach to improve the short-range

(7 days) summer thermal structure prediction in the Yellow Sea. We found good spatial consistency in the locations of the

identified sensitive areas among the hindcast and climatology runs. By introducing the technique of cycle data assimilation

and the new concept of time-varying sensitive areas, we designed an observing strategy based on the identified sensitive

areas, and conducted a set of Observing System Simulation Experiments prior to assessing the effectiveness of the plan on

later observations. On this basis, the impact of targeted observations was investigated by a choreographed field campaign in

the summer of 2019. The results of the in-field Observing System Experiments show that compared to conventional local data

assimilation, conducting targeted observations in sensitive areas can double the benefits of data assimilation in thermal structure

prediction. Furthermore, dynamic analysis demonstrates that the refinement of vertical thermal structures is mainly caused by

the changes in the upstream horizontally advected temperature driven by the Yellow Sea Cold Water Mass circulation. This

study highlights the effectiveness of targeted observations on reducing the forecast uncertainty in the ocean.
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Abstract 17 

Targeted observation is an appealing procedure for improving model predictions through the 18 

assimilation of additional collected measurements. However, studies on targeted observations in 19 

the oceanic field have been largely based on modeling efforts, and there is a need for field 20 

validating operations. Here, we report the results of a field program that is designed based on the 21 

sensitive areas identified by the Conditional Nonlinear Optimal Perturbation (CNOP) approach 22 

to improve the short-range (7 days) summer thermal structure prediction in the Yellow Sea. We 23 

found good spatial consistency in the locations of the identified sensitive areas among the 24 

hindcast and climatology runs. By introducing the technique of cycle data assimilation and the 25 

new concept of time-varying sensitive areas, we designed an observing strategy based on the 26 

identified sensitive areas, and conducted a set of Observing System Simulation Experiments 27 

prior to assessing the effectiveness of the plan on later observations. On this basis, the impact of 28 

targeted observations was investigated by a choreographed field campaign in the summer of 29 

2019. The results of the in-field Observing System Experiments show that compared to 30 

conventional local data assimilation, conducting targeted observations in sensitive areas can 31 

double the benefits of data assimilation in thermal structure prediction. Furthermore, dynamic 32 

analysis demonstrates that the refinement of vertical thermal structures is mainly caused by the 33 

changes in the upstream horizontally advected temperature driven by the Yellow Sea Cold Water 34 

Mass circulation. This study highlights the effectiveness of targeted observations on reducing the 35 

forecast uncertainty in the ocean. 36 

 37 

1. Introduction 38 

The predictability of oceanic processes is limited since the ocean is an extremely complex 39 

dynamic system (Mu et al., 2017). The uncertainty of ocean forecasting can be reduced through 40 

the assimilation of observation data (Oke et al., 2015). Unlike observations on land, field-41 

deployed oceanic observations are scarce and expensive. Thus, maximizings the individual 42 

impact of these limited measurements is a meaningful pursuit. Targeted observation is believed 43 

to be a suitable strategy for solving this problem (Farrara et al., 2013; Lermusiaux, 2007; Li et 44 

al., 2014; Majumdar, 2016). 45 
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Interest in the field of oceanic targeted observation has accelerated over the past few years 46 

(Baehr et al., 2008; Köhl & Stammer, 2004; Krama et al., 2012; Li et al., 2014; Morss & Battisti, 47 

2004; Wang et al., 2013; Zhang et al., 2019). Morss & Battisti (2004) evaluated the effects of 48 

different numbers and locations of oceanic observations on the prediction of the El Niño-South 49 

Oscillation (ENSO) based on a series of Observing System Simulation Experiments (OSSEs). 50 

Baehr et al. (2008) studied the effects of different observing systems on the monitoring of the 51 

meridional overturning circulation in the North Atlantic. Krama et al. (2012) investigated the 52 

optimal observation locations for improving the predictability of the Kuroshio Extension. Li et 53 

al. (2014) reported an improvement in ocean prediction when utilizing targeted observations in 54 

the South China Sea (SCS) western boundary current region. Zhang et al. (2019) designed and 55 

evaluated a targeted observation network for improving upstream Kuroshio transport prediction. 56 

These studies confirmed the effectiveness of oceanic targeted observation; however, most of the 57 

relevant studies have been largely based on modeling efforts, and experiments in the field are 58 

necessary regarding both method validation and the cost-effectiveness evaluation. 59 

A limited number of oceanic targeted observations in real scenarios have been reported in 60 

the literature (Curtin & Bellingham, 2009; Mourre & Alvarez, 2012; Shay et al., 2011). Curtin & 61 

Bellingham (2009) implemented the Autonomous Ocean Sampling Network (AOSN) field 62 

program in Monterey Bay and demonstrated that proper sampling is critical for both 63 

understanding and predicting ocean fields. To predict the local ocean circulation and potential 64 

pathways of spilled oil, Shay et al. (2011) carried out oceanographic surveys based on the 65 

positions of the exploded oil rig and the loop currents in the Gulf of Mexico. They found that the 66 

root-mean-square errors (RMSEs) of the simulated results were reduced by approximately 30% 67 

when the additional measurements were assimilated into the hindcast model. Guided by the 68 

optimal designed glider trajectory, which sets the trace of the error covariance matrix as criteria 69 

(Alvarez & Mourre, 2012), Mourre & Alvarez (2012) found that the data assimilation 70 

performance of the adaptive-sampling-driven glider data was better than that of the independent 71 

glider data in the same region, with an RMSE reduction of 18%. 72 

However, none of the abovementioned in-field oceanic targeted observations were designed 73 

based on identified “sensitive areas”. Given a certain phenomenon, sensitive areas are the 74 

specific localized areas that are expected to contribute most in reducing the prediction 75 
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uncertainties in the target region. In a study of storm tracking prediction, Montani et al. (1999) 76 

demonstrated that short-range prediction refinement can be increased from an average of 15% to 77 

approximately 37% if the observations are deployed in sensitive areas. Targeted observation 78 

studies in the atmospheric field started earlier and are more mature than those in the ocean. 79 

Among others, the Atlantic observing-system research and predictability experiment 80 

(THORPEX) is a remarkable program that concluded that targeting and assimilating 81 

observations in sensitive areas are effective in improving forecasts (Majumdar, 2016). 82 

Nevertheless, tests of targeted observations guided by identified sensitive areas in real at-sea 83 

scenarios are still lacking. 84 

The identification of the sensitive areas is a crucial step in targeted observations (Majumdar, 85 

2016; Zhang et al., 2017). The sensitive areas for targeted observation can be identified by the 86 

Conditional Nonlinear Optimal Perturbation (CNOP) approach proposed by Mu et al. (2003). 87 

