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Abstract

Fluid mixing in permeable media is essential in many practical applications. The mixing process is a consequence of velocity

fluctuations owing to geological heterogeneities and mobility contrast of fluids. Heterogeneities in natural rocks are often

spatially correlated, and their properties, such as permeability, may be described using fractal distributions. This work models

the fractal characteristics of such permeability fields in which the covariance function is expressed as a power-law function.

A generalized scaling relation is derived relating various fractal permeability fields using the magnitude of their fluctuations.

This relation reveals the self-similar behavior of two-phase flow in such permeable media. To that end, a recently developed,

high-resolution numerical simulator is employed to validate the analytically derived scaling relations. Two flow problems are

considered in which flow is governed by 1) a linear, and 2) a nonlinear transport equation. Due to the probabilistic representation

of the fractal permeability fields, a sensitivity study is conducted for each flow scenario to determine the number of realizations

required for statistical convergence. Scaling analysis is performed using ensemble averages of simulated saturation profiles

and their mixing lengths. Results support the validity of the developed scaling relation across the range of investigated flow

conditions at intermediate times. The dynamics of linear flow in the asymptotic regime is affected by the correlation structure

of heterogeneity. In nonlinear flow, scaling behavior appears to be dominated by the degree of nonlinearity.

1



manuscript submitted to Water Resources Research

Scaling Analysis of Two-Phase Flow in Fractal1

Permeability Fields2

Yuhang Wang1, Jesse Mckinzie3, Frederico Furtado2, Saman A. Aryana2,3
3

1Department of Petroleum Engineering, University of Wyoming, Laramie, WY, 820714

2Department of Mathematics and Statistics, University of Wyoming, Laramie, WY, 820715

3Department of Chemical Engineering, University of Wyoming, Laramie, WY, 820716

Key Points:7

• A generalized analytical scaling relation is derived for two-phase flow in perme-8
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Abstract14

Fluid mixing in permeable media is essential in many practical applications. The mixing15

process is a consequence of velocity fluctuations owing to geological heterogeneities and16

mobility contrast of fluids. Heterogeneities in natural rocks are often spatially correlated,17

and their properties, such as permeability, may be described using fractal distributions. This18

work models the fractal characteristics of such permeability fields in which the covariance19

function is expressed as a power-law function. A generalized scaling relation is derived20

relating various fractal permeability fields using the magnitude of their fluctuations. This21

relation reveals the self-similar behavior of two-phase flow in such permeable media. To22

that end, a recently developed, high-resolution numerical simulator is employed to validate23

the analytically derived scaling relations. Two flow problems are considered in which flow24

is governed by 1) a linear, and 2) a nonlinear transport equation. Due to the probabilistic25

representation of the fractal permeability fields, a sensitivity study is conducted for each26

flow scenario to determine the number of realizations required for statistical convergence.27

Scaling analysis is performed using ensemble averages of simulated saturation profiles and28

their mixing lengths. Results support the validity of the developed scaling relation across29

the range of investigated flow conditions at intermediate times. The dynamics of linear30

flow in the asymptotic regime is affected by the correlation structure of heterogeneity. In31

nonlinear flow, scaling behavior appears to be dominated by the degree of nonlinearity.32

Plain Language Summary33

Multiphase flow in subsurface permeable media plays a fundamental role in many nat-34

ural and engineering processes, such as remediation of contaminated aquifers, geological35

carbon storage, and petroleum reservoir engineering. In all these instances, variability of36

the media’s properties and contrasts of density and viscosity of the flowing phases may37

lead to significant velocity fluctuation at the pore-scale and mixing of the fluids at the38

macroscale. Optimal design and exploitation of these subsurface resources require accurate39

and predictive macroscale descriptions of the flow processes. This work investigates the im-40

pact of spatial heterogeneity on flow characteristics using a probabilistic description for the41

permeability field. We demonstrate a relation between flow behaviors in various self-similar42

fields with a power-law covariance structure. Our findings may help to predict flow behavior43

in geological formations without the need to conduct full-scale simulations.44
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1 Introduction45

Flow and transport in permeable media in the context of the subsurface is receiving a46

growing interest due to the wide range of applications that rely on an in-depth understanding47

of such processes. Natural permeable media consist of matrices of grains interspersed with48

interconnected pores. To capture the dynamics of subsurface flow, mathematical modeling49

and numerical simulation play essential roles. Given the availability of information regarding50

the exact geometry, pore-scale modeling and simulation studies provide a detailed under-51

standing of interactions between fluids and solids in permeable media (Celia et al., 1995;52

Prodanović & Bryant, 2006; Bijeljic & Blunt, 2006; Liu et al., 2014; Mehmani & Tchelepi,53

