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Abstract

Many drinking water utilities drawing from waters susceptible to harmful algal blooms (HABs) are implementing monitoring

tools that can alert them of the onset of potential blooms. Some have invested in fluorescence-based online monitoring probes

to measure chlorophyll a and phycocyanin, two pigments found in cyanobacteria, but it is not clear how to best use the

data generated this way. Previous studies have focused on correlating phycocyanin fluorescence and cyanobacteria cell counts.

However, not all utilities collect cell count data, making this method impossible to apply in some cases. Instead, this paper

proposes a novel approach to determine when a utility needs to respond to an HAB based on machine learning by identifying

outliers in chlorophyll a and phycocyanin fluorescence data without the need for corresponding cell counts or biovolume. Four

existing algorithms are evaluated on data collected at four buoys in Lake Erie from 2014-2019: k-means clustering, One-Class

Support Vector Machine (SVM), elliptic envelope, and Isolation Forest (iForest). When trained and tested on data collected at

different buoys, the iForest algorithm performed the best in terms of computation time for training and true positive rate, and

second best for false positive rate. In a more realistic application where the algorithms are trained on historical phycocyanin

data collected at the same location as the testing data, all the algorithms, except k-means, accurately identified anomalies in

phycocyanin data coinciding with real cyanobacteria bloom events. Therefore, One-Class SVM, elliptic envelope, and iForest

are promising algorithms for detecting potential HABs using fluorescence data.
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Abstract 18 

Many drinking water utilities drawing from waters susceptible to harmful algal blooms (HABs) are implementing 19 

monitoring tools that can alert them of the onset of potential blooms. Some have invested in fluorescence-based 20 

online monitoring probes to measure chlorophyll a and phycocyanin, two pigments found in cyanobacteria, but it is 21 

not clear how to best use the data generated this way. Previous studies have focused on correlating phycocyanin 22 

fluorescence and cyanobacteria cell counts. However, not all utilities collect cell count data, making this method 23 

impossible to apply in some cases. Instead, this paper proposes a novel approach to determine when a utility needs 24 

to respond to an HAB based on machine learning by identifying outliers in chlorophyll a and phycocyanin 25 

fluorescence data without the need for corresponding cell counts or biovolume. Four existing algorithms are 26 

evaluated on data collected at four buoys in Lake Erie from 2014-2019: k-means clustering, One-Class Support 27 

Vector Machine (SVM), elliptic envelope, and Isolation Forest (iForest). When trained and tested on data collected 28 

at different buoys, the iForest algorithm performed the best in terms of computation time for training and true 29 

positive rate, and second best for false positive rate. In a more realistic application where the algorithms are trained 30 

on historical phycocyanin data collected at the same location as the testing data, all the algorithms, except k-means, 31 

accurately identified anomalies in phycocyanin data coinciding with real cyanobacteria bloom events. Therefore, 32 

One-Class SVM, elliptic envelope, and iForest are promising algorithms for detecting potential HABs using 33 

fluorescence data.  34 

 35 

1 Introduction 36 

Cyanobacteria are increasingly threating drinking water supplies worldwide (Fernández et al., 2015). There is a need 37 

for improved monitoring to trigger responses by authorities. Traditional monitoring relies on visual observation of 38 

the source water and cell counting by microscopy (Chorus & Bartram, 1999; EPA Office of Water, 2015; Health 39 

Canada, 2016). However, visual monitoring of the water surface does not necessarily capture the conditions at the 40 

intake of a drinking water treatment plant, and microscopy is a costly, labour-intensive, and slow technique. 41 

Consequently, approaches including gene quantification by quantitative polymerase chain reaction (qPCR), remote 42 

sensing, cell imaging, and real-time fluorescence monitoring have been developed (Pacheco et al., 2016; Srivastava 43 

et al., 2013). Of these, only cell imaging and fluorescence monitoring can be implemented online at the drinking 44 

water intake: qPCR kits must be used by treatment plant staff at appropriate measurement frequencies and remote 45 

sensing is limited to capturing the conditions at or near the water surface. Automated cell imaging and identification 46 

techniques are promising but are often highly dependent on the quality of the model calibration (Jin et al., 2018).  47 