Utilizing the CNOP approach, the optimal initial errors that cause the largest nonlinear forecast 88 

uncertainty can be calculated, and their spatial patterns help to locate the sensitive areas. To date, 89 

CNOP-identified sensitive areas have been proven to be quite effective in a number of oceanic 90 

applications, such as the prediction of the ENSO (Duan & Hu, 2016), upstream Kuroshio 91 

transport (Zhang et al., 2017), Kuroshio intrusion into the SCS (Liang et al., 2019), Kuroshio 92 

large meander (Wang et al., 2013), the ocean state in the SCS western boundary current region 93 

(Li et al., 2014). However, when focusing on a specific oceanic motion or event, there are many 94 

detailed issues to be addressed, e.g., the determination of the objective function and the 95 

constraint of the initial errors, the design of the optimal observation strategy and the 96 

determination of the effectiveness of the targeted observations in the field operation. 97 

In the present study, we first extend the scope of oceanic targeted observations to 98 

summertime thermal structure predictions in a coastal sea, and put them into effect by 99 

conducting an oceanographic investigation in the field. We select temperature as the target 100 

variable because of its predominant impact on density fields and acoustic propagation (Dushaw 101 

et al., 2013). Under the comprehensive impact of the thermodynamic and dynamic oceanic 102 

processes and topography, the thermal structures in the coastal sea feature significant spatial and 103 

temporal variations, and their forecast uncertainty is generally large (Xia et al., 2006). 104 

Identifying the sensitive areas for the selected target region may enhance our understanding of 105 
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the physical mechanism responsible for the thermal structure variation. In addition, exploring the 106 

utility of targeted observations in the thermal structure prediction may help improve the regional 107 

forecast system, with an optimally designed monitoring system deployed in the sensitive area. 108 

Here, we focus on improving the 7-day thermal structure prediction in the specified target region 109 

in the northwest Yellow Sea (YS; see locations in Figure 1). We found that assimilating the 110 

observations in the identified sensitive areas is more effective than locally assimilating 111 

approximately equal number of measurements inside the target region. 112 

The article is organized as follows: The model configuration, the CNOP approach and the 113 

assimilation technique are briefly described in section 2. In section 3, given a specified target 114 

region, the sensitive areas for thermal structure prediction are identified. Then, the observation 115 

strategies are designed and quantitatively assessed by conducting a series of OSSEs. Section 4 116 

introduces the observational data obtained from the ocean hydrographic survey and presents the 117 

improvements in the thermal structure prediction due to the targeted observation through 118 

Observing System Experiments (OSEs). The physical mechanism behind signal transport is also 119 

discussed. The results are summarized in section 5. 120 

 121 
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Figure 1. Plan view of the locations of the five temperature profile buoy stations (red 122 

crosses), thirty-six XBT stations (triangles), and twenty-one shipboard CTD stations (stars). The 123 

differences in the deployment times of the XBT and shipboard CTD observations are 124 

distinguished by different colors. The black dashed box indicates the location of the target 125 

region. The topography is indicated by shading. The bottom-right insert shows the model area, in 126 

which the red box indicates the position of the study area and the green lines indicate the section 127 

locations used for vertical thermal structure validation. 128 

2. Methodology 129 

2.1 Numerical model configuration 130 

To investigate the utility of targeted observation in improving the prediction of thermal 131 

structures in the shallow YS, the Regional Ocean Modeling System (ROMS) solving the three-132 

dimensional Reynolds-averaged hydrostatic Navier-Stokes equation with the Boussinesq 133 

approximation was used (Shchepetkin & McWilliams, 2005). The ROMS utilizes a nonlinear 134 

terrain-following vertical coordinate and has been proven to be suitable for regional ocean 135 

modeling by an increasing number of studies (Liang et al., 2019; Liu et al., 2019; Yang et al., 136 

2011; Zhang et al., 2017). The K-profile parameterization scheme is used to calculate the vertical 137 

eddy viscosity and diffusivity (Large et al. 1994). Harmonic horizontal mixing is employed with 138 

constant horizontal eddy viscosity and diffusivity of 10 m
2
s

-1
 and 15 m

2
s

-1
, respectively. The 139 

bottom stress is parameterized following a quadratic formula with a constant bottom drag 140 

coefficient set to 2.5×10
-3

. 141 

The model region covers the China Seas north of 23.7°N (Figure 1, 23.7-41.3°N, 117-142 

132.5°E) with 1/24° horizontal resolution, and there are 32 vertical levels that are unevenly 143 

distributed, with closer spacing within the range of stratification. The model topography is 144 

subsampled from ETOPO2 (https://ngdc.noaa.gov/mgg/global/etopo2), and the minimum water 145 

depth is set to 10 m. The model initial temperature and salinity are obtained from the multiyear 146 

averaged (1998-2018) HYCOM+NCODA reanalysis data (https://www.hycom.org/dataserver) in 147 

January. The initial current velocities and sea surface height are set to zero. 148 

https://ngdc.noaa.gov/mgg/global/etopo2
https://www.hycom.org/dataserver
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First, a climatology run is carried out from a cold start. At the open boundaries, the model is 149 

driven by the multiyear averaged monthly HYCOM+NCODA reanalysis data and tidal forcing of 150 

eight major tidal constituents (M2, S2, K1, O1, N2, K2, P1, and Q1). The tidal forcing is included at 151 

the open boundaries by the Flather condition (Flather, 1976) with the tidal elevation and 152 

barotropic velocity obtained from the global inverse barotropic tidal model TPXO7.2 (Egbert & 153 

Erofeeva, 2002). On the surface, the wind stress, surface heat flux and water exchange are 154 

calculated from the multiyear averaged (1998-2018) monthly ECMWF reanalysis data 155 

(https://apps.ecmwf.int/datasets/). The climatology run is integrated for 25 years for spin-up. 156 