2019). An accurate understanding of physical mechanisms of flow and transport at pore-scale54

is critical to deriving predictive macroscopic descriptions, which account for disparate length55

scales and are indispensable in simulating flow in large-scale systems. These mathematical56

descriptions rely on macroscale variables such as saturation, porosity, and permeability, and57

they are formulated using conservation laws (LeVeque, 1992). Darcy’s law is a macroscale58

expression of the conservation of momentum for single phase flow at low Reynolds numbers59

(Hubbert, 1957; Whitaker, 1986; Dullien, 2012). In the case of multiphase flow, Darcy’s law60

is extended by incorporating constitutive relations, i.e., relative permeability and capillary61

pressure functions (Muskat & Meres, 1936; Wyckoff & Botset, 1936; Leverett, 1941). This62

work investigates two-phase flow in fully saturated permeable media with significant vis-63

cous forces, such that Darcy-scale continuum models apply (Wilkinson & Willemsen, 1983;64

Lenormand, 1990; C. Zhang et al., 2011; F. Guo & Aryana, 2019).65

Macroscopic dispersive mixing induced by fluctuations in the velocity field is of consid-66

erable interest in a number of practical applications involving multiphase flow in permeable67

media. Examples include remediation of contaminated aquifers, geological carbon storage,68

and petroleum reservoir engineering (Mercer & Cohen, 1990; Helmig, 1997; Juanes, 2008;69

B. Guo et al., 2014; Liang et al., 2018; Yuan et al., 2019). In such flows, the growth of70

the region where the mixing of fluids occurs is driven by spatial heterogeneity in natural71

geological media, and nonlinearity inherent in the governing equation due to contrast of72

fluid properties (Hassan et al., 1997; D. Zhang & Tchelepi, 1999; Furtado & Pereira, 2003;73

Chen & Durlofsky, 2006; Hajibeygi et al., 2012; Heidari & Li, 2014; Christou et al., 2019).74

This work focuses on the self-similar behavior in mixing due to heterogeneity associated75

with permeability fields. Permeability distributions in natural permeable media are often76

observed to be correlated in space, i.e., they exhibit fractal characteristics. Due to difficul-77
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ties in complete characterization of their spatial variations, their descriptions often rely on78

sparse data collected over relatively long distances. A representative description of varia-79

tions across the field may be incorporated in a stochastic manner on the basis of random80

fields (Hewett & Behrens, 1990; Neuman, 1995; Eggleston & Rojstaczer, 1998; Babadagli,81

2006; Cushman, 2013; Xue et al., 2019), and the heterogeneity may be quantified through82

fractal dimension or Hurst exponent (Mandelbrot, 1985; Voss, 1988). As suggested in pre-83

vious studies (Furtado & Pereira, 1998; Borges et al., 2009; Francisco et al., 2014; Daripa84

& Dutta, 2017), this work adopts the fractal field with a power-law covariance function to85

characterize permeability fields.86

The randomness of the permeability field gives rise to fluctuations in fluid velocities.87

These fluctuations lead to a mixing region between fluids in the vicinity of the displace-88

ment front. The mixing may be characterized by the degree of mixing, which is defined89

based on the variance of concentration field (Dentz et al., 2011; Jha et al., 2011). Such a90

method can be applied to quantify the mixing regardless of flow configurations. Previous91

studies of fluid mixing focus on modeling rectilinear flow through a horizontal cross-section92

of the permeable media with a line source injection. Under such conditions, the mixing93

region can be characterized by its extent along the main directions of flow, referred to as94

the mixing length. The rate of growth of this mixing length has important implications95

in practical applications. As a result, a major question concerns the growth of the mixing96

region. Glimm and Sharp (1991) analyzed the relation between the growth of mixing length97

and the heterogeneity of random (permeability) fields in the case of tracer flow, which is98

governed by a linear transport equation. The fractal permeability field has a covariance99

function expressed in the form of a power law with a single exponent. Q. Zhang (1992)100

generalized the results of Glimm and Sharp (1991) by extending this analysis to a multi-101

fractal system, where the permeability field is characterized with scale-dependent exponents102

(Harte, 2001). Furtado and Pereira (1998) studied fluid mixing for immiscible two-phase103

flow in heterogeneous permeable media using numerical simulations. Results of tracer flows104

agree well with theoretical predictions (Glimm & Sharp, 1991). Moreover, in the case of105

nonlinear flow, results indicate that the underlying heterogeneities play a major role in de-106

termining transient behavior of the mixing process, and large-time behavior is independent107

of the strength and correlation structure of heterogeneities. Borges et al. (2009) derived a108

scaling relation for tracer flow, which is valid for any strength of the underlying self-similar109

field. Results from Monte Carlo studies show that the mixing lengths from heterogeneous110
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fields with different strengths collapse to a single curve once they are scaled according to111

the developed theory. This finding is similar to the results of scaling analysis for miscible112

displacements reported by Sajjadi and Azaiez (2013). Despite recent advances in under-113

standing the impact of heterogeneity on fluid mixing for miscible or partially miscible flows114