 48 

Fluorescence monitoring probes measure the fluorescence of the cyanobacteria-specific photosynthetic pigment 49 

phycocyanin and chlorophyll a, present in all photosynthetic organisms. There is a need to find a better way for 50 

utilities to use fluorescence data to trigger a response to mitigate the effects of a developing algal bloom. In their 51 

response, a utility can also determine whether the bloom is an HAB that poses a potential toxin or taste and odour 52 

risk. The primary approach to interpreting phycocyanin fluorescence data in the literature is to correlate it to cell 53 

counts or biovolume determined by microscopy. The resulting coefficients of determination in field samples have 54 

ranged from R2 = 0.41 (n = 53) to 0.87 (n = 46) (Almuhtaram et al., 2018; Bastien et al., 2011; Brient et al., 2008; 55 

Florence Choo et al., 2018; Hodges et al., 2018; McQuaid et al., 2011; Pazouki, 2016; Zamyadi, Choo, et al., 2016; 56 

Zamyadi, MacLeod, et al., 2012; Zamyadi, McQuaid, Prévost, et al., 2012). Threshold values for early warnings for 57 

cyanobacteria blooms can be set based on guideline values for cell counts or biovolumes given by various 58 

jurisdictions including the World Health Organization (WHO). However, the correlations can be site- and, if the 59 

composition of the cyanobacteria community changes, season-specific, requiring periodic validation of their 60 

accuracy by additional cell counting (Chang et al., 2012; Loisa et al., 2015). 61 

 62 

In practice, microscopically enumerating cyanobacteria on a recurring basis is expensive, making cell counting data 63 

scarce. Consequently, monitoring data are often used without quantitative correlations to cell counts by interpreting 64 

the fluorescence pattern in a more arbitrary or qualitative way, to trigger a response. For example, Zamyadi et al. 65 

(2016b) set an arbitrary fluorescence threshold of 10% above the baseline phycocyanin readings to trigger 66 

permanganate dosing in a full-scale trial to oxidize cyanobacteria cells and microcystins. However, this approach is 67 

subjective, and may be prone to bias and inefficiency. Therefore, there is a need to interpret real-time monitoring 68 
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data in a more objective and useful way for a utility to be able to determine when to initiate their HAB response 69 

strategy without relying on slow and laborious manual methods. Anomaly detection using machine-learning 70 

algorithms is a novel approach that has not yet been investigated for cyanobacteria and algae monitoring. Moreover, 71 

machine learning reduces the subjectivity involved with users interpreting real-time probe readings independently, 72 

and it has the potential to be implemented in monitoring software to trigger alarms automatically.  73 

 74 

Anomaly detection informs utilities of when to investigate possible cyanobacteria or algae events. An anomalous 75 

data point could be due to either a change in the actual cyanobacteria or algae concentration where the monitoring 76 

probe is installed, or due to interference from turbidity or temperature, which have been shown to be significant but 77 

can be corrected for (Chang et al., 2012; F. Choo et al., 2019; Florence Choo et al., 2018; Zamyadi, Choo, et al., 78 

2016). The objective of this study is to illustrate proof-of-concept for four unsupervised machine-learning 79 

algorithms to identify potential HABs from monitoring data collected in Lake Erie from 2014-2019 without the need 80 

for corresponding cell count data.  81 

2 Materials and Methods 82 

2.1 Data description 83 

Phycocyanin and chlorophyll a are measured by the National Oceanic and Atmospheric Administration (NOAA) 84 

Great Lakes Environmental Research Laboratory (GLERL) in Lake Erie. The data from four buoys was obtained in 85 

relative fluorescence units (RFU), collected using YSI EXO2 (YSI, Yellow Springs, OH, USA) multiparameter 86 

water quality sondes equipped with Total Algae sensors. The buoy locations are shown in Figure 1. Hourly data 87 

collected in 2014 at the WE2 and WE4 buoys and data collected every 15 min in 2015-2019 at all four buoys was 88 

obtained from the GLERL publicly available archives (NOAA/GLERL, 2020a). The sondes were serviced on an 89 

approximately monthly basis during the monitoring period and replaced with cleaned and calibrated (two-point 90 

calibration with Rhodamine WT dye) sondes. The data are available in the NOAA GLERL Lake Erie real-time data 91 

archives (NOAA/GLERL, 2020b).  92 

2.2 Machine learning algorithms 93 

Four machine-learning algorithms for unsupervised anomaly detection were applied to the Lake Erie monitoring 94 

data: k-means clustering, One-Class Support Vector Machine (SVM), elliptic envelope, and Isolation Forest 95 