Thereafter, a hindcast run is conducted from January 2014 to August 2019, starting from the 157 

results of the climatology run. Unlike the monthly mean external forcing data used for the 158 

climatology run, twelve-hourly surface forcing from the ECMWF reanalysis data and daily 159 

boundary forcing from the HYCOM+NCODA reanalysis data are applied to drive the hindcast 160 

run. The hindcast run is also forced by tidal forcing (eight major constituents) from TPXO7.2. In 161 

this paper, the daily-averaged temperature profiles are used for analysis. 162 

2.2 CNOP approach 163 

In this section, we briefly review the CNOP approach (Mu et al., 2003; 2009).  Let tM  be 164 

the nonlinear propagator that propagates the value 0X  at initial time 0t  to 0( )t tMX X  at the 165 

end of the forecast time. When adding the initial perturbation 0x  to the initial state, the 166 

nonlinear evolution of the initial perturbation tx can be expressed as 167 

0 0 0( ) ( )t t tM M   x X x X ,                                         (1) 168 

Following the definition proposed by Mu et al. (2003), the CNOP can be obtained by 169 

solving the following nonlinear constraint maximization problem: 170 

0 0

0, 0 0 0 0( ) max ( ) max ( ) ( )t t
x x

J J M M
    

      x x X x X ,               (2) 171 

with the constraint condition 
0  x , where 0( )J x  is the objective function that estimates 172 

the nonlinear evolution of the initial perturbation during time t . .  denotes the norm of the 173 

https://apps.ecmwf.int/datasets/
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vector. 0,x  is the CNOP‐type initial error, which will induces the largest prediction error at the 174 

prediction time t . 175 

Generally, CNOP computation relies on the adjoint technique to calculate the gradient of 176 

the objective function. However, directly calculating CNOP in a complicated model requires a 177 

considerable amount of coding and is computationally expensive (Liang et al., 2019; Zhang et 178 

al., 2017). Alternatively, in this study, we use an Empirical Orthogonal Function (EOF) based 179 

algorithm proposed by Wang & Tan (2009) to approximate the CNOP without using the adjoint 180 

technique (hereafter referred to as the EOF-CNOP method). Wang & Tan (2009) tested the EOF-181 

CNOP method in a typhoon case. They found that the sensitive areas identified by this 182 

approximation algorithm are similar to the real CNOP results but require much less 183 

computational resources. The calculation process of the EOF-CNOP method is described as 184 

follows: First, a set of initial perturbations is added to the initial state to obtain the corresponding 185 

prediction increment ensemble by numerical integration. Then, the orthogonal basis of the initial 186 

perturbation ensemble is calculated by EOF decomposition. Finally, a statistical relationship is 187 

established between the initial perturbations and the associated prediction increment; thus, the 188 

gradient of the objective function can be obtained, and the CNOP can be computed. 189 

In practice, the specific form of the objective function and the initial constraint are defined 190 

according to the object of study. In the context of the thermal structure of interest in this study, 191 

the objective function is defined as the change in the volume-integrated temperature caused by 192 

the initial errors in the specified target region, such that 193 

2( )t

A

J T dxdydz  ,                                                        (3) 194 

where tT  indicates the temperature anomaly at the future time t  caused by the initial errors and 195 

A  denotes the selected target region. 196 

Following the formula of Li et al. (2014), the initial constraint is defined as 197 

2 2 20
0 ( )

stdD

T
x dxdydz

T



   ,                                              (4) 198 
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where 0T  indicates the initial temperature perturbation, D  denotes the model domain, and stdT  199 

indicates the regionally averaged temperature standard deviation in the simulated domain, which 200 

is calculated from the World Ocean Atlas 2018 (WOA18, 201 

https://www.nodc.noaa.gov/OC5/woa18/) in August and set to 0.25℃ in this study. The 202 

constraint radius   is set to 2.5×10
3
 to keep the state change in a reasonable range under the 203 

perturbation and to ensure the model stability. After completing all these steps, the sequential 204 

quadratic programming (Powell, 1983) algorithm is employed to compute the CNOP. 205 

2.3 Optimal interpolation data assimilation 206 

The Optimal Interpolation (OI) technique is utilized to assimilate the targeted observation 207 

data to reduce uncertainties in the initial fields, which can be formulated as 208 

1

( )

( )

a b obs b

T T

x x K y Hx

K BH HBH R 

  


 
,                                                         (5) 209 

where ax  and bx  indicate the analysis field and background field, respectively. obsy  denotes the 210 

observation vector, and H  is the matrix of the model background field projections converted 211 

into the observational space. K  is the weight matrix, which is calculated based on H , the model 212 

background field error covariation matrix B , and the observational error covariation matrix R . 213 

R  is diagonal since all the observational errors are assumed uncorrelated in space. That is, 214 

2

ij o ijR   ,                                                                  (6) 215 

where 0  is determined by the accuracies of the observations, ij  is the Kronecker delta, 1ij   216 

when i j , and 0ij   when i j . The model background field error covariation matrix B  at 217 

different vertical layers is assumed to be independent. Similar to the estimation used by Zhang 218 

(2019), ijB  is written as follows: 219 

2 2exp( ( ) )

0

ij
ij b

c

d
B

L



 





  
0

0

ij

ij

d R

d R




,                                          (7) 220 

https://www.nodc.noaa.gov/OC5/woa18/
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where b  is determined by the initial model errors, ijd  is the distance between two model grid 221 

points i  and j . Referring to the temperature assimilation study in the YS by Ji et al. (2017), in 222 

this paper, the correlation length cL  and the influence radius Ro were set to 60 km and 120 km, 223 

respectively. 224 

3. Identification of the sensitive area and observation strategy design 225 

3.1 Vertical thermal structure validation 226 

The simulated monthly averaged temperature along the section of 35°N (see location in 227 

Figure 1) in the hindcast years of 2016-2018 is compared with previous observations obtained 228 

from the Atlas of Ocean Data in the China Seas (Chen et al., 1992). In August, the water is 229 

mixed well in very shallow regions near the coast, and is stratified in the central basin. The 230 

simulated vertical distribution of isothermals is generally consistent with observations. Below the 231 

thermocline, the Yellow Sea Cold Water Mass (YSCWM) that formed during the previous 232 

winter is well reproduced. In the bottom, there are two cold cores inside the YSCWM, which 233 

agrees with a previous observational study (Zhang et al., 2008). The vertical thermal structure 234 

features interannual variability among the hindcast years, which is closely related to the 235 

interannual variability of the YSCWM and surface heating (Hu & Wang, 2004). In summary, the 236 

simulated vertical structure shows fairly good agreement with earlier observational and numerical 237 

studies. However, there is still a margin for improvement in the accuracy of the simulated thermal 238 

structure, especially below the surface mixing layer. 239 
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    240 

Figure 2. Comparison of the monthly mean (Aug) temperatures along section 35°N between the 241 

hindcast simulations (2016, 2017 and 2018) and the observations redrawn from the Atlas of 242 

Ocean Data in the China Seas. 243 

3.2 CNOP-identified sensitive areas 244 

To provide guidance for a targeted observation field campaign, a vital step is the identification 245 

of the sensitive areas. Several previous studies have utilized CNOP-identified sensitive areas to guide 246 

preferred oceanic targeted observations (Li et al., 2014; Wang et al., 2013; Zhang et al., 2017); 247 

however, oceanic sensitive area identification has not been studied in the context of thermal 248 

structure prediction. Given a selected target region located in the southeastern of the Shandong 249 

Peninsula (122-122.25°E, 36-36.25°N, the black dashed box in Figure 1), we aim to improve the 250 

short-term (7 days) summer thermal structure prediction by conducting targeted observations in 251 

the identified sensitive area. Considering the ships' voyage schedule, the initial prediction time is 252 

set to 00:00 on 20 August, and the daily averaged temperature profiles in the target region on 26 253 