(Nicolaides et al., 2015; Connolly & Johns, 2016; Amooie et al., 2017; Nijjer et al., 2019),115

few studies have explored self-similarity of the evolution of mixing for both miscible and116

immiscible flows in fractal permeability fields.117

In this paper, we revisit two-phase flows in heterogeneous permeable media and we118

focus on flow regimes where viscous forces dominate and overwhelm capillary forces. As a119

result, the velocity field plays an essential role in driving the mixing process of two-phase120

flows. A high-resolution numerical scheme is used to solve the governing equations to reduce121

numerical diffusion and obtain accurate velocity fields. The classical formulation of the gov-122

erning equations is expressed as two partial differential equations (PDE): an elliptic PDE123

for flow quantities, i.e., velocity and pressure, and a hyperbolic PDE for saturation. Finite124

difference (FD) methods are often used to discretize the elliptic PDE. Implementation of125

FD schemes suffers from two major drawbacks. First, an accurate solution of the elliptic126

PDE may require a fine grid size, which results in a large number of grid cells and high127

computational cost. Second, the inclusion of constitutive relations gives rise to a system of128

nonlinear PDEs that requires an implicit iterative scheme to eliminate numerical instabil-129

ity. Spectral methods serve as effective alternatives (D. Gottlieb & Orszag, 1977). In such130

schemes, solution is written as a sum of certain basis functions, e.g., Fourier series. As a131

consequence, spatial derivatives of primary variables are computed with high-order of accu-132

racy using a Fast Fourier Transform (FFT). Such a method involves O (N logN) operations133

for N modes, which is much faster than FD schemes whose number of operations is usually134

given by (O
(
N2)) (Kutz, 2013). Due to their efficiency and accuracy, spectral methods are135

commonly used in problems involving miscible/immiscible displacements (Tan & Homsy,136

1988; Rogerson & Meiburg, 1993; Riaz & Tchelepi, 2006; Yuan & Azaiez, 2014; Wang et al.,137

2018; Wen et al., 2018; Wang et al., 2019).138

In the remainder of this paper, we present the governing equations for two-phase flow,139

and the computational setup including boundary and initial conditions. We construct scalar140

permeability fields based on self-similar random fields with a power-law covariance struc-141

ture. We derive scaling relations for two-phase flow subject to fractal permeability fields142

analytically. We utilize a spectral method to solve the vorticity stream-function equation,143
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and a high-order, total variation diminishing (TVD) scheme (Harten, 1983; Sweby, 1984)144

for spatial discretization of convection flux in the transport equation. Linear transport, e.g.,145

tracer flow, is simulated in heterogeneous permeable media. A statistical convergence study146

is performed to determine the required number of realizations of the permeability field.147

Scaling analysis is conducted by applying theoretically derived relations to the results of the148

numerical simulations in which two values of the scaling exponent are investigated. We then149

investigate nonlinear transport where the constitutive relation, i.e., relative permeability, is150

extracted from the literature (Tang & Kovscek, 2011). Two cases are considered regarding151

the onset of flow instabilities using total shock mobility ratio as its indicator (Berg & Ott,152

2012). We perform scaling analysis guided by the derived relations using mean saturation153

profiles and the length of the associated mixing zones. We close with a discussion of results154

and conclusion.155

2 Mathematical Model156

The Darcy-scale formulation for multiphase flow in permeable media is simplified by157

assuming incompressible and isothermal conditions with constant porosity φ. The governing158

equations are given by159

φ∂tSα +∇ · uα = qα, (1)160

161

uα = −kkrα (Sα)
µα

∇Pα, (2)162

where the subscript α denotes the invading (α = i) or the resident phase (α = r). Sα,163

uα, qα, krα, µα, and Pα denote saturation, Darcy velocity, volumetric flow rate, relative164

permeability, viscosity, and pressure of phase α. We consider equations (1) and (2) in a165

two-dimensional square domain Ω = [0, L]× [0, L] with boundary conditions given by166

u · n = −U, on x = 0,

Pi = 0, on x = L,

u · n = 0, on y = 0, L,

(3)167

168

where n is the unit outward normal vector to ∂Ω. The boundary conditions given by169

(3) simulate a flow predominantly parallel to the x-axis. The invading phase is injected170

uniformly at the left boundary (x = 0) with constant velocity U , displacing the resident171

phase initially saturated in Ω. The invading phase pressure is assumed to be constant at the172

outlet (x = L). No-flow boundary conditions are imposed along the horizontal boundaries173
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(y = 0 and y = L). The Riemann initial condition is expressed as174

Si =


Sim, if x < 0,

Sir, otherwise,
(4)175

where Sim and Sir are maximum and irreducible saturation values of the invading phase,176

respectively.177

A spectral numerical method is used to obtain highly accurate velocity fields: flow178

equations are written in a vorticity stream-function form (Tryggvason & Aref, 1983; Meiburg179

& Homsy, 1988; Tan & Homsy, 1988; Rogerson & Meiburg, 1993). The following model is180

used in subsequent numerical experiments:181 

∇2ψ̃ = kλT (Si)
(
∇
(

1
kλT (Si)

)
× u

)
· k̂,

u = (ux, uy) = (∂yψ̃ + u0
x,−∂xψ̃),

φ∂tSi +∇ · (ufi(Si)) = qi.