(iForest). These algorithms are unsupervised because they use unlabelled data. That is, the algorithms do not know 96 

whether any of the data points inputted to them are normal or anomalous. All of the data analysis was conducted in 97 

the Python programming language (V. 3.7.3) using the scikit-learn machine-learning package (V. 0.20.3) (Pedregosa 98 

et al., 2011).  99 
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 100 
Figure 1 Location of the four monitoring buoys in Lake Erie.  101 

 102 

The k-means clustering algorithm creates a specified number of clusters, k, of data points, iteratively adjusting the 103 

centroids of the clusters until the sum of the distance between the data points and the center of the clusters (sum of 104 

squares) is minimized. Points that fall outside of the clusters or in small clusters are deemed anomalous. The number 105 

of clusters can be optimized using an ‘elbow curve’ that shows the number of clusters beyond which improvements 106 

to the sum of squares become progressively smaller. Then, the phycocyanin and chlorophyll a data can be divided 107 

into that number of clusters to identify outliers. However, because the clustering iteration initializes k cluster centers 108 

at random, the output is different every time the algorithm is run. The accuracy of the algorithm can be improved by 109 

using the k-means++ method for initialization, included in the scikit-learn package, which randomly selects k 110 

centers but weighs the data according to the initial sum of squares to improve the initialization procedure (Arthur & 111 

Vassilvitskii, 2007).  112 

 113 

In contrast, the One-Class SVM algorithm estimates a function that returns positive for normal (non-outlier) data 114 

points and negative for outliers when the probability that any data point is not an outlier is known. This is 115 

accomplished by mapping the data points into a feature space corresponding to the radial basis function kernel 116 

(commonly used in SVM algorithms) and separating them from the origin with a maximum margin hyperplane in a 117 

higher dimension feature space using a minimization formulation (Schölkopf et al., 2001).  118 

 119 

For a dataset {(𝑥1, 𝑥2, … , 𝑥𝑖)} where xi is the i-th data point, the data points are lifted to a higher dimension feature 120 

space 𝐹 via a non-linear function ϕ. This is so that a straight line, a hyperplane, can separate the data points into the 121 

two classes whereas a complex non-linear curve would have been required in the original dimension. Because noisy 122 

data can make the separation between the classes unclear, a slack variable, ξ, is introduced that allows data points to 123 

lie within the margin, in the proportion delimited by the parameter 𝑣. The minimization formulation  124 

min
𝜔,𝜉,𝜌

‖𝜔‖2

2
+

1

𝑣𝑛
∑ 𝜉𝑖

𝑛

𝑖=1

− 𝜌 (1) 125 

subject to (𝑤 ∙ 𝜙(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖, 𝜉𝑖 ≥ 0 126 

separates the data from the origin with a maximum margin, and a decision function  127 

𝑓(𝑥) = sgn (∑ 𝛼𝑖

𝑛

𝑖=1

𝐾(𝑥, 𝑥𝑖) − 𝜌) (2) 128 
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assesses whether a data point is normal or anomalous, returning a value of +1 for normal and -1 for anomalous. In 129 

this equation, αi are the Lagrange multipliers and 𝐾(𝑥, 𝑥𝑖) is the radial basis function kernel 130 

𝐾(𝑥, 𝑥𝑖) = exp (−
‖𝑥 − 𝑥′‖2

2𝜎2
) (3) 131 

 132 

where 𝜎 ∈ 𝑅 is a kernel parameter and ‖𝑥 − 𝑥′ ‖ is the dissimilarity measure.  133 

 134 

Unlike the maximum margin method of the One-Class SVM, the elliptic envelope models the data to a Gaussian 135 

distribution and identifies an ellipse that contains most of the data; a data point outside the ellipse is anomalous. The 136 

size and shape of the ellipse are determined by the FAST-Minimum Covariance Determinant algorithm (Rousseeuw 137 

& Driessen, 1999). This algorithm iteratively computes the Mahalanobis distance (a measure of how many standard 138 

deviations a data point is from the mean) of subsamples from the data until the determinant of the covariance matrix 139 

converges (Hoyle et al., 2015). An ellipse is constructed using the covariance matrix with the smallest determinant 140 

for all subsamples with the use of a hyper-parameter: the contamination rate of the dataset. The contamination rate is 141 

defined as the approximate proportion of data points that lie outside the ellipse, inputted before the algorithm is run. 142 

