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Abstract

Observing the spatial heterogeneities of NO2 air pollution is an important first step in quantifying NOx emissions and exposures.

This study investigates the capabilities of the Tropospheric Monitoring Instrument (TROPOMI) in observing the spatial and

temporal patterns of NO2 pollution in the Continental United States (CONUS). The high instrument sensitivity can differentiate

the fine-scale spatial heterogeneities in urban areas, such as hotspots related to airport/shipping operations and high traffic

areas, and the relatively small emission sources in rural areas, such as power plants and mining operations. We also examine

NO2 columns by day-of-the-week and find that Saturday and Sunday concentrations are 16% and 24% lower respectively than

during weekdays. In cities with topographic features that inhibit dispersion, such as Los Angeles, there appears to be a pollution

build-up from Monday through Friday, while cities which have better dispersion have more variability during weekdays. We

also analyze the correlation of temperatures and NO2 column amounts and find that NO2 is larger on the hottest days (>32C)

as compared to warm days (26C - 32C), which is in contrast to a general decrease in NO2 with increasing temperature at lower

temperature bins. Finally, we compare column NO2 with estimates of surface PM2.5 and find fairly poor correlation, suggesting

that NO2 and PM2.5 are becoming increasingly less correlated in CONUS. These new developments make TROPOMI NO2

satellite data advantageous for policymakers and public health officials, who request information at high spatial resolution and

short timescales, in order to assess, devise, and evaluate regulations.
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Abstract 19 

Observing the spatial heterogeneities of NO2 air pollution is an important first step in quantifying 20 

NOX emissions and exposures.  This study investigates the capabilities of the Tropospheric 21 

Monitoring Instrument (TROPOMI) in observing the spatial and temporal patterns of NO2 22 

pollution in the Continental United States (CONUS).  The high instrument sensitivity can 23 

differentiate the fine-scale spatial heterogeneities in urban areas, such as hotspots related to 24 

airport/shipping operations and high traffic areas, and the relatively small emission sources in 25 

rural areas, such as power plants and mining operations. We also examine NO2 columns by day-26 

of-the-week and find that Saturday and Sunday concentrations are 16% and 24% lower 27 

respectively than during weekdays.  In cities with topographic features that inhibit dispersion, 28 

such as Los Angeles, there appears to be a pollution build-up from Monday through Friday, 29 

while cities which have better dispersion have more variability during weekdays. We also 30 

analyze the correlation of temperatures and NO2 column amounts and find that NO2 is larger on 31 

the hottest days (>32°C) as compared to warm days (26°C - 32°C), which is in contrast to a 32 

general decrease in NO2 with increasing temperature at lower temperature bins. Finally, we 33 

compare column NO2 with estimates of surface PM2.5 and find fairly poor correlation, suggesting 34 

that NO2 and PM2.5 are becoming increasingly less correlated in CONUS.  These new 35 

developments make TROPOMI NO2 satellite data advantageous for policymakers and public 36 

health officials, who request information at high spatial resolution and short timescales, in order 37 

to assess, devise, and evaluate regulations. 38 



Introduction 39 

Enhancements of NO2 serve as a stark reminder of our society’s global reliance on fossil-fuel 40 

combustion.  NO2 – which comprises ~70% of NOX (NOX = NO + NO2) in urban airsheds (Valin 41 

et al., 2013) – primarily originates as a byproduct of fossil-fuel combustion, although there are 42 

some biogenic sources of NO2 such as lightning and microbes in soil (Jacob, 2000).  NO2 is a 43 

toxic air pollutant, which can cause and exacerbate asthma in vulnerable populations 44 

(Achakulwisut et al., 2019; Anenberg et al., 2018) and lead to premature mortality (Burnett et al., 45 

2004).  NO2 can also react in the atmosphere to create tropospheric ozone (O3), which is noted 46 

for its damaging effects including premature aging of lungs (Broeckaert et al., 1999; McConnell 47 

et al., 2002) and premature mortality (Bell, 2004; Bell et al., 2006).  HNO3 often represents the 48 

final chemical state of NO2 in the atmosphere and when deposited, agitates the equilibrium of 49 

our ecosystems due to its acidic properties (Burns et al., 2016).  NO2 can also participate in a 50 

series of reactions to create particulate nitrate (NO3-), a component of fine particulate matter less 51 

than 2.5 microns in diameter (PM2.5), which is the leading cause of mortality due to air pollution 52 