August are used for the forecast validation. 254 

Note that the identification of the sensitive areas from the real-time predicted ocean state is 255 

not attempted, as this would entail the establishment of a reliable local prediction model with 256 

forcing from a larger-scale prediction model as a prerequisite. To provide guidance for the field 257 
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campaign in August 2019, the sensitive areas in the last three hindcast years (2016-2018) are first 258 

identified. 259 

Following Wang & Tan (2009), to identify the sensitive area, in every hindcast year, an 260 

ensemble of 20 initial perturbations and a natural run without perturbation is built. For this study 261 

of thermal structure prediction, initial perturbations are added to the temperature, which is 262 

achieved by taking the discrepancy of the daily averaged HYCOM+NCODA temperature data at 263 

the targeting day (20 August) between every two adjacent years during 1998-2018. All the initial 264 

temperature perturbations are scaled to the same magnitude of 0.25℃, which is estimated based 265 

on the temperature standard deviations within the simulation area from the WOA18 climatology 266 

data in August. Then, following the method of Zhang et al. (2017), the CNOP is calculated by 267 

employing a vertically integrated temperature scheme based on the 21 sets of initial ensemble 268 

conditions and the corresponding 7-day forecast samples. We confine the CNOP-identified 269 

sensitive area as the region where the CNOP-type errors have vertically integrated temperatures 270 

larger than a certain value  .   is determined to obtain a sensitive area which is the same size 271 

as the target region, which contains 56 horizontal model grids in this study. 272 

 273 

 274 
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Figure 3. Locations of the identified sensitive areas for a) b) c) the hindcast years 2016-2018 and 275 

d) the last climatology year. The CNOPs are all normalized according to their maximum values. 276 

 277 

The spatial distributions of the calculated CNOPs for the last three hindcast years of 2016-278 

2018 are shown in Figures 3a-c. The absolute values of the CNOPs are different in every 279 

hindcast year, but only the relative values matter in the identification of the sensitive areas; thus, 280 

the CNOPs are all normalized according to their maximum values. We find that the sensitive 281 

areas are mainly located outside of the target region in the northeast, with only a small fraction of 282 

the area overlapping. In every hindcast year, the locations of the maximum values are generally 283 

consistent. The discrepancies among the identified sensitive areas are mainly concentrated in the 284 

marginal areas. 285 

To validate the sensitivity in more detail, we systematically perturb the temperature fields at 286 

the initial time in three different areas (the sensitive area, the target region, and the area 287 

northeastern of the target region) and investigate the model responses in the temperature 288 

structure simulation (quantified by the regionally averaged temperature profile RMSEs in the 289 

target region). The northeast area is regarded as a nonsensitive area outside of the target region, 290 

and it is of the same size as the target region for a reasonable comparison. Random temperature 291 

perturbations with a normal distribution N(0, 0.25) are added to all three of the above selected 292 

regions. The temporal evolution of the temperature prediction errors at a depth of 20 m in 2016 is 293 

shown in Figure 4. The development of the temperature perturbations is similar among the three 294 

hindcast years (not shown), they move westward and southwestward along with model 295 

integration. Adding perturbations in the target region causes the largest RMSEs at the initial time 296 

(Figure 4m). When perturbations are added to the sensitive area, the initial RMSEs are small but 297 

not zero due to the overlap with the target region. After 7 days of simulation, the RMSEs in the 298 

target region become the largest (Figure 5). These results suggest that at the prediction time, the 299 

local thermal structures in the target region are mostly affected by the initial perturbations in the 300 

sensitive area. Thus, the current method is proven to be effective in identifying the sensitive 301 

areas for the vertical thermal structures. 302 

On the basis that the locations of the identified sensitive areas are generally consistent in space 303 
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in every hindcast year, we try to obtain a multiyear averaged sensitive area to guide the field 304 

campaign. Following the same procedures, the sensitive area in the last climatology year is identified. 305 

The results show that the location of the identified sensitive area in the last climatology run agrees 306 

with that in the hindcast runs (Figure 3d). Perturbation experiments are also conducted in the last 307 

climatology run and confirm the effectiveness of the identified sensitive area (Figure 5). Thus, 308 

the CNOP-identified sensitive area from the last climatology run is used to guide the observation 309 

strategy designment (Figure 3d). 310 

   311 

Figure 4. Temporal evolution of the temperature prediction errors at a depth of 20 m during the 312 

prediction time in 2016, with initial perturbations added to a-d) the target region, e-h) the 313 

sensitive area and i-l) the northeast area, respectively. Daily averaged results of the initial time, 314 

the third day, the fifth day and the seventh day are shown. m) Temporal evolution of the 315 

temperature RMSEs averaged in the target region. 316 

 317 
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  318 

Figure 5. Temperature profile RMSEs in the target region after 7 days of simulation for the 319 

hindcast runs and the last climatology run with random perturbations added to different areas. 320 

  321 

3.3 Design of observation strategy and benefit assessment with Observing System 322 

Simulation Experiments 323 

Before actually starting the field campaign, a targeted observation strategy that includes the 324 

ship route and the deployment locations should be designed. Moreover, the data assimilation 325 

technique (we use OI data assimilation here, section 2.3) should be utilized to maximize the 326 

benefit of the limited observation resources. 327 

Three preconditions are assumed before determining the observation stations. First, a “Z” 328 

shape route is chosen to maximize the observation coverage in the identified sensitive area after 329 

conducting several numerical experiments (not shown here). Second, the daily averaged 330 

temperature observations are used for data assimilation to better represent the general vertical 331 

thermal structure. To obtain the daily average temperature profiles at each station, the ship route 332 

is designed to repeat four times a day (04:30-07:30, 10:30-13:30, 16:30-19:30, and 22:30-01:30). 333 
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Considering the observation simultaneity, the ship route length L  is limited by the ship's speed 334 

(set to 8 knots) and the sailing time to complete each path (set to 3 hours). Third, although the 335 

prediction errors are expected to decrease for a higher number of observations, 12 stations are set 336 

along each route (approximately 4 km between the adjacent two stations) considering both the 337 

horizontal resolution (approximately 5 km) of our model and the observation cost. 338 

Based on these preconditions, the specific ship route and the corresponding deployment 339 

locations along it are designed as follows: First, the spatial central point of the route is 340 

determined by averaging all the model grid coordinates in the sensitive area (the yellow cross in 341 