It has been reported that the contamination rate does not necessarily need a high degree of accuracy, so it can be 143 

estimated initially and adjusted in subsequent runs of the algorithm (Hoyle et al., 2015).  144 

 145 

Lastly, a fourth and fundamentally different anomaly detection approach, iForest, is used. The preceding three 146 

methods rely on building a profile of the data set and identifying outliers by various metrics. In iForest, anomalous 147 

points are explicitly isolated based on the fact that they are few and different, and no profile of the normal data is 148 

constructed (Liu et al., 2008). The algorithm constructs isolation trees by recursively partitioning every feature 149 

(variable) of the data split randomly between its maximum and minimum values. It was found that normal data 150 

points require more partitions, termed the ‘path length’, to be isolated than anomalous points, which require a lower 151 

path length (Liu et al., 2008). Because each isolation tree is made up of random partitions, as the number of isolation 152 

trees increases, the average path length required to isolate a point converges. This value is used to calculate an 153 

anomaly score that identifies a data point as normal or anomalous.   154 

 155 

The iForest algorithm comprises two phases: training and testing. In the training phase, up to 100 isolation trees are 156 

constructed using a subset of the data: 256 data points per tree by default. At the end of the training phase, an 157 

isolation forest is returned. Next, the testing phase passes each vector (data point) through each isolation tree, and 158 

the path length to termination is stored and used to calculate the anomaly score.  159 

 160 

2.3 Validation 161 

The four algorithms detect outliers in fluorescence data, but it is not known if the outliers identified correspond to 162 

real harmful algal bloom (HAB) events: that is, blooms of cyanobacteria. Real HAB events in Lake Erie 2019 are 163 

identified using the NOAA GLERL Experimental Lake Erie HAB Tracker and compared to the algorithm outputs 164 

when trained and tested only on phycocyanin (NOAA/GLERL, 2020a). Chlorophyll a is omitted from the training 165 

and testing data because it represents not only cyanobacteria but also green algae, whereas the HAB Tracker is 166 

specifically designed to identify cyanobacteria blooms.  167 

 168 

3 Results 169 

3.1 Training data 170 

Four unsupervised algorithms were implemented for anomaly detection of phycocyanin and chlorophyll a RFU data. 171 

Unsupervised algorithms have no knowledge of the correct classes for each data point, but they derive internally 172 

generated error measures to classify data based solely on the statistics of the training data (Kyan et al., 2014). 173 

Therefore, a training dataset should be abundant and diverse (Gong et al., 2019). As such, there are two possible 174 

training and testing scenarios for the current data: the algorithms can be trained on data from one of the four buoys 175 

and tested on the other three, or they can be trained on historical data for one buoy and tested on the most recent data 176 

collected in that location. In the former, the WE2 buoy data is the best candidate. It contains over 75,000 data points 177 

collected from the 2014-2019 algae seasons, shown in Figure 2. Although the WE4 buoy data contains 178 
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approximately the same amount of data, it is not as diverse; the variances of the phycocyanin and chlorophyll a 179 

values, both 0.48, were lower than those of the WE2 buoy data at 1.9 and 1.3, respectively. Additionally, the WE4 180 

buoy data results in the most conservative decision functions for each algorithm (Figure S1), and the data from the 181 

WE13 buoy produced similar decision functions (Figure S2). On the other hand, the WE8 buoy data was the least 182 

conservative (Figure S3). Therefore, training was performed using the more diverse WE2 data, which resulted in 183 

moderate decision functions. The diversity of this data set is likely due to the buoy’s position in Lake Erie (Figure 1) 184 

being closest to the Maumee River, which is believed to be the most significant source of nutrients contributing to 185 

HAB development in Lake Erie (Stumpf et al., 2012). The lake experienced diverse conditions with blooms of 186 

varying severity in terms of algal biomass and bloom extent from 2014-2019, and it appears that these conditions 187 

were best represented by the WE2 buoy data (NOAA & NCWQR, 2019).  188 

 189 
Figure 2 2014-2019 WE2 buoy data were used to train all four algorithms.  190 

 191 

The classification of data by unsupervised algorithms is not only dependent on the training data but also a sensitivity 192 

parameter. Each of the algorithms used in this work has such a parameter: in k-means clustering a predefined 193 

number of the data points farthest from the cluster centres are identified as anomalous, starting with the farthest; in 194 

