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Abstract

The resolution of climate models is limited by computational cost. Therefore, we must rely on parameterizations to represent

processes occurring below the scale resolved by the models. Here, we focus on parameterizations of ocean mesoscale eddies and

employ machine learning (ML), namely relevance vector machines (RVM) and convolutional neural networks (CNN), to derive

computationally efficient parameterizations from data, which are interpretable and/or encapsulate physics. In particular, we

demonstrate the usefulness of the RVM algorithm to reveal closed-form equations for eddy parameterizations with embedded

conservation laws. When implemented in an idealized ocean model, all parameterizations improve the statistics of the coarse-

resolution simulation. The CNN is more stable than the RVM such that its skill in reproducing the high-resolution simulation

is higher than the other schemes; however, the RVM scheme is interpretable. This work shows the potential for new physics-

constrained interpretable ML turbulence parameterizations for use in ocean climate models.
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Key Points:6

• We present two machine learning algorithms for ocean mesoscale parameteriza-7

tions.8

• We discover closed-form equations for eddy momentum, temperature and energy9

parameterizations.10

• Deep learning closure is more stable than closed-form equations when implemented11

in an ocean model.12
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Abstract13

The resolution of climate models is limited by computational cost. Therefore, we14

must rely on parameterizations to represent processes occurring below the scale resolved15

by the models. Here, we focus on parameterizations of ocean mesoscale eddies and em-16

ploy machine learning (ML), namely relevance vector machines (RVM) and convolutional17

neural networks (CNN), to derive computationally efficient parameterizations from data,18

which are interpretable and/or encapsulate physics. In particular, we demonstrate the19

usefulness of the RVM algorithm to reveal closed-form equations for eddy parameteri-20

zations with embedded conservation laws. When implemented in an idealized ocean model,21

all parameterizations improve the statistics of the coarse-resolution simulation. The CNN22

is more stable than the RVM such that its skill in reproducing the high-resolution sim-23

ulation is higher than the other schemes; however, the RVM scheme is interpretable. This24

work shows the potential for new physics-constrained interpretable ML turbulence pa-25

rameterizations for use in ocean climate models.26

Plain Language Summary27

The complexity of numerical models used for future climate projections is limited28

by their computational cost. Many key processes, such as ocean eddies, are not adequately29

resolved and must be approximated using parameterizations. However, parameteriza-30

tions are often imperfect and reduce the accuracy of the simulations. Machine learning31

is now opening new avenues to improve climate simulations by extracting such param-32

eterizations directly from data, rather than using idealized theories as typically done. We33

show that efficient modern machine learning algorithms can accurately represent the physics34

of ocean eddies, be constrained by physical laws, and can be interpretable. Our results35

simultaneously open the door to the discovery of new physics from data and the improve-36

ment of climate simulations.37

1 Introduction38

Turbulent processes are critical components of the climate system and influence39

the circulation of both the ocean and atmosphere. For example, ocean mesoscale eddies,40

which are turbulent features of scale 10-100 km, dominate the oceanic kinetic energy reser-41

voir (Ferrari & Wunsch, 2009) and are key for the lateral and vertical transport of trac-42

ers, such as heat, carbon, and oxygen. These turbulent processes occur on scales that43

are below the resolution of typical global climate models, which is roughly 25 km-10044

km (IPCC, 2013). Therefore, the effects of these turbulent processes on the large-scale45

must be approximated.46

These approximations, called parameterizations or closures, are often developed us-47

ing idealized theories of the bulk effect of the subgrid process on the large scale (Warner,48

2010). This approach has been used for many decades but is not necessarily optimal as49

it neglects certain physical effects. Imperfections in current parameterizations and miss-50

ing physics in climate models introduce significant biases in simulations and consider-51

able uncertainty in anthropogenic climate change projections (IPCC, 2013). For exam-52

ple, current parameterizations of ocean eddies target the effect of i) buoyancy fluxes by53

removing large-scale available potential energy (Gent & Mcwilliams, 1990), and ii) mo-54

mentum fluxes using viscous closures which dissipate momentum (Zanna et al., 2020).55