(5)182

Here ψ̃ is the fluctuating component of the stream function, ψ, k̂ is the unit vector in the183

positive z-direction, ux and uy are scalar components of the total velocity u along x- and184

y-axes, respectively. λT (Si) is the total mobility given by λT (Si) = λi(Si) + λr(Si), and185

fi(Si) is the fractional flow function for the invading phase given by fi(Si) = λi(Si)/λT (Si).186

Readers are referred to Wang et al. (2018) for the detailed derivation of system (5).187

We consider scalar, log-normal permeability fields expressed as188

kρ (x) = k0e
ρξ(x), (6)189

where k0 is a constant permeability value, ρ (ρ > 0) is a coefficient that sets the strength of190

fluctuations, and ξ (x) is a Gaussian isotropic scalar field characterized by the mean,191

〈ξ (x)〉 = 0, (7)192

and its two-point covariance function is given by (Glimm & Sharp, 1991)193

C (x,y) = 〈ξ (x) ξ (y)〉 = |x− y|β , (8)194

where angle brackets denote ensemble averaging. β (β < 0) is the scaling exponent which195

controls the correlation structure of heterogeneity: a large |β| indicates that the covari-196

ance function decays quickly, which results in fields with short length scale correlations; on197

the other hand, as |β| decreases, the covariance function decays slower. This produces a198

smoother field.199
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3 Scaling Analysis200

Here we develop scaling relations which relate flow behavior to the magnitude of het-201

erogeneities. Consider a random field which is related to ξ (x) given by202

ζ (x) = γ (λ) ξ (λx) , (9)203

where γ (λ) is dependenet on λ (λ > 0). The two-point covariance function of ζ (x) is204

expressed as205

〈ζ (x) ζ (y)〉 = γ2〈ξ (λx) ξ (λy)〉, (10)206

where207

〈ξ (λx) ξ (λy)〉 = λβ |x− y|β (11)208

based on equation (8). Combining equations (10) and (11), we arrive at209

〈ζ (x) ζ (y)〉 = γ2λβ |x− y|β . (12)210

γ (λ) is determined such that fields ζ (x) and ξ (x) have identical covariance function, i.e.,211

〈ζ (x) ζ (y)〉 = 〈ξ (x) ξ (y)〉. γ (λ) is given by212

γ (λ) = λ−β/2, (13)213

and the following relation is obtained:214

λ−β/2ξ (λx) = ξ (x) . (14)215

Therefore, the permeability field described by (6) satisfies the scaling relation given by216

kρ1 (x) = kρ2

(
σ2

σ1
x

)
, (15)217

where σj = ρ
−2/β
j . The scaling property given by equation (15) relates solutions to flow218

problems with random permeability fields kρ1 and kρ2 . Indeed, let ψ̃ρ, uρ, and Sρ solve219

equations (5) with random permeability kρ. The Riemann initial condition (4) and the220

boundary conditions (3) are invariant under the spatial scaling (15). Then, if σj = ρ
−2/β
j221

(as above),222

ψ̃ρ1 (x, t) = σ1

σ2
ψ̃ρ2

(
σ2

σ1
x,
σ2

σ1
t

)
, (16)223

224

uρ1 (x, t) = uρ2

(
σ2

σ1
x,
σ2

σ1
t

)
, (17)225

and226

Sρ1 (x, t) = Sρ2

(
σ2

σ1
x,
σ2

σ1
t

)
. (18)227
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In particular, if S̄ρ (x, t) = 〈Sρ (x, t)〉, which denotes the one-dimensional mean saturation228

profile (averaged in the transverse direction to mean flow), it follows that229

S̄ρ1 (x, t) = S̄ρ2

(
σ2

σ1
x,
σ2

σ1
t

)
. (19)230

A quantitative analysis of the mixing process is afforded via the analysis of the growth rate231

of the mixing region as a function of time. For this purpose, we introduce a time dependent232

length scale, referred to as the mixing length, given as233

l (t) := 1
S− − S+

∫ L

0

∣∣S̄ (x, t)− SH (x, t)
∣∣ dx, (20)234

where S− and S+ are saturation values behind and ahead the saturation front from the235

analytical solution (denoted by SH) of the Buckley-Leverett equation (Buckley & Leverett,236