(Cohen et al., 2017). 53 

There is a rich legacy of monitoring NO2 by remote sensing instruments (Burrows et al., 1999).  54 

NO2 can be observed from space because it has unique high-frequency spectral features within 55 

the 400 – 500 nm wavelength region (Vandaele et al., 1998).  The newest remote sensing 56 

spectrometer, TROPOMI (VanGeffen et al., 2019; Veefkind et al., 2012), has been gathering 57 

data on the global heterogeneities of NO2 air pollution since October 2017. This instrument 58 

builds on the legacy of prior Ultraviolet – Visible (UV-Vis) spectrometers including the Global 59 

Ozone Monitoring Experiment (GOME) (Burrows et al., 1999; Martin et al., 2002; Richter & 60 

Burrows, 2002), the Scanning Imaging Spectrometer for Atmospheric Chartography 61 

(SCIAMACHY) (Bovensmann et al., 1999; Heue et al., 2005), the Global Ozone Monitoring 62 

Experiment - 2 (GOME-2) instrument (Munro et al., 2016; Richter et al., 2011), and the Ozone 63 

Monitoring Instrument (OMI) (Boersma et al., 2018; Krotkov et al., 2017; Levelt et al., 2006, 64 

2018). 65 

Satellite-based remote sensing instruments can be particularly useful in quantifying the trends of 66 

NOX pollution in high-emission areas (Castellanos & Boersma, 2012; Duncan et al., 2016; 67 

Georgoulias et al., 2019; Krotkov et al., 2016; McLinden et al., 2016; Stavrakou et al., 2008; Van 68 



Der A et al., 2008), the seasonal cycles of air pollution (Ialongo et al., 2016; Shah et al., 2020), 69 

and the weekly cycle of NOX emissions (Beirle et al., 2003; Ialongo et al., 2016; Ma et al., 2013; 70 

Russell et al., 2010; Valin et al., 2014).  In an additional step, NOX emissions can be computed 71 

by combining the satellite data with meteorological information (Beirle et al., 2011, 2019; de 72 

Foy et al., 2015; Goldberg, Lu, Streets, et al., 2019; Goldberg, Saide, et al., 2019; Lorente et al., 73 

2019; Lu et al., 2015; Valin et al., 2013) or by combining the satellite data with chemical 74 

transport models (Canty et al., 2015; Cooper et al., 2017; Qu et al., 2017; Souri et al., 2016).  75 

Due to the consistency and robustness of the remotely-sensed NO2 data record, scientists are 76 

beginning to infer information from the NO2 data about other trace gases such as CO2 (Goldberg, 77 

Lu, Oda, et al., 2019; Konovalov et al., 2016; Reuter et al., 2019), CH4 (de Gouw et al., 2020), 78 

and CO (Lama et al., n.d.), since remotely-sensed measurements of those trace gases are 79 

generally less reliable.  Therefore, remotely-sensed NO2 can also be helpful in indirectly 80 

estimating greenhouse gas emissions. 81 

TROPOMI’s smallest pixel size (3.5 × 7.2 km2 at nadir, reduced to 3.5 × 5.6 km2 at nadir on 82 

August 6, 2019) and enhanced sensitivity are significant improvements when compared to 83 

previous satellite instruments (Veefkind et al., 2012).  NO2 is unique due to its relatively short 84 

photochemical lifetime which varies from 2-5 h during the summer daytime (Beirle et al., 2011; 85 

de Foy et al., 2014; Laughner & Cohen, 2019; Valin et al., 2013) to 12-24 h during winter (Shah 86 

et al., 2020).  As a result, tropospheric NO2 concentrations are strongly correlated with local NOX 87 

emissions, which are often anthropogenic in origin. 88 

Initial NO2 measurements from TROPOMI show the complex spatial heterogeneities of NO2 89 

pollution with more refined resolution than any instrument before it (Griffin et al., 2019; Ialongo 90 

et al., 2020).  In particular, the smaller pixel sizes aid researchers in differentiating pollution 91 

sources within a single metropolitan area such as isolating signals from airports and individual 92 

highways (Judd et al., 2019).  These small-scale pixel sizes also show better agreement with the 93 

spatial features suggested by ground-based measurements (Ialongo et al., 2020; Judd et al., 94 