One-Class SVM a value is inputted that sets an upper bound on the proportion of outliers; and, in elliptic envelope 195 

and iForest a contamination rate is inputted that approximates the proportion of outliers in the dataset. Notably, the 196 

actual proportion of outliers determined is not necessarily equal to the predefined contamination rate (Hoyle et al., 197 

2015).  The optimal contamination rate varies for every dataset. In this study, the optimal contamination rate was 198 

determined to be 0.05 by visually examining the sensitivity of each algorithm in response to inputting contamination 199 

rates of 0.01, 0.05, and 0.1. This evaluation is external to the algorithms and relies on user judgement to validate the 200 

model. Baseline data and fluorescence peaks are understood to be ‘normal’ and ‘anomalous’, respectively. Figures 201 

S4 and S5 show that for all four algorithms using values of 0.01 and 0.1 result in the classification of baseline data 202 

as anomalous and the classification of data peaks as normal, respectively. Therefore, a contamination rate of 0.05 203 

was used throughout this study.  204 

 205 

The training results for all four algorithms with a contamination rate of 0.05 are shown in Figure 3. Note that it 206 

appears that the encircled regions in cyan seem to be smaller than the red regions outside, implying that more than 207 

half of the readings are ‘anomalous’. However, the cyan region contains many more data points that are overlapped 208 

than the red region. Figure S6 shows that 95% of the chlorophyll a and phycocyanin RFU data are below 3.75 and 209 

2.24, respectively, for the 2014-2019 WE2 buoy data.   210 
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 211 
Figure 3 Normal and anomalous data points determined by the algorithms following testing on the 2014-2019 WE2 dataset. The 212 

solid lines represent the contours that separate the inliers from the outliers. The k-means method differs in that it uses the distance 213 

between a data point and the nearest cluster center of the training data to determine if it is an outlier, hence no contour is 214 

displayed. The computation time for training and testing both datasets is included in the bottom-right corner.  215 

3.2 K-means clustering 216 

The 2014-2019 data collected at the WE2 buoy were split into four clusters by the k-means algorithm. The optimal 217 

number of clusters was determined using an elbow curve, shown in Figure 4. The curve illustrates that beyond four 218 

clusters, the k-means score, the negative of the sum of distances between data points and their cluster centres, 219 

improves at a much slower rate for every additional cluster.  220 

 221 

The top 5% of data points with the largest distance to the nearest centroid centre are labelled as anomalies. 222 

Consequently, the anomaly detection relies heavily on the success of the clustering procedure in the training dataset 223 

to be applicable to the testing dataset. Additionally, the computation time of the k-means method was over 110 s 224 

because after constructing the clusters in the training set and assigning the testing set data points to them, it checks 225 

the distance between each data point and its cluster center one by one. Figure 3 presents the outcome of training on 226 

the WE2 dataset, illustrating that generally points with high phycocyanin and chlorophyll a fluorescence are 227 

considered anomalous. However, the presence of a cluster centre from the training data in the upper phycocyanin 228 

range prevents the identification of some of the data as anomalous. When tested on the 2014-2019 WE4 data and 229 

plotted as a time-series, shown in Figure 5, it is apparent that some of the chlorophyll a and phycocyanin peaks are 230 

not identified as anomalous, indicating that this algorithm has a dissatisfactory true positive rate. Therefore, k-means 231 

clustering is not suitable for this data, although it may perform better in other cases.   232 
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 233 
Figure 4 Elbow curve for the WE2 2014-2019 phycocyanin and chlorophyll a RFU data. The optimal number of clusters for this 234 

data appears to be 4.   235 

3.3 One-Class SVM\ 236 

The same 2014-2019 WE4 dataset was analyzed using the One-Class SVM algorithm. Like in the k-means 237 

approach, the 2014-2019 WE2 training data were standardized and a contamination rate of 5% was assumed. Then, 238 

the algorithm mapped the data according to the feature space corresponding to the radial basis function kernel and 239 

separated the data from the origin with a maximum-margin hyperplane in a higher dimension (Schölkopf et al., 240 