While improving certain properties of the flow (Danabasoglu et al., 1994), eddy pa-56

rameterizations are missing key energy pathways such as the conversion of available po-57

tential energy into subgrid kinetic energy, or the backscatter of kinetic energy to the large-58

scale flow (Jansen et al., 2015; Zanna et al., 2017; Bachman, 2019). In addition, these59

parameterizations spuriously dissipate kinetic energy (Jansen & Held, 2014; Kjellsson60
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& Zanna, 2017). These imperfect representations of ocean eddy physics in models can61

affect the strength and variability of large-scale ocean currents and ocean heat uptake62

(Zanna et al., 2017; Kuhlbrodt & Gregory, 2012). Increasing resolution can reduce some63

of these biases; however, due to the computational expense of running turbulence-resolving64

simulations, subgrid parameterizations will be in demand for several decades.65

Recently, the advent of machine learning (ML) has given rise to a new class of data-66

driven parameterizations. Studies rely on ML to optimally tune parameters of existing67

closures (Schneider et al., 2017; Ling et al., 2016). This approach, while useful, still ne-68

glects the missing physics not encapsulated in the current parameterizations. Instead,69

several studies have shown the promise of new ML parameterizations of subgrid processes70

in the atmosphere (Gentine et al., 2018; Rasp et al., 2018; O’Gorman & Dwyer, 2018;71

Brenowitz & Bretherton, 2018) and ocean (Bolton & Zanna, 2019). However, this new72

class of ML parameterizations often uses black-box algorithms (e.g., neural networks)73

such that the laws of physics are not necessarily respected unless imposed (Beucler et74

al., 2019; Ling et al., 2016), and interpreting the data-driven parameterization becomes75

intractable.76

Here, we propose a complementary or alternative route to both the traditional physics-77

driven bulk approach and the ML-black box approach of deep learning. We use ML to78

discover closed-form equations for mesoscale eddy parameterizations for coarse-resolution79

ocean models using high-resolution model data. Given some spatio-temporal dataset of80

the subgrid eddy forcing, we uncover an equation that could have produced that dataset81

(Rudy et al., 2017; Zhang & Lin, 2018). This approach has the following advantages over82

more complex methods such as convolutional neural networks: the end result is signif-83

icantly easier to interpret physically, the computational cost of implementation is lower,84

and training time of the algorithm is also lower. Data-driven discovery of equations has85

been extensively used to reveal known-equations, such as Burger’s or Navier-Stokes’ equa-86

tions (Kutz, 2017). However, unlike in these studies, we use the algorithm to discover87

unknown equations for the subgrid eddy forcings.88

2 Data and Methods89

2.1 Training Data and Coarse-Graining90

We use a primitive equation model, MITgcm (J. Marshall et al., 1997), to gener-91

ate high-resolution data and construct new eddy momentum, temperature and energy92

parameterizations. We run highly-idealized double-gyre eddy-resolving barotropic and93

baroclinic simulations in a square-domain. The simulations use a beta-plane approxima-94

tion, free-slip boundary conditions on lateral walls and no-slip boundary condition on95

the bottom, and a constant surface zonal wind forcing. These simulations are designed96

to create highly turbulent flow regimes, with mesoscale eddies shedding from the jet ex-97

tension.98

The barotropic model has a single layer of depth 500 m and length 3840 km, sim-99

ilar to Cooper and Zanna (2015). We spin-up the model from rest for 10 years, at a spa-100

tial resolution of 3.75 km. The baroclinic model comprises of 15 vertical levels, with a101

total depth of 3600 m. Due to the increased computational cost of running the baroclinic102

simulation compared to the barotropic model, we decreased the domain size from 3840103

km in length to 1920 km, with a spatial resolution of 7.5 km. The meridional temper-104

ature gradient is imposed via surface restoring to a linear profile. We spin-up the baro-105

clinic model for 100 years and then run for a further 10 years for data collection. Fur-106

ther details about the simulations are given in the Supplementary Information (SI, S1).107

After spin-up, we select 1000 time-slices of model output, with 4 days between each108

time-slice. We remove information at small-scales by applying a horizontal Gaussian fil-109

ter of width 30 km, and then coarse-grain to a 30 km grid, which is denoted by ( .. ) (Bolton110
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& Zanna, 2019) (SI, S2). The subgrid eddy momentum and temperature forcing terms,111

for each vertical level, are then defined by112

Su =

(
S x

S y

)
= (u · ∇ )u − (u · ∇ )u, (1)113

S T = (u · ∇ )T − (u · ∇ )T , (2)114

respectively. Here ∇ is the horizontal 2D gradient operator, T is the temperature, and115

the horizontal velocity u = ( u, v ). These terms reflect the turbulent nonlinear terms116

truncated in coarse-resolution models which need to be parameterized (Berloff, 2005; Mana117