Figure 6a). Then, an ellipse is fitted with the central point, a major axis longA , a minor axis shortA  342 

and a dip angle, and is scaled by a certain ratio to represent most of the sensitive area (the red 343 

ellipse in Figure 6a). Next, six equally spaced stations are set along the minor axis (green circles 344 

in Figure 6a). We assume that the shape “Z” is symmetric and that both ends of “Z” are located 345 

on the major axis of the ellipse. Given L  and shortA , the leading and trailing observation stations 346 

on the major axis can be confirmed based on the Pythagorean theorem (yellow circles in Figure 347 

6a). Finally, four equally spaced stations are added along the other two sides of the “Z” based on 348 

the above determined stations (Figure 6a). Except for the westernmost station, all the designed 349 

observation stations are out of the range of the target region. 350 

It is worth noting that, the settings mentioned above represent a somewhat subjective 351 

strategy based on several assumptions and may not be the best solution. Observation 352 

optimization strategies for guiding targeting observations are urgently needed but are beyond the 353 

scope of this paper and will be investigated in future studies. 354 
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 355 

Figure 6. a) b) c) Z- shaped observation stations (black triangles) designed based on the 356 

time-varying sensitive area (background colors). The black dashed box indicates the target 357 

region. The station locations in d) (gray triangles) are the same as those in a), which are 358 

completely out of the range of the 10-day sensitive area. 359 
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 360 

Figure 7. Schematic diagram of the Observing System Simulation Experiments based on 361 

the last climatology run. All the assimilation experiments use the results of the natural run as 362 

synthetic observations. The assimilated data station locations and the corresponding assimilation 363 

times are plotted by the same colors. 364 

 365 

Table 1. Design of OSSEs based on the climatology run 366 

Experiments 
Data 

assimilation 

Assimilation 

cycle 
Comment 

EXP0 no - Nature run 

EXP_perturb no - 
Adding perturbation at the targeting 

time 

EXP_sen_fixed_1cycle yes 1 
One-time assimilation in the sensitive 

area at the stations shown in Figure6a 

EXP_tar_fixed_1cycle yes 1 
One-time assimilation at the parallel 

stations in the target region (Figure 7) 
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EXP_sen_fixed_3cycles yes 3 

Three-times cycle assimilation in the 

sensitive area at the fixed stations 

(Figures 6a and 7) 

EXP_tar_fixed_3cycles yes 3 

Three-times cycle assimilation at the 

parallel fixed stations in the target 

region (Figure 7) 

EXP_sen_varied_3cycles yes 3 

Three-times cycle assimilation in the 

sensitive area at the time-varying 

stations (Figures 6a-c, Figure 7) 

EXP_tar_varied_3cycles yes 3 

Three-times cycle assimilation at the 

parallel time-varying stations in the 

target region (Figures 7 and 10) 

 367 

To evaluate the performance of the designed observation stations and the assimilation 368 

system, we implement a series of OSSEs based on the simulated results of the last climatology 369 

year (Table 1 and Figure 7). The original ocean state is denoted by the natural run EXP0, which 370 

is considered as the synthetic observation. Then, a control experiment (EXP_perturb) is created 371 

by superimposing temperature perturbations to EXP0 at 00:00, 1 August. The perturbation field 372 

is chosen among the 20 initial ensemble perturbations created for sensitive area identification, 373 

which induces the largest errors after 7 days of simulation. The perturbation magnitude is scaled 374 

to 0.35℃, which is larger than the perturbation magnitude of 0.25℃ in sensitive area 375 

identification, considering the error attenuation from the beginning (1 August) to the targeting 376 

time (20 August). In addition to the natural run and the control run, two assimilation experiments 377 

(EXP_sen_fixed_1cycle and EXP_tar_fixed_1cycle) are conducted through the assimilation of 378 

the synthetic observations at the targeting time. Stations for EXP_sen_fixed_1cycle are located 379 

in the sensitive area along the designed “Z” shape route (Figures 6a and 7). Stations for 380 

EXP_tar_fixed_1cycle are located in the target region; these stations are parallel to the stations 381 

of EXP_sen_fixed_1cycle, but the center of their route is located in the center of the target 382 

region (Figure 7). The regionally averaged temperature profile RMSEs in the target region at the 383 

verification time (26 August) between the natural run EXP0 and other experiments are used to 384 

evaluate the benefit of the observations for thermal structure prediction. 385 
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 386 

Figure 8. Temporal evolution of the regionally-averaged temperature profile RMSEs in the 387 

target region during the prediction time in the Observing System Simulation Experiments. 388 

 389 

The temporal evolutions of the temperature profile RMSEs in the OSSEs are shown in 390 

Figure 8. At the targeting time, the regionally averaged RMSEs in the target region are 391 

approximately 0.28℃ for the control experiment (EXP_perturb) and attenuate to approximately 392 

0.235℃ at the prediction time (the black line in Figure 8). Although the absolute magnitudes of 393 

the RMSEs in the OSSEs are small because of the small initial perturbations, the relative 394 

magnitudes of the RMSEs and their temporal evolution can still reflect the effectiveness of the 395 

different observation strategies. In the EXP_tar_fixed_1cycle, which represents the conventional 396 

observation strategy, the initial RMSEs are greatly reduced after data assimilation in the target 397 

region (the red dashed line in Figure 8). After 7 days of integration, the effectiveness of the 398 

forecast refinement decreases. In the EXP_sen_fixed_1cycle, the initial RMSEs are only slightly 399 

reduced at the targeting time (the red solid line in Figure 8) because only one of the total 12 400 

stations is located inside the target region. However, at the verification time, the forecast errors 401 

are smaller than the results of both EXP_perturb and EXP_tar_fixed_1cycle. These results 402 



Journal of Geophysical Research: Oceans 

 

support the effectiveness of our observation strategy and data assimilation system. 403 

To further reduce the forecast error, we explore the possibilities for improving the initial 404 

state by utilizing the cycle data assimilation technique. In the EXP_sen_fixed_3cycles and 405 

EXP_tar_fixed_3cycles, the data are cycle assimilated three times (00:00, 18, 19, 20 August) at 406 

the fixed stations in the sensitive area and the target region, respectively (Figure 6a and Figure 7). 407 

Compared to the one-time data assimilation (red solid and dashed lines in Figure 8), at the 408 

targeting time, the initial RMSEs are both reduced by the corresponding three cycles of data 409 

assimilation (green solid and dashed lines in Figure 8). After 7 days of integration, the forecast 410 

errors in the EXP_sen_fixed_3cycles are minimal compared to those of both 411 

EXP_tar_fixed_3cycles and EXP_sen_fixed_1cycle. This gives us confidence in the ability of 412 

cycle data assimilation to reduce the forecast uncertainty in the identified sensitive area. 413 