2019).  In particular, modeling studies have shown that matching the NO2 column to 10% 95 

accuracy requires a spatial resolution of at least 4 km (Valin et al., 2011) – the approximate 96 

spatial resolution of TROPOMI.  Robust high-spatial resolution estimates are also critical inputs 97 



to those trying to quantify the surface-level NO2 exposures (Geddes et al., 2016; Lamsal et al., 98 

2008; Larkin et al., 2017). 99 

The improved spatial resolution and instrument sensitivity also allows for shorter temporal 100 

averaging ranges (days to months) to gain the similar spatial structure it would normally take >1 101 

year to gather (Beirle et al., 2019; Dix et al., 2020; Goldberg, Lu, Streets, et al., 2019; Lorente et 102 

al., 2019).  As a result, it is easier to gain insight on the short-term variations of NOX pollution 103 

when using TROPOMI, which can be especially helpful for those trying to quantify intra-annual 104 

changes in NOX emissions (F. Liu et al., 2020). 105 

In this paper, we exploit TROPOMI’s small pixel sizes and enhanced instrument sensitivity to 106 

analyze spatial and temporal features of NOX columns in the continental United States on annual, 107 

seasonal, weekly, and daily timescales.  For example, using only a short temporal range of data, 108 

we can now answer such questions as:  109 

• Which location within each U.S. state has the worst NO2 air pollution?  110 

• How does the NOX emissions cycle vary by day of the week? 111 

• How does temperature affect column NO2 amounts? 112 

• What is the relative magnitude of NO2 compared to PM2.5? 113 

While older sensors (e.g., OMI) provided insight into some of these questions, early sensors 114 

lacked the same sensitivity and required longer oversampling times. Therefore, answers 115 

illuminated by TROPOMI provide a “clarity” that has not been seen before.  116 

Methods 117 

TROPOMI NO2 118 

TROPOMI was launched by the European Space Agency (ESA) for the European Union’s 119 

Copernicus Sentinel 5 Precursor (S5p) satellite mission on October 13, 2017.  The satellite 120 

follows a sun-synchronous, low-earth (825 km) orbit with an equator overpass time of 121 

approximately 13:30 local solar time (Veefkind et al., 2012).  TROPOMI measures total column 122 

amounts of several trace gases in the Ultraviolet-Visible-Near Infrared-Shortwave Infrared 123 

spectral regions (VanGeffen et al., 2019).  This instrument is characterized as a passive optical 124 

satellite sensor due to its reliance on solar UV-Visible radiation to gather measurements.  At 125 



nadir, pixel sizes are 3.5 × 7 km2 (reduced to 3.5 × 5.6 km2 on August 6, 2019) with little 126 

variation in pixel sizes across the 2600 km swath.  The instrument observes the swath 127 

approximately once every second and orbits the Earth in about 100 minutes, resulting in daily 128 

global coverage.   129 

Using a differential optical absorption spectroscopy (DOAS) technique on the radiance 130 

measurements in the 405 – 465 nm spectral window, the top-of-atmosphere spectral radiances 131 

can be converted into slant column amounts of NO2 between the sensor and the Earth’s surface 132 

(van Geffen et al., 2020).  In two additional steps, the slant column quantity can be converted 133 

into a tropospheric vertical column content.  In the first step, the stratospheric portion of the 134 

column (the amount above approximately 12 km in altitude) is subtracted either by using a 135 

measurement in a remote area or by using a global model estimate.  In a second step, the slant 136 

tropospheric column is converted to a vertical column using a quantity known as the air mass 137 

factor.  The air mass factor is the most uncertain quantity in the retrieval algorithm (Lorente et 138 

al., 2017), and is a function of the surface reflectance, the NO2 vertical profile, and scattering in 139 

the atmosphere among other factors.  Using accurate and high-resolution data (spatially and 140 

temporally) as inputs in calculating the air mass factor can significantly reduce the overall errors 141 

of the air mass factor (S. Choi et al., 2019; Goldberg et al., 2017; Laughner et al., 2016, 2019; 142 

Lin et al., 2015; M. Liu et al., 2019; Russell et al., 2011; Zhao et al., 2020) and thus the 143 

tropospheric vertical column content.   144 

Operationally, the TM5-MP model (1 × 1° resolution) is used to provide the NO2 vertical shape 145 

profile and the climatological Lambertian Equivalent Reflectivity (0.5 × 0.5° resolution) 146 