1942) in a homogeneous system. The scaling relation (19) implies that237

lρ1 (t) = σ1

σ2
lρ2

(
σ2

σ1
t

)
. (21)238

4 Numerical Scheme239

The velocity field, u, is expressed as a function of first-order spatial derivatives of240

the fluctuating component of the stream function, i.e., ∂xψ̃ and ∂yψ̃, as shown in (5). To241

calculate the velocity components, ux and uy, the Fourier transform is applied to the first242

equation in system (5):243

F
(
ψ̃
)

= −
F
(
kλT (Si)

(
∇
(

1
kλT (Si)

)
× u

)
· k̂
)

(
k2
x + k2

y

) , (22)244

where F (·) denotes the Fourier transform operator, and kx and ky are wave numbers along245

the x- and y-axes, respectively. ∂xψ̃ and ∂yψ̃ on the transformed Fourier space are given by246

(Kutz, 2013)247

F
(
∂xψ̃

)
= ikxF

(
ψ̃
)

and F
(
∂yψ̃

)
= ikyF

(
ψ̃
)
, (23)248

where i is unit imaginary number. ∂xψ̃ and ∂yψ̃ are then obtained by performing an inverse249

transform on both sides of equation (23), resulting in250

∂xψ̃ = F−1 (ikxF (ψ̃)) and ∂yψ̃ = F−1 (ikyF (ψ̃)) , (24)251

where F−1 (·) denotes the inverse Fourier transform operator.252

The transport equation in system (5) may be rewritten as253

dSi
dt ≈ L(Si,u), (25)254

–9–
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where L(ξ,u) = 1
φ∆x∆yC(Si,u), C(Si,u) is an approximation to the convection flux. To255

reduce numerical diffusion arising from the discretization, this work implements the central-256

upwind scheme (Kurganov & Tadmor, 2000; Kurganov et al., 2001) where the intermediate257

values are constructed using the third-order weighted essentially nonoscillatory (WENO)258

scheme (Kurganov & Levy, 2000; Kurganov & Petrova, 2001; Shu, 2009). For details of259

the discretization of the convection flux, readers are referred to Appendix A. A third-order260

TVD Runge-Kutta method (S. Gottlieb & Shu, 1998; S. Gottlieb et al., 2001) is used for261

temporal discretization. The time marching scheme over (tn, tn+1) is given by262

S
(1)
i = Sni + ∆tL

(
Sni ,u

n+1) ,
S

(2)
i = 3

4S
n
i + 1

4S
(1)
i + 1

4∆tL
(
S

(1)
i ,un+1

)
,

Sn+1
i = 1

3S
n
i + 2

3S
(2)
i + 2

3∆tL
(
S

(2)
i ,un+1

)
,

(26)263

where superscripts n and n+ 1 denote time step counters, and ∆t is time step size.264

5 Results and Discussions265

5.1 Tracer Flow266

Two fluids are miscible in the case of tracer flow and have equal viscosities, i.e., µ =267

µi = µr. Dependence of relative permeability functions on saturation is linear: Si and268

(1− Si) for invading and resident phases. The resulting total mobility is λT = 1/µ.269

To determine the number of realizations needed for statistical convergence of numerical270

simulations, we compare simulation results, i.e., the growth of mixing length as a function of271

time, obtained from ensemble averaging with 2, 4, 8, and 16 realizations of the permeability272

field defined on a 512× 512 grid. Physical parameters used in the simulation are presented273

in Table 1. Figure 1 shows saturation maps from two realizations of permeability field with274

β = −0.5, ρ = 1.0 at the same time of injection. Fluctuations arising from the permeability275

field grow and develop into fingers in both maps, and fingers of the two maps exhibit different276

geometries owing to spatial variance of the heterogeneity in different realizations. The277

growth of mixing length in each case is obtained by calculating the mixing length at a fixed278

time interval using equation (20). The resulting ensemble averaging of different realizations279

are presented in Figure 2. It is observed that the growths of the mixing length for ensembles280

with the number of realizations larger than eight exhibit insignificant differences. Therefore,281

statistical convergence is obtained by averaging simulation results over eight realizations of282

the permeability field.283
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Scaling analysis of mixing lengths is performed with two values of β, i.e., −0.25 and284