We realize that the locations of sensitive areas on 18 and 19 August (9 days and 8 days 414 

before the verification time) may be different from that on 20 August (7 days before the 415 

verification time). Thus, following the same procedure described in section 3.2, the 8-day, 9-day 416 

and 10-day sensitive areas are identified, and these areas are shown in Figures 6b-d. The 417 

centralis of the identified sensitive area moves northeastward and becomes oblate with increasing 418 

prediction time. The previously designed stations based on the 7-day sensitive area are all out of 419 

the range of the 10-day sensitive area (Figure 6d). 420 

Then, new deployment locations based on the identified 8-day and 9-day sensitive areas are 421 

designed following the same rule (Figures 6b and c). All the stations based on the 8-day and 9-422 

day sensitive areas are outside of the target region. The impact of the time-varying observation 423 

stations is evaluated by conducting two extra experiments, EXP_sen_varied_3cycles and 424 

EXP_tar_varied_3cycles. In EXP_sen_varied_3cycles, data are cycle assimilated three times 425 

(00:00, 18, 19, 20 August) at the stations in the 7-day, 8-day and 9-day sensitive areas (see 426 

station locations in Figures 1 and 7). In EXP_tar_varied_3cycles, the stations of 427 

EXP_sen_varied_3cycles are moved parallel to the center of the target region (Figures 7 and 428 

10d). At the targeting time, the RMSE of EXP_sen_varied_3cycles (the blue solid line in Figure 429 

8) is larger than that of EXP_sen_fixed_3cycles because the designed stations based on the 8-day 430 

and 9-day sensitive areas are farther away from the target region than those based on the 7-day 431 

sensitive area. While the initial RMSE of EXP_tar_varied_3cycles (the blue dashed line in 432 
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Figure 8) is less than that of EXP_tar_fixed_3cycles because the designed stations based on the 433 

8-day and 9-day sensitive areas have broader spatial coverage than those based on the 7-day 434 

sensitive area. After 7 days of integration, EXP_sen_varied_3cycles performs the best among all 435 

the OSSEs in reducing the forecast error. 436 

A two-cycle data assimilation experiment in the sensitive area is also conducted, and the 437 

forecast improvement falls between those of EXP_sen_fixed_1cycle and 438 

EXP_sen_varied_3cycles (not shown). Four-cycle data assimilation experiments are not 439 

implemented considering the actual observation cost in the field campaign. One may argue that, 440 

why not triple the observation stations from 12 to 36 in the one-time data assimilation in the 441 

sensitive area? In fact, as mentioned above, limited by the ship route length and the horizontal 442 

model resolution, a denser observation will not significantly expand the spatial observation 443 

coverage. 444 

To further assess the effectiveness of the observation strategy in the subsequent field 445 

operation, we conduct additional OSSEs based on the simulated results of the hindcast years 446 

2016-2018 (Table 2). In every hindcast year, the hindcast control experiments are first created 447 

following the same procedures as those in EXP_perturb. Then, similar to 448 

EXP_sen_varied_3cycles and EXP_tar_varied_3cycles, the benefit of the targeted observation is 449 

tested through the assimilation of the synthetic observations at the time-varying stations in the 450 

sensitive areas and the target region, respectively. After 7 days of integration, in every hindcast 451 

year, assimilating data in the sensitive areas based on the above determined observation strategy 452 

can yield more profit than the conventional local data assimilation (Table 3). The results 453 

mentioned above support the implementation of the targeted observation campaign in the 454 

summer 2019 in the YS. 455 

Table 2. Observing System Simulation Experiments based on the hindcast runs 456 

Experiments Comment 

EXP2016 Nature run 

EXP2016_perturb Control run 

EXP2016_tar_varied_3cycles Three-times cycle assimilation in the target region at the time-varying stations 
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EXP2016_sen_varied_3cycles Three-times cycle assimilation in the sensitive area at the time-varying stations 

EXP2017 Nature run 

EXP2017_perturb Control run 

EXP2017_tar_varied_3cycles Three-times cycle assimilation in the target region at the time-varying stations 

EXP2017_sen_varied_3cycles Three-times cycle assimilation in the sensitive area at the time-varying stations 

EXP2018 Nature run 

EXP2018_perturb Control run 

EXP2018_tar_varied_3cycles Three-times cycle assimilation in the target region at the time-varying stations 

EXP2018_sen_varied_3cycles Three-times cycle assimilation in the sensitive area at the time-varying stations 

 457 

Table 3. Assessment of the designed observing strategy in the hindcast years of 2016-2018 458 

(RMSEs refinement in percentage) 459 

    Year  

Experiments  

2016 2017 2018 

EXP_tar_varied_3cycles -32.0% 20.3% 59.7% 

EXP_sen_varied_3cycles 43.9% 48.2% 70.1% 

  460 

4. Forecast improvements and discussion 461 

4.1 DATA 462 

A dedicated ocean survey with two synergetic ships is carried out in August 2019 to obtain 463 

the targeted observation data in the YS. In the target region, five buoys (red crosses in Figure 464 

10c) are placed from 17 to 27 August for forecast validation and OSEs. The buoys are composed 465 

of temperature loggers (SBE56), pressure-temperature loggers (SBE39 and RBRduo
3
) and 466 
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pressure-temperature-conductivity loggers (RBRconcerto
3
), which can obtain the temperature 467 

profiles of nearly the total water volume in approximately 2 m vertical bins. Both ends of the 468 

buoys are equipped with pressure sensor instruments to determine the depths of the temperature 469 

loggers between them. The sensors collected a sample every 10 mins. During 18-20 August, 21 470 

temperature profiles are obtained by shipboard CTD (stars in Figure 10) to measure the influence 471 

of local data assimilation in the target region on forecasts. 472 

In the sensitive areas, temperature profiles are collected by the eXpendable 473 

BathyThermographs (XBT) during 18-20 August. Temperature profiles at each XBT station are 474 

detected four times a day (16:30-19:30, 22:30-1:30, 4:30-7:30, 10:30-13:30) along the 475 

predesigned routes to obtain the daily averaged value, which are used in the cycle data 476 

assimilation at 00:00 on 18, 19, and 20 August 2019. Given that the repeated cruises undergo 477 

inevitable spatial uncertainty, after performing data quality control, the daily averaged 478 

temperature profiles used for data assimilation are obtained by interpolating both the XBT data 479 

and the simultaneous buoy data at the standard station locations. All times in the study are 480 

referenced to the Chinese Standard Time (UTC+8). 481 

4.2 Forecast improvements 482 

In this section, the performance of the targeted observations in improving the forecast is 483 

validated. The daily-averaged temperature profiles of the model results and the observation data 484 

at the five buoy stations in 26 August, 2019 are compared (Figure 9, see buoy locations in Figure 485 