(Kleipool et al., 2008) is used to provide the surface reflectivities.  The operational air mass 147 

factor calculation does not explicitly account for aerosol absorption effects, which are accounted 148 

for in the effective cloud radiance fraction.  While the operational product does have larger 149 

uncertainties in the tropospheric column contents than a product with higher spatial resolution 150 

inputs, we limit our analysis to relative trends, which dramatically reduces this uncertainty. 151 

Re-gridding 152 

For our analysis we re-grid the operational TROPOMI tropospheric vertical column NO2, with 153 

native pixels of approximately 3.5 × 7 km2, to a newly defined 0.01° × 0.01° grid (approximately 154 

1 × 1 km2) centered over the continental United States (CONUS; corner points: SW: 24.5° N, 155 



124.75° W; NE: 49.5° N, 66.75° W).  Before re-gridding, the data are filtered so as to use only 156 

the highest quality measurements (quality assurance flag (QA_flag) > 0.75).  Once the re-157 

gridding has been completed, the data is averaged over varying timeframes as discussed in the 158 

results section. 159 

Other Datasets 160 

Additionally, we use two complementary products in some sections of our analysis.  When 161 

filtering the data based on temperature, we use the maximum daily hourly 2-meter temperature 162 

(T2m-Max) from the ERA5 re-analysis.  To downscale the ERA5 re-analysis, which is provided 163 

at 0.25° × 0.25°, we spatially interpolate daily T2m-Max to 0.01° × 0.01° using bilinear 164 

interpolation.  For that reason, the heat-urban island effect and any microscale meteorology 165 

features (e.g., sea breezes) will not be accounted for, but these effects should be minor for our 166 

particular analysis, which groups temperatures in 5° C intervals.  We also compare our 0.01° × 167 

0.01° TROPOMI NO2 data to an annual PM2.5 dataset at the same spatial resolution 168 

(VanDonkelaar et al., 2019). 169 



Results 170 

TROPOMI NO2 in CONUS 171 

Figure 1 depicts the 2019 CONUS annual average of TROPOMI tropospheric vertical column 172 

NO2 compared to averages over shorter timeframes.   173 

 174 
Figure 1. TROPOMI NO2 oversampled to 0.01° × 0.01° spatial resolution for four different 175 
temporal resolutions: (top left) annual, (top right) monthly, (bottom left) weekly, and (bottom 176 
right) daily. 177 

This example illustrates how shorter timeframes compare to the annual average in both 178 

magnitude and clarity.  In the single daily snapshot (September 20, 2019), there are wide sections 179 

that are missing due to cloud coverage.  In the areas that do have coverage, values can be a factor 180 

of five different than the annual average, but the spatial heterogeneities are generally captured.  181 

When oversampling over a one-week period (September 16 – 22, 2019), the image quickly starts 182 

to resemble the annual average with some differences in magnitude due to meteorological 183 

factors, such as temperature (which will be discussed later).  The one-week average can therefore 184 

be considered the minimum amount of oversampling time to properly capture spatial 185 

heterogeneities.  A monthly oversampled image essentially captures the same spatial 186 



heterogeneities as the annual average, but with magnitude differences due to meteorology.  It 187 

should be noted that September was specifically chosen for this analysis due to its propensity to 188 

have both less cloud coverage and snow cover than other months.  If oversampling during winter 189 

months (i.e., Dec – March), which tend to have fewer ideal conditions for satellite retrievals of 190 

trace gases, oversampling times will need to be longer to achieve similar clarity.  191 

When visually inspecting the CONUS TROPOMI NO2 average during the initial twenty months 192 

of the TROPOMI record (May 1, 2018 – Dec 31, 2019) (Figure 2), we now start to see clear 193 

spatial heterogeneities across the domain.  The largest U.S. cities can be seen and their 194 

magnitudes can be compared to each other (results further discussed later).   195 

 196 
Figure 2. TROPOMI NO2 oversampled to 0.01° × 0.01° spatial resolution during May 1, 2018 – 197 
December 31, 2019. Only pixels exceeding a quality assurance flag of 0.75 are included. 198 

Equally important, smaller sources of NO2 pollution can now be observed, and they are not 199 

spatially smeared into the background NO2 concentration.  For example, when magnifying the 200 

western United States (Figure 3), the roadway network and related activity in the Idaho Snake 201 

River valley can be clearly observed.  Other examples are the copper mining operations in 202 



eastern Arizona associated with the Morenci Mine, the coal mining operations in the Powder 203 