−0.5. For each β, four values of ρ, referred to as ρ0, ρ1, ρ2, and ρ3, are selected such that285

the corresponding scaling factor is given by 1/8, 1/4, 1/2, and 1, respectively. From the286

scaling relation given by equation (15), the strength (ρj) of a given scaling factor (σj) is287

expressed as288

ρj = σ
−β/2
j . (27)289

Values of ρj are summarized in Table 2. Figures 3a and 4a present the mixing length in290

terms of injection time in log-log scale for β = −0.25 and −0.5, respectively. In each case291

larger values of ρ give longer mixing lengths due to stronger fluctuations of the permeability292

field. The mixing length curves are then scaled according to equation (21), and results293

are presented in Figures 3b and 4b. As shown, mixing length curves of different ρ tend to294

collapse to a single curve at intermediate times for both cases, indicating that numerical295

results follow the theoretical prediction. The discrepancies at early time (the transient296

regime) are attributed to the nonfractal behavior of the permeability field at short distances.297

In log-log variables, the mixing length seems to be a linear function of time and its slope,298

denoted by dash line, is shown in Figures 3b and 4b. Results of the perturbation theory299

(Glimm & Sharp, 1991; Borges et al., 2009) suggest that the intermediate-time behavior of300

mixing length is given by a power law301

lρ (t) ∼ a (ρ) tτ(β), (28)302

where τ (β) dependes on β in a nonlinear fashion; τ = max{1
2 ,

1
2 + 1 + β

2 }. From equation303

(28) the growth rate (slope) on a log-log plot satisfies304

log lρ (t)
log t ∼ γ (β) . (29)305

It is observed that the slope of the straight line (β = −0.25) is larger than that of the dashed306

line (β = −0.5), which agrees with the prediction from the perturbation theory. The slope307

in Figure 3b has not reached its expected value of 0.875 for the asymptotic regime. This308

indicates that the asymptotic regime has not been reached yet, but the scaling relation is309

valid regardless (Glimm & Sharp, 1991).310

5.2 Multiphase Flow311

Multiphase flow refers to the case in which the fluid pair, i.e., invading and resident flu-312

ids, may have different viscosities and their relative permeability functions have a nonlinear313
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Parameter Value Unit

Length, L 1.0 m

Porosity, φ 0.20 -

Absolute permeability, k0 1.0e-14 m2

Injection velocity, u0
x 2.315e-5 m/s

Table 1: Physical parameters used in numerical simulation.

β ρ0 ρ1 ρ2 ρ3

-0.25 0.771 0.841 0.917 1.0

-0.5 0.595 0.707 0.841 1.0

Table 2: Values of fluctuation strength.

dependence on saturation. As discussed in Hagoort (1974); Yortsos and Hickernell (1989);314

Riaz and Tchelepi (2004); Beliveau (2009); Berg and Ott (2012), the stability of displace-315

ment process is impacted by the properties of the fluid pair. The total shock mobility ratio,316

MT
s , is used as the indicator of the onset of flow instability given as (Berg & Ott, 2012)317

MT
s = kri (Si,−) /µi + krr (Si,−) /µr

kri (Si,+) /µi + krr (Si,+) /µr
, (30)318

where Si,− and Si,+ represent invading phase saturation values behind and ahead of the319

saturation front from the analytical solution of the Buckley-Leverett equation (Buckley &320

Leverett, 1942), respectively. Values ofMT
s larger than unity indicate unstable displacement,321

i.e., small amplitude of perturbations in the saturation front grow into a fingered flow322

pattern, whereas values less than one indicate stable processes, i.e., such perturbations323

decay during displacements. Two pairs of immiscible fluids, namely stable and unstable324

flows, are considered in this work, see Table 3. Relative permeability functions are based325

on steady-state measurements of Berea sandstone cores (Tang & Kovscek, 2011).326

Saturation maps from two realizations of permeability field are presented in Figure 5.327

Figures 5a and 5b show the results of stable flow. Fluctuations in velocity field develop into328

prominent channels with varying widths due to the heterogeneity of the permeability field.329

The interface between two phases exhibits sharper transitions compared to that in tracer330
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(a) (b)

Figure 1: Saturation maps of tracer flow from two realizations of permeability field (β =

−0.5 and ρ = 1.0).
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Figure 2: Ensembles of mixing length as a function of time with different numbers of

realizations of the permeability field (β = −0.5 and ρ = 1.0).

flow shown in Figure 1. Results of unstable flow are presented in Figures 5c and 5d, where331

the random fields are identical as those used in stable flow. Fingers in unstable flow display332

a more complex structure compared to those in stable flow: large-scale fingers split at the333

tip and grow into individual fingers almost aligned with the mean flow direction, while some334

branches spread sidewise. The vigorous fingering behavior leads to substantial bypassing of335

the resident fluid, resulting in a relatively large mixing length. Figure 6 shows comparisons336

of ensemble averages of mixing length as a function of time obtained from different numbers337
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Figure 3: Log-log plot of mixing length as a function of time for ρ ≈ 0.771, 0.841, 0.917,

and 1.0. (a) Mixing length curves, and (b) scaled curves according to (21) (β = −0.25).