2001). Returning to the two-dimensional data, the hyperplane appears as the contour shown in Figure 3. The One-241 

Class SVM algorithm learned the training data in a computation time of 33 s, a significant improvement over the k-242 

means algorithm. Data points within the boundaries of the solid line are inliers and any points outside of it are 243 

outliers. This plot reveals that phycocyanin fluorescence values between 3-4 RFU are considered anomalous when 244 

the chlorophyll a fluorescence is low, but as chlorophyll a increases to 2 RFU, that phycocyanin range is considered 245 

normal. A similar pattern is seen for chlorophyll a fluorescence where values from 2.5-7.5 RFU are anomalous when 246 

phycocyanin is near zero but normal when phycocyanin is at 2 RFU. In Figure 5, the One-Class SVM algorithm is 247 

tested on the 2014-2019 WE4 dataset, showing that almost all the large and small phycocyanin and chlorophyll a 248 

fluorescence peaks were identified as anomalous by the One-Class SVM algorithm (i.e. high true positive rate), but 249 

so were some of the baseline data (i.e. high false positive rate), indicating that this algorithm’s performance is not 250 

satisfactory for this dataset.   251 

3.4 Elliptic envelope 252 

The elliptic envelope technique computes the Mahalanobis distance, mean, and covariance matrices between 253 

randomly selected non-overlapping subsamples. Then, subsamples with low Mahalanobis distances are selected and 254 

their means, the covariance between them, and the Mahalanobis distances are calculated again. This process iterates 255 

until the determinant of the covariance matrix converges, and the subsamples forming the covariance matrix with the 256 

smallest determinant form an ellipse. The ellipse for the 2014-2019 WE2 dataset is shown in Figure 3 and was 257 

computed in only 9 s, a significant improvement over the computation time of the One-Class SVM algorithm. 258 

Unlike the One-Class SVM contour, it includes most of the data with elevated chlorophyll a fluorescence and a near 259 

uniform cut-off for phycocyanin above about 3.5 RFU. Additionally, when tested on the 2014-2019 WE4 dataset 260 

(Figure 5), the algorithm is less sensitive than the One-Class SVM algorithm in the lower range, such that none of 261 

the baseline data is identified as anomalous (i.e. low false positive rate), but it labels all points with chlorophyll a 262 

fluorescence above 5 RFU as anomalous illustrating more sensitivity than the One-Class SVM algorithm when 263 

phycocyanin RFU is below 2.5. Therefore, this algorithm appears to be a promising tool for detecting outliers in 264 

chlorophyll a and phycocyanin fluorescence data.  265 
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3.5 Isolation Forest 266 

By default, the iForest algorithm builds an isolation forest from 100 isolation trees using 256 data points each. Each 267 

data point in the testing dataset passes through the forest and based on the path length to the terminating node an 268 

anomaly score is derived. The decision function of the iForest algorithm is comparable in shape to the One-Class 269 

SVM model for the 2014-2019 WE2 data, shown in Figure 3, but with a computation time about 10x faster. 270 

Moreover, it extends beyond the axes into the negative range so that fewer near-zero data points are mistakenly 271 

labelled anomalous, as opposed to the One-Class SVM decision function. Using the same contamination rate as the 272 

three previous methods (5%), the algorithm is sensitive to both chlorophyll a and phycocyanin fluorescence. In the 273 

time-series visualization for the 2014-2019 WE4 dataset, the performance is apparently satisfactory as all of the 274 

large and most of the small peaks were identified as anomalous (i.e. high true positive rate), as shown in Figure 5, 275 

although a few data points with negative phycocyanin RFU values were also labelled as anomalous (i.e. low false 276 

positive rate). Overall, iForest appears to be the most promising algorithm for unsupervised anomaly detection in 277 

this type of data.  278 

 279 
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 280 
Figure 5 Time-series representation of anomaly detection on the 2014-2019 WE4 dataset with a contamination rate of 5%.  281 
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3.6 Validation 282 

Although visually the iForest algorithm appears to perform the best, the anomalies identified must correspond to real 283 

cyanobacteria events for the approach to be useful. However, this is contingent upon not only the effectiveness of 284 

the algorithm, but also the collection of accurate measurements by the fluorometer used to generate the data. The 285 

experimental Lake Erie HAB Tracker was used to retroactively identify real bloom events occurring in the 286 

approximate position of the WE2 buoy shown in Figure 1. HAB Tracker data is available from July 2 to October 4, 287 