River Basin in eastern Wyoming, and to a lesser extent the gold mining operations associated 204 

with the Goldstrike mine in Nevada.  In addition, NO2 concentrations are clearly correlated with 205 

oil & gas operations in the Permian (Texas) and Bakken (North Dakota) basins (also discussed in 206 

(Dix et al., 2020)) and is > 5 times larger than the NO2 in the rural areas upwind.  Individual 207 

spikes in NO2 associated with NOX emissions from large power plants (e.g., Navajo in Arizona, 208 

Craig in Colorado, Colstrip in Montana, North Valmy in Nevada, Four Corners/San Juan in New 209 

Mexico, Intermountain, Bonanza, Hunter/Huntington in Utah, Jim Bridger in Wyoming) can also 210 

be observed during this 2018-2019 period even though there have been large reductions (~85%) 211 

in the NOX emissions from most of these power plants since the introduction of the federally-212 

mandated NOX SIP call in 2003.  213 

 214 
Figure 3. Same data shown in Figure 2, but now zoomed into the western United States. Power 215 
plants are outlined in dark magenta, mining operations in yellow, and oil & gas in bright red. 216 



TROPOMI data is especially powerful in analyzing local variations in NO2 pollution as 217 

compared to predecessor instruments. In Figure 4, we zoom into five different U.S. states, and in 218 

Table 1 we provide the largest NO2 values in each state.   219 

 220 
Figure 4. Same data shown in Figure 2, but now zoomed into 5 different U.S. states. Color bar 221 
has been adjusted to better differentiate spatial heterogeneities on a local scale.   222 

 223 



Table 1. Largest NO2 column value in each U.S. state during the May 1, 2018 – Dec 31, 2018 224 
period. Ordered by largest to smallest maximum value. 225 

 226 

State Lat Lon Value Detailed location
CA 34.03 -118.18 1.41E+16 E Los Angeles, CA
NY 40.72 -73.97 1.13E+16 East River, Brooklyn, NY
NJ 40.69 -74.14 9.75E+15 Port Newark, NJ
IL 41.82 -87.77 7.31E+15 Cicero, Chicago, IL (near MDW)
WA 47.46 -122.26 6.90E+15 Tukwila, WA (SE Seatle)
IN 41.66 -87.47 6.28E+15 E Chicago, IN (Steel Mill)
UT 40.71 -111.9 6.18E+15 S Salt Lake City, UT
CO 39.76 -105.02 5.98E+15 Highland, Denver, CO
PA 39.95 -75.16 5.95E+15 Downtown Philadelphia, PA
AZ 33.47 -112.15 5.87E+15 Cuatro Palmas, Phoenix, AZ
MI 42.31 -83.11 5.74E+15 Detroit, MI
TX 29.74 -95.14 5.58E+15 Deer Park, Houston, TX
CT 41 -73.67 5.46E+15 Greenwich, CT
NV 36.1 -115.18 4.97E+15 Las Vegas Strip, Las Vegas, NV
MD 39.28 -76.6 4.94E+15 Port of Baltimore, Baltimore, MD
DC 38.89 -77.01 4.65E+15 Capitol Hill, Washington, DC
GA 33.64 -84.42 4.65E+15 Hartsfield Airport, Atlanta, GA
VA 38.88 -77.05 4.59E+15 Pentagon, Arlington, VA
DE 39.8 -75.37 4.34E+15 Claymont, Wilmington, DE
OR 45.52 -122.65 4.25E+15 Buckman, Portland, OR
KY 38.18 -85.73 4.21E+15 Louisville, KY (Airport)
OH 39.12 -84.54 4.20E+15 Cincinatti, OH
MA 42.37 -71.06 4.14E+15 Charlestown, Boston, MA (near BOS)
LA 29.93 -90.14 3.98E+15 Mississippi River, New Orleans, LA
NC 35.24 -80.85 3.76E+15 Catawba, NC (near Marshall Steam SPP)State Lat Lon Value Detailed location
WV 38.94 -82.11 3.68E+15 Lakin, WV (near Gavin PP)
MO 38.68 -90.19 3.67E+15 Mississippi River, St Louis, MO
KS 39.12 -94.6 3.61E+15 Missouri River, Kansas City, KS
TN 36.16 -86.77 3.52E+15 Nashville, TN
FL 25.85 -80.34 3.40E+15 Medley, Miami, FL
WI 42.86 -87.82 3.40E+15 Oak Creek, WI (near Oak Creek PP)
MN 44.97 -93.24 3.28E+15 Mississippi River, Minneapolis, MN
AL 33.52 -86.82 3.21E+15 Fountain Heights, Birmingham, AL
RI 41.8 -71.41 2.88E+15 S Providence, RI
IA 41.25 -95.88 2.79E+15 Council Bluffs, IA
NE 41.25 -95.88 2.79E+15 Missouri River, Omaha, NE
OK 36.16 -96 2.64E+15 Tulsa, OK
WY 43.69 -105.32 2.52E+15 Thunder Basin Coal, WY
SC 32.88 -79.99 2.52E+15 N Charleston, SC
NM 35.11 -106.62 2.51E+15 Albuquerque, NM
AR 35.12 -90.1 2.46E+15 W Memphis, AR
ID 43.58 -116.23 2.30E+15 Boise, ID (Airport)
ND 47.35 -101.81 2.24E+15 Beulah, ND (near Dakota Gasification Co)
MT 45.86 -106.57 2.20E+15 Colstrip, MT (near Colstrip PP)
NH 42.94 -70.81 1.93E+15 Hampton, NH
ME 43.66 -70.29 1.90E+15 Portland, ME
MS 32.34 -90.19 1.77E+15 Jackson, MS
SD 43.6 -96.74 1.53E+15 N Sioux Falls, SD
VT 42.91 -73.18 1.49E+15 Wilmington, VT