of realizations. Results indicate that eight realizations appear to be sufficient in achieving338

statistical convergence for both types of flow.339

One-dimensional mean saturation profiles, which are obtained by cross-sectional aver-340

aging of saturation maps, are plotted at times t, 2t, 4t, and 8t for ρ ≈ 0.595, 0.707, 0.841,341

and 1.0, respectively - see Figures 7a and 7c. These profiles are scaled according to equa-342

tion (19) shown in Figures 7b and 7d. In each case, the four distinct profiles collapse to343

a single curve, indicating that simulation results agree with the derived relation. Scaling344

analysis of mixing length is then performed in a fashion similar to that described in tracer345

flow: four values of ρ are investigated and their corresponding scaling factors, given by346

1/8, 1/4, 1/2, and 1, are obtained from the analytically derived scaling law. Figures 8a347

and 9a display the mixing length in terms of injection time in log-log scale for stable and348

unstable flows, and the scaling results are presented in Figures 8b and 9b accordingly. As349

shown in Figures 8b and 9b, after an early transient regime, curves with different fluctuation350

strengths appear to collapse into a single curve. In the early transient regime, differences of351

mixing length obtained from different values of ρ are relatively pronounced. Growth rates352

of mixing length in the asymptotic regime are denoted by dash lines in Figures 8b and 9b.353

As shown, unstable flow has a higher growth rate than that of stable flow. This indicates354
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Figure 4: Log-log plot of mixing length as a function of time for ρ ≈ 0.595, 0.707, 0.841,

and 1.0. (a) Mixing length curves, and (b) scaled curves according to (21) (β = −0.5).

that the nonlinearity dominates the flow in the asymptotic regime: the nonlinear effects are355

stabilizing/destabilizing the flow in stable/unstable cases, respectively.356

Case # Type Viscosity Ratio Total Shock Mobility Ratio

1 Stable 18.0 0.87

2 Unstable 120.0 2.10

Table 3: Physical parameters of fluid pairs.

6 Conclusion357

In this work, we employ a recently developed high-resolution, two-dimensional numer-358

ical simulator to investigate the dynamics of two-phase flow in permeable media. Flow359

equation is cast in a vorticity stream-function form and solved using a spectral method.360

Transport equation is discretized using a third-order explicit scheme, and the convection361

flux is computed using a third-order central-upwind method. The coupled equations are362

solved in a sequential manner in each time step. To capture the fractal characteristics of363

natural permeable media, we utilize a random field with a power-law covariance function364
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(a) (b)

(c) (d)

Figure 5: Saturation maps of multiphase flow from two realizations of permeability field.

(a) and (b) stable flow, and (c) and (d) unstable flow (β = −0.5 and ρ = 1.0).

to describe the permeability field. A scaling relation, which relates permeability fields with365

different fluctuation strengths, is derived based on the statistical property (self-similarity) of366

the random field. The derived scaling relation in turn implies that flow problems governed367

by the flow and transport equations could be related: the dynamics of flow for different368

strengths of heterogeneity could be obtained from the result for a single fixed strength. In369

particular, scaling relations with respect to ensemble averages of mean saturation profiles370

and mixing lengths are proposed.371

To verify the proposed scaling relations, we first conduct numerical experiments for372

tracer flow, where invading and resident fluids have equal viscosities, and relative perme-373

ability functions are linear functions of saturation. A sensitivity study is performed to374
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Figure 6: Ensembles of mixing length as a function of time with different numbers of

realizations of the permeability field. (a) Stable flow, and (b) unstable flow (β = −0.5 and

ρ = 1.0).

determine the required number of realizations for statistical convergence. Results show that375

the growth of mixing length obtained from averaging of eight realizations result in a satisfac-376

tory convergence. The derived scaling relations are then examined using ensemble averages377

of simulation results from those realizations. Results suggest that the mixing length curves378

from different fluctuation strengths and two different values of |β| scale in accordance with379

the desired relation. The mixing length curve obtained from the case with a smaller val-380

ues of |β| has a larger slope in the asymptotic regime, which is consistent with result from381

perturbation theory.382

Next we investigate nonlinear transport, where the dispersion of fluid mixing is a con-383

sequence of collective efforts from nonlinearity and heterogeneity. Relative permeability384

functions are extracted from literature, which is based on experimental measurements. We385

consider two cases with MT
s smaller/greater than unity indicating stable/unstable flow.386

Saturation maps of the stable flow show that heterogeneity in the permeability field facil-387

itates the development of highly conductive flow channels, thus introducing dispersion in388

fluid mixing. On the other hand, simulation results of unstable flow exhibit highly-fingered389

flow pattern, which leads to a lager mixing length compared to that of stable flow with the390

same permeability field. The mixing length curves for both cases are scaled according to391
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Figure 7: Mean saturation profiles and scaled curves according to equation (19) for ρ ≈