10c). The simulated sea surface temperature agrees very well with the observations, but the 486 

predicted upper mixed layer thicknesses are slightly thinner. At the bottom, the simulated 487 

temperature is higher than the observation, which may be caused by the insufficient cooling in 488 

the previous winter. Compared to the upper and bottom layers, the accuracy in the middle water 489 

volume is lower as a result of strong seasonal variations in the shallow sea thermocline, and the 490 

predicted temperature was relatively lower. At the buoy stations, the RMSEs between the 491 

modeled temperature profiles and the observations are approximately 1.66-2.74 ℃ (an average 492 

value of 2.11 ℃), and these errors increase to 2.26-3.75 ℃ (an average value of 2.84 ℃) when 493 

the depth ranges are restricted to the thermocline of 15-30 m. It should be noted that the 494 

temperature RMSEs are only calculated at depths where observations are available. Horizontally, 495 
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the modeled temperature RMSEs at stations W1 and W4 are apparently higher than those at the 496 

other three stations. This indicates that it is more difficult to correctly reproduce the summer 497 

vertical thermal structures on the continental slopes with lesser water depths (Figure 10c). 498 

Overall, the simulation successfully captures the general vertical thermal structures in the target 499 

region, but there is still much room to improve the forecast accuracy, especially within the depth 500 

range of the summer thermocline. 501 

Then, observations obtained in the sensitive area are assimilated to quantify the benefits of 502 

the targeted observations (EXP2019_sen). As illustrated in Figure 9, there is a marked 503 

improvement in the vertical thermal structure simulations after assimilation. Among the five 504 

buoy stations, the average RMSEs between the modeled temperature profiles and the 505 

observations are reduced from 2.11 to 1.7 ℃, with an average forecast improvement of 506 

approximately 18.9% (compared to that of the EXP2019). However, one may argue that, this 507 

significant forecast improvement could be attributed to the data assimilation technique rather 508 

than the targeted observations. To highlight the contribution of the targeted observations, we 509 

conduct a series of OSEs (Table 4) in the following section. The results show that the prediction 510 

benefits decrease if the equivalent measurements are deployed locally in the target region. 511 

 512 
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   513 

Figure 9. Comparison of the observed and simulated daily-averaged temperature profiles at five 514 

buoys (see locations in Figure 10c). The black lines indicate the in-situ observations. The red 515 

lines indicate the model results without assimilation. The blue lines and the yellow lines indicate 516 

the improvement in the prediction from the assimilation of the observations in the target region 517 

and sensitive area, respectively. The green lines indicate the model results of 518 

EXP2019_tar_interp for the assimilation of the interpolated data at the synthetic stations in the 519 

target region (see locations in Figure 10d). 520 
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  521 

Figure 10. Station locations of the Observing System Experiments. The buoy stations, XBT 522 

stations, and shipboard CTD stations are denoted by the crosses, triangles and stars, respectively. 523 

The circles inside the target region in d) indicate the synthetic stations. The different deployment 524 

times of the observations are distinguished by different colors. 525 

 526 

Table 4. Design of Observing System Experiments 527 

Experiments 
Data 

assimilation 

Assimilation 

cycle 
Comment 

EXP2019 no - Control run 

EXP2019_tar_org yes 3 

Cycle assimilate the original observations in the target 

region (15 profiles in 18 and 19 August, respectively, 

and 7 profiles in 20 August) 

EXP2019_tar_interp yes 3 
Cycle assimilate the interpolated data at the synthetic 

stations in the target region (36 profiles) 
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EXP2019_sen yes 3 

Cycle assimilate the XBT data at the stations designed 

based on the identified 7-days, 8-days and 9-days 

sensitive areas, respectively (36 profiles) 

  528 

 529 

4.3 Observing System Experiments 530 

The benefit of oceanic targeted observations has been tested in some previous studies 531 

through a series of OSSEs (Li et al., 2014; Wang et al., 2013; Zhang et al., 2019). However, the 532 

effect of oceanic targeted observations guided by sensitive areas has never been tested in OSEs 533 

through the use of real data in actual operation. Generally, in the context of standard OSEs 534 

designed for atmospheric targeted observation, the experiment assimilating all the available 535 

observations is regarded as the control experiment, and the impact of the selected observations is 536 

assessed by removing subsets of the measurements or by adding extra measurements and 537 

comparing the results with the control experiment (Majumdar et al., 2011). In the oceanic region 538 

of this study, the historical observations that we can obtained are sparse. Thus, we set an 539 

experiment that does not assimilate any data as the control experiment (EXP2019). Given that 540 

the target region is the most representative nonsensitive area for the benefit assessment of OSEs, 541 

in addition to experiment EXP2019_sen, we conducted two extra experiments that assimilate 542 

approximately equal amounts of measurements inside the target region: EXP2019_tar_org, for 543 

which a total of 37 originally observed temperature profiles in the target region are assimilated 544 

(see locations in Figures 10a-c), and EXP2019_tar_interp, for which 36 interpolated data in a set 545 

of synthetic stations in the target region are assimilated (see locations in Figure 10d). These 546 

synthetic stations are parallel to the corresponding stations in the sensitive area, but their daily 547 

routes are located in the center of the target region. The daily averaged temperature profiles are 548 

obtained by interpolating all the observations available on that day to the synthetic stations. It 549 

should be noted that, to take full advantage of the limited observations, the shipboard CTD 550 

temperature profiles used in the OSEs are only one-time measurements instead of daily averaged 551 

values, which is a flaw of the designed OSEs. 552 
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Despite the difference in the spatial locations and numbers of the temperature profiles 553 

assimilated every day of the cycle assimilation, the forecast improvements in EXP2019_tar_org 554 

and EXP2019_tar_interp are nearly the same. In every buoy station, the simulated temperature 555 

profiles in EXP2019_tar_org and EXP2019_tar_interp are refined due to data assimilation in the 556 

target region. However, the forecast improvements in EXP2019_tar_org and 557 

EXP2019_tar_interp are both less than half of that in EXP2019_sen (average RMSE decreases of 558 

7.1% and 8.6% vs. 18.9%). The results of the OSEs support our initial assumption that 559 

conducting data assimilation in the CNOP-identified sensitive area is more effective in forecast 560 

improvement than in other areas including the target region itself. However, it should be noted 561 

that, the quantitative benefit of targeted observation in the CNOP-identified sensitive area differs 562 

from model to model and depends on the initial simulation accuracy and the selected data 563 

assimilation scheme. 564 

4.4 Dynamic analysis 565 

To better understand how the local forecast errors are efficiently reduced by conducting 566 

targeted observations in the remote sensitive area, it is worth exploring the dynamics behind. We 567 

quantitively investigate the physical processes affecting the water temperature in the target 568 

region using the model temperature equation 569 

( ) ( ) ( )h h h v

T T
vT A T A

t z z

  
    