In Figure 5, we zoom into six different U.S. cities.  In each instance, the oversampled TROPOMI 227 

NO2 images exhibit features that match known NOX emissions patterns.  The larger NO2 values 228 

correlate very well to the interstate network, population density, and industrial activity hubs 229 

(such as manufacturing facilities, airports, and shipping ports).  For example, in the image of 230 

Maryland, the largest value is observed at the Baltimore Harbor, which is a confluence of several 231 

major highways, a large shipping port, the city incinerator, and many industrial facilities.  232 

Similarly, the largest values in Chicago exist along the I-55 corridor which has a high traffic 233 

volume and a high-density of industrial facilities, with secondary maxima at the O’Hare 234 

International airport and the U.S. Steel mill in East Chicago, Indiana.  In Los Angeles, the spatial 235 

pattern matches the basin outline very well, with the largest values between downtown Los 236 

Angeles and Long Beach.  In Houston, Texas the largest values are nearest to the petrochemical 237 

refining facilities east of town.  For all cases, TROPOMI can accurately quantify the relative 238 

relationship between the largest sources of NOX emissions and NO2 concentrations.  239 



 240 
Figure 5. Same data shown in Figure 2, but now zoomed into 6 different U.S. cities. Color bar 241 
has been adjusted to better differentiate spatial heterogeneities on a local scale.   242 



Day-of-the-week relationships 243 

A common use of oversampled satellite data is in investigating the weekly cycle of NOX 244 

emissions.  In Figure 6, we show the weekly pattern of NO2 across CONUS for three different 245 

days of the week as well as the full weekly cycle in seven U.S. cities.  In all cities, the NO2 246 

appears to be approximately equivalent amongst all weekdays with some minor exceptions.  NO2 247 

pollution is 2.5% larger on Tuesday than a typical weekday, while Mondays and Fridays have 248 

1.4% and 1.3% lower NO2 pollution than a typical weekday.  On Saturdays, NO2 is 16% lower 249 

than the weekday averages, and on Sundays 24% lower.   250 

 251 
Figure 6. Weekly variations in column NO2. (Top left) TROPOMI NO2 during Mondays. 252 
(Bottom left) TROPOMI NO2 during Fridays. (Top right) Weekly variation of TROPOMI NO2 253 
in 7 U.S. cities normalized to Mondays. (Bottom right) TROPOMI NO2 during Sundays. 254 

It is interesting to see the differences in the weekday patterns amongst the cities.  In Chicago and 255 

Washington, D.C., column NO2 is 10% lower on Fridays compared to earlier days in the week.  256 

Conversely, in Los Angeles and Denver, NO2 is larger on Fridays as compared to previous days 257 

of the week.  In Chicago and Washington D.C., we hypothesize that this may be an indication of 258 

teleworking on Fridays.  Conversely, the cities with higher pollution on Fridays, are generally 259 



located in mountain valleys with stagnant winds – the valleys may be facilitating an 260 

accumulation of pollution during the week.  261 

When analyzing the weekday/weekend differences, there should be some consideration for the 262 

difference in traffic patterns and general activity between weekends and weekdays.  On 263 

weekends, traffic counts generally peak in the early afternoon, while on weekdays traffic counts 264 

peak in the evening, with a secondary peak in the early morning (de Foy, 2018).  Since the 265 

satellite observation is acquired in the early afternoon, we suggest that the 24-hour averaged 266 