0.595, 0.707, 0.841, and 1.0. (a) and (b) stable flow, and (c) and (d) unstable flow (β = −0.5).

the derived relation, and results show that these curves appear to collapse to a single curve392

at intermediate times.393

To summarize, numerical simulation results from both linear (tracer flow) and nonlin-394

ear transport flow agree with predictions from analytically derived scaling relations in the395

asymptotic regime. The correlation structure of heterogeneity plays a significant role in de-396

termining the scaling behavior in linear flow, whereas in the case of nonlinear flow, scaling397

behavior appears to be dominated by the degree of nonlinearity.398
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Figure 8: Log-log plot of mixing length as a function of time in the case of stable flow for

ρ ≈ 0.595, 0.707, 0.841, and 1.0. (a) Mixing length curves, and (b) scaled curves according

to equation (21) (β = −0.5).

Appendix A Discretization of the Convection Flux399

The central-upwind scheme (Kurganov & Tadmor, 2000; Kurganov et al., 2001) is used400

to discretize the convection flux. For brevity, we consider one-dimensional system with401

uniform spacing cells. The semi-discrete form of central-upwind scheme is given by402

d
dt Si|j = −

ux|j
φ∆x

(
F (ξθ)|j+ 1

2
− F (ξθ)|j− 1

2

)
, (A1)403

where404

F (ξθ)|j+ 1
2

=
a+
j+ 1

2
f
(
ξ−
j+ 1

2

)
− a−

j+ 1
2
f
(
ξ+
j+ 1

2

)
a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[
ξ+
j+ 1

2
− ξ−

j+ 1
2

]
, (A2)405

and f(ξ) = fi(ξ). In equation (A2), ξ−
j+ 1

2
and ξ+

j+ 1
2

denote left and right intermediate values406

at cell interface xj+ 1
2
. a−

j+ 1
2

and a+
j+ 1

2
are local speeds of propagation at cell interface xj+ 1

2
.407

In this work we take (Kurganov et al., 2001, 2007)408

a+
j+ 1

2
= −a−

j+ 1
2

= aj+ 1
2
, (A3)409

where410

aj+ 1
2

= max
ξ∈
[
ξ−

j+ 1
2
,ξ+

j+ 1
2

] f ′(ξ). (A4)411

Substituting Eq. (A3) into Eq. (A2), the numerical flux becomes412

F (ξθ)|j+ 1
2

=
f
(
ξ+
j+ 1

2

)
+ f

(
ξ−
j+ 1

2

)
2 −

aj+ 1
2

2

[
ξ+
j+ 1

2
− ξ−

j+ 1
2

]
. (A5)413
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Figure 9: Log-log plot of mixing length as a function of time in the case of unstable flow for

ρ ≈ 0.595, 0.707, 0.841, and 1.0. (a) Mixing length curves, and (b) scaled curves according

to equation (21) (β = −0.5).

F (ξθ)|j− 1
2

is obtained in a similar fashion expressed as414

F (ξθ)|j− 1
2

=
f
(
ξ+
j− 1

2

)
+ f

(
ξ−
j− 1

2

)
2 −

aj− 1
2

2

[
ξ+
j− 1

2
− ξ−

j− 1
2

]
. (A6)415

Intermediate values, ξ+
j+ 1

2
and ξ−

j+ 1
2
, are constructed using the third-order central weighted416

essentially nonoscillatory (CWENO) scheme (Kurganov & Levy, 2000) given by417

ξ+
j+ 1

2
= Aj+1 −

∆x
2 Bj+1 + (∆x)2

8 Cj+1, (A7)418

and419

ξ−
j+ 1

2
= Aj + ∆x

2 Bj + (∆x)2

8 Cj , (A8)420

where Aj , Bj , and Cj are given by421 
Aj = ξj − wC

12 (ξj+1 − 2ξj + ξj−1) ,

Bj = 1
∆x

[
wR (ξj+1 − ξj) + wC

ξj+1−ξj−1
2 + wL (ξj − ξj−1)

]
,

Cj = 2wC ξj−1−2ξj+ξj+1
∆x2 .

(A9)422

In equations (A9), subscript L, R, and C denote the left side, the right side, and the center423

location of cell j. wk (k ∈ {L,C,R}) are the weights espressed as424

wk = χk∑
m χm

, χk = ck
(ε+ ISk)p

, (A10)425
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where cL = cR = 1/4, cC = 1/2, and p = 2. ε is used to ensure that the denominator of χk426

is nonzero: ε = 10−6. The smooth indicators ISk are given by427 
ISL = (ξj − ξj−1)2

,

ISR = (ξj+1 − ξj)2
,

ISC = 13
3 (ξj+1 − 2ξj + ξj−1)2 + 1

4 (ξj+1 − ξj−1)2
.

(A11)428
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