  
,                                           (8) 570 

where T  is temperature, v  is velocity, and hA  and vA  are the horizontal and vertical diffusivity 571 

coefficients, respectively. The temperature change in the water is mainly induced by horizontal 572 

temperature advection, vertical temperature advection, horizontal temperature diffusion and 573 

vertical temperature diffusion. The ocean temperature is also affected by the change in surface 574 

heating. However, considering that in this study, we only conducted targeted observations inside 575 

the water volume, thus, only the impact of advection and diffusion processes are discussed. 576 

The temporal evolution of the vertically integrated and regionally averaged temperature 577 

biases induced by different processes in the target region is shown in Figure 11. Since we are 578 

focused on the evolution of different processes during the prediction time rather than the initial 579 
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refinement of the ocean state, the initial biases are set to zero at the targeting time. The total 580 

biases of EXP_perturb and EXP_sen_varied_3cycles against EXP0 are always negative, 581 

suggesting a decrease in the temperature discrepancy against the natural run, which is consistent 582 

with the previous results of OSSEs (the black and blue descending trend lines in Figure 8). 583 

However, the total biases of EXP_tar_varied_3cycles against EXP0 are positive, which suggests 584 

that the temperature field in EXP_tar_varied_3cycles becomes worse since the targeting time 585 

(the blue dashed line in Figure 8). Due to the effectiveness of the targeted observation, the 586 

amplitude of the bias for EXP_sen_varied_3cycles against EXP0 is larger than that for 587 

EXP_perturb against EXP0. Thus far, we can conclude that conventional local data assimilation 588 

can greatly improve the initial temperature field in the target region, but the effectiveness 589 

decreases during model integration. In contrast, the temperature field in the target region may not 590 

be significantly refined through the assimilation of the data in the remote sensitive area at the 591 

targeting moment, but it will be continuously improved during the prediction time, and reach a 592 

more precise state at the verification time. 593 

It is clear that the horizontal advection accounts for the majority of the temperature biases 594 

during the prediction time (Figure 11). The temperature biases of vertical advection, horizontal 595 

diffusion and vertical diffusion are always positive, indicating a negative effect of these three 596 

processes. In Figures 11a and b, the temperature biases of horizontal advection have the largest 597 

negative amplitude, suggesting that the horizontal temperature advection contributes the most to 598 

improving the prediction. In EXP_tar_varied_3cycles, both the advection and diffusion processes 599 

lead to a reduction in the simulation accuracy, within which the horizontal advection contributes 600 

the most. 601 

As the baroclinic response of the YSCWM, there exists a cyclonic gyre of approximately 602 

0.2 Sv in the summer YS (Naimie et al., 2001). The identified sensitive area is located 603 

northeastward of the target region, which is consistent with the local flow direction of the 604 

YSCWM circulation (southwestward). From historical studies, although the YS summer 605 

circulation was supposed to feature a complex two-layer or three-layer structure (Xu et al., 2002; 606 

Xia et al., 2006), it is widely accepted that most of the middle water volume (4-40 m) is 607 

dominated by a basin-scale cyclonic circulation. This interprets our results that the refinement of 608 

the vertical thermal structures by targeted observation mainly occurs in the middle water volume 609 

javascript:;
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rather than in the surface or bottom mixed layer (Figure 9). Through the assimilation of the 610 

targeted measurements in the sensitive area, the information is subsequently advectively carried 611 

downstream to the target region by the YSCWM circulation. The distance of the identified 612 

sensitive area from the target region is associated with the involved prediction time. 613 

 614 

Figure 11. Temporal evolution of the vertically-integrated regionally-averaged temperature 615 

biases induced by different processes in the target region for a) EXP_perturb vs. EXP0, b) 616 

EXP_sen_varied_3cycles vs. EXP0, and c) EXP_tar_varied_3cycles vs. EXP0 during the 617 

prediction time. 618 

5. Conclusion 619 

Targeted observation is believed to be a cost-effective way to decrease forecast uncertainty 620 

through the assimilation of additional measurements in the initial state. This study first extends 621 

the scope of oceanic targeted observations to the vertical thermal structure predictions. Given a 622 
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selected target region and a fixed prediction period of seven days, the sensitive areas are 623 

identified utilizing the CNOP method and a newly defined objective function. The majority of 624 

the sensitive areas are located outside of the target region in the northeast. Through the 625 

superimposition of random errors in several selected regions, the initial state of the sensitive area 626 

is proven to have the most impact on the thermal structure prediction in the target region. Given 627 

that the locations of the identified sensitive areas in the hindcast and climatology runs are 628 

generally consistent, guided by the CNOP-identified sensitive area of the last climatology year, 629 

we design the observation strategy with the technique of cycle data assimilation and the new 630 

concept of the time-varying sensitive area. A series of OSSEs are conducted to assess the 631 

observation performance before the field campaign. The results show that, cycle assimilating 632 

temperature profiles at the designed stations in the 7-day, 8-day and 9-day sensitive areas can 633 

yield the maximum benefits. 634 

A choreographed field campaign is then applied in the summer of 2019 in the YS to 635 

evaluate the capabilities of targeted observations to reduce the temperature uncertainty in 636 

numerical predictions. Our field experiment applied XBTs to purposefully sample the thermal 637 

profiles in the sensitive areas. Inside the target region, an approximately equal number of 638 

temperature profiles were gathered by shipboard CTDs and buoys. OSEs were conducted to test 639 

the capabilities of targeted observations. The results show that reducing the initial errors in the 640 

sensitive area can lead to improvement in the thermal structure prediction (18.9%) greater than 641 

that in the target region (7-9%). Compared to assimilating local observations in the target region, 642 

assimilating observations in the identified sensitive areas can double the benefit of data 643 

assimilation regarding forecast improvements. To explore this further, we investigated the 644 

physical dynamics behind. A term-by-term analysis of the model temperature equation indicates 645 

that the horizontal temperature advection contributes the most to forecast improvement during 646 

the prediction time. After conducting targeted observation in the upstream sensitive area, the 647 

physical signals are subsequently carried downstream to the target region by the horizontal 648 

temperature advection of the YSCWM circulation. 649 

In this study, we skip the step of establishing a real-time prediction model, on the basis that 650 

the locations of the identified sensitive areas in the hindcast and climatology runs are generally 651 

consistent. Although this kind of spatial consistency was also found in the optimal precursor 652 
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study of the Kuroshio intrusion into the SCS (Liang et al., 2019; personal communication), it will 653 

not always be applicable if the focused phenomenon or study area changes. Thus, future work 654 

should be guided based on a reliable local prediction system. Furthermore, the optimal 655 

deployment network should be investigated and extended to the three-dimensional scenarios. A 656 

more advanced data assimilation technique is also needed to better exploit the targeted data. 657 
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