& Zanna, 2014). At every grid-point for every time-slice, we both i) calculate the tar-118

get eddy forcing, i.e, Eqs. (1) and (2), and ii) construct a library of diverse functions119

which are necessary for the RVM method described below and are relevant to the pro-120

cess being parameterized.121

2.2 Data-Driven Algorithms122

Relevance Vector Machine. Here, we employ the sparse Bayesian regression method123

used in Zhang and Lin (2018) based on relevance vector machines (RVM) (Tipping, 2001)124

to reveal new eddy parameterizations. RVM is a regression technique that assumes Gaus-125

sian prior distributions for each regression weight (Bishop, 2006). The width of the Gaus-126

sian prior of each regression weight provides a measure of uncertainty of that regression127

weight. The method relies on a library of functions, which can comprise of any function128

such as products or derivatives of relevant quantities defined as basis functions (e.g., ve-129

locity shears, temperature shears). The sparse regression is applied iteratively to the li-130

brary of functions, and then a pruning of the library of functions is carried out by dis-131

carding the functions with an uncertainty higher than a pre-specified threshold (Zhang132

& Lin, 2018). This uncertainty threshold, δ , is the only parameter that requires setting133

in the Zhang and Lin (2018) method. The algorithm finishes when the uncertainty mea-134

sures of each regression weight stop changing from iteration to iteration. We found the135

Zhang and Lin (2018) method to be more robust than the sequential threshold ridge re-136

gression (STRidge) of Rudy et al. (2017). For example, using data to discover the known137

2D advection-diffusion equations, we found that STRidge required substantially more138

data for training than the RVM method, STRidge has a large number of tunable hyper-139

parameters which substantially influenced the discovered equation compared to the RVM140

method which has only one hyperparameter. In addition, unlike STRidge, Zhang and141

Lin (2018) method provided an error associated with the weights discovered. Given these142

tests were performed on known equations in which we knew the answers, we opted for143

the use of Zhang and Lin (2018) RVM method to discover unknown parameterizations.144

At every grid-point for every time-slice from the MITgcm coarse-grained output145

(described above) we construct a library of diverse functions, φ i, which are derived from146

a set of basis functions relevant to the process being parameterized. We build the library147

from the filtered velocities u , v , and T using up to second-order for both spatial deriva-148

tives and polynomial products, mainly due to memory limitations. The basis of func-149

tions used for the momentum and temperature eddy parameterizations differ and will150

be discussed in the next section. We normalized each function individually such that they151

have zero mean and unit variance. We use 50% of the 1000 time-slices for training and152

the other 50% for validation. For both the eddy momentum and temperature forcing,153

we impose a physical constraint for global conservation. To do so, we only specify library154

functions that can be written as the divergence of a flux (or as the divergence of a ten-155

sor T for the eddy momentum forcing, i.e. ∇· T), such that with the appropriate bound-156

ary conditions there is no net input of momentum or temperature.157

We then apply the iterative RVM algorithm to prune the library of functions and158

construct the final equation for the subgrid forcing (independently for S x, S y and S T )159

as a linear sum of the functions, φ i, each weighted by the regression coefficient, w i. We160
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Figure 1. A) Illustration of the RVM procedure; B) Schematic of the architecture of the

physics-constrained fully-convolutional neural network (FCNN); C) O�ine validation of the sub-

grid momentum forcing from the barotropic simulations for three parameterizations, denoted

as Ŝ { the physics-driven ŜAZ , ŜBT revealed by the RVM algorithm (Eq. 5), and the FCNN {

against the diagnosed forcing from high-resolution data, S. Top Row shows the mean [ms � 2 ],

Middle Row the Standard Deviation [ ms � 2 ], and the Bottom Row the Pearson correlation of the

zonal component of the eddy momentum forcing, Sx and Ŝx (the meridional component is shown

in SI). The x- and y-axis are longitude and latitude, respectively; the extent is 3840 km in each

direction.
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