2019. 288 

 289 

Figure 6 illustrates a snapshot of the 2019 WE2 buoy data tested for outliers using the iForest algorithm, trained 290 

using data collected at the same buoy from 2014-2018, with yellow shaded regions superimposed denoting bloom 291 

events identified using the HAB Tracker. It is evident that the iForest results correctly identified outliers during the 292 

major bloom event identified by the HAB Tracker from July 11 to September 6, 2019 as well as the recurring 293 

blooms at the start of this period. However, at the end of this event, from September 6 to 10, no anomalous events 294 

were detected although the bloom persisted. Similarly, a short-lived cyanobacteria event occurred from September 295 

19 to 21 but was not detected by the phycoyanin sensor and consequently not identified as anomalous. In both cases, 296 

it is possible that the limited spatial resolution of the satellite image prevent an accurate alignment of the WE2 buoy 297 

position with the discontinuous bloom patches such that the buoy was positioned outside of the bloom and therefore 298 

no phycocyanin was detected by the probe (Figure S7).  299 

 300 

This illustrates the validity of the application of the iForest algorithm to detect cyanobacteria events from 301 

phycocyanin monitoring data. When the same process is carried out for the other three algorithms, the k-means 302 

approach fails to identify numerous peaks as anonymous but the One-Class SVM and elliptic envelope results are 303 

similar to the iForest results, although not as sensitive (Figure S8). So, while iForest performs the best when trained 304 

on data collected in a different location (i.e., can be generalized, Figure 5), One-Class SVM and elliptic envelope are 305 

satisfactory when trained on historical data for the testing location, which represents a more likely application.  306 

 307 

 308 
Figure 6 Outlier detection using the iForest algorithm trained on the WE2 phycocyanin data from 2014-2018 and tested on the 309 

2019 phycocyanin data. The yellow shaded regions indicate the presence of a cyanobacteria bloom identified by the NOAA 310 

Experimental HAB Tracker using satellite data. The 3.6 RFU threshold value corresponds to the WHO Alert Level 1, previously 311 

determined for four Great Lakes region treatment plants in Almuhtaram et al. (2018). 312 

 313 

 314 
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4 Discussion and Conclusion 315 

The One-Class SVM, elliptic envelope, and iForest algorithms might be valuable to utilities that already have 316 

fluorescence-based probes installed at their intakes or a raw water sampling line. They may eliminate the need for 317 

pairing microscopically enumerated cyanobacteria to phycocyanin fluorescence to establish a fluorescence threshold 318 

that, if surpassed, triggers reactive measures at the utility. The advantage of using machine learning is that 319 

continuously collected monitoring data can be added to an unsupervised algorithm’s training set so that the 320 

underlying structure of the data distribution is learned (Abou-Moustafa & Schuurmans, 2015). This means that the 321 

algorithm can be applied to any source water provided that enough data is available. Moreover, the outlier detection 322 

by iForest conducted on the Lake Erie datasets illustrates generalization: that is, different datasets were used for 323 

training and testing to demonstrate that the algorithm is effective across a range of inputs. In practice, however, it is 324 

not necessary to separate the training and testing datasets; all the chlorophyll a and phycocyanin monitoring data 325 

collected at a utility can be used for training, and testing can focus on the newest data points added to that set at a 326 

desired frequency (e.g. testing for outliers in the past hour’s data). Additionally, the algorithms can be used to 327 

conduct outlier detection for only one variable. An example of this is if a utility is interested specifically in the 328 

occurrence of cyanobacteria blooms and not green algae, phycocyanin can be used as the sole variable for training 329 

and testing (Figure 6).  330 

 331 

Another possible advantage of using machine learning is the ability to detect the onset of a cyanobacteria bloom if 332 

the data are suitable. The gradual growth of cyanobacteria will result in gradual fluorescence increases, which can be 333 

theoretically identified as anomalies using machine learning. However, this was not observed in Figure 6 as the first 334 

bloom occurred suddenly such that no gradual increase was detected by the probe. Still, machine learning may result 335 

in better sensitivity and earlier detection than existing practices. A previous study employed a fluorescence-based 336 

probe to monitor cyanobacteria across four Great Lakes region treatment plants to assess cyanobacteria 337 