NOX emissions difference between weekdays and weekends may be even greater than implied by 267 

the satellite data.  The soon-to-be-launched TEMPO instrument, a geostationary satellite, will 268 

hopefully be able to better quantify the morning and evening differences of NOX emissions 269 

(Chance et al., 2019; Penn & Holloway, 2020; Zoogman et al., 2017). 270 

Hot vs. Warm Days 271 

In Figure 7, we show the variation in column NO2 as a function of the daily maximum 2-meter 272 

temperature (T2m-Max).  Due to varying climates across the U.S. most cities do not have values 273 

for all temperature bins.  In general, as temperatures increase, NO2 decreases; this is primarily 274 

driven by j(NO2) which increases with stronger sunlight.  When temperatures are >32°C, we 275 

observe a leveling with increasing temperature.  This may be related to increasing anthropogenic 276 

NOX emissions (Abel et al., 2017; He et al., 2013) at high temperatures despite a shorter NO2 277 

lifetime.  This may also be driven by biogenic or natural causes, such as the faster dissociation of 278 

peroxy-acyl nitrates (PANs) or increased soil NOX emissions (Rasool et al., 2019; Romer et al., 279 

2018) at hot temperatures.  The latter reasons are likely causing rural areas to observe increases 280 

in NO2 as temperatures warm above 32°C.  The temperature-driven stabilization of NO2 at very 281 

high temperatures appears to hold for all cities except Chicago. 282 



 283 
Figure 7. Temperature variations in column NO2. (Top left) TROPOMI NO2 when maximum 284 
daily 2-m temperature (T2m-Max)  is between 26°C – 32°C (Warm; 80°F – 90°F); only areas 285 
were >10 valid pixels are shown. (Bottom left) TROPOMI NO2 when T2m-Max is greater than 286 
32°C (Hot; 90°F); only areas were >10 valid pixels are shown. (Top right) Temperature variation 287 
of TROPOMI NO2 in 7 U.S. cities normalized to 10°C – 21°C (50°F – 70°F). (Bottom right) 288 
Ratio between bottom left and bottom right panel. 289 

 290 

Relationship with PM2.5 291 

To understand the spatial pattern of NO2 in comparison to PM2.5, we compare TROPOMI annual 292 

averages of column NO2 to estimates of surface-level PM2.5 (VanDonkelaar et al., 2019).  Both 293 

pollutants have generally short atmospheric lifetimes and often have similar regional patterns.  In 294 

Figure 8, we depict the ratio between normalized TROPOMI NO2 and normalized surface PM2.5 295 

using the equation below. 296 

𝑃𝑀#.% 𝑃𝑀#.%&&&&&&&⁄
𝑁𝑂# 𝑁𝑂#&&&&&&⁄  297 

The red color in Figure 8 indicates that PM2.5 is relatively larger than NO2 and blue indicates that 298 

NO2 is relatively larger than PM2.5.  There are instances, especially in cities, where PM2.5 and 299 



NO2 are both greater than the CONUS mean, but that one pollutant is much larger than the mean 300 

and the other value is only slightly larger than the mean.   301 

 302 
Figure 8. (Left) Ratio of oversampled 2019 TROPOMI NO2 / 2016 Surface PM2.5. (Right) 303 
Scatterplot of the two datasets. 2016 is latest year of the 0.01° × 0.01° PM2.5 dataset (van 304 
Donkelaar et al., 2019) and is used for illustrative purposes. Spatial heterogeneities of annual 305 
PM2.5 is likely similar between 2016 and 2019. 306 

In major cities (e.g., New York City, Chicago, Los Angeles), NO2 is more elevated from the 307 

mean CONUS concentration compared to PM2.5.  This is also true regionally in the Northeast and 308 

Pacific Northwest.  Conversely, PM2.5 is relatively elevated compared to the mean in four 309 

distinct rural CONUS regions: the desert Southwest, the Intermountain West, the Central Plains, 310 

and the Southeast.  In the Southwest this is driven by dust.  In the Intermountain West, this is 311 

likely driven by wildfires.  In the Southeast and Central Plains, it is most likely driven by a 312 

combination of biogenic aerosols (e.g., secondary organic aerosols) and agricultural operations.   313 