breakthrough and accumulation (Almuhtaram et al., 2018). Phycocyanin fluorescence was correlated to 338 

cyanobacteria cell counts among the raw water samples of the plants, which included samples from Lake Erie. A 339 

phycocyanin fluorescence threshold value of 3.6 RFU for a cyanobacteria biovolume of 0.2 mm3/L, corresponding 340 

to the WHO Alert Level 1, was determined, and is added to Figure 6. This example demonstrates that the machine 341 

learning approach is more sensitive than the 3.6 RFU threshold and corresponds to the start of the bloom whereas 342 

the threshold may only detect the bloom when it becomes severe.  343 

 344 

The current approach may therefore provide water utilities, and health and regulatory agencies with a management 345 

tool to detect the presence of cells in time to implement their management strategies prior to bloom breakthrough. 346 

Also, equivalent fluorescence threshold values such as that reported by Almuhtaram et al. (2018) are site-specific; 347 

hence authorities need to have a proper understanding of their water body and HAB dynamics and use long term 348 

monitoring data to develop their threshold values by matching fluorescence readings with taxonomic analysis data 349 

(Macário et al., 2015). The machine learning approach, in contrast, is not reliant on finding threshold values that 350 

represent a predetermined risk level, such as the WHO Alert Level 1. Instead, statistical anomalies are brought to the 351 

attention of the utility that must then investigate the associated risk in terms of cell, toxin, or taste and odour 352 

concentration.  353 

 354 

This approach has the potential to be adopted by fluorometer manufacturers. Outlier detection can be conducted in 355 

real time provided that an outlier detection algorithm is included in the monitoring software. Data measured by the 356 

sensors can be used to create a training set, and as individual measurements are logged (e.g., every 15 min), the 357 

algorithm can test the newest point to immediately determine whether it is an outlier and trigger an alarm. The 358 

freedom to select which parameters to test for should also be included, such as both chlorophyll a and phycocyanin 359 

for detecting all algal events or only phycocyanin for detecting cyanobacteria. In theory, this approach could be 360 

applied to any continuously monitored water quality parameter such as turbidity or dissolved oxygen, although this 361 

requires further investigation. Moreover, machine learning makes use of all the data collected by a sensor to 362 

characterize the entire range of conditions encountered in its lifetime. In contrast, the existing approach uses a small 363 

subset of the available phycocyanin data to pair with grab sample measurements of cyanobacteria cell concentration.  364 

 365 

When a potential HAB is identified using either the novel machine learning approach or the correlation approach, 366 

utilities need to conduct further investigations to determine whether harmful algae or cyanobacteria are present. This 367 

is because fluorescence-based probes are inherently susceptible to false positives due to interference by turbidity, 368 

temperature, and dissolved pigments (Zamyadi, McQuaid, Dorner, et al., 2012). Nonetheless, use of either method 369 
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results in an improvement over traditional HAB and cyanotoxin monitoring practices that rely on visual monitoring 370 

and weekly microcystins measurements by enzyme-linked immunosorbent assays (ELISA) in that a sample can be 371 

taken in response to a potential HAB event, rather than on an arbitrary day of the week. Machine learning is 372 

therefore a promising way to utilize fluorescence data to alert a utility to potential HAB events.  373 
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Figure S1. Algorithms trained on the 2014-2019 WE4 dataset.  

 

 

 
Figure S2. Algorithms trained on the 2015-2019 WE13 dataset. 
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Figure S3. Algorithms trained on the 2015-2019 WE8 dataset. 
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Figure S4. Tested on WE4 2014-2019 with contamination rate of 1% 
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Figure S5. Tested on the WE4 2014-2019 dataset with a contamination rate of 10% 
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Figure S6. Histograms of the WE2 a) chlorophyll a and b) phycocyanin RFU data from 

2014-2019 showing that most of the data is concentrated in the lower range.  
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Figure S7. The intersection of the red lines indicates the approximate position of the 

WE2 buoy. The bloom patches, although present, may not have been measured by the 

sensors on the buoy from a) September 6 to 10 and b) September 19 to 21, 2019.  
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Figure S8. Outlier detection algorithms trained on WE2 2014-2018 data and tested on 

WE2 2019 data. a) k-means clustering; b) one class support vector machine; c) elliptical 

envelope. 

 
 

a) 

b) 

c) 