We then compare the NO2 and PM2.5 datasets using a scatterplot. We find low correlation 314 

between column NO2 and surface PM2.5 (r2 = 0.30). At high TROPOMI NO2 values, PM2.5 is 315 

moderately elevated, but at low TROPOMI NO2 values, there is a range of distribution of PM2.5 316 

with no correlation.  This is in general agreement with studies showing that NO2 hotspots are 317 

dominated by local and regional components, while PM2.5 is dominated by regional and long-318 

range components, with a lesser influence of local sources (Wang et al., 2020).  Nevertheless, we 319 

find it important to demonstrate that TROPOMI NO2 does not appear to be helpful in predicting 320 

surface PM2.5 in the US.  321 



Conclusions 322 

This study investigates the capabilities of the Tropospheric Monitoring Instrument (TROPOMI) 323 

in observing the spatial and temporal patterns of NO2 pollution in the Continental United States 324 

(CONUS).  Here, we demonstrate that TROPOMI can capture fine-scale spatial heterogeneities 325 

in urban areas, such as hotspots related to airport/shipping operations and high traffic areas; this 326 

type of spatial precision cannot be matched by predecessor satellite instruments over short 327 

timescales (<1 year).  We find that Saturday and Sunday concentrations are 16% and 24% lower 328 

respectively than during weekdays, with the caveat that diurnal emissions patterns vary among 329 

weekdays and weekends.  We also analyze the effects of hot temperatures (>32°C) on NO2 330 

column amounts and find that column NO2 is generally larger on the hottest days as compared to 331 

warm days (26°C - 32°C).  Finally, we compare column NO2 with estimates of surface PM2.5 and 332 

find fairly poor correlation, suggesting that NO2 and PM2.5 are not well correlated in CONUS.   333 

For this work, we rely on the operational TROPOMI NO2 algorithm, which underestimates 334 

tropospheric vertical column NO2 in urban areas. Previous studies suggest that this underestimate 335 

is due to the air mass factor (AMF) and ~5km pixel size which cannot resolve street-level 336 

variations in concentrations (Goldberg, Lu, Streets, et al., 2019; Griffin et al., 2019; Judd et al., 337 

2019, 2020; Zhao et al., 2020); investigating the effects of the AMF bias on trends as well as 338 

investigating the effects of the pixels sizes will be the subject of future work. Also, there may be 339 

a clear-sky bias (Geddes et al., 2012) associated with any satellite retrieval, but the general 340 

spatial heterogeneities of NO2 pollution, should be similar amongst all types of weather 341 

conditions, when averaged over long timeframes.  Lastly, interpreting results from polar-orbiting 342 

satellite instruments such as TROPOMI, should be made with some caution due to the mid-day 343 

only data collection time. Work quantifying this bias has shown that NO2 column measurements 344 

are lower and incrementally more spatially homogeneous in the afternoon than during the 345 

morning (Chong et al., 2018; Fishman et al., 2008; Herman et al., 2019; Knepp et al., 2015; Penn 346 

& Holloway, 2020; Tzortziou et al., 2015); it is likely that data from geostationary platforms 347 

such as TEMPO (Zoogman et al., 2017), GEMS (W. J. Choi, 2018), and Sentinel 4 348 

(Timmermans et al., 2019), will be able to provide further insight on this time-of-day bias.  349 

Because TROPOMI can observe and measure NO2 increases attributed to relatively small 350 

sources, future work should be able to quantify emissions from small sources (e.g., industrial 351 



activities, small wildfires) that had previously gone undetected from predecessor space-based 352 

instruments.  Furthermore, due to the instrument’s excellent stability, precision, and spatial 353 

resolution, it is no longer necessary to average over 6+ months of data to gain a clear depiction 354 

of regional NO2 abundances; instead monthly, weekly or even daily aggregations could suffice 355 

for many purposes. The examples presented here demonstrate how TROPOMI NO2 satellite data 356 

can be advantageous for policymakers requesting information at high spatial resolution and short 357 

timescales, in order to assess, devise, and evaluate regulations.  Future health impact assessment 358 

studies can use the high-spatial resolution capabilities of TROPOMI NO2 to investigate 359 

disparities in traffic-related air pollution exposure and associated health effects between 360 

neighborhoods and population sub-groups within cities. 361